"Graph Replacement Systems for Julia Sets of Quadratic Polynomials" by Yuan Jessica Liu

Date of Submission

Spring 2018

Academic Programs and Concentrations

Mathematics

Project Advisor 1

Jim Belk

Abstract/Artist's Statement

Belk and Forrest construct a specific class of graph replacement systems that give sequences of graphs that converge to fractals. Given a polynomial, we have an algorithm that gives a replacement system that leads to a graph sequence which we conjecture converges to the Julia set. We prove the conjecture for the quadratic polynomial $z^2+c$ where $c$ is a real number and the critical point is in a three cycle. We present some additional results and observations on replacement systems obtained from certain polynomials.

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

This work is protected by a Creative Commons license. Any use not permitted under that license is prohibited.

Share

COinS