Date of Submission

Spring 2011

Academic Program

Computer Science

Advisor

Sven Anderson, Rebecca Thomas

Abstract/Artist's Statement

In this project documents that come from defined classes are clustered. The clustering is done using non-negative matrix factorization performed by a approximation method called rank one residue iterations. In order to employ this method the optimal number of clusters and cluster sparsity has to be determined. Normalized mutual information is a measure of how well the clustering represents the original class structure, and this measure is used to find the optimal number of clusters and sparsity.

Distribution Options

Access restricted to On-Campus only

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.

This work is protected by a Creative Commons license. Any use not permitted under that license is prohibited.

Bard Off-campus Download

Bard College faculty, staff, and students can login from off-campus by clicking on the Off-campus Download button and entering their Bard username and password.

Share

COinS