Date of Submission

Spring 2018

Academic Programs and Concentrations

Mathematics

Project Advisor 1

Ethan Bloch

Abstract/Artist's Statement

A Voronoi tessellation with $n$ generator points is the partitioning of a bounded region in $\rr^2$ into polygons such that every point in a given polygon is closer to its generator point than to any other generator point. A centroidal Voronoi tessellation (CVT) is a Voronoi tessellation where each polygon’s generator point is also its center of mass. In this project I will demonstrate what kinds of CVTs can exists within specific parameters, such as a square or rectangular region, and a set number generator points. I will also prove that the examples I present are the only CVTs that can possibly exist within their given parameters.

Open Access Agreement

Open Access

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Share

COinS