--- title: "R Notebook" output: html_document: df_print: paged --- #data(1) is rawest version #data(2) has some consolidation (ie. between categories like cMITT and MITT) #data(3) has consolidation and removal of studies in infections which QIDP drugs havent been approved for ```{r} setwd("~/Desktop/SPROJ") raw_data<-read.csv("data(4).csv", stringsAsFactors = TRUE) #making cure/success rates integers instead of characters raw_data$X.8<-as.integer(raw_data$X.8) library(dplyr) library(ggplot2) library(ggpubr) #checking number of QIDP and non-QIDP studies table(raw_data$X.14) ``` ```{r} #filtering raw data by endpoint raw_data.clinicalcure<-filter(raw_data, X.5=="clinical cure") raw_data.clinicalsuccess<-filter(raw_data, X.5=="clinical success") raw_data.clinicalcuresuccess<-filter(raw_data, X.5=="clinical success"|X.5=="clinical cure") raw_data.microberadication<-filter(raw_data, X.5=="microbial eradication") raw_data.allcause<-filter(raw_data, X.5=="all cause mortality") #looking at filtered data table(raw_data.clinicalcuresuccess$X.6) table(raw_data$X.14) table(raw_data.microberadication$X.14) table(raw_data.allcause$X.14) ``` ```{r} #filtering data by subpopulation studied raw_data.MITT<-filter(raw_data,X.7=="MITT") raw_data.ITT<-filter(raw_data,X.7=="ITT") raw_data.CE<-filter(raw_data, X.7=="CE") raw_data.ME<-filter(raw_data, X.7=="ME") ``` ```{r} #general ANOVA comparing QIDP and non-QIDP biganova<-aov(X.8~X.14,raw_data.clinicalcuresuccess) summary(biganova) #not enough data biganova2<-aov(X.8~X.14,raw_data.microberadication) #not enough data biganova3<-aov(X.8~X.14,raw_data.allcause) #data cleaning/checking results of cleaning typeof(raw_data$X.14) raw_data$X.14<-as.character(raw_data$X.14) raw_data$X.14[raw_data$X.14 == ""]<-NA table(raw_data$X.5) table(raw_data$X.14) table(cIAI_cure.success$X.7) summary(biganova3) ``` ```{r} #cIAI cure/success anova cIAI_cure.success<-filter(raw_data.clinicalcuresuccess,X.6=="cIAI") summary(aov(X.8~X.14,cIAI_cure.success)) ``` ```{r} #cUTI cure/success anova cUTI_cure.success<-filter(raw_data.clinicalcuresuccess,X.6=="cUTI") summary(aov(X.8~X.14,cUTI_cure.success)) ``` ```{r} #cSSSI cure/success anova cSSSI_cure.success<-filter(raw_data.clinicalcuresuccess,X.6=="cSSSI") table(raw_data.clinicalcuresuccess$X.6) #dont have enough data (no QIDP antibiotics) sum(raw_data.clinicalcuresuccess$X.6=="cSSSI"&raw_data.clinicalcuresuccess$X.14=="No") summary(aov(X.8~X.14,cSSSI_cure.success)) ``` ```{r} #ABSSSI cure/success anova ABSSSI_cure.success<-filter(raw_data.clinicalcuresuccess,X.6=="ABSSSI") summary(aov(X.8~X.14,ABSSSI_cure.success)) ``` ```{r} #pneumonia cure/success anova HABP.VABP.CABP_cure.success<-filter(raw_data.clinicalcuresuccess,X.6=="HABP"|X.6=="CABP"|X.6=="VABP") table(HABP.VABP.CABP_cure.success$X.7) summary(aov(X.8~X.14,HABP.VABP.CABP_cure.success)) ``` ```{r} #anova's about subpopulation QIDP MITTanov<-aov(X.8~X.14,raw_data.MITT) summary(MITTanov) summary(aov(X.8~X.14, raw_data.ITT)) CEanov<-aov(X.8~X.14, raw_data.CE) summary(CEanov) MEanov<-aov(X.8~X.14, raw_data.ME) summary(MEanov) ``` ```{r} #comparing QIDP and non-QIDP while controlling for disease and subpopulation cUTI_cure.success.<-filter(cUTI_cure.success, X.7=="CE") #summary(aov(X.8~X.14, cUTI_cure.success.MITT)) #cUTI_cure.success.MITT cSSSI_cure.success.MITT<-filter(cSSSI_cure.success, X.7=="ITT"|X.7=="MITT") #summary(aov(X.8~X.14,cSSSI_cure.success.MITT)) table(cSSSI_cure.success.MITT$X.14) ABSSSI_cure.success.MITT<-filter(ABSSSI_cure.success, X.7=="ITT") summary(aov(X.8~X.14, ABSSSI_cure.success.MITT)) HABP.MITT<-filter(HABP.VABP.CABP_cure.success, X.7=="MITT") HABP.ITT<-filter(HABP.VABP.CABP_cure.success,X.7=="ITT") HABP.MITT.ITT<-filter(HABP.VABP.CABP_cure.success, X.7=="MITT"|X.7=="ITT") summary(aov(X.8~X.14, HABP.MITT.ITT)) HABP.CE<-filter(HABP.VABP.CABP_cure.success,X.7=="CE") summary(aov(X.8~X.14,HABP.ITT)) table(HABP.VABP.CABP_cure.success$X.7) table(HABP.CE$X.14) cIAI.MITT.ITT<-filter(cIAI_cure.success, X.7=="MITT"|X.7=="ITT") cIAI.MITT<-filter(cIAI_cure.success, X.7=="MITT") cIAI.CE<-filter(cIAI_cure.success, X.7=="CE") cIAI.ITT<-filter(cIAI_cure.success, X.7=="ITT") summary(aov(X.8~X.14,cIAI.CE)) table(cIAI.CE$X.14) ``` ```{r} #Plot of cure rate by condition conditionplot<-filter(raw_data.clinicalcuresuccess, X.6!="CDI", X.6!="CAP", X.6!="HABP/VABP") ggplot(conditionplot, aes(x=X.6, y=X.8, fill=X.6))+geom_boxplot()+ylab("Positive Clinical Response (% of Patients)")+xlab(element_blank())+theme_classic()+theme(legend.position="none")+scale_fill_manual(values=c("#000000", "#E69F00", "#56B4E9", "#009E73", "#F0E442", "#0072B2", "#D55E00", "#CC79A7")) #Plot of Cure Rate by condition by QIDP ggplot(conditionplot, aes(x=X.6, y=X.8, fill=X.14))+geom_boxplot(outlier.shape=NA)+facet_grid(~X.6)+theme(legend.position = "none")+ylim(70,100) conditionplot<-filter(raw_data.clinicalcuresuccess, X.6=="ABSSSI"|X.6=="CABP"|X.6=="cIAI"|X.6=="cUTI") #creating panels for condition plot ABSSSI<-ggplot(ABSSSI_cure.success,aes(x=X.14, y=X.8, fill=X.14))+geom_boxplot(outlier.shape=NA)+theme_classic()+theme(legend.position ="none")+ylim(70,100)+ylab("Succesful Clinical Response (% of Patients)") +scale_fill_manual(values=c("orange","blue"))+xlab(element_blank()) ABSSSI #FOR GRAPH I COMBINED HABP, VABP, CABP INTO ONE GROUP HABP.VABP.CABP_cure.success$X.6[HABP.VABP.CABP_cure.success$X.6 == "VABP"]<-"CABP" raw_data$X.6[raw_da$X.14 == ""]<-NA HABP.CABP.VABP<-ggplot(HABP.VABP.CABP_cure.success,aes(x=X.14, y=X.8, fill=X.14))+geom_boxplot(outlier.shape=NA)+theme_classic()+theme(legend.position = "none", axis.ticks.y=element_blank(), axis.text.y=element_blank(), axis.line.y=element_blank())+ylim(70,100)+xlab(element_blank())+ylab(element_blank())+scale_fill_manual(values=c("orange","blue")) HABP.CABP.VABP cIAI<-ggplot(cIAI_cure.success,aes(x=X.14, y=X.8, fill=X.14))+geom_boxplot(outlier.shape=NA)+theme_classic()+theme(legend.position = "none", axis.ticks.y = element_blank(), axis.text.y = element_blank(), axis.line.y=element_blank())+ylim(70,100)+xlab(element_blank())+ylab(element_blank())+scale_fill_manual(values=c("orange","blue")) cIAI cUTI<-ggplot(cUTI_cure.success, aes(x=X.14, y=X.8, fill=X.14))+geom_boxplot(outlier.shape=NA)+theme_classic()+theme(legend.position = "none", axis.text.y=element_blank(), axis.line.y=element_blank(), axis.ticks.y=element_blank())+ylim(70,100)+xlab(element_blank())+ylab(element_blank())+scale_fill_manual(values=c("orange","blue")) cUTI condition.qidp<-ggarrange(ABSSSI, HABP.CABP.VABP, cIAI, cUTI, ncol=4, labels=c("ABSSSI","BP*","cIAI*","cUTI"),legend = "none",common.legend=TRUE,hjust = c(-1,-2,-2,-2)) condition.qidp ggplot(cIAI_cure.success.MITT, aes(x=X.14, y=X.8, fill=c(X.14)))+geom_boxplot()+theme(legend.position = "None")+xlab(element_blank())+ylab("Clinical Cure/Success Rate")+ggtitle("Clinical Response Rates of QIDP vs Non-QIDP Antibiotics in cIAI infections") #plot of overall QIDP vs non-QIDP ggplot(raw_data.clinicalcuresuccess, aes(x=X.14, y=X.8, fill=X.14))+geom_boxplot()+theme(legend.position="none")+xlab(element_blank())+ylab("Clinical Cure/Success Rate")+ggtitle("Clinical Response in QIDP vs. Non-QIDP Antibiotics") raw_data.clinicalcuresuccess$X.14<-as.character(raw_data.clinicalcuresuccess$X.14) raw_data.clinicalcuresuccess$X.14[is.na(raw_data.clinicalcuresuccess$X.14)]<-"QIDP" raw_data.clinicalcuresuccess$X.14[raw_data.clinicalcuresuccess$X.14=="No"]<-"non-QIDP" #ggplot(HABP.VABP.CABP_cure.success) #raw_data.clinicalcuresuccess #condition.qidp #l<-get_legend(condition.qidp) #l<-l+scale_fill_discrete(c("non-QIDP", "QIDP")) #boxplot.stats(raw_data.clinicalcuresuccess$X.8)$X.5 #making panels for subpopulation graph MITTplot<-ggplot(raw_data.MITT, aes(x=X.14, y=X.8, fill=X.14))+geom_boxplot(outlier.size=0.5)+xlab(element_blank())+ylab("Clinical Cure/Success Rate")+ylim(60,100)+theme_classic()+theme(legend.position = "none", axis.text.y=element_blank(), axis.line.y=element_blank(), axis.ticks.y=element_blank())+ylim(70,100)+xlab(element_blank())+ylab(element_blank())+scale_fill_manual(values=c("orange","blue")) MITTplot ITTplot<-ggplot(raw_data.ITT, aes(x=X.14, y=X.8, fill=X.14))+geom_boxplot(outlier.size=0.5)+xlab(element_blank())+ylab("Clinical Cure/Success Rate")+ylim(60,100)+theme_classic()+theme(legend.position = "none")+ylim(70,100)+xlab(element_blank())+ylab("Positive Clinical Response (% of Patients)")+scale_fill_manual(values=c("orange","blue")) ITTplot MEplot<-ggplot(raw_data.ME, aes(x=X.14, y=X.8, fill=X.14))+geom_boxplot(outlier.size=0.5)+xlab(element_blank())+ylab(element_blank())+ylim(60,100)+theme_classic()+theme(legend.position = "none", axis.text.y=element_blank(), axis.line.y=element_blank(), axis.ticks.y=element_blank())+ylim(70,100)+xlab(element_blank())+ylab(element_blank())+scale_fill_manual(values=c("orange","blue")) CEplot<-ggplot(raw_data.CE, aes(x=X.14, y=X.8, fill=X.14))+geom_boxplot(outlier.size=0.5)+xlab(element_blank())+ylab(element_blank())+ylim(60,100)+theme_classic()+theme(legend.position = "none", axis.text.y=element_blank(), axis.line.y=element_blank(), axis.ticks.y=element_blank())+ylim(70,100)+xlab(element_blank())+ylab(element_blank())+scale_fill_manual(values=c("orange","blue")) ggarrange(ITTplot, MITTplot, CEplot,MEplot, ncol = 4,legend="none",labels = c("ITT","MITT", "CE","ME*"),vjust = 1,heights=3, hjust = c(-2.4,-1,-2,-2)) raw_data.MITT #making panels for pneumonia-subpopulation plot BP1<-ggplot(HABP.MITT.ITT, aes(x=X.14, y=X.8,fill=X.14))+geom_boxplot(outlier.size=0.5)+xlab(element_blank())+ylab("Positive Clinical Response (% of Patients)")+ylim(40,90)+scale_fill_manual(values=c("orange","blue"))+theme_classic() BP2<-ggplot(HABP.ITT,aes(x=X.14, y=X.8,fill=X.14))+geom_boxplot(outlier.size=0.5)+xlab(element_blank())+ylab(element_blank())+ylim(40,90)+scale_fill_manual(values=c("orange","blue"))+theme_classic()+theme(axis.line.y=element_blank(), axis.ticks.y=element_blank(), axis.text.y=element_blank()) BP3<-ggplot(HABP.CE,aes(x=X.14, y=X.8, fill=X.14))+geom_boxplot()+xlab(element_blank())+ylab(element_blank())+ylim(40,90)+scale_fill_manual(values=c("orange","blue"))+theme_classic()+theme(axis.line.y=element_blank(), axis.ticks.y=element_blank(), axis.text.y=element_blank()) ggarrange(BP1,BP2,BP3,ncol=3,legend="none",labels=c("MITT/ITT*","ITT*","CE"),heights=0.5,hjust=c(-1,-3.5,-3.5),vjust=1) #making panels for cIAI subpopulation plot cIAI1<-ggplot(cIAI.ITT, aes(x=X.14,y=X.8, fill=X.14))+geom_boxplot()+xlab(element_blank())+ylab(element_blank())+ylim(70,95)+scale_fill_manual(values=c("orange","blue"))+theme_classic()+theme(axis.line.y=element_blank(), axis.ticks.y=element_blank(), axis.text.y=element_blank()) cIAI2<-ggplot(cIAI.MITT, aes(x=X.14, y=X.8, fill=X.14))+geom_boxplot(outlier.size=0.5)+xlab(element_blank())+ylab(element_blank())+ylim(70,95)+scale_fill_manual(values=c("orange","blue"))+theme_classic()+theme(axis.line.y=element_blank(), axis.ticks.y=element_blank(), axis.text.y=element_blank()) cIAI3<-ggplot(cIAI.CE,aes(x=X.14,y=X.8,fill=X.14))+geom_boxplot()+xlab(element_blank())+ylab(element_blank())+ylim(70,95)+scale_fill_manual(values=c("orange","blue"))+theme_classic()+theme(axis.line.y=element_blank(), axis.ticks.y=element_blank(), axis.text.y = element_blank()) cIAI4<-ggplot(cIAI.MITT.ITT,aes(x=X.14,y=X.8,fill=X.14))+geom_boxplot()+xlab(element_blank())+ylab(element_blank())+ylim(70,95)+scale_fill_manual(values=c("orange","blue"))+theme_classic()+ylab("Clinical Success Rate (% of patients)") ggarrange(cIAI4, cIAI1, cIAI2, cIAI3, ncol=4, legend="none", labels=c("MITT/ITT*","ITT","MITT", "CE"),heights=0.5,vjust=1, hjust=-1) #general QIDP vs non-QIDP plot ggplot(raw_data.clinicalcuresuccess, aes(x=X.14, y=X.8,fill=X.14))+geom_boxplot()+scale_fill_manual(values=c("orange","blue"))+theme_classic()+theme(legend.position = "none")+ylab("Positive Clinical Response (% of Patients)")+xlab(element_blank()) ```