Date of Submission
Spring 2015
Academic Programs and Concentrations
Physics
Project Advisor 1
Paul Cadden-Zimmansky
Project Advisor 2
Matthew Deady
Abstract/Artist's Statement
Quantum optical coherence tomography is a bioimaging technique that takes advantage of the entangled nature of photons to encode information. By sending light through a special crystal, the light is emitted in correlated pairs. Sending those pairs through an interferometer and into a sample material creates a polarization-sensitive spatial map of reflective layers within the material in addition to measuring the dispersive characteris- tics of the layer in between. The coincidence detection rate differs from normal intensity readings by accessing greater depths with the benefit of zero group velocity dispersion, at twice the resolution. This technique could impact bioimaging with further optimization, and particularly influence cancer detection. Apart from being scientifically sneaky—using quantum entanglement— the non-invasiveness makes quantum optical coherence tomog- raphy an attractive model for understanding the ways light interacts with matter and what it can tell us about its nature. This paper seeks to understand the improvements that this process makes upon traditional bioimaging techniques on a fundamental level.
Open Access Agreement
On-Campus only
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.
Recommended Citation
Sekowski, Clara Morgan, "Quantum optical coherence tomography with polarization sensitivity" (2015). Senior Projects Spring 2015. 332.
https://digitalcommons.bard.edu/senproj_s2015/332
This work is protected by a Creative Commons license. Any use not permitted under that license is prohibited.
Bard Off-campus DownloadBard College faculty, staff, and students can login from off-campus by clicking on the Off-campus Download button and entering their Bard username and password.