"Irreducibility and Galois Properties of Lifts of Supersingular Polynom" by Rylan Jacob Gajek-Leonard

Date of Submission

Spring 2015

Academic Programs and Concentrations

Mathematics

Project Advisor 1

John Cullinan

Abstract/Artist's Statement

It has recently been shown that a rational specialization of Jacobi polynomials, when reduced modulo a prime number p, has roots which coincide with the supersingular j- invariants of elliptic curves in characteristic p. These supersingular lifts are conjectured to be irreducible with maximal Galois groups. Using the theory of p-adic Newton Polygons, we provide a new infinite class of irreducibility and, assuming a conjecture of Hardy and Littlewood, give strong evidence for their Galois groups being as large as possible.

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.

This work is protected by a Creative Commons license. Any use not permitted under that license is prohibited.

Share

COinS