Date of Submission
Fall 2019
Academic Programs and Concentrations
Chemistry
Project Advisor 1
Emily McLaughlin
Abstract/Artist's Statement
Nitrogen-containing compounds play a critical role in the world, ranging from Earth’s atmosphere to the backbone of amino acids, the ‘building blocks of life.’ Opioids like morphine and anti-cancer agents like mitomycin are just two examples of the plethora of naturally occurring, small molecules with carbon-nitrogen bonds, essential for potent bioactivity. Though ubiquitous in nature, small molecules with carbon-nitrogen bonds are often difficult to prepare in the laboratory. Arguably, the most efficient means to do this is through the use of nitrene intermediates. Nitrenes are neutral, monovalent, high-energy species that can be used for rearrangement and insertion into a variety of bonds, such as alkenes. Reactions reliant on the use of nitrenes often lack regiocontrol and selectivity. In this work, we investigate the formation of a nitrene intermediate by oxidation of carbamates using a hypervalent iodine oxidant and subsequent transfer to an alkene using a rhodium catalyst, resulting in a bicyclic three-membered ring containing nitrogen, known as an aziridine. Aziridines, in general, can then be used as a scaffold on which a variety of more complex, unique compounds can be synthesized. During the optimization of this process, we have learned that the identity of the hypervalent iodine oxidant is crucial, for which the current results are presented. We also report that suggest a bulkier, hypervalent iodine oxidant is most effective in nitrene generation and subsequent C-N bond formation.
Open Access Agreement
On-Campus only
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Recommended Citation
Bunnell, Alexander Wesley, "Intramolecular C-N Bond Formation: Reactivity and Selectivity of Iodine(III) Oxidants in the Generation of Carbamate-Derived NItrenes" (2019). Senior Projects Fall 2019. 52.
https://digitalcommons.bard.edu/senproj_f2019/52
This work is protected by a Creative Commons license. Any use not permitted under that license is prohibited.
Bard Off-campus DownloadBard College faculty, staff, and students can login from off-campus by clicking on the Off-campus Download button and entering their Bard username and password.