Modeling Stochastic Traps: The Evolution of Preference in a Temporally Heterogeneous Ecological Trap
Date of Submission
Spring 2015
Academic Programs and Concentrations
Biology; Mathematics
Project Advisor 1
Bruce Robertson
Project Advisor 2
Csilla Szabo
Abstract/Artist's Statement
When the fitness detriment associated with a habitat becomes decoupled from the cues organisms associate with habitat quality, the habitat is deemed an ecological trap. These traps can pose severe threats to affected populations, and hold the potential to cause extinction events if not corrected. Here we characterize the evolutionary implications of stochastic ecological traps. That is, when a novel environment (generally anthropogenic in origin) is presented that is characterized by a severe fitness disadvantage at some time-points but not others, and when individuals in a population show a preference for that habitat overall, will selective pressures cause the population’s preference to evolve over time and thus allow escape from that trap? Even more important than asking if escape via evolution by natural selection is possible, is the question of what levels of severity and frequency of fitness detriment will lead to the escape or extinction of the population. To answer these questions we construct a discrete, probabilistic model based on the life-history of the Checkerspot Butterfly (E. editha), which may have been exposed to such a trap at General’s Highway in Sequoia National Park. Using a stochastic difference equation model that is built upon a Markov chain and arrival processes we are able to reconstruct checkerspot life history patterns and natural sources of uncertainty for these populations. We find (1) that moderate preference for a trap can, under certain circumstances, pose greater risk than high preference for the trap, (2) that high variability in preference does not always facilitate evolutionary escape, (3) that the severity of catastrophes is more important than their frequency in assessing extinction risk, and (4) that persistence is inversely related to the fitness detriment associated with a trap.
Open Access Agreement
On-Campus only
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.
Recommended Citation
Weissman, Jake, "Modeling Stochastic Traps: The Evolution of Preference in a Temporally Heterogeneous Ecological Trap" (2015). Senior Projects Spring 2015. 39.
https://digitalcommons.bard.edu/senproj_s2015/39
This work is protected by a Creative Commons license. Any use not permitted under that license is prohibited.
Bard Off-campus DownloadBard College faculty, staff, and students can login from off-campus by clicking on the Off-campus Download button and entering their Bard username and password.