Date of Submission
Spring 2018
Academic Programs and Concentrations
Physics; Computer Science
Project Advisor 1
Paul Cadden-Zimansky
Project Advisor 2
Sven Anderson
Abstract/Artist's Statement
One of the fundamental problems in analytically approaching the quantum many-body problem is that the amount of information needed to describe a quantum state. As the number of particles in a system grows, the amount of information needed for a full description of the system increases exponentially. A great deal of work then has gone into finding efficient approximate representations of these systems. Among the most popular techniques are Tensor Networks and Quantum Monte Carlo methods. However, one new method with a number of promising theoretical guarantees is the Neural Quantum State. This method is an adaptation of the Restricted Boltzmann machine(RBM). Unlike the traditional RBM, Neural Quantum States act as a feedforward network, calculating a single complex value of the wave function for every spin configuration. We examine this method, and compare its performance to a feedforward network for a similar problem. Another recent application includes the use of neural networks for detecting phase transitions. We examine the claims made about this technique and propose a new method for solving this problem. We report results for both experiments.
Open Access Agreement
Open Access
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Recommended Citation
Schramm, Liam B., "A Study of Neural Networks for the Quantum Many-Body Problem" (2018). Senior Projects Spring 2018. 168.
https://digitalcommons.bard.edu/senproj_s2018/168
This work is protected by a Creative Commons license. Any use not permitted under that license is prohibited.
Included in
Artificial Intelligence and Robotics Commons, Condensed Matter Physics Commons, Numerical Analysis and Scientific Computing Commons, Quantum Physics Commons