Date of Submission
Spring 2017
Academic Programs and Concentrations
Mathematics; Physics
Project Advisor 1
Hal Haggard
Project Advisor 2
Ethan Bloch
Abstract/Artist's Statement
In recent years, there has been growing interest in models of black holes quantum tunneling into white holes. Shells of matter or energy could be sufficiently affected by quantum gravity at Planckian density to end their collapse before reaching a singularity, and bounce out in finite time. Existing work examines the collapse scenario in the Schwarzschild metric of a static black hole to make use of the full set of spherical symmetries for analytic solutions of both the location of maximal quantum effects and time-frames over which these effects become significant. This thesis expands the analysis to the Kerr metric of a rotating black hole. Most, if not all, astrophysical black holes are expected to have angular momentum, so a more general treatment is of both theoretical and phenomenological interest. We derive the full set of null geodesics in the Kerr metric and set up an exact function that gives a dimensionless measure of the strength of quantum effects, and are still able to analytically isolate regions of maximal quantum effects. We turn to numerical analysis to characterize cases of interest. We are able to prove in the Kerr metric that there is still an absolute maximum for the quantum effects outside of the event horizon.
Open Access Agreement
On-Campus only
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Recommended Citation
Chayes, Victoria Minerva, "Maximal Quantum Effects Outside A Spinning Black Hole: An Exploration Of The Kerr Metric" (2017). Senior Projects Spring 2017. 44.
https://digitalcommons.bard.edu/senproj_s2017/44
This work is protected by a Creative Commons license. Any use not permitted under that license is prohibited.
Bard Off-campus DownloadBard College faculty, staff, and students can login from off-campus by clicking on the Off-campus Download button and entering their Bard username and password.