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Abstract

Mathematical models are finding increased use in biology, and partuculary in the
field of cancer research. In relation to cancer, systems of differential equations have
been proven to model tumor growth for many types of cancer while taking into
account one or many features of tumor growth. One feature of tumor growth that
models must take into account is that tumors do not grow exponentially. One model
that embodies this feature is the Gomperts Model of Cell Growth. By fitting this
model to longterm breast cancer study data, this project ascertains gompertzian
parameters that can be used to predicts tumor growth as a function of time.
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1
Introduction

At the intersection of mathematics and biology resounds a call to use math in

this century to do what it did for physics in the twentieth-century [1]. That is,

to apply math to biology in such a manner as to increase the predictive power of

the biological field [1]. Let us recall that Physicists mathematically predicted the

Higgs Bosun before having materially discovered it. Such predictive power can be

harnessed toward biology to aid in areas of cancer research, bioinformatics, and

drug testing, to name a few. In the arena of cancer research, mathematical models

have become more and more common as a means to model cancer cell proliferation,

drug scheduling, and tumor development. Researchers have erected many different

models for cancer cell proliferation, ranging form those that model with one degree

of freedom, say tumor size, to those that model cancer at several degrees of freedom,

say growth, necrosis, and angiogenesis [10]. One of the problems that has arisen with

modeling tumor growth is that tumors do not grow exponentially. In other words,

tumor cell proliferation cannot be reduced to the biology of cell divison, mitosis.
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This problem means that, even at one degree of freedom, tumor growth has to be

modeled with mathematically nuanced constructs.

Models constructed with differential eaquations have been proven to accurately

predict tumor growth curves for many types of tumor [10]. One differential equation

model tha manages such predictions with a high degree of fidelity is the Gompertz

Model of cell growth. The Gompertz Model’s key feature is that it accounts for ex-

ponientail decay. In relation to tumor growth, this feature means that the Gompertz

Model captures how tumour growth rates decrease as a the mass of the tumour in-

creases. This project fits the Gompertz Model to a dataset prudeced by Bloom et.

al. that tracked untreated breast cancer in 250 over about twenty years. By fitting

the model to this datatset, this project can ascertain gompertzian pararmeters to

predict breast tumor growth rates as a fuction of time.



2
An Introduction to Cancer

2.1 Cancer

Cancer constitutes a highly dynamic set of diseases grounded in genomic mutations

that cause malignant cellular growth [2]. In a classic review article titled ”The

Hallmarks of Cancer,” Hanahan and Weinberg compile the traits that make a disease

a cancer [2]. They identify six physiological characteristics of cell biology that

converge to cause malignant growth: self-sufficiency in growth signals, insensitivity

to growth-inhibitory signals, evasion of apoptosis, limitless replicative potential,

sustained angiogenesis, and tissue invasion coupled with metastasis [2]. As a tumor

develops, it must acquire each of these physiologic changes in order to breach cellular

anticancer mechanisms [2]. It is thus helpful to view cancer as the outcome of a

multistep process wherein the disease emerges from an interplay of factors resulting

from progressive genomic alterations [2]. Hanahan and Weinberg’s traits, undergird

the interplay of factors that cause cancer, and the vast majority, if not all, human

cancers share those six traits [2].
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Figure 2.1.1. Structure of a Tumor Spheroid

2.2 Tumor Biology

Cancer manifests in the form of a tumor spheroid, an abnormal mass of uncontrol-

lably dividing cells. A tumor spheroid generally develops three cell regions, as seen

in Figure 1.1.1, that differ in accordance with nutrient supply. The cells in the pro-

liferative zone, P, undergo constant cell division as they have access to the nutrients

necessary for proliferation [2]. The quiescent layer of cells, Q, lose their ability to

proliferate due to an insufficient nutrient supply, but receive enough sustenance to

remain alive. The cells that constitute the necrotic core, N, however, die due to

prolonged nutrient deficiency. As a tumor spheroid grows, it becomes harder for the

cells toward its centre and core to receive nutrients.



3
Mathematical Models

3.1 Overview

Over the past several decades, the factors and forces that drive tumor growth—

tumor growth kinetics—have come under biological study, and, hence, have garnered

extensive experimental study [10]. Researchers have found that both human and an-

imal relative tumor growth rates diminish with time [10]. Or, to restate this finding,

the time it takes for human and animal tumors to double in size increases with time

[10]. Such characteristics, the differential relation of tumor growth rates to time,

make tumorigenesis favorable to expression in the form of differential equations.

A differential equation constitutes a mathematical formalism relating a function

to its derivatives. It is a relational concept in the form of an equation. The func-

tion usually represents a quantifiable physical entity while its derivatives describe

that quantities which that entity changes with time, its rate of change [18]. When

related with an equation, of tumors many mathematical constructs have been devel-

oped to model tumorigenesis. At the most basic, such constructs model cancer-cell

proliferation. The more complicated constructs model cancer-cell proliferation in
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conjunction with with factors such as, necrosis, angiogenesis, and tumor response

to drug treatment.

Mathematical modeling provides for the expression of which effects one wants

to consider to the exclusion of those one may not understand or find of interest

[18]. This degree of flexibility has great value to the study of cancer in two ways,

1) models can provide a vehicle to test theoretical hypotheses of tumor growth by

assessing a theories descriptive power against experimental data, and 2) models can

estimate the pattern on tumor development for use as a prognostic clinical tool or

to assess the clinical efficacy of drug therapies under development [10].

3.2 Bloom Data

One of the datasets Norton applies the Gompertz model to is that of Bloom et.

al. from their article, ”Natural History of Untreated Breast Cancer (1805-1933)

Comparison of Untreated and Treated Cases According to Histological Grade Ma-

lignancy”. At Middlesex Hospital, London, Bloom et. al. tracked 250 untreated cases

of breast cancer in woman. The study occurred during the period 1803-1820 from

the patients onset of symptoms through death [22]. Figure 3.2.1 constitutes a re-

production of the Bloom study data. As seen in Figure 3.2.1, all the patients in the

study had died with twenty years [22].

Graphing the data in Figure 3.2.1. produces the curve seen in Figure 3.2.2.

3.3 The Gompertz Model of Cell Growth

As discussed in Section 1.2, a tumor will grow more slowly the bigger it becomes as

less and less of its cell mass will be concentrated within the proliferative zone relative

to the number of cells at the tumor’s centre and core. Mathematically speaking, this

decrease in the growth rate embodies means that tumor’s exhibit non-exponential
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Deaths Occurring Each Year, Calculated from Onset of Symptoms for 250 

Untreated Cases of Breast Cancer 

Year of Death No. of Cases Cumulative Total Survivals 

1 34 34 216 86% 

2 52 86 164 66% 

3 55 141 109 43.6% 

4 38 179 71 28% 

5 25 204 46 18.4% 

6 13 217 33 13% 

7 10 227 23 9% 

8 6 233 17 7% 

9 5 238 12 5% 

10 3 241 9 3.6% 

11 4 245 5 2% 

13 1 246 4 1.6% 

15 2 248 2 0.8% 

16 1 249 1 0.4% 

19 1 250 0 0.0% 

Survival of Treated Breast Cancer, Middlesex Hospital, 1805-1933 (250 Cases). 

 

Figure 3.2.1. Bloom Data (Reproduced from [22]).

 

Figure 3.2.2. Graphical Representation of Bloom Data.
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growth patterns, which the Gompertz model takes into account. The Gompertz

model’s essential characteristic is its ability to exhibit exponential decay of relative

tumor growth rates (SB). In other words, the Gompertz model embodies the fact

that tumor cell growth rates decrease as a function of time.

The Gompertz equation had originally been constructed for the purpose of actuar-

ial analysis, but later came into use a a growth curve. In a 1984 paper,”A Stochastic

Numerical Model of Breast Cancer that Simulates Clinical Data”, Speer et. al. pro-

pose that every individual tumor initially grows with identical Gompertzian param-

eters, and then becomes kinetically heterogenous through a random time-dependent

process [4,20]. In his 1988 paper, ”A Gompertzian Model of Human Breast Cancer

Growth”, Larry Norton points out that neither theory nor data support Speer et.

.al.’s assumption of uniform nascent tumor growth, and, further, that the complex

growth curves produced by Speer et. al.’s model fail to fit individual cancer growth

patterns. Considering the clinical and theoretical importance of human breast can-

cer, and in response to Speer et. al., Norton fits a parsimonious, unadorned Gom-

pertzian Model to three historical datasets by taking kinetic heterogeneity as an

intrinsic property of neoplasia.

3.4 Norton’s Fit

Norton lays out the gompertzian equation as:

N(t) = N(0)ek[1−e(−bt)] (3.4.1)

where k = log e

[
N(∞)
N(0)

]
.

N(t) is a function of N(0), t, and b as well as a limiting size N(∞). As the

Gompertz model has been adapted to the kinetics of tumor growth, Norton analyses

his data with N(t) as the size of an individual patient’s tumor at time t, which he
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measures from the onset of symptoms [4]. He defines tumor size at the onset of

symptoms as N(0) and holds N(∞) constant [4]. By rearrangement of of equation

3.4.1:

ti =

(
−1

bi
log e1−

1

k
log−e

(
NL

N(0)

))
(3.4.2)

where Pt(ti) equals a portion of the 250 cancers from the Bloom data with Gom-

pertzian parameters b ≤ bi.

Using these methods, Norton Norton was ablw to define the probability distri-

bution of b ! [21, ?Ln]. He then randomly chose a value of bi from the normal-log

distribution and calculated ti for N(ti) = NL. Using Values of ti, he estimated PL(t),

which he graphically compared with PL(t) from the Bloom Data [4].

3.5 Norton’s Parameters

Norton finds that the Bloom data reflects the Gompertzian equation with N(0) =

4.8 × 109 cells, N(∞) = 3.1 × 1012 cells, and lethal tumor cell count of NL = 1012

cells ‘[4].



4
Project Fit

4.1 Poject Model

Equation 3.2.1 is an analytic solution to the following system of differential equations

[20]: {
dN
dt

= −rNln
(
N
K

)
;N(0) = N0

N(t = 0) = 1mm3 (4.1.1)

which we can solve exactly as

N(t) = K

(
N0

k

)e−rt

(4.1.2)

from which we can see that the volume asymptotically converges to a carrying given

by K = N0e
r0
r . r specfies growth in proportion to cell population size. The cell

population will only grow faster as it becomes larger if it is below the carrying

capacity.

4.2 lsqcurvefit

In Matlab, I fit the equation to the Bloom data using lsqcurvefit, which solves

nonlinear equations in the least-squares sense. More specifically, lsqcurvefit takes
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the given xdata, coupled with observed ydata, and finds coefficients best-fitted to

the equation

min

x

1

2
‖F (x, xdata)− ydata‖2

2 =
1

2

∑
i

(F (x, xdatai)− ydatai)
2 (4.2.1)

where the xdata and ydata constitute vectors and F (x, data) constitutes a vector

valued function [18]. The Matlab code for using this equation with the Bloom data

is in Appendix A.2.

Fitting the Gompertz model to the Bloom data, using lsqcurve fit via the Matlab

code in Apendix A.1 , returns the following fit and parameters:

 

Figure 4.2.1. A Gompertzian Fit to the Bloom Data.

r = 8.032444124239194e− 09

K = 1.037246983488218e + 02 billion cells

N0 = 1.34 million cells.



5
Conclusion

5.1 Conclusion

This project demonstrates that the Gompertz Model of Cell Growth accurately

models tumor growth in accordance with Norton findings that an unadorned gom-

pertzian model is sufficient to predict tumor growth. Taking the Bloom data and

fitting it with the gompertzian model returned parameters r, K and,N0, consistent

with Norton et. al.’s findings.



Appendix A
Matlab Code

A.1 Gompertz Mode

functionV = Gompertz(p, t)

V = p(1). ∗ (p(2)/p(1)).exp(−p(3) ∗ t);

withparametersp(1) = K, p(2) = initialpopulation, andp(3) = r

End

A.2 Code to Fit Gompertz Model to Study Data

years = [0123456789101113151619];

percent = [100866643.62818.4139753.621.6.8.40];

p0 = [.11000];// options = optimset(′MaxFunEvals′, 100000,′Maxiter′, 5000);

[p, error] = lsqcurvefit(@gompertz, p0, years, percent, [], [], options)

modelpercent = gompertz(p, years);

plot(years, percent,′ o′, years,modelpercent)
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