Date of Submission
Spring 2011
Academic Program
Mathematics
Advisor
Ethan Bloch
Abstract/Artist's Statement
The Square Peg Problem, first posed by O. Toeplitz in 1911, asks whether every Jordan curve in the plane contains the four vertices of a square. Although the original problem has not been proved yet, there have been affirmative solutions to that problem with various restricted conditions either on the vertices or on the curve. In this paper, we study the Square Peg Problem where we look for squares with lattice vertices. We study southeast curves and in particular those of pure width. We prove most cases of the Lattice Square Peg conjecture for pure width southeast lattice curves and study the conjecture with some small widths.
Distribution Options
Access restricted to On-Campus only
Recommended Citation
Tu, Zhexiu, "Square Peg Problem on Lattice Plane" (2011). Senior Projects Spring 2011. 87.
https://digitalcommons.bard.edu/senproj_s2011/87
This work is protected by a Creative Commons license. Any use not permitted under that license is prohibited.
Bard Off-campus DownloadBard College faculty, staff, and students can login from off-campus by clicking on the Off-campus Download button and entering their Bard username and password.