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Abstract

In this project we abstract the work of previous bard students by introducing the concept of
splines over non-integers, non-euclidean domains, and even non-PIDs. We focus on n-cycles for
some natural number n. We show that the concept of flow up class bases exist in PID splines
the same way they do in integer splines, remarking the complications and intricacies that arise
when abstracting from the integers to PIDs. We also start from scratch by finding a flow up
class basis for n-cycle splines over the real numbers adjoin two indeterminates, denoted R[x,y]
which necessitate more original techniques.
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1
Introduction

Before this project I had no idea what splines were. To a certain extent, that is still the case.

A spline is a collection of piece-wise polynomial functions meant to emulate some other function,

usually one too elaborate or inefficient to use. The function to be emulated may simply have no

closed form hence the need for a spline. These splines are for smoothing and data interpolation.

The former is what makes it possible to conjure big beautiful symbols like the ampersand on

your screen.

&
Figure 1.0.1. Look at that Ampersand

The latter is what enables us to take a set of data points (maybe on a Cartesian plane)

and formulate a smooth, continuous, meaningful function to represent those data points. This

interpolation can help us to approximate other potential data points that lie between the already

existing ones.

As exciting as this all sounds pure math is always more fascinating. Thus we will be exploring

a generalization of this concept. Gjoni generalized the polynomial splines to integer splines.
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15
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4

Figure 1.0.2. A three cycle spline

We have some graph whose edges and vertices are labeled with integers; fittingly the integers

are called edge labels and vertex labels, respectively. If two vertices are connected by an edge

then the two vertex labels must be congruent to each other modulo the edge label which connects

them. Observe the graphical representation of a spline, Figure 1.0.3. Indeed, the defining system

of congruences holds:

15 ≡ 1 mod 7

1 ≡ 3 mod 2

3 ≡ 15 mod 4

Thus, it meets the qualifications and it is a spline. As the graphs get more elaborate and the edge

labels more restricted things get more complicated. In this project we make another abstraction,

changing the vertex and edge labels from integers to elements of an arbitrary principal ideal

domain as well as a specific unique factorization domain. As the title suggests, these splines are

much sexier.
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−i+ 3

Figure 1.0.3. A three cycle spline

Above is what may or may not be a graphical representation of a spline over the set of

Gaussian integers, which is of course not exactly the integers. Along with this abstraction comes

interrogating everything we know about the integers and seeing what carries over to a PID like

the Gaussian integers. Moreover, we must understand how it may carry over.

In this project we focus on n-cycle splines. That is, splines on n-cycles.

f1

f2

f3

f4f5

f6

f7

fn

l1

l2

l3

l4

l5

l6

ln

Figure 1.0.4. An n-cycle spline

Figure 1.0.4 is an edge labeled, vertex labeled, n-cycle graph. The dashed side represents

the n − 7 edges and the n − 8 vertices that are between vertex f7 and vertex fn. Figure 1.0.4
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represents a spline if and only if the defining system of congruences is satisfied.

f1 ≡ f2 mod l1

f2 ≡ f3 mod l2

...

fn−1 ≡ fn mod ln−1

fn ≡ f1 mod ln

We list a brief outline of our chapters:

In Chapter 2, we introduce the reader to basic number theory and ring theory.

In Chapter 3, we summarize some of the work done by Handschy, Melnick, and Reinders [7], Gjoni

[5] and Madhavi [6] on Generalized integer splines to prepare the reader for the abstractions of

Chapter 5 and 6.

In Chapter 4, we generalize many of our number theory concepts, like greatest common divisors

and least common multiples, to more general rings like PIDs and UFDs.

In Chapter 5, we generalize many of the theorems from the work of Handschy et al., Gjoni, and

Madhavi to Splines over arbitrary Principal Ideal Domains, noting similarities and complications

along the way.

In Chapter 6, we start from scratch with a non-PID by approaching splines over R[x, y] with

linearly dependant edge labels.



2
Preliminaries

2.1 Number Theory

Definition 2.1.1. Let a and b ∈ Z. We say a divides b, denoted a|b, if there exists some k ∈ Z

such that ak = b. 4

Theorem 2.1.2. Let a, b and c ∈ Z. If a|b and b|c then a|c.

Proof. By hypothesis a|b and b|c. Then ak1 = b and bk2 = c. Then by substitution ak1k2 = c.

Then a|c.

Definition 2.1.3. Let a, b ∈ Z and m ∈ N. We say a is congruent to b modulo m, denoted a ≡ b

mod m, if m|a− b. 4

Note, that, by the definition of divisibility this means there exists some x ∈ R such that

mx = a− b. Thus, it is valid to skip straight from a ≡ b mod m to mx = a− b.

Theorem 2.1.4. [1, Chapter 3 Definition 3.1] Let m be an element of Z . Congruence modulo

m is an equivalence class. In other words, for all a, b, c ∈ Z

(i)a ≡ b mod m, b ≡ c mod m⇒ a ≡ c mod m

(ii)a ≡ b mod m⇒ b ≡ a mod m

(iii)a ≡ a
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Definition 2.1.5. [1, pg. 98] The greatest common divisor of the integers a1, a2, ..., an, which

are all not zero, is the greatest positive integer that divides all the integers a1, a2, ..., an. 4

The following theorem provides another way to define greatest common divisor. We will use

this definition instead of the previous one when we are in arbitrary rings that do not necessarily

have a concept of ”greatness” or ”largeness”.

Theorem 2.1.6. [1, Theorem 3.10] d ∈ Z is a common divisor of two elements a1, a2, ..., an ∈

R, if d|a1, a2, ..., an. Let c ∈ Z. If, c is a common divisor of a1, a2, ..., an ⇒ c|d, then d is a

greatest common divisor.

Theorem 2.1.7. Let a1, a2, ..., an be integers. Then (a1, (a2, a3, ..., an)) = (a1, a2, a3, ..., an).

Proof. Let d1 = (a1, (a2, a3, ..., an)), d2 = (a1, a2, a3, ..., an) and let D1 be the set of all divisors

of d1 and D2 be all the divisors of d2. Note that d1 ∈ D1 and d2 ∈ D2. Now let c1 ∈ D1.

Then c1|d1 = (a1, (a2, a3, ..., an)). Then c1|a1 and c1|(a2, a3, ..., an). Then c1|a2, a3, ..., an. Then

c1|ai for all i. In other words, c1 is a common divisor of all the ai. Then by Theorem 2.1.6

we know c1|(a1, a2, a3, ..., an) = d2. Then c1 ∈ D2. Then D1 ⊂ D2. Now suppose that c2 ∈

D2. Then c2|d1 = (a1, a2, a3, ..., an). Then c2|a1, a2, a3, ..., an. Since c2|a2, a3, ..., an we know

c2|(a2, a3, ..., an). Since c2|(a2, a3, ..., an) and c2|a1 we know c2|(a1, (a2, a3, ..., an)) = d1. Then

c2 ∈ D1. Then D2 ⊂ D1. Then D2 = D1. Since d1 ∈ D2 and c|d1 for all c ∈ D2, d1 is a

greatest common divisor of a1, a2, a3, ..., an. Since gcds are unique in the integers we know that

d1 = (a1, a2, a3, ..., an) = d2.

Definition 2.1.8. [1, pg. 123] The least common multiple of the integers a1, a2, ..., an, which are

all not zero, is the smallest positive integer that is divisible by all the integers a1, a2, ..., an. 4

The following theorem provides another way to define least common multiples. We will use

this definition instead of the previous one when we are in arbitrary rings that do not necessarily

have a concept of ”smallness”.
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Theorem 2.1.9. [3, Theorem 3.8] m ∈ Z is a common multiple of a1, a2, ..., an ∈ Z

if a1, a2, ..., an|m. If c ∈ Z is a common multiple of a1, a2, ..., an ⇒ m|c then m is a

least common multiple.

Theorem 2.1.10. Let m1,m2, ...,mk, α,m
∗ ∈ Z and m∗ is a least common multiple of

m1,m2, ...,mk. If m1,m2, ...,mk|α then m∗|α.

Proof. By hypothesis α is a common multiple of m1,m2, ...,mk. By Theorem 2.1.9 m∗ divides

every common multiple of m1,m2, ...,mk. Then m∗|α.

Because of the nature of splines, we will be working with systems of congruences often. The

following corollary will be useful when we need to make generalizations regarding particular

components of our splines.

Corollary 2.1.11. Let m1,m2, ...,mn, α, θ ∈ Z. If

α ≡ θ mod m1

α ≡ θ mod m2

α ≡ θ mod m3

...

α ≡ θ mod mn

then α ≡ θ mod dk where dk is a least common multiple of m1,m2, ...,mn.

Proof. We know by hypothesis that α ≡ θ mod mi for all 1 ≤ i ≤ n. Then mi|α − θ for all i.

Then by Theorem 2.1.10, dk|α− θ where dk is a least common multiple of m1,m2, ...,mn. Then

α ≡ θ mod dk by the definition of congruence.



8 2. PRELIMINARIES

Theorem 2.1.12 (The Chinese Remainder Theorem for non-coprime moduli). [5, Theorem

2.1.23] Let x, z1, z2, ..., zr,m1,m2, ...,mr be integers. The system of congruences

x ≡ z1 mod m1

x ≡ z2 mod m2
...
...

x ≡ zr mod mr

has a solution if and only if (mi,mj)|zi− zj for every pair of integers (i,j) where 1 ≤ i < j ≤ r.

This theorem, like corollary 2.1.11,will be essential for generalizing the form of some our

splines. We will abstract this theorem to PIDs as well.

2.2 Ring Theory

Recall that a ring is a set with two binary operations, usually referred to as addition and

multiplication, in which the distributive law and associative law exist. The commutative law

also exists for addition but not necessarily for multiplication. Now we will define the most

general type of ring that will be discussed in this paper.

Definition 2.2.1. [4, Chapter 1 Definition 1.1] A ring in which multiplication is also commu-

tative is called a commutative ring. 4

Unless other wise stated, rings in this document will be assumed to be commutative.

Definition 2.2.2. Let e be an element of a commutative ring, R. If, for all r ∈ R, er = r, e is

a multiplicative identity element. 4

From now on an identity element of a ring will be denoted by either 1 or occasionally 1R and

we will assume that every ring we encounter has a multiplicative identity element.

Definition 2.2.3. Let u be an element of some commutative ring, R. If u has a multiplicative

inverse, u−1, such that uu−1 = 1R, then u is a unit. 4

Definition 2.2.4. [4, Chapter 3 Definition 3.1] Let a and b be elements of a commutative ring,

R. If a|b and b|a then b is an associate of a and vice versa. 4
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Theorem 2.2.5. Let a be an element of a commutative ring, R. Let U be the set of all units of

R. Then for all u ∈ U au is an associate of a.

Proof. To prove this we must show that a|au and au|a. We know au(u−1) = a(1) = a. Then

au|a. Also a(u) = au. Then a|au by definition. Thus, a and au are associates.

Definition 2.2.6. [4, Chapter 1 Definition 1.3] A nonzero element, a, of a commutative ring,

R, is said to be a zero divisor if there exists a nonzero element b ∈ R such that ab = 0. 4

It is easy to verify that a ring R has no zero divisors if and only if the right and left cancellation

laws hold in R; that is, for all a, b, c ∈ R with a 6= 0,

ab = ac or ba = ca⇒ b = c

The concept of ’division’ is not always present in rings which makes the cancellation property

particularly valuable in these arbitrary rings. We will now define rings that have the cancellation

property.

Definition 2.2.7. A commutative ring R with no zero divisors is called an integral domain. 4

We now define irreducibles and primes.

Definition 2.2.8. [3, 45.4] An element, p, of an integral domain R is an irreducible if for every

factorization, p = ab, either a or b is unit. 4

Definition 2.2.9. [3, Definition 45.13] A nonzero, nonunit element of an integral domain R is

a prime if, for all a, b ∈ R, p|ab⇒ p|a or p|b. 4

Definition 2.2.10. [4, Chapter 3 Definition 3.5] An integral domain R is a Unique Factorization

Domain or UFD provided that:

(i) any non-unit, non-zero element can be expressed as a product of irreducibles.

(ii) If for all a ∈ R a = c1c2 . . . cn and a = d1d2 . . . dm, (ci, di are irreducibles) then n = m and

for some permutation σ of of {1,2,...,n}, ci and dσ(i) are associates for every i. 4
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Essentially this means that if x is an element of a UFD then it can be factored into irreducibles.

Moreover, any other factorization of x into irreducibles must have irreducibles that are associates

of the irreducibles in the original factorization. That is the scope of the uniqueness.

Corollary 2.2.11. The ring of all real numbers is a UFD.

Proof. The real numbers has no nonzero, nonunit elements. Thus it fits the definition of a

UFD.

Theorem 2.2.12. [3, pg. 394] Every irreducible element of a UFD is prime.

Definition 2.2.13. [4, Chapter 3 Definition 2.1] Let R be a ring and S a nonempty subset of R

that is closed under the operations of addition and multiplication in R. If S is itself a ring under

these operations then S is called a subring of R. A subring I of a ring R is an ideal provided,

r ∈ R and x ∈ I ⇒ rx ∈ I

4

Theorem 2.2.14. [4, Chapter 3 Theorem 2.2] A nonempty I subset of a ring R is an ideal if

and only if for all a, b ∈ I and r ∈ R.

(i)a, b ∈ I ⇒ a− b ∈ I (2.2.1)

(ii)a ∈ I, r ∈ R⇒ ra ∈ I (2.2.2)

Note that, since rings have additive inverses, the first equation could just as easily be a + b

instead of a− b.

Definition 2.2.15. Let x1, x2, ..., xn be an element of a ring R. Then 〈x1, x2, ..., xn〉, called the

set generated by x1, x2, ..., xn, is precisely equal to {x|x = r1x1+r2x2+...+rnxn} for r1, r2, ..., rn ∈

R. In other words, 〈x1, x2, ..., xn〉 is the set of all linear combinations of x1, x2, ..., xn. 4

Theorem 2.2.16. Let x1, x2, ..., xn be an element of a ring R. Then 〈x1, x2, ..., xn〉 is an ideal.
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Proof. We will use Theorem 2.2.14 to prove this theorem. Let I = 〈x1, x2, ..., xn〉. We will first

show that for all a, b ∈ I, it is the case that a− b ∈ I. Note that since a, b ∈ I, we know that for

some r1, r2, ...rn, s1, s2, ..., sn ∈ R, a = r1x1+r2x2+...+rnxn and b = s1x1+s2x2+...+snxn. Then

a−b = (r1x1+r2x2+...+rnxn)−(s1x1+s2x2+...+snxn) = (r1−s1)x1+(r2−s2)x2+...+(rn−sn)xn.

Since ri − si ∈ R we know that a− b is generated by x1, x2, ...., xn. Thus a− b ∈ I.

Now we will show that for all a ∈ I and k ∈ R ar ∈ I. Note that since a ∈ I that a =

r1x1 + r2x2 + ... + rnxn. Then ak = k(r1x1 + r2x2 + ... + rnxn) = kr1x1 + kr2x2 + ... + krnxn.

Since k, ri ∈ R for all i, we know kri ∈ R. Then ak ∈ I. Then by Theorem 2.2.14 we conclude

that I = 〈x1, x2, ..., xn〉 is an ideal.

This theorem will be very useful when navigating splines over PIDs, as many theorems about

PIDs use this 〈〉 concept.

We now define PIDs.

Definition 2.2.17. [3, Definition 45.7] R is a Principal Ideal Domain or PID if it is an integral

domain of which every ideal is principal. i.e. For all x1, x2, ..., xn ∈ R there exists some c ∈ R

such that 〈x1, x2, ..., xn〉 = 〈c〉. 4

Theorem 2.2.18. [4, Chapter 3 Theorem 3.7] Every Principal Ideal Domain R is a Unique

Factorization Domain.

Theorem 2.2.19. [3, Corollary 45.30] If R is a UFD then R[X1, X2, ..., Xn] is also a UFD for

n ∈ N.

Definition 2.2.20. [4, Chapter 4 Definition 1.1] Let R be a commutative ring. An R-Module

is an additive abelian group, A, together with a function R x A → A (the image of (r,a) being

denoted ra) such that for all r, s ∈ R and a, b ∈ A:

(i) r(a+b) = ra + rb

(ii) (r+s)a = ra + sa

(iii) r(sa) = (rs)a

If R has an identity element 1R and
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(iv) 1Ra = a

then A is said to be a unitary R-module. 4

Every ring we work with will have an identity element thus every R-module we encounter will

be a unitary R-module. So, we will use the term “R-module” to mean “unitary R-module”.



3
Generalized Integer Splines

3.1 Definitions and Examples of Generalized Integer splines

Definition 3.1.1. Let G be a graph with k edges e1, e2, ..., ek and n vertices v1, v2, ..., vn. For

1 ≤ i ≤ k, let li ∈ N be the label on edge ei so that L = {l1, l2, ..., lk} is the set of edge labels.

Then, (G,L) is called an edge-labeled graph. 4

v1 v2

v3v4

5

3

17

13

Figure 3.1.1. Edge-labeled 4-cycle graph

As you can see, the figure above is an edge-labeled graph with L = {l1, l2, l3, l4} = {5, 3, 17, 13}

being the set of edge labels. Note that the difference between ei and li, for any i, is that li is a

value that we associate with the edge, whereas ei is referring to the edge itself.
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Definition 3.1.2. Let (G,L) be an edge-labeled graph. A generalized integer spline is a vertex

labeling, (f1, f2, ..., fn) ∈ Zn, such that if vertices vi and vj are connected by edge ek then fi ≡ fj

mod lk. We denote the set of all splines on (G,L) by S(G,L).

0 10

77

5

3

2

7

(a) (0,10,7,7) is a Spline on (G,L)

15 14

73

6

7

2

4

(b) (15,14,7,3) is not a Spline on (G,L)

4

Figure (a) is a Spline because 0 ≡ 10 mod 5, 10 ≡ 7 mod 3, 7 ≡ 7 mod 2, and 7 ≡ 0 mod 7.

Figure (b) however is not a spline because 15 6≡ 14 mod 6.

Definition 3.1.3. Let (G,L) be an n-cycle graph with L = l1, l2, ..., ln. An n-cycle spline is a

vertex labeling (f1, f2, ..., fn) ∈ Zn such that the following system of congruences holds,

f1 ≡ f2 mod l1

f2 ≡ f3 mod l2

...

fn−1 ≡ fn mod ln−1

fn ≡ f1 mod ln

4
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f1

f2

f3

f4f5

f6

fn−1

fn

l4

l3

l2

l1

ln
ln−1

l5

These graphs are useful for proving general theorems about splines that lie on any cycle, i.e.

when we prove a theorem for n-cycle splines we also prove that same theorem for 2-cycle splines,

3-cycle splines, 4-cycle splines and so on.

Before we continue, we present a conventional way to number the vertices and edges of an

n-cycle graph. In general, vertices vi and vi+1 are connected by edge ei for 1 ≤ i ≤ n − 1 and

vertices vn and v1 are connected by edge en as shown in the edge labeled graph above. The

dashed line represents the sequential vertices and edges that lie between f6 and fn−1.

3.2 Splines form a Z-module over commutative rings

Theorem 3.2.1. Let L = l1, l2, ..., ln where l1, l2, ..., ln ∈ Z and let G be some graph. Let S(G,L)

be the set of all splines with vertex and edge labels in Z. Then S(G,L) is a Z-module.

Proof. According to definition 3.2.1 to prove this we must show that S(G,L) is an additive

abelian group and for r, s ∈ Z and F,G1 ∈ S(G,L) the following four equations hold.

(i) r(F +G1) = rF + rG1

(ii) (r + s)F = rF + sF

(iii) r(sa) = (rs)a

(iv) 1F = F

(the subscript in G1 is to differentiate the spline G1 from the graph G) First we will show that

S(G,L) is an abelian group. Let F = (f1, f2, ..., fn) and G1 = (g1, g2, ..., gn) be splines on S(G,L).
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We will first prove the existence of the identity element E. Let E = (0, 0, ..., 0). Observe that

F + E = (f1 + 0, f2 + 0, ..., fn + 0) = (f1, f2, ..., fn) = F . Thus E is the identity element.

Next we will prove that the additive inverse of an arbitrary element of S(G,L) is also an element

of S(G,L). Let −F = (−f1,−f2, ...,−fn). Since F is a spline we know that the following equations

hold true.

fi ≡ fi+1 mod li for 1 ≤ i ≤ (n− 1)

fn ≡ f1 mod ln

Thus li|fi − fi+1 for 1 ≤ i ≤ n− 1 and ln|fn − f1. Thus fi − fi+1 = p(li) and fn − f1 = q(ln) for

p, q ∈ Z. Then by multiplying by -1 we get −fi − (−fi+1) = −p(li) and −fn − (−f1) = −q(ln).

Then li|−fi+1−(−fi) and ln|−f1−(−fn). Then−fi ≡ −fi+1 mod li for 1 ≤ i ≤ (n−1) and−fn ≡

−f1 mod ln. Thus −F ∈ SG,L. Because F + (-F) = E, we know that every element F ∈ SG,L has

an inverse. Next we will show that SG,L is closed under addition. F = (f1, f2, ..., fn) ∈ SG,L and

G = (g1, g2, ..., gn) ∈ SG,L ⇒ fi ≡ fi+1 mod li for i ≤ (n−1), fn ≡ f1 mod ln and gi ≡ gi+1 mod

li for i ≤ (n−1) gn ≡ g1 mod ln respectively. Then fi−fi+1 = m(li) and fn−f1 = n(ln) for some

m,n ∈ Z and gi− gi+1 = p(li) and gn− g1 = q(ln) for some p, q ∈ Z. Then by summing the first

and third equation we get (fi + gi)− (fi+1 + gi+1) = (m+ p)(li). Also, by summing the second

and fourth equation we get (fn+gn)−(f1+g1) = (n+q)(ln). Then li|(fi+gi)−(fi+1+gi+1) and

ln|(fn + gn)− (fi+1 + gi+1). Then (fi + gi) ≡ (fi+1 + gi+1) mod li and (fn + gn) ≡ (f1 + g1) mod

ln. Then F +G = (f1 + g1, f2 + g2, ..., fn + gn) ∈ S(G,L). Then S(G,L) is closed under addition.

Then S(G,L) forms a group under addition. Note that F +G = (f1 + g1, f2 + g2, ..., fn + gn) =

(g1 + f1, g2 + f2, ..., fn + gn) = G+ F . Thus SG,L forms an Abelian group.

Next we will prove that S(G,L) is closed under scalar multiplication. We know fi ≡ fi+1 mod li

for 1 ≤ i ≤ (n−1) and fn ≡ f1 mod ln ⇒ fi−fi+1 = p(li) and fn−f1 = q(ln) for some p, q ∈ Z.

Then by multiplying each side of both equations by an element of Z, r, we get rfi−rfi+1 = rp(li)

and rfn − rf1 = rq(ln)⇒ li|rfi − rfi+1 for i ≤ n− 1 and ln|rfn − rf1 ⇒ rfi ≡ rfi+1 mod li for

1 ≤ i ≤ n− 1 and rfn ≡ rf1 mod ln. Then rF = (rf1, rf2, ..., rfn) ∈ SG,L. Thus we have shown
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that F ∈ SG,L and r ∈ Z ⇒ rF ∈ S(G,L) or as the mathematicians say S(G,L) is closed under

scalar multiplication.

Now we will prove equation 1) holds. We know r · (F +G) = r · (f1 + g1, f2 + g2, ..., fn + gn) =

(r(f1 + g1), r(f2 + g2), ..., r(fn + gn)) = (rf1 + rg1, rf2 + rg2, ..., rfn + rgn) = rF + rG. Thus 1)

holds.

Now we will prove equation 2) holds. We know (r+s) ·F = ((r+s)f1, (r+s)f2, ..., (r+s)fn) =

(rf1 + sf1, rf2 + sf2, ..., rfn + sfn) = r · F + s · F. Then equation 2) holds.

Now we will prove equation 3) holds. We know (rs) · F = ((rs)f1, (rs)f2, ..., (rs)fn) =

(r(sf1), r(sf2), ..., r(sfn)) = r · (sf1, sf2, ..., sfn) = r · (s · (f1, f2, ..., fn)) = r · (s · (f1, f2, ..., fn)).

Then equation 3) holds.

Now we will prove equation 4) holds. 1 · F = (1f1, 1f2, ..., 1fn) = (f1, f2, ..., fn) = F . Then

equation 4) holds.

Then integer splines for a Z-module.

This means if I take some splines over Z, let’s call them F, G and H, and integers, let’s call

them x, y and z, I can combine them yielding another spline. i.e. xF + yG + zH is a spline. This

will be crucial for proving the existence bases.

3.3 Flow-up classes

Flow-up classes are the essential concept for finding the bases that we will be discussing in this

project as each element of a basis will fall into a unique flow-up class.

Definition 3.3.1. Fix the edge labels on (G,L). Let 1 ≤ i ≤ n (Recall n is the number of

vertices as well as the number of edges because we are working with n-cycle graphs). The ith

flow − upclass, denoted by Fi is the set of all splines with i leading zeros. 4

Example 3.3.2. Let F = (0, 0, f3..., fn) be a spline on (G,L) with f3 6= 0. Then F ∈ F2. Note

that f3 must not be 0 because there must be precisely 2 leading zeroes and if f3 were zero then
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there would be more than 2 leading zeros. With that said, f4, f5, ..., fn may or may not be zero.

Whatever fulfils the congruences suffices enough to be a spline. ♦

Definition 3.3.3. Let G be an n-cycle with a set of edge labels L. Let Fi, where 1 ≤ i ≤ n− 1,

be a flow-up class (over integers). Then f ∈ Fi is the smallest flow up class element in F if the

leading term fi of F is less than or equal to the leading term of any other flow up class element

in F. 4

The following two theorems are important for proving that potential basis elements span for

the integers. We will generalize these theorems to PID splines in the next chapter

Theorem 3.3.4. Let G be an n-cycle. Fix the edge labels on (G,L), where L = {l1, l2, ..., ln}. Let

i ∈ [1, n]∩Z and let Fi = (0, ..., 0, fi+1, fi+2, ..., fn) be a an element of Fi in S(G,L). Then the lead-

ing term, fi+1, is a multiple of [li, (li+1, ..., ln)] and fi+1 = [li, (li+1, ..., ln)] is the smallest value

satisfying the li and li+1 conditions.

0

0

0

0k[li, (li+1, ..., ln)]

fi+2

fn−1

fn

li

l2

l1

ln

ln−1

li+1

Figure 3.3.1. Element of Fi

Proof. Figure 3.3.1 represents our Fi ∈ Fi with k of course being some integer.

We will use proof by induction for the bulk of this proof. Assume Fi = (0, ..., 0, fi+1, fi+2, ..., fn)

is a spline. Then the following system of congruences must hold true.
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0 ≡ 0 mod 11

0 ≡ 0 mod l2
...

0 ≡ fi+1 mod li

fi+1 ≡ fi+2 mod li+1

...

fn−3 ≡ fn−2 mod ln−3

fn−2 ≡ fn−1 mod ln−2

fn−1 ≡ fn mod ln−1

fn ≡ 0 mod ln

Figure 3.3.2.

By Theorem 2.1.12 we know that if we take any subsection

fj ≡ fj+1 mod lj

fj+1 ≡ fj+2 mod lj+1

where i ≤ j ≤ n − 1 (note fi = 0), of two consecutive congruences from the system above, it

must be the case that fj ≡ fj+2 mod (lj , lj+1). The same is true for the last case of

fn−1 ≡ fn mod ln−1

fn ≡ 0 mod ln

in which it must be the case that fn−1 ≡ 0 mod (ln−1, ln). We will approach this case first, the

base case. We know that fn may only exist if fn−1 ≡ 0 mod (ln−1, ln).

Now for the inductive case. Suppose that

fj ≡ fj+1 mod lj

fj+1 ≡ 0 mod (lj+1, lj+2, ..., ln)

and 2 ≤ j ≤ n− 2 (j = n− 1 is the base case). By Theorem 2.1.12 it must be the case that fj ≡

0 mod (lj , (lj+1, lj+2, ..., ln)). Note, by Theorem 2.1.7 (lj , (lj+1, lj+2, ..., ln)) = (lj , lj+1, ..., ln).
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Additionally, observing the first system of congruences in this proof, Figure 3.3.2, we know

fj−1 ≡ fj mod lj−1. Then we know the system of congruences

fj−1 ≡ fj mod lj−1

fj ≡ 0 mod (lj , lj+1, ..., ln)

holds true. Then by induction fj ≡ 0 mod (lj , lj+1, ..., ln) for all 0 ≤ j ≤ n.

This means that fi+1 ≡ 0 mod (li+1, li+2, ..., ln). By the first system in the proof, Figure

3.3.2 we know that 0 ≡ fi+1 mod li. Then by Corollary 2.1.11, we know that fi+1 ≡ 0

mod [li, (li+1, li+2, ..., ln)]. Then [li, (li+1, li+2, ..., ln)]|fi+1. Then our leading element fi+1 is a

multiple of [li, (li+1, li+2, ..., ln)]. By definition [li, (li+1, li+2, ..., ln)] is the smallest multiple of

itself.

Theorem 3.3.5. Fix the edge labels on (G,L), where L = {l1, l2, ..., ln}. F = (0, ..., 0, fn) be

spline and an element of the n− 1th flow-up class, Fn−1, in S(G,L). Then the leading term, fn,

is a multiple of [an−1, an] and fn = [an−1, an] is the smallest value satisfying the ln and ln−1

conditions.

Proof. In order for F to be a spline the following system of congruences must be satisfied,

0 ≡ 0 mod 11

0 ≡ 0 mod l2
...

0 ≡ fn mod ln−1

fn ≡ 0 mod ln

Figure 3.3.3.

Obviously the first n− 2 congruences hold as 0 ≡ 0 regardless of our modulus. This leaves us

with the last two congruences.

0 ≡ fn mod ln−1

fn ≡ 0 mod ln
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By Corollary 2.1.11, this means that fn ≡ 0 mod [ln−1, ln]. Thus [ln−1, ln]|fn and fn is a multiple

of [ln−1, ln]. By definition [ln−1, ln] is the smallest multiple of itself.

In the last two theorems the term “the smallest value” is used to describe one potential leading

term. They will not be used in the generalization of those theorems to PIDs because the concept

of order doesn’t exist in all commutative rings. Luckily, the ”smallest” quality of the leading

term is not what we need when forming the basis. The important thing is that for any flow-up

class Fi, excluding F0, there exists a spline, F, whose leading term divides the leading term of

every other spline in Fi. F will be the ”smallest element” of its flow-up class and will thus be

one of the smallest flow-up class basis elements. It will be employed in a theorem about PID

spline bases similarly to how its integer spline counterpart is employed in the following theorem.

You’ll see.

Theorem 3.3.6. Let G be a three-cycle and let edge labels L = {l1, l2, l3}. Then the smallest

flow up class elements of S(G,L) (That is the smallest element of each flow-up class) form a basis

for S(G,L).

Proof. Let F0 = (1, 1, 1). This is always our trivial smallest element of F0 in every set of splines

over a commutative ring, not just integer splines. Let F1 = (0, [l1, (l2, l3)], β). By Theorem 3.3.4,

F1 is the smallest flow-up class element of F1. Let F2 = (0, 0, [l2, l3]). By Theorem 3.3.5, F2 is

the smallest flow-up class element of F2.

First, note that if we were to place these splines into one matrix like so,1 1 1
0 [l1, (l2, l3)] β
0 0 [l2, l3]


we would get nice, clean upper triangular matrix. Recall from your first linear algebra class that

the determinant of an upper triangular matrix is the product of its diagonal components, in

this case (1) · ([l1, (l2, l3)]) · ([l2, l3]). This is very much not zero, thus these vectors (splines) are

linearly independent. Then the vectors which represent each spline are linearly independent.

Now we need only show that this basis spans.



22 3. GENERALIZED INTEGER SPLINES

Let F = (f1, f2, f3) be a spline on S(G,L). Let F 2 = F − f1F0 (note the superscript is not an

exponent but just another way to index things other than using a subscript). Then

F 2 = F − f1F0 =

f1f2
f3

−
(f1)1

(f1)1
(f1)1

 =

 0
f2 − f1
f3 − f1


By Theorem 3.2.1, we know that this linear combination over the integers of splines, namely

F 2, must also be a spline. F 2 is clearly an element of F1 as it has precisely one leading zero. By

Theorem 3.3.4 we know that its leading term must be a multiple of [l1(l2, l3)]. Then for some

integer k, F 2 = (0, f2 − f1, f3 − f1) = (0, k[l1(l2, l3)], f3 − f1). Then let F 3 = F 2 − kF1 (Again,

don’t freak out about the superscript). Then

F 3 = F 2 − kF1 =

 0
k[l1(l2, l3)]
f3 − f1

−
 (k)0

(k)[l1, (l2, l3)]
(k)β

 =

 0
0

f3 − f1 − (k)β


By Theorem 3.2.1, F 3 must also be a spline. It is also an element of F2. Then by Theorem

3.3.5, we know that the leading term must be a multiple of [l2, l3]. Then for some integer j,

F 3 = (0, 0, f3 − f1 − (k)β) = (0, 0, j[l2, l3]). Okay now check this out.

F 3 − jF3 =

 0
0

j[l2, l3]

−
 (j)0

(j)0
(j)[l2, l3]

 =

0
0
0


Then we have reached this conclusion,

0 = F 3 − jF3 = F 2 − kF2 − jF3 = F − f1F1 − kF2 − jF3.

Then F = f1F1 + kF2 + jF3. We have shown that any spline in S(G,L) is in the span of the

elements F1, F2, and F3. Then those splines form a basis for S(G,L).

We now generalize this theorem to n-cycle splines.

Theorem 3.3.7. Let G be an n-cycle and the set of edge labels L = {l1, l2, ..., ln}. Then the

smallest flow up class elements of S(G,L) form a basis.

Proof. Let F0 = (1, 1, ..., 1), Fn−1 = (0, 0, ..., 0, [ln−1, ln]). For 1 ≤ i ≤ n − 2 and j = i let

Fi = (0, ..., [li, (li+1, ..., ln)], f ij+1, f
i
j+2, ..., f

i
n−1, f

i
n). This means Fi is the smallest element of Fi;
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it has i leading zeros. The i in the super script of each integer is to associate that integer with

its spline whereas the j + c (c is a constant) is to associate the integer with its spot in the spline.

Now that we have our basis elements (fingers crossed) we must first declare that they are

linearly independent. We place the splines into a matrix.



1 1 1 . . . 1 1 1
0 [l1, (l2, l3, ..., ln)] f13 . . . f1n−2 f1n−1 f1n
0 0 [l2, (l3, l4, ..., ln)] . . . f2n−2 f2n−1 f2n
...

...
...

. . .
...

...
...

0 0 0 . . . [ln−3, (ln−2, ln−1, ln)] fn−3n−1 fn−3n

0 0 0 . . . 0 [ln−2, (ln−1, ln)] fn−2n

0 0 0 . . . 0 0 [ln−1, ln]


Again, we get an attractive upper triangular matrix whose determinant will be nonzero. Then

the splines are linearly independent.

Let H = (h1, h2, ..., hn) ∈ S(G,L). Let H1 = H − h1F0. Then

H1 = H − h1F0 =


h1
h2
...
hn

−

h1
h1
...
h1

 =


0

h2 − h1
...

hn − h1


Then H1 = (0, h2 − h1, h3 − h1, ..., hn − h1). We will now use induction to continue this sort of

deconstruction of G.

We will start with the base case. Note that H1 ∈ F1 is a spline by Theorem 3.2.1. Then by

Theorem 3.3.4 the leading term of H1 is a multiple of [l1, (l2, l3, ..., ln)]. Then for some integer

k1 we know H1 = (0, h2 − h1, h3 − h1..., hn − h1) = (0, k1[l1, (l2, l3, ..., ln)], h3 − h1, ..., hn − h1).

Then let H2 = H1 − k1F1. So,

H2 = H1 − k1F1 =


0

k1[l1, (l2, l3, ..., ln)
h3 − h1

...
hn − h1

−


0
k1[l1, (l2, l3, ..., ln)

f13
...
f1n

 =


0
0

h3 − h1 − f13
...

hn − h1 − f1n


Then H2 ∈ F2 is a spline by Theorem 3.2.1. Now for the inductive step. Suppose we have

some Hi ∈ Fi. Let Hi = (0, 0, ..., h∗i+1, ..., h
∗
n). Since Hi has exactly i leading zeros we

know h∗i+1, the leading term, is the i + 1th term. By Theorem 3.3.4 we know that the lead-
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ing term of Hi is multiple of [li, (li+1, ..., ln)]. Then for some integer ki it is the case that

Hi = (0, 0, ..., h∗i+1, ..., h
∗
n) = ((0, 0, ..., ki[li, (li+1, ..., ln)], h∗i+2, ..., h

∗
n)). Let Hi+1 = Hi − kiFi.

Then

Hi+1 = Hi − k1Fi =



0
0
...

ki[li, (li+1, ..., ln)]
h∗i+2

h∗i+3
...
h∗n


−



(ki)0
(ki)0

...
(ki)[li, (li+1, ..., ln)]

(ki)f
i
j+2

(ki)f
i
j+3

...
(ki)f

i
n


=



0
0
...
0

(ki)f
i
j+2

(ki)f
i
j+3

...
h∗n − (k1)f

i
n


Then Hi+1 ∈ Fi+1 is a spline by Theorem 3.2.1. This concludes the inductive step.

Then we have shown that we may subtract Σn−2
i=1 kiFi from H1 to yield a new spline Hn−1 ∈

Fn−1. Using algebraic language, Hn−1 = H1−Σn−2
i=1 kiFi ∈ Fn−1. Because Hn−1 is in the n− 1th

flow up class we know that there are n-1 leading zeros and, by theorem 3.3.5 the leading term is a

multiple of [ln−1, ln]. Then for some integer kn−1 we know that Hn−1 = (0, 0, ..., 0, kn−1[ln−1, ln]).

Then Hn−1 − kn−1Fn−1 = (0, 0, ..., 0, kn−1[ln−1, ln]) − (0, 0, ..., 0, kn−1[ln−1, ln]) = (0, 0, ..., 0, 0).

Then 0 = Hn−1 − kn−1Fn−1 = H1 −Σn−2
i=1 kiFi − kn−1Fn−1 = H − h1F0 −Σn−2

i=1 kiFi − kn−1Fn−1.

Then H = h1F0 + Σn−2
i=1 kiFi + kn−1Fn−1. Then every spline H is in the span of F1, F2, ..., Fn−1.

Then we have found a basis.

Take note of this process because it is, in a sense, the juicy part of the document. The process

of this proof occurs again for a flow-up class basis for the set of all PID splines on an edge-labeled

graph and then again for the set of all splines over R[x, y]. Next we will show that this theorem,

which we have just proved, holds for all PID splines as well. This is because the PID quality of

the integers is the crucial quality which makes this particular proof possible. This is also why

the PID analogue of this theorem will have a nearly identical proof. However, we cannot simply

state this. We must prove it rigorously. This means that we must reorient every integer-based

tool we have used to prove this theorem, (gcds, lcms, bezout’s theorem, and of course the chinese

remainder theorem with noncoprime moduli) so that they work in PID splines as they did in

integer splines. This will be the substance of the next chapter.
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Greatest Common Divisors and Least Common
Multiples in Commutative Rings

4.1 Gcds and Lcms in Commutative Rings

Theorem 4.1.1. Let d, a and b be elements of a commutative ring, R and d is a greatest

common divisor of a and b. Then, every associate of d is also a greatest common divisor of a

and b.

Proof. Let e be an associate of d and let c be a common divisor of a and b. Since, e|d and

d|a and d|b, we know that e|a and e|b. Then, e is a common divisor of a and b. We know c|d

by definition of greatest common divisors. Then, since d|e we can deduce that c|e. Then, e is a

common divisor of a and b and every common divisor of a and b divides e. Thus, e is a greatest

common divisor.

Using the previous theorem we can show that Theorem 2.1.7 also holds for UFDs (thus also

PIDs).

Theorem 4.1.2. Let a1, a2, ..., an be elements of a UFD with d being a greatest common divisor

of a2, ..., an. Then a greatest common divisor of a1, a2, ..., an is also a greatest common divisor

of a1 and d.
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Proof. Let d1 be a greatest common divisor of a1 and d and d2 be a greatest common divisor

a1, a2, a3, ..., an and let D1 be the set of all divisors of d1 and D2 be all the divisors of d2.

Note that d1 ∈ D1 and d2 ∈ D2. Now let c1 ∈ D1. Then c1|d1. Then c1|a1 and c1|d. Then

c1|a2, a3, ..., an. Then c1|ai for all i. In other words, c1 is a common divisor of all the ai. Then

by Definition 2.1.6 we know c1|d2. Then D1 ⊂ D2. Now, suppose that c2 ∈ D2. Then c2|d1.

Then c2|a1, a2, a3, ..., an. Since c2|a2, a3, ..., an we know c2|d. Since c2|d and c2|a1 we know c2|d1.

Then c2 ∈ D1. Then D2 ⊂ D1. Then D2 = D1. Since d1 ∈ D2 and c|d1 for all c ∈ D2, d1 is a

greatest common divisor of a1, a2, a3, ..., an. Similarly, since d2 ∈ D1 and c|d2 for all c ∈ D1, d2

is a greatest common divisor of a1 and d.

Definition 4.1.3. Let R be a UFD. d ∈ R is a common divisor of a1, a2, ..., an ∈ R, if d|a1,

d|a2,...,d|an. If c ∈ R is a common divisor of all the ai⇒ c|d, then d is a greatest common divisor.

4

This theorem also holds in PIDs since all PIDs are UFDs. This next theorem is a more

convenient way to define greatest common divisors in PIDs.

Definition 4.1.4. Let R be a PID with d, a1, a2, ..., an ∈ R. Then 〈d〉 = 〈a1, a2, a3, ..., an〉 ⇐⇒

d is a greatest common divisor of a1, a2, a3, ..., an. 4

Proof. Let R be PID with d, a1, a2, ..., an ∈ R. We will show that 〈d〉 = 〈a1, a2, a3, ..., an〉 ⇒ d

is a greatest common divisor of a1, a2, a3, ..., an and 〈d〉 = 〈a1, a2, a3, ..., an〉 ⇐ d is a greatest

common divisor of a1, a2, a3, ..., an, using 4.1.3 as our definition of greatest common divisor.

⇒ Assume that 〈d〉 = 〈a1, a2, a3, ..., an〉. Since for all 1 ≤ i ≤ n we know ai ∈ 〈a1, a2, a3, ..., an〉,

we can conclude that ai is a multiple of d. Thus d|ai for all i. Then d is a common divisor of

a1, a2, ..., an. Now suppose that c is a common divisor of a1, a2, ..., an. Then c|a1, c|a2,...,c|an.

Then for some k1, k2, ..., kn ∈ R, ck1 = a1, ck2 = a2,...,ckn = an. We know every element of 〈d〉,

i.e. every multiple of d, is of the form a1x1 + a2x2 + ...+ anxn = ck1x1 + ck2x2 + ...+ cknxn =

c(k1x1 + k2x2 + ... + knxn). Then c divides every multiple of d. Since d is a multiple of d we

know that c divides d. Then d is a greatest common divisor of a1, a2, ..., an.
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⇒ Assume d is a greatest common divisor of a1, a2, ..., an. Since R is a PID we know that for

some p ∈ R, 〈a1, a2, a3, ..., an〉 = 〈p〉. Then, as we showed earlier in this proof, p is a greatest

common divisor of a1, a2, ..., an. Then, by the definition of greatest common divisor, p|d and d|p.

Since d is a multiple of p we know that d ∈ 〈p〉. Then 〈d〉 ⊂ 〈p〉. Since p is a multiple of d we

know that p ∈ 〈d〉. Then 〈p〉 ⊂ 〈d〉. Then 〈d〉 = 〈p〉 = 〈a1, a2, a3, ..., an〉.

Theorem 4.1.5 (Generalization of Euclid’s Lemma). Let n, a, b be elements of a PID, R. If

n|ab and 1 is a greatest common divisor of a and n, then n|b.

Proof. Since n and a, with a greatest common divisor of 1, are elements of a PID we know that

〈a, n〉 = 1. Then for some x, y ∈ R, 1 = xa+yn Multiply both sides by b yielding b = xab+ynb.

Note that since n|ab we know for some k ∈ R, nk = ab. Then b = xab+ ynb = xnk+ ynb Factor

n out of the right side yielding b = n(ak + yb). Then n|b.

Definition 4.1.6. Let R be a ring with m ∈ R is a common multiple of a1, a2, ..., an ∈ R

if a1, a2, ..., an|m. If c ∈ R is a common multiple of a1, a2, ..., an ⇒ m|c then m is a

least common multiple. 4

Theorem 4.1.7. Let R be a PID with m, a1, a2, ..., an ∈ R. Then m is an least common multiple

of a1, a2, ..., an ⇐⇒ 〈m〉 = 〈a1〉 ∩ 〈a2〉∩, ...,∩〈an〉.

Proof. First note that, 〈a1〉∩ 〈a2〉∩, ...,∩〈an〉 is an intersection of a finite number of ideals thus

it is an ideal. Because it is an ideal in a PID, we know this ideal is principal. Then there exists

some m in R such that 〈m〉 = 〈a1〉 ∩ 〈a2〉∩, ...,∩〈an〉. Now we will approach the if and only if

statement.

⇐ Assume 〈m〉 = 〈a1〉 ∩ 〈a2〉∩, ...,∩〈an〉. Since m ∈ 〈m〉, we know m ∈ 〈a1〉 ∩ 〈a2〉∩, ...,∩〈an〉.

Then m ∈ 〈a1〉,m ∈ 〈a2〉, ...,m ∈ 〈an〉 by definition of set intersection. m ∈ 〈ai〉 ⇒ m = aiki

for some ki in R ⇒ ai|m for all 1 ≤ i ≤ n. Then m is a common multiple of a1, a2, ..., an. Now

suppose we have another common multiple of a1, a2, ..., an, call it m∗. Then ai|m∗ for all i. Then

m∗ ∈ 〈ai〉 for all i. Then m∗ ∈ 〈a1〉 ∩ 〈a2〉∩, ...,∩〈an〉 = 〈m〉. Because m∗ ∈ 〈m〉 we know that

m∗ = mk for some k ∈ R. Then m|m∗. Then m is a least common multiple.
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⇒ Assume m is a least common multiple of a1, a2, ..., an. Since 〈a1〉 ∩ 〈a2〉∩, ...,∩〈an〉 is an

ideal we know it is principal and it may be generated by a single element, call it p. Then

〈a1〉 ∩ 〈a2〉∩, ...,∩〈an〉 = 〈p〉. As shown earlier in this proof, p is then a least common multiple.

By definition of least common multiples, g|p and p|g. These two statements respectively imply

p ∈ 〈g〉 and g ∈ 〈p〉 which then implies 〈p〉 ⊂ 〈g〉 and 〈p〉 ⊂ 〈g〉. Since these sets are subsets of

each other they are equal. Then 〈m〉 = 〈p〉 = 〈a1〉 ∩ 〈a2〉∩, ...,∩〈an〉

Theorem 4.1.8. [4, Chapter 3 Theorem 3.11] If R is a Unique Factorization Domain, then

a1, a2, ..., an ∈ R have a greatest common divisor.

Theorem 4.1.9. Let a, b be elements of a UFD, R. Let d be a greatest common divisor of a

and b so that for some k1, k2 ∈ R, a = dk1 and b = dk2. Then 1 is a greatest common divisor of

k1, k2.

Proof. Suppose t is a greatest common divisor of k1, k2 and t is not a unit. Then t|k1 and t|k2.

Then there exists some l1, l2 ∈ R such that tl1 = k1 and tl2 = k2. Multiply both sides by d

yielding tl1d = k1d = a and tl2d = k2d = b Then td|a and td|b. Since td is a common divisor

of a and b it must divide d a greatest common divisor. However, we also know that d must

divide dt (because dt = dt). Because dt|d and d|dt, then dt = du where u is an arbitrary unit

of R. Then by the cancellation property of integral domains t = u. Then t is a unit, thus we

have reached a contradiction. Then t is a unit. However, by Theorem 4.1.1, a greatest common

divisor multiplied by a unit is also a greatest common divisor. Since t is a unit we know that

t−1 is also a unit. Then tt−1 = 1 is also a greatest common divisor.

Theorem 4.1.10. [2, Property 4.2.g] Let R be a ring. Any nonempty finite set of elements in R

has a least common multiple if and only if every pair of elements has a least common multiple.

Theorem 4.1.11. Let R be a UFD. Any nonempty finite set of elements in R has a least

common multiple.
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Proof. To prove this we will show that any pair of elements in R has a least common multiple

and then use Theorem 4.1.10.

Let R be a UFD with a, b, u ∈ R and u is a unit. Then a = upr11 ·p
r2
2 ·...·prnn and b = ps11 ·p

s2
2 ·...psmm ,

pi all being irreducibles. We write the products as having the same bases because we allow some

of the exponents to be zero under the condition that the exponent’s base does not occur as a

factor in that value. For example −50 = −1 · 70 · 52 · 30 · 21 and 42 = 71 · 50 · 31 · 21 are two

values that don’t share the same set of prime factors but we may still write them as having

factorizations with the same bases.

Anywho, consider the value l = p
max[r1,s1]
1 · pmax[r2,s2]2 · ... · pmax[rn,sn]n . The max[x, y] function

spits out the largest integer, x or y. Clearly a|l and b|l. So l is a common multiple of a and

b. Let c be a common multiple of a and b. Then c|a and c|b. Then for some k1 and k2 ∈ R,

ak1 = u ·pr11 ·p
r2
2 · ... ·prnn ·k1 = c = ps11 ·p

s2
2 · ...psmm ·k2 = bk2. For all pi we know that prii |l and psii |l

so obviously p
max[ri,si]
i |l since either either max[ri, si] = ri or max[ri, si] = si. Then l|c. Then l is

a least common multiple by 4.1.6. Since a pair of elements always has a least common multiple

in a UFD, we may conclude, by Theorem 4.1.10, that any finite nonempty set of elements in a

UFD has a least common multiple.

In splines there will be times that we need to refer to greatest common divisors and least

common divisors without knowing their actual value, so their innate existence will be very

convenient. Again, because every PID is also a UFD this theorem also applies to PIDs.

Theorem 4.1.12 (Bezout’s Identity). Let a, b and d be elements of a PID R such that d is a

greatest common divisor of a and b. Then d = ax + by for some x, y ∈ R.

Proof. Since d is a greatest common divisor of a and b we know that 〈d〉 = 〈a, b〉. Since d ∈ 〈d〉

we know d ∈ 〈a, b〉. Then d is of the form ax+ by for some x, y ∈ R.

Theorem 4.1.13. Let m1,m2,m3, ...,mn be elements of an arbitrary PID, R. Let dn−1 be a

least common multiple of m1,m2, ...,mn−1. Then a least common multiple of dn−1 and mn is

also a least common multiple of m1,m2, ...,mn−1,mn
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Proof. By Theorem 4.1.7 we know that a least common multiple of dn−1 and mn is any element,

r ∈ R, such that 〈r〉 = 〈dn−1〉 ∩ 〈mn〉 Recall, however, that dn−1 is a least common multiple

of m1,m2, ...,mn−1 Then, by Theorem 4.1.7 〈dn−1〉 = 〈m1〉 ∩ 〈m2〉 ∩ ... ∩ 〈mn−1〉. Then by

substitution 〈r〉 = 〈dn−1〉 ∩ 〈mn〉 = [〈m1〉 ∩ 〈m2〉 ∩ ... ∩ 〈mn−1〉] ∩ 〈mn〉. Since set intersection is

associative, [〈m1〉∩〈m2〉∩ ...∩〈mn−1〉]∩〈mn〉 = 〈m1〉∩〈m2〉∩ ...∩〈mn−1〉∩〈mn〉. All the mi are

elements of R, a PID. Then the intersection of their ideals is also an ideal. Then for some p in

R, 〈m1〉 ∩ 〈m2〉 ∩ ...∩ 〈mn−1〉 ∩ 〈mn〉 = 〈p〉. Then p is a least common multiple of m1,m2, ...,mn

and 〈r〉 = 〈p〉. Thus r is also a least common multiple of m1,m2, ...,mn.

Theorem 4.1.14. Let m1,m2, ...,mk, α,m
∗ ∈ R, where R is a PID, and m∗ is a least common

multiple of m1,m2, ...,mk. If m1,m2, ...,mk|α then m∗|α.

Proof. By hypothesis α is a common multiple of m1,m2, ...,mk. By definition m∗ divides every

common multiple of m1,m2, ...,mk then m∗|α.

Corollary 4.1.15. Let m1,m2, ...,mn, α, θ ∈ R, where R is a PID. If

α ≡ θ mod m1

α ≡ θ mod m2

α ≡ θ mod m3

...

α ≡ θ mod mn

then α ≡ θ mod dk where dk is a least common multiple of m1,m2, ...,mn.

Proof. We know by hypothesis that α ≡ θ mod mi for all 1 ≤ i ≤ n. Then mi|α − θ for all i.

Then by Theorem 4.1.14, dk|α− θ where dk is a least common multiple of m1,m2, ...,mn. Then

α ≡ θ mod dk by the definition of congruence.

Theorem 4.1.16 (Chinese Remainder Theorem for Arbitrary PIDs: non-coprime moduli). Let

x, z1, z2, ..., zr,m1,m2, ...,mr be elements of an arbitrary PID, R. Let di,j be a greatest common
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divisor of mi and mj. Then, the following system

x ≡ z1 mod m1

x ≡ z2 mod m2
...
...

x ≡ zr mod mr

has a solution for x if and only if for all mi,mj such that i 6= j, di,j |zi − zj.

Uniqueness is much more complicated in general PIDs than in the integers or, even more so,

the natural numbers. Luckily, we only want to use this theorem to show that certain values

exist; we do not care whether the value is unique. That is why this Theorem does have the

“unique mod [m1,m2, ...,mr]” which is often present in presentation of the integer analogue of

this theorem.

To prove this we will first show that it is true for a system of two congruences and then show

that it can be generalized to an arbitrary amount of congruences.

Lemma 4.1.17. Let z1, z2,m1,m2 ∈ R where R is a PID. Let d be a greatest common divisor

of m1 and m2. Then the system {
x ≡z1 mod m1

x ≡z2 mod m2

has a solution if and only if d|z1 − z2.

Proof. ⇐ Since d|z1 − z2 we know dk = z1 − z2 for k ∈ R. Then by Bezout’s identity, for some

r, s ∈ R dk = (m1r+m2s)k = z1−z2. Thenm1kr+m2ks = z1−z2. Thenm1kr+z2 = −m2ks+z1.

Let x = m1kr + z2 = −m2ks + z1. Then x ≡ m1kr + z2 ≡ (0)kr + z2 ≡ z2 mod m2 and

x ≡ −m2ks+ z1 ≡ (0)ks+ z1 ≡ z1 mod m1. Thus the congruences hold.

⇒ Suppose the system has a solution for x. Then x ≡ z1 mod m1 and x ≡ z2 mod m2. Then

for some n1, n2 ∈ R we know m1n1 = x−z1 and m2n2 = x−z2. Then x = m1n1+z1 = m2n2+z2.

Now we have established that m1n1 + z1 = m2n2 + z2. Then m2n2 −m1n1 = z2 − z1. Recall d

is a greatest common divisor of m1 and m2. Then d|m1, d|m2. Then dk1 = m1 and dk2 = m2.

Then m2n2 −m1n1 = dk2n2 − dk1n1 = d(k2n2 − k1n1) = z2 − z1. Then d|z2 − z1.
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Proof of Theorem 4.1.16. Let S be some set of the indices of the moduli. Then for all i ∈ S,

let mS be a least common multiple of all mi. Then m1,2,3 is the least common multiple of m1,m2

and m3. We will now approach the if and only if statement.

⇐ Now consider this system of congruences{
x ≡Q2 mod m1,2

x ≡z3 mod m3

We know from x ≡ Q2 mod m1,2 that m1,2|Q2−x. Since m1,m2|m1,2 we know that m1,m2|Q2−

x. Then x ≡ Q2 ≡ z1 mod m1 and x ≡ Q2 ≡ z2 mod m2. Then any solution for x ≡ Q2

mod m1,2 is also a solution to x ≡ z1 mod m1 and x ≡ z2 mod m2. Thus any solution to the

system {
x ≡Q2 mod m1,2

x ≡z3 mod m3

will also be a solution to the system 
x ≡ z1 mod m1

x ≡ z2 mod m2

x ≡ z3 mod m3

From Lemma 4.1.17 we know that there exists an x that satisfies the congruences x ≡ Q2

mod m1,2 and x ≡ z3 mod m3. We can iterate this process indefinitely until you get to{
x≡ Qr−1 mod m1,2,...,r−1

x≡ zr mod mr

which, by Lemma 4.1.17, has a solution for x . Thus, the system

x ≡ z1 mod m1

x ≡ z2 mod m2

:

:

x ≡ zr mod mr

has a solution.

⇒ Suppose the system has a solution for x. Then for some 0 ≤ i, j ≤ r and i 6= j, x ≡ zi

mod mi and x ≡ zj mod mj . Then for some ni, nj ∈ R we knowmini = x−zi andmjnj = x−zj .

Then x = mini + zi = mjnj + zj . Now we have established that mini + zi = mjnj + zj . Then
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mjnj −mini = zj − zi. Let d be a greatest common divisor of mi and mj . Then d|mi, d|mj .

Then for some ki, kj ∈ R we know dki = mi and dkj = mj . Then mjnj−mini = dkjnj−dkini =

d(kjnj − kini) = zj − zi. Then d|zj − zi.
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5
Splines over arbitrary PIDs

5.1 Intro

Now that we adequately understand how our essential theorems carry over to commutative rings

from the integers we can dive head first into some PID splines.

What we know about graphs will not change. The only dissimilar aspect is the new family of

edge and vertex labels. Where once they were integers, they will now be elements of a PID or,

in more general cases, an arbitrary PID.

The following are a few reminders about which theorems and definitions will remain function-

ally identical to their integer analogues.

Definition 5.1.1. Let R be a PID. Let a, b ∈ R. We say a divides b, denoted a|b, if there exists

some k ∈ R such that ak = b. 4

Theorem 5.1.2. Let R be a PID. Let a, b and c ∈ R. If a|b and b|c then a|c.

Proof. By hypothesis a|b and b|c. Then for some k1, k2 ∈ R, ak1 = b and bk2 = c. Then by

substitution ak1k2 = c. Then a|c.

Definition 5.1.3. Let R be a PID. Let a, b,m ∈ R. We say a is congruent to b modulo m,

denoted a ≡ b mod m, if m|a− b. 4
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Modular arithmetic involving non-integers may seem unfamiliar and therefore daunting but

the concept of divisibility and subtraction does not change. Since, congruence follows directly

from divisibility and subtraction it will not be very difficult to navigate.

Note again that, by the definition of divisibility this means there exists some x ∈ R such that

mx = a− b. Thus, it is valid to skip straight from a ≡ b mod m to mx = a− b.

Theorem 5.1.4. Let R be a PID. Let m be an element of R. Congruence modulo m is an

equivalence class. In other words, for all a, b, c ∈ R

a ≡ b mod m, b ≡ c mod m⇒ a ≡ c mod m

a ≡ b mod m⇒ b ≡ a mod m

a ≡ a

5.2 n-cycle splines form a module over commutative rings

Theorem 5.2.1. Let R be a commutative ring. Let L = l1, l2, ..., ln where l1, l2, ..., ln ∈ R and

let G be an n-cycle. Let S(G,L) be the set of all splines with vertex and edge labels in R. Then

S(G,L) is a unitary R-module.

This theorem was proved for integer splines, (Theorem 3.2.1). The proof for this theorem is

almost identical with the exception of the ring Z instead being a commutative ring R. Thus we

will not add the proof here.

Since S(G,L) forms an R-module we know that S(G,L) is closed under addition as well as scalar

multiplication by elements of R, R being the ring that the edge labels and vertex labels belong

to. This means if I take some splines over R, let’s call them F, G and H, and elements of R,

let’s call them x, y and z, I can combine them yielding another spline. Fx+Gy +Hz will be a

spline. This will be crucial for proving bases.
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5.3 Definition of PID Splines

Definition 5.3.1. Let R be a PID. Let (G,L) be an edge-labeled graph. A generalized PID

spline is a vertex labeling, (f1, f2, ..., fn) ∈ Rn, such that if vertices vi and vj are connected by

edge ek then fi ≡ fj mod lk. We denote the set of all splines on (G,L) by S(G,L). 4

−2i

1− 3i−8− 9i

i 1− i

3 + 2i

(a) (-2i,1-3i,i) is a Spline on this edge-
labeled graph

−4 + i −2i

−3 + i1 + 3i

01 + i

3− i

2 + 2i

2i

5− i

(b) (0,-2i,-3+i,1+3i,) is not a Spline on
this edge-labeled graph

Example 5.3.2. Figure (a) is a Spline because

(1− i)(−1)1− 3i− (−2i) = 1− i⇒ 1− 3i ≡ −2i mod 1− i

(3 + 2i)(−3)− 8− 9i− (1− 3i) = −9− 6i⇒ −8− 9i ≡ 1− 3i mod 3 + 2i

i(8i− 7) = −8− 9i− (−2i) = −8− 7i⇒ −8− 9i ≡ −2i mod i

Figure (b), however is not a spline because 5−i 6 |−2i−0. Suppose the opposite were true. Then

2i
5−i would be a Gaussian integer. Then 2i

5−i ·1 = 2i
5−i ·

5+i
5+i = (2i)(5+i)

(5−i)(5+i) = 10i+2i2

25−i2 = 10i−2
26 = 10

26 i+
2
26 .

The RHS of this equation however is not a Gaussian integer. Thus 5 − i - 2i − 0. Thus 2i 6≡ 0

mod 5− i. ♦

Unlike the definition of a smallest flow-up class element for splines over the integers, the PID

analogue will not make use of order.

Definition 5.3.3. Let R be a PID. Let G be an n-cycle with a set of edge labels L = {l1, l2, ..., ln}

with l1, l2, ..., ln ∈ R. Let Fi, where 1 ≤ i ≤ n− 1, be a flow-up class. Then f ∈ Fi is a smallest
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flow-up class element in F if the leading term fi of f divides the leading term of any other flow

up class element of Fi. 4

Again “smallness” implies “order” which is a fallacy within an arbitrary PID. However we use

the term “smallest” to associate the following two theorems with their integer analogues.

Theorem 5.3.4. Fix the edge labels on (G,L), where L = {l1, l2, ..., ln}. Let i ∈ [1, n] ∩ N and

let Fi = (0, ..., 0, fi+1, fi+2, ..., fn) be an element of Fi in S(G,L). Let di+1 be a greatest common

divisor of li+1, ..., ln. Then the leading term, fi+1, is a multiple of a least common multiple, m,

of li and di+1. Also fi+1 = m is a smallest flow-up class element satisfying the conditions.

Proof. We will use proof by induction for the bulk of this proof. Assume Fi = (0, ..., 0, fi+1, fi+2, ..., fn)

is a spline. Then the following system of congruences must hold true.

Figure 5.3.2. Caption

0 ≡ 0 mod 11

0 ≡ 0 mod l2
...

0 ≡ fi+1 mod li

fi+1 ≡ fi+2 mod li+1

...

fn−3 ≡ fn−2 mod ln−3

fn−2 ≡ fn−1 mod ln−2

fn−1 ≡ fn mod ln−1

fn ≡ 0 mod ln

By Theorem 4.1.16 we know that if we take any subsection

fj ≡ fj+1 mod lj

fj+1 ≡ fj+2 mod lj+1
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where i ≤ j ≤ n − 1 (note fi = 0), of two consecutive congruences from the system above, it

must be the case that fj ≡ fj+2 mod dj , where d is a greatest common divisor of lj , lj+1. The

same is true for the last case of

fn−1 ≡ fn mod ln−1

fn ≡ 0 mod ln

in which it must be the case that fn−1 ≡ 0 mod dn where dn is a greatest common divisor of

ln−1 and ln. We will approach this case first, the base case. We know that fn may only exist if

fn−1 ≡ 0 mod dn−1 where dn−1 is a gcd of ln−1 and ln.

Now for the inductive case. Suppose that

fj ≡ fj+1 mod lj

fj+1 ≡ 0 mod dj+1

where dj+1 is a greatest common divisor of lj + 1, lj+2, ..., ln and 2 ≤ j ≤ n − 2 (j = n − 1

is the base case). We know that in order for this system to be true it must be the case that

fj ≡ 0 mod dj where dj is a greatest common divisor of lj and dj+1. Note, by Theorem 4.1.2

dj is also a greatest common divisor of lj , lj+1, ..., ln. Additionally, observing the first system of

congruences in this proof, Figure 5.3.2, we know fj−1 ≡ fj mod lj−1. Then we know the system

of congruences

fj−1 ≡ fj mod lj−1

fj ≡ 0 mod dj

holds true. Then by induction fj ≡ 0 mod dj for all j ∈ [0, n]∩N where dj is a greatest common

divisor of lj , lj+1, ..., ln.

This means that fi+1 ≡ 0 mod di+1 where di+1 is a greatest common divisor of li+1, li+2, ..., ln.

By the first system in the proof we know that 0 ≡ fi+1 mod lj . Then by Corollary 4.1.15, we

know that fi+1 ≡ 0 mod θ where θ is a least common multiple of lj and di+1.
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Theorem 5.3.5. Fix the edge labels on (G,L), where L = {l1, l2, ..., ln}. F = (0, ..., 0, fn) be an

element of the n − 1th flow-up class, Fn−1, in S(G,L). Then the leading term, fn, is a multiple

of a least common multiple, m, of ln and ln−1. Furthermore, fn = m is a smallest flow-up class

element satisfying the ln and ln−1 conditions.

Proof. Since F = (0, ..., 0, fn) is a spline we know that fn ≡ 0 mod ln−1 and fn ≡ 0 mod ln.

Then ln−1|fn and ln|fn. F is a spline if and only fn fulfills those two properties. Then fn is any

common multiple of ln and ln−1. Then by definition we know that a least common multiple of

ln−1 and ln, m, divides fn. In other words fn is a multiple of m. Since m is also a common

multiple of ln and ln−1 we know that fn = m is also one acceptable value that allows F to

be a spline. Of course m divides every multiple of m thus fn = m is a smallest flow up class

element.

We now have all the necessary tools to show the existence of a general flow-up class basis for

splines over PIDs. I hope you are as excited as I am.

Theorem 5.3.6. Let R be a PID. Let G be an n-cycle. Let l1, l2, ..., ln ∈ R be our sequential set

of edge labels, L. That is, L = {l1, l2, ..., ln}. Then the smallest flow-up class elements of S(G,L)

form a basis.

Proof. The symbol 1 (one) will denote the multiplicative identity element of R and 0

the additive identity element, except when they appear as a superscript or subscript. Let

F0 = (1, 1, ..., 1) and Fn−1 = (0, 0, ..., 0, [ln−1, ln]). For 1 ≤ i ≤ n − 2 and j = i let

Fi = (0, ..., [li, (li+1, ..., ln)], f ij+1, f
i
j+2, ..., f

i
n−1, f

i
n). This means Fi is the smallest element of

Fi; it has i leading zeros. Again, the i in the super script of each element is to associate that

element with its spline whereas the j + c (c is a constant) is to associate the element with its

component-spot in the spline.

Now we show that our splines are linearly independent. We place the splines into a matrix.
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

1 1 1 . . . 1 1 1
0 [l1, (l2, l3, ..., ln)] f13 . . . f1n−2 f1n−1 f1n
0 0 [l2, (l3, l4, ..., ln)] . . . f2n−2 f2n−1 f2n
...

...
...

. . .
...

...
...

0 0 0 . . . [ln−3, (ln−2, ln−1, ln)] fn−3n−1 fn−3n

0 0 0 . . . 0 [ln−2, (ln−1, ln)] fn−2n

0 0 0 . . . 0 0 [ln−1, ln]


I don’t mean to forward, but that upper triangular matrix. Oh my goodness, that upper triangu-

lar matrix. Its diagonal has no zeroes (additive identities) thus its determinant will be nonzero.

Then the splines are linearly independent.

We will now show that the basis elements span. Let H = (h1, h2, ..., hn) ∈ S(G,L). Let H1 =

H − h1F0. Then

H1 = H − h1F0 =


h1
h2
...
hn

−

h1
h1
...
h1

 =


0

h2 − h1
...

hn − h1


Then H1 = (0, h2 − h1, h3 − h1, ..., hn − h1). We will now use induction to continue this sort of

deconstruction of G.

We will start with the base case. Note that H1 ∈ F1 is a spline subtracted by a scalar

multiple of another spline. By Theorem 5.2.1 this means H1 is a spline. Then by Theorem

5.3.4 the leading term of H1 is a multiple of [l1, (l2, l3, ..., ln)]. Then for some k1 ∈ R we know

H1 = (0, h2 − h1, h3 − h1..., hn − h1) = (0, k1[l1, (l2, l3, ..., ln)], h3 − h1, ..., hn − h1). Then let

H2 = H1 − k1F1. So,

H2 = H1 − k1F1 =


0

k1[l1, (l2, l3, ..., ln)
h3 − h1

...
hn − h1

−


0
k1[l1, (l2, l3, ..., ln)

f13
...
f1n

 =


0
0

h3 − h1 − f13
...

hn − h1 − f1n


Then H2 ∈ F2 is a spline by Theorem 5.2.1.

Now for the inductive step. Suppose we have some Hi ∈ Fi. Let Hi = (0, 0, ..., h∗i+1, ..., h
∗
n).

Since Hi has exactly i leading zeros we know h∗i+1, the leading term, is the i + 1th term. By

Theorem 5.3.4 we know that the leading term ofHi is a multiple of [li, (li+1, ..., ln)]. Then for some
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ki ∈ R it is the case that Hi = (0, 0, ..., h∗i+1, ..., h
∗
n) = (0, 0, ..., ki[li, (li+1, ..., ln)], h∗i+2, ..., h

∗
n).

Let Hi+1 = Hi − kiFi. Then

Hi+1 = Hi − k1Fi =



0
0
...

ki[li, (li+1, ..., ln)]
h∗i+2

h∗i+3
...
h∗n


−



(ki)0
(ki)0

...
(ki)[li, (li+1, ..., ln)]

(ki)f
i
j+2

(ki)f
i
j+3

...
(ki)f

i
n


=



0
0
...
0

(ki)f
i
j+2

(ki)f
i
j+3

...
h∗n − (k1)f

i
n


Then Hi+1 ∈ Fi+1 is a spline by Theorem 5.2.1. This concludes the inductive step.

Then we have shown that we may subtract Σn−2
i=1 kiFi from H1 to yield a new spline Hn−1 ∈

Fn−1. In algebraic language, Hn−1 = H1−Σn−2
i=1 kiFi ∈ Fn−1. Because Hn−1 is in the n−1th flow

up class we know that there are n− 1 leading zeros and, by theorem 5.3.5 the leading term is a

multiple of [ln−1, ln]. Then for some kn−1 ∈ R we know that Hn−1 = (0, 0, ..., 0, kn−1[ln−1, ln]).

Then Hn−1 − kn−1Fn−1 = (0, 0, ..., 0, kn−1[ln−1, ln]) − (0, 0, ..., 0, kn−1[ln−1, ln]) = (0, 0, ..., 0, 0).

Then 0 = Hn−1 − kn−1Fn−1 = H1 −Σn−2
i=1 kiFi − kn−1Fn−1 = H − h1F0 −Σn−2

i=1 kiFi − kn−1Fn−1.

Then H = h1F0 + Σn−2
i=1 kiFi + kn−1Fn−1. Then every spline H ∈ S(G,L) is in the span of

F1, F2, ..., Fn−1. Then we have found a basis.
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Splines over R[x, y]

My original intent was to focus on Splines over Gaussian integers but it became clear that that

ring was too similar to the regular integers and my project would be a nearly identical copy of

previous projects with different ingredients. My solution was to work with a particularly different

ring. One that was not euclidean or better yet not a PID. So, I chose R[x, y]. However, I thought

it would also be fun/substantial to show that most of the findings from Gjoni and Mahdavi’s

project could be generalized to PIDs with some work, thus solidifying the idea that non PIDs,

like R[x, y] is the new frontier.

This first section will be an introduction to the ring R[x, y].

6.1 Introduction to R[x, y]

R[x, y] is the set of all polynomials with 2 indeterminates and with real coefficients. We use

x and y to represent our respective indeterminates. Then for all n,m ∈ N and ji, ki, c ∈ R,

Σn
i=1 + Σm

i=1 + c ∈ R[x, y].

Example 6.1.1. The following is an example of an element of R[x, y]:

πx2 + 3x−
√

7y3 + y + 3
√

2

♦
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Though π,
√

7, 3
√

2 ∈ Q′, (elements of the irrational numbers) they are still real.

Note that since Z ⊂ R we may deduce Z[x, y] ⊂ R[x, y].

Example 6.1.2. The following is are example of an element of R[x, y] :

5x5 + 2x2 + 3y + 5

4x2 + 2x+ 3y3 + 1

x2 + 7x+ 2y + 4

♦

Corollary 6.1.3. Note that from Corollary 2.2.11 and Theorem 2.2.19, R[x, y] is a UFD.

This means that any theorem we have proved for UFDs will apply to R[x, y]. For example by

Theorem 4.1.8 we know we may still take the gcd of elements in R[x, y]. By Theorem 4.1.11 we

know we may still take the lcm of elements in R[x, y]. By Theorem 5.2.1 we know the sum or

difference of scalar multiples of splines over R[x, y] are themselves splines over R[x, y].

6.2 Definitions and examples of R[x, y] splines

Definition 6.2.1. Let L = {l1, l2, ..., lm} and let G be some graph. A generalized R[x, y] spline

is a vertex labeling (f1, f2, ..., fn) ∈ Rn[x, y], such that if vertices vi and vj are connected by

edge ek then fi ≡ fj mod lk. We denote the set of all splines on (G,L) by S(G,L). 4

We will mostly be looking at splines on edge-labeled graphs whose edge labels are linear

combinations over R of other edges. We provide an example of what this means.

Example 6.2.2. Let G be a five-cycle and let L = {l1, l2, l3, l4, l5} be our set of edge labels,

each elements of R[x, y]. Let x2, x3, x4, y2, y3, y4 ∈ R. Then let l2 = x2l1 + y2l5, l3 = x3l1 + y3l5,

and l4 = x4l1 + y4l5. Then (G,L) is a type of edge-labeled graph we would encounter.
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Figure 6.2.1. 5-cycle edge labeled graph

f3 f2

f1

f5

f4

l3 = x3l1 + x3l5

l2 = x2l1 + y2l5

l1

l5
l4 = x4l1 + y4l5

♦

As is visible from Figure 6.2.1, the edge labels l2, l3 and l4 are each of the form xil1 + yil5

where i is equal to 2, 3 and 4, respectively. If there were not of that form, if they were random

elements of R[x, y], then there would be no way to determine the form of the vertices. In PIDs

we have Theorem 5.3.4 which allows us to determine the form of the leading terms of most of

our basis elements. They also assure us that, with leading terms of that form, the rest of the

vertices will have potential values that satisfy that defining system congruences. Theorem 5.3.4

requires the Chinese remainder theorem which we do not have in R[x, y]. The basis elements of

the set of all splines over R[x, y] require a different method for discovery.

6.3 Bases of R[x,y]

It should be noted that flow up classes are still defined the same way. The ith flow up class is

the set of all splines with i leading zeros. Again, Theorem 5.3.4 is not available for these splines.

We can, however, generalize Theorem 5.3.5 to splines over R[x, y] because it does not use the

Chinese remainder theorem we will include it without rigorous proof because the proof is nearly

identical to that of Theorem 5.3.5.
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Theorem 6.3.1. Fix the edge labels on (G,L), where L = {l1, l2, ..., ln}. F = (0, ..., 0, fn) be an

element of the n − 1th flow-up class, Fn−1, in S(G,L). Then the leading term, fn, is a multiple

of a least common multiple, m, of ln and ln−1. Furthermore, fn = m is a smallest flow-up class

element satisfying the ln and ln−1 conditions.

A rough proof to sway any doubts abut this theorem:

Proof. Assuming F is a spline we know that

fn ≡ 0 mod ln

0 ≡ fn mod ln−1

Then ln|fn−0 = fn and ln−1|fn−0 = fn. Then fn may be any common multiple of ln and ln−1.

Then by Definition 4.1.6 we know that fn must be a multiple of a least common multiple, m, of

ln and ln−1.

Theorem 6.3.2. Let G be a 3-cycle graph. Let l1, l2 ∈ R[x, y] − 0 and a, b ∈ R with a, b 6= 0.

Let L = {l2, al1 + bl2, l1} be our set of edge labels. Let m be a least common multiple of al1 + bl2

and l1. Let B0 =

1
1
1

, B1 =

 0
bl2
−al1

, B2 =

 0
0
m

 be sets of vertex labels on the (G,L). Then

B0, B1, B2 are splines that form a basis for all splines on (G,L), S(G,L).

1 1

1

al1 + bl2

l2l1

(a) B0 = (1, 1, 1)

−al2 bl2

0

al1 + bl2

l2l1

(b) B1 = (0, bl2,−al2)

m 0

0

al1 + bl2

l1l2

(c) (0, 0,m)

Proof. Firstly, we need to show that B0, B1, B2 are indeed splines on (G,L). B0 is so obviously

a spline, 1 ≡ 1 mod m for all m ∈ R[x, y]. As for B1, we know 0 ≡ bl2 mod l2, and 0 ≡ −al1
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mod l1. Also −al1 − bl2 = (−1)(al1 + bl2). Then al1 + bl2| − al1 − bl2 thus B1 is a spline. It is

also trivial to see that B2 is a spline.

Now to show that these splines form a basis for S(G,L). By hypothesis that a, b 6= 0. Let

F = (f1, f2, f3). Then let F
′

= F − f1B0. Then,

F
′

= F − f1B0 =

f1f2
f3

−
f1f1
f1

 =

 0
f2 − f1
f3 − f1


We know splines on n-cycle graphs form an R[x, y] module. Then since F

′
is a linear combination

over R[x, y] of splines on (G,L) we know that it is itself a spline, by Theorem 5.2.1. Since F
′

is

a spline we know that f2 − f1 ≡ 0 mod l2. Thus l2|f2 − f1. Then there exists some m ∈ R[x, y]

such that l2m = f2f1. Then F
′

= (0, f2−f1, f3−f1) = (0, l2m, f3−f1). Now let F
′′

= F
′− m

b B1.

Then

F
′′

= F
′ − m

b B1

 0
l2m

f3 − f1

−
 0
l2m

−aml1
b

 =

 0
0

f3 − f1 + aml1
b


Note that m/b ∈ R[x, y] then F

′′
is a linear combination over R[x, y] of splines. Thus it also a

spline by Theorem 5.2.1. Then f3−f1 + aml1
b ≡ 0 mod al1 + bl2 and f3−f1 + aml1

b ≡ 0 mod l1.

Then f3−f1+ aml1
b is a common multiple of al1+bl2 and l1. Then m|f3−f1+aml1. Then for some

nR[x, y] it is the case that mn = f3 − f1 + aml1. Then F
′′

= (0, 0, f3 − f1 + aml1
b ) = (0, 0,mn).

Let F
′′′

= F
′′ − nB2. Then

F
′′′

= F
′′ − nB2 =

 0
0
mn

−
 0

0
mn

 =

0
0
0


Then F = F

′
+ f1B0 = F

′′
+ m

b B1 + f1B0 = nB2 + m
b B1 + f1B0. Thus any spline in S(G,L) is in

the span of B0, B1, B2 when L = {l2, al1 + bl2, l1} and a, b 6= 0. Thus B0, B1, B2 is a basis.

Theorem 6.3.3. Let G be an n-cycle graph with a set of edge labels, L = {l1, l2, l3, ..., ln}

where li = ail1 + biln and ai, bi ∈ R − 0 for all 2 ≤ i ≤ n − 1 and l1, ln ∈ R[x, y] − 0 are not

multiples of each other. Let m be a least common multiple of ln−1 and ln. Let B0 =


1
1
...
1

. Let
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B1 =



0
l1
l1
...

bn−2(an−1−1)
an−2

ln + an−1l1

( bn−2(an−1−1)
an−2

− bn−1)ln


Let Bi =



0
0
...
li
li
...

(−ai+an−1

an−2
bn−2 + bi)ln + an−1l1

(bn−1 + −ai+an−1

an−2
bn−2 + bi)ln


for 2 ≤ i ≤ n − 3

Let Bn−2 =


0
0
...

ln−2 = an−2l1 + bn−2ln
(bn−2 − an−2

an−1
bn−1)ln

 Let Bn−1 =


0
0
...
m

 Then all Bj for 1 ≤ j ≤ n − 1 are

splines that form a basis for S(G,L).

Proof. First, we will show that all Bj are splines. Recall that in order to do this we must show

that for each spline, the ith vector component is congruent to the (i+1)th vector component

modulo li for 1 ≤ i ≤ n − 1 and the nth vector component is congruent to the first vector

component modulo ln. Since, 1 ≡ 1 mod m for all m ∈ R[x, y]− 0 we know B0 is a spline.

Now we will show that B1 is a spline. We know 0 ≡ l1 mod l1 and l1 ≡ l1 mod m for all m. Be-

cause ( bn−2(an−1−1)
an−2

ln+an−1l1)− l1 = ( bn−2(an−1−1)
an−2

ln+(an−1−1)l1) = (an−1−1)
an−2

(bn−2ln+an−2l1),

we know that bn−2ln + an−2l1|( bn−2(an−1−1)
an−2

ln + an−1l1)− l1. Then by definition bn−2(an−1−1)
an−2

ln +

an−1l1 ≡ l1 mod bn−2ln + an−2l1. We know bn−2(an−1−1)
an−2

ln + an−1l1 − ( bn−2(an−1−1)
an−2

− bn−1)ln =

( bn−2(an−1−1)
an−2

− bn−2(an−1−1)
an−2

+ bn−1)ln + an−1l1 = bn−1ln + an−1l1 = bn−1ln + an−1l1. Then by

definition bn−1ln+an−1l1| bn−2(an−1−1)
an−2

ln+an−1l1−( bn−2(an−1−1)
an−2

−bn−1)ln. Then bn−2(an−1−1)
an−2

ln+

an−1l1 ≡ ( bn−2(an−1−1)
an−2

−bn−1)ln mod bn−1ln+an−1l1. We know that ( bn−2(an−1−1)
an−2

−bn−1)ln ≡ 0

mod ln since ( bn−2(an−1−1)
an−2

− bn−1)ln is a multiple of ln. Then B1 is a spline.

Now we will show Bi is a spline for 2 ≤ i ≤ n − 3. The leading term of Bi is obviously

the (i+1)th vector component since there is i leasing zeroes. We know 0 ≡ 0 mod m for all

m ∈ R[x, y]−0, 0 ≡ li mod li, and li ≡ li mod h for all h ∈ R[x, y]−0. Note that li = ail1+biln.

Then, (−ai+an−1

an−2
bn−2 + bi)ln + an−1l1 − li = (−ai+an−1

an−2
bn−2 + bi)ln + an−1l1 − (ail1 + biln) =

(−ai+an−1

an−2
bn−2+bi−bi)ln+(an−1−ai)l1 = (−ai+an−1

an−2
bn−2)ln+(an−1−ai)l1 = (−ai+an−1

an−2
)(bn−2ln+
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an−2l1). Then bn−2ln + an−2l1|(−ai+an−1

an−2
bn−2 + bi)ln + an−1l1− li. Then (−ai+an−1

an−2
bn−2 + bi)ln +

an−1l1 ≡ li mod bn−2ln + an−2l1. We know that (−ai+an−1

an−2
bn−2 + bi)ln + an−1l1 − (bn−1 +

−ai+an−1

an−2
bn−2 + bi)ln = (−ai+an−1

an−2
bn−2 + bi − bn−1 − −ai+an−1

an−2
bn−2 + bi) + an−1 = bn−1ln + an−1.

Then bn−1ln + an−1|(−ai+an−1

an−2
bn−2 + bi)ln + an−1l1 − (bn−1 + −ai+an−1

an−2
bn−2 + bi)ln. Then

(−ai+an−1

an−2
bn−2 + bi)ln+an−1l1 ≡ (bn−1 + −ai+an−1

an−2
bn−2 + bi)ln mod bn−1ln+an−1. Finally, since

(bn−1+−ai+an−1

an−2
bn−2+bi)ln is a multiple of ln we can deduce that (bn−1+−ai+an−1

an−2
bn−2+bi)ln ≡ 0

mod ln. Then Bi is a spline for 2 ≤ i ≤ n− 3.

Now we will show Bn−2 is a spline. Again we know 0 ≡ 0 mod m for all m ∈ R[x, y] − 0

and 0 ≡ ln−2 mod ln−2. Since an−2l1 + bn−2ln − (bn−2 − an−2

an−1
bn−1)ln = an−2l1 + (bn−2 −

bn−2 + an−2

an−1
bn−1)ln = an−2l1 + (an−2

an−1
bn−1)ln = (an−2

an−1
)(an−1l1 + bn−1ln) we know that an−1l1 +

bn−1ln|an−2l1 + bn−2ln − ((bn−2 − an−2

an−1
bn−1)ln). Then an−2l1 + bn−2ln ≡ (bn−2 − an−2

an−1
bn−1)ln

mod an−2l1 + bn−2ln. Finally, since (bn−2 − an−2

an−1
bn−1)ln is a multiple of ln we know that

(bn−2 − an−2

an−1
bn−1)ln ≡ 0 mod ln. Then Bn−2 is a spline.

Now, will show Bn−1 is a spline. We know 0 ≡ 0 mod m for all m ∈ R[x, y]− 0. We know m is

a multiple ln−1 and ln then m ≡ 0 mod ln−1 and m ≡ 0 mod ln. Then Bn−1 is a spline.

Now we will show that the proposed basis spans.

Let G = (g1, g2, ..., gn) be a spline on (G,L) with gi ∈ R[x, y]− 0 for 1 ≤ i ≤ n. Then define G1

as

G1 = G− g1G0 =


g1
g2
...
gn

−

g1
g1
...
g1

 =


0

g2 − g1
...

gn − g1


By Theorem 3.2.1, we know that G1 is a spline. Then g2−g1 ≡ 0 mod l1 . Then g2−g1 = g∗2l1

for some g∗2 ∈ R[x, y]. Define G2 as

G2 = G1 − g∗2B1 =



0
g∗2 l1

g3 − g1
...

gn−1 − g1
gn − g1


−



0
g∗2 l1
g∗2 l1
...

g∗2
bn−2(an−1−1)

an−2
ln + an−1l1

g∗2(
bn−2(an−1−1)

an−2
− bn−1)ln


=



0

0
g3 − g1 − g∗2 l1

...

gn−1 − g1 − g∗2
bn−2(an−1−1)

an−2
ln + an−1l1

gn − g1 − g∗2(
bn−2(an−1−1)

an−2
− bn−1)ln


Now, note that since G2 is a spline g3 − g1 − g∗2l1 ≡ 0 mod l2. Thus g3 − g1 − g∗2l1 = g∗3l2 for

some g∗3 ∈ R[x, y]. Then define G3 to be
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G3 = G2 − g∗3B2 =

0
0
g∗3l2

g4 − g1 − g∗2l1
...

gn−1 − g1 − g∗2
bn−2(an−1−1)

an−2
ln + an−1l1

gn − g1 − g∗2( bn−2(an−1−1)
an−2

− bn−1)ln


-



0
0
g∗3l2
g∗3l2

...

g∗3((−a2+an−1

an−2
bn−2 + b2)ln + an−1l1)

g∗3((bn−1 + −a2+an−1

an−2
bn−2 + b2)ln)


=


0
0
0

g4 − g1 − g∗2l1 − g∗3l2
...


Some of the column vector components, like the (n − 1)th and nth components of G3, are

not explicitly stated because they are far too long and complicated to fully write out. Moreover,

they will be expressed differently, and more concisely, later in the proof based on values to which

they are congruent. So, there is not really any point in putting the reader through such a terrible

experience. The important thing is that each difference of splines is also spline. Thus G3 is still a

spline. Then g4−g1−g∗2l1−g∗3l2 ≡ 0 mod l3 and g4−g1−g∗2l1−g∗3l2 = g∗4l3 for some g∗4 ∈ R[x, y]

which leads us to defining G4 as G4 = G3 − g∗4B3. We can iterate this process until we define

Gn−3 as Gn−2 = Gn−3 − g∗n−2B3 for some g∗n−2 ∈ R[x, y]. Gn−2 will be an element of Fn−2 on

(G,L). This means the leading term of Gn−2 is the n− 1th (2nd to last) vector component; let’s

call it α for now. While we’re at it, lets refer to the nth component of Gn−2 as β. Since α is the

leading term we know that α ≡ 0 mod ln−2. Then α = g∗n−1ln−2. Define Gn−1 as

Gn−1 = Gn−2 − g∗n−1Bn−2 =



0

0

0
...

α = g∗n−1ln−2

β


−



0

0
.
..

g∗n−1ln−2

g∗n−1(bn−2 −
an−2

an−1
bn−1)ln

 =



0

0
...

0

β − g∗n−1(bn−2 −
an−2

an−1
bn−1)ln



Since Gn−1 is a spline we know that β − (bn−2 − an−2

an−1
bn−1)ln ≡ 0 mod ln−1 and β − (bn−2 −

an−2

an−1
bn−1)ln ≡ 0 mod ln−1. Then β − (bn−2 − an−2

an−1
bn−1)ln ≡ 0 mod ln−1 is a common multiple

of ln−1 and ln. Then for some gn∗ ∈ R[x, y] we know m|β− (bn−2− an−2

an−1
bn−1)ln. by definition of

divisibility. Then (bn−2 − an−2

an−1
bn−1)ln = g∗nm. Then

Gn−1 − g∗nBn−1 =


0
0
...
0

g∗nm

−


0
0
...
0

g∗nm

 =


0
0
...
0
0


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We have arrived at G− g1B0 −Σn
i=g
∗
iBi−1 = 0. Then G = g1B0 + Σn

i=2g
∗
iBi−1. Then any spline

G ∈ S[x, y] is in the span of Bj .

Now we will show that the proposed basis is linearly independent. Fret not, however; this is

the easy part. It also gives us the opportunity to put our basis elements into a matrix. This

allows me to end the project with what might very well be the most disgusting matrix in the

history of Bard Senior Projects. This is very exciting.



1 0 0 0 . . . 0 0 0 0
1 l1 0 0 . . . 0 0 0 0
1 l1 l2 0 . . . 0 0 0 0
1 l1 l2 l3 . . . 0 0 0 0

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.
1 l1 l2 l3 . . . ln−4 0 0 0
1 l1 l2 l3 . . . ln−4 ln−3 0 0

1
bn−2(an−1−1)

an−2
ln + an−1l1 (

−a2+an−1
an−2

bn−2 + b2)ln + an−1l1 (
−a3+an−1

an−2
bn−2 + b3)ln + an−1l1 . . . (

−an−4+an−1
an−2

bn−2 + bn−4)ln + an−1l1 (
−an−3+an−1

an−2
bn−2 + bn−3)ln + an−1l1 an−2l1 + bn−2ln 0

1 (
bn−2(an−1−1)

an−2
− bn−1)ln (bn−1 +

−a2+an−1
an−2

bn−2 + b2)ln (bn−1 +
−a3+an−1

an−2
bn−2 + b3)ln . . . (bn−1 +

−an−4+an−1
an−2

bn−2 + bn−4)ln (bn−1 +
−an−3+an−1

an−2
bn−2 + bn−3)ln (bn−2 −

an−2
an−1

bn−1)ln [ln−1, ln]



Figure 6.3.2. We’re gonna need a bigger boat

Observe Figure 6.3.2. The smallest font provided by LATEX is still too large to contain the

entire matrix on one page. Instead we will note that because each spline, which falls into each

column of the above matrix, is a sequence of elements from ascending flow up classes (F0 then

F1 then ... then Fn−1), we know that the matrix is lower triangular. Thus its determinant will

be the product of the diagonal components all of which are not zero. Thus the product will not

be zero. Thus the splines are linearly independent.



52 6. SPLINES OVER R[X,Y ]



7
Future Work

With more time we would have looked at the following:

1. Can we abstract theory of integer splines on the diamond graph to PID splines on the

diamond graph the same way we did with n-cycle splines?

2. Can we generalize our theory on R[x, y] splines on n-cycles to arbitrary UFDs on n-cycles.

Instead of ai and bi being real numbers they would be units of our UFD.

I encourage any future Bard math seniors to explore these topics because I believe they would

both be Rather promising. I mean come on, every mathematician likes generalizations.
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