Date of Submission
Spring 2014
Academic Programs and Concentrations
Mathematics
Project Advisor 1
Sam Hsiao
Abstract/Artist's Statement
The dissemination of information in clusters of social networks can be modeled as a probabilistic spreading process on complete graphs. This project analyzes various features of this model. We assume an individual in a cluster of a network starts a rumor (“infection”), and the rumor transmits to (“infects”) other connected individuals in each time step. We use Markov chains to analyze the model and find the probability distributions to describe the uncertain number of infected nodes after some time steps. Moreover, we characterize the Jordan form of the transition matrix of the Markov chain and analyze the expected time it takes the infection to spread to all nodes in the graph. Finally we consider a continuous-time version of the spreading process and the corresponding continuous-time Markov chain in which we determine the expected time until all nodes are infected.
Open Access Agreement
On-Campus only
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.
Recommended Citation
Jiang, Yushan, "The Analysis of Probabilistic Spread on Complete Graphs" (2014). Senior Projects Spring 2014. 302.
https://digitalcommons.bard.edu/senproj_s2014/302
This work is protected by a Creative Commons license. Any use not permitted under that license is prohibited.
Bard Off-campus DownloadBard College faculty, staff, and students can login from off-campus by clicking on the Off-campus Download button and entering their Bard username and password.