
Bard College Bard College

Bard Digital Commons Bard Digital Commons

Senior Projects Spring 2017 Bard Undergraduate Senior Projects

Spring 2017

Mouse vs. Machine: The Game Mouse vs. Machine: The Game

Cafferty Aiko Frattarelli
Bard College, cf4707@bard.edu

Follow this and additional works at: https://digitalcommons.bard.edu/senproj_s2017

 Part of the Artificial Intelligence and Robotics Commons, Digital Humanities Commons, and the

Graphics and Human Computer Interfaces Commons

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

Recommended Citation Recommended Citation
Frattarelli, Cafferty Aiko, "Mouse vs. Machine: The Game" (2017). Senior Projects Spring 2017. 150.
https://digitalcommons.bard.edu/senproj_s2017/150

This Open Access work is protected by copyright and/or
related rights. It has been provided to you by Bard
College's Stevenson Library with permission from the
rights-holder(s). You are free to use this work in any way
that is permitted by the copyright and related rights. For
other uses you need to obtain permission from the rights-
holder(s) directly, unless additional rights are indicated by
a Creative Commons license in the record and/or on the
work itself. For more information, please contact
digitalcommons@bard.edu.

http://www.bard.edu/

23

Original digital main character mouse design, scrapped due to decision to have the game view

from the top down.

Second mouse design, scrapped due to the logistical difficulties caused by a rectangular sprite

design. Mainly the problems occurred in corners and near objects where it would either clip

through them or not fit in places where it fit before when it was sideways.

24

Final mouse design, showing differences in walking animation.

The sprite for the spider and the lizard-like enemy characters.

The sprite for the rock object, also used for the morph enemy as an enemy to catch the player

off-guard.

25

The attack sprites used by the player and the enemy characters respectively.

The wall and door sprites. They define the dimensions of the room and show the way out.

Initial mock-up of gameplay.

26

The final background image, with spaces for displaying health, level, and enemies killed, as well

as any in-game description or dialogue.

An example of a game scene where the player character is being attacked by a morph.

27

5
The Process

5.1 The Coding

Coding this game from the ground up, I started by figuring out which programming

language to use. I settled on Python because it was the language I was most familiar with,

particularly in regards to object oriented programming and in relation to artificial intelligence

similar to what was covered in the Intelligence and Perception in Robotics class. I decided to use

the Pygame module to supplement Python due to its graphics and timing library.

Next I started coding the rough building blocks of the game, fleshing out which classes

were and were not necessary. In this step there was a lot of writing and re-writing code for

efficiency, so the code did not work unnecessarily hard and cause the game to slow down. This

28

would cause frustration both on the player’s level and further down the line cause difficulties

with training the A.I., which would only serve to slow the program further.

Once the code was to a point where I could introduce graphics, I began to digitally draw

out the characters using my drawing tablet and the art program GIMP 2. Some of them had

already been designed on paper, as seen in the previous section. After several redesigns I found

what worked best for the game and drew up final versions.

Finally, I started implementing the A.I. At first the goal was to have the A.I. fully control

the Enemy characters, that, however, turned out not to be feasible for a number of reasons. First,

it slowed down the program a significant amount due to the number of relevant inputs, as well as

the number of test problems that would be necessary to give the A.I. accurate instruction.

Second, the problem with giving the A.I. full control of the Enemy characters was that the

computer has much quicker reactions than a human player does, so if it did work fully, it would

be incredibly difficult, if not impossible, to play the game and win, or even have fun. Thus, I

decided on a partially hybridized A.I., where the neural network chooses between a few different

actions with a time delay.

Implementing the neural network involved a variety of different tests, including ones to

generate a training data set, as well as finding the right balance of number of iterations and

learning rate for the neural network to produce accurate results.

29

5.2 The Bugs (and other technical difficulties)

There are always some bugs and other difficulties in any coding project, however these

were some that were particularly difficult or stood out in some way, and some which still persist.

The Stuck Mouse

This was the bug where the player Character, the mouse, could not move because it was

seeing itself as an obstacle to where it could walk. This was a result of a previous bug fix where

the Enemy characters could walk through the player Character due to not perceiving it as an

obstacle. This was eventually solved by reformatting the ​Walk​ function so it could check whether

the object it was trying to walk through was itself.

There was also a similar bug where, if the player Character was facing the wrong

direction, its attack could hit itself and burn it to death, which was also solved by making it

check whether the object it was attack was itself.

The Wall Approach Problem

This was a problem where any of the Characters did not always fully approach the wall

while walking due to the Character only being able to move its full distance or not at all. This

was solved by creating the function ​IncrementalWalk​, which calls itself recursively until it’s

certain there’s no space to move into between the Character and the other object.

30

Beta testing

It was a goal to have some people beta test this game and fill out a survey based on their

experiences. However, sending the game to others proved challenging in the time left, and when

I did send it to some people. They proved to be unable to run the game on their computers due to

various factors, such as what software they had on their computer, and what kind of computer

they had. For example, one person had one version of Python downloaded that was not

compatible with my version of Python, Also, Mac computers were particularly troublesome

because of their differing file system. Thus I was unable to have the game beta tested as of this

report. Some more research into creating an executable file of the game will likely make it

possible in the future.

Diagonal Rotation

One problem that still remains in the code is the problem where rotating an image

diagonally makes said image larger, and thus slightly changes how the image interacts with

obstacles, sometimes causing the images to overlap. It is not a major issue, however it is still an

issue I will continue to investigate. It wouldn’t be as much of a problem if Pygame had an image

cropping function, however it does not so it requires a bit of a work around, and will most likely

involve rewriting how the ​Place ​function works.

