Date of Submission
Spring 2018
Academic Programs and Concentrations
Biology
Project Advisor 1
Arseny Khakhalin
Project Advisor 2
Kerri-Ann Norton
Abstract/Artist's Statement
One of the major areas of research in computational neuroscience is focused on inferring the connections within populations of neurons from the signaling activity of these populations. Methods of reconstructing structural neuronal network connectivity are limited and, in large populations, technically infeasible. Current methods that reconstruct networks of large populations relate connectivity to calcium imaging recordings of these networks. Here, we introduce a machine-learning approach to inferring connectivity from spike-time data extracted from calcium imaging recordings. First, we simulate populations of neurons with the NEST simulator to produce downsampled spike trains. We develop a model based on neural networks, which is a widely applied machine-learning method. The model is updated with gradient descent on the error via backpropagation, and the performance is compared to the widely used cross-correlation method of extracting functional connectivity. We then train the models on simulated data and in-vivo calcium imaging data from Xenopus Laevis tadpoles.
Open Access Agreement
On-Campus only
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Recommended Citation
Low, Derek, "Machine Learning-Based Reconstruction of Neuronal Networks from Calcium Imaging Signals" (2018). Senior Projects Spring 2018. 12.
https://digitalcommons.bard.edu/senproj_s2018/12
This work is protected by a Creative Commons license. Any use not permitted under that license is prohibited.
Bard Off-campus DownloadBard College faculty, staff, and students can login from off-campus by clicking on the Off-campus Download button and entering their Bard username and password.