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Abstract 

 

The use of self-driving cars can benefit the society in many ways, such as reducing traffic 

accidents and enabling disabled people to travel independently. The potential of reducing traffic 

accidents can be considered most important, since in 2017, mistakes made by human drivers 

were the cause of over 90% of the traffic accidents, leading to 40,100 people’s deaths in the 

United States. If human drivers were replaced by autonomous systems, the number of traffic 

accidents would decrease. Although the concept of self-driving car was raised since at least the 

1920s, a commonly accepted development of self-driving car has not yet appeared. A significant 

challenge is the creation of a system that can accurately detect the environment around itself and 

then form the right driving command. Recent progress in deep learning suggested that 

convolutional neural networks are a form of machine learning that can be trained to extract 

features and use those features to control a car. This project focuses on extending the network 

model in the paper published by NVIDA in 2016 [1]. The aim of the project is to evaluate how 

well a convolutional neural network could perform on a simple, simulated roadway with road 

varying and missing road edges. 
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1 Introduction 

 

A self-driving car, also known as an autonomous car, is a vehicle that is able to sense 

the environment around it and move from the start point to the destination with no 

human input. Since the most significant difference between a self-driving car and a 

normal car is that a self-driving car does not need human while driving, it could 

decrease the number of traffic accidents caused by human drivers’ mistakes. Human 

drivers’ mistakes can be generally split into two groups. One of these is active 

mistakes, such as when a driver is trying to drink coffee while driving; he may be not 

fully paying attention to driving and made a careless decision leading to a traffic 

accident. The other one is passive mistakes: for example, something not expected 

suddenly happens in front of a car and the driver does not have enough time to make 

the optimal decision to deal with the situation and thus makes a mistake. With self-

driving cars, the active mistakes may be avoided completely, since the only thing the 

cars focus on is driving safely. Passive mistakes may be reduced by creating systems 

that respond faster and more reliably than humans. 

The concept of self-driving car was raised since at least the 1920s, before 

computers became widely used. Therefore, people built self-driving cars with 

infrastructure navigating the cars. One of those developments was the RCA’s 

automatic electric highway tested in Nebraska in 1957 (Figure 1) [2]. A series of RCA 
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experimental detector circuits buried in the pavement and the lights along the edge of 

the road were used to send signals to the RCA special radio receivers and visual 

devices equipped in the test car. These devices then transformed those signals to 

driving commends and guide the car. The test showed ultimate possibilities of the 

automatic electric highway; however, the huge cost of building that highway limited 

its application for public use. Also, the experiment did not include anything other than 

cars (e.g. traffic lights) and it was proven that the system was stable only when the car 

was driving in low speed. This system was not intelligent enough to drive the car in a 

real-world situation. 

 

Figure 1: RCA’s automatic electronic highway experiment 

 By the 1960s, artificial intelligence researchers began dreaming of cars smart 

enough to navigate on their own. The goal essentially changed to reverse-engineer the 

relevant systems in a moving animal: sensing, processing and reacting [3]. Then, after 
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the digital revolution, the digital computer became able to make this goal come true. 

The first truly automated car in the world was developed by Japan’s Tsukuba 

Mechanical Engineering Laboratory in 1977 [4] (Figure 2). This vehicle carried two 

cameras and used analog computer technology for signal processing. It tracked white 

street markings on a dedicated circuit and could drive up to 20 miles per hour. This 

development marked the beginning of the new era of achieving self-driving cars. 

Since then, many automobile giants started taking efforts to build autonomous 

vehicles. 

 

Figure 2: Tsukuba Mechanical Engineering Laboratory’s self-driving car. 

 In 2004, the Defense Advanced Research Projects Agency (DARPA) held the 

DARPA Grand Challenge 2004 to accelerate the development of autonomous vehicle 

technologies that can be applied to military requirements. The goal was to build an 

autonomous car to run a 142-mile course across the Mojave Desert from Barstow, 

California to Primm, Nevada. No team was able to complete the difficult task. Then, 
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in 2005, when the same challenge was raised again, the Stanford Racing Team won 

the competition with 5 out of 195 teams completed the task. In 2007, the DARPA 

Grand Challenge shifted its focus to urban city traffic. In all 11 vehicles, 6 of them 

succeeded in finishing a 60-mile urban course in moving traffic in less than 6 hours 

[5][6]. The most significant advance was in the ability of a car to detect useful 

features around it. Most of the competitors participating the DARPA Challenge went 

through this part with different ways of implementing their own feature extractors. 

 Convolutional neural networks (CNN) are a wise solution to the challenge of 

computer vision due to its ability to find out the most important features from the 

training data through feature extraction. Thus, it should also help with building self-

driving cars. CNN was first used in building self-driving cars by Pomerleaus 

Autonomous Land Vehicles in Neural Networks (ALVINN) in 1989. A car steered by 

CNN ran at a speed of 19 miles per hour. Since then, more and more people started to 

use CNN in building self-driving cars. Today, companies like Google, Tesla and 

NVIDA are all using deep neural network for environment detection as a part of their 

autonomous vehicles. This project focuses on extending the network model in the 

paper published by NVIDA in 2016[1]. This project explores the possibility of using a 

single output convolutional neural network to drive a car on the road with missing 

road edges in a simulated environment. 
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1.1 Purpose 

This project focuses on developing a self-driving car with convolutional neural 

networks. The network model used in this project is inspired from NVIDA’s 

published paper [1]. There are two goals in this project: 

1. Compare the performance of a convolutional neural network 

driving the car on road with road edges and the performance of a 

proportional-integral-derivative (PID) controller driving the car 

on road with road edges. 

2. Compare the performance of a convolutional neural network 

driving on a simulated road with road edges and the performance 

of the same convolutional neural network driving on a simulated 

road with partly missing road edges. 

The first comparison aims to find out if CNN is a better solution to driving a car 

on a simple road than PID controller. A proportional-integral-derivative controller is a 

control method used in industrial control. Since the PID controller does not learn 

anything from examples, using a PID controller to control the car can be seen as a 

method that predates machine learning. As opposed to PID controller, a CNN could 

learn from training examples to form better solutions to tasks. Therefore, using a well-

trained CNN to drive the car may give a better performance than using a PID 

controller. 
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 The second goal of this project explores the capacity of CNN encountering a 

real-world situation that the road edges suddenly disappear while driving. Since road 

edges could be important features for a CNN to form accurate driving commands, 

missing road edges may affect the performance of CNN.  

1.2 Scope 

This whole project is simulated in Unity, not in the real world, therefore, there are 

limitations: 

1. The simulated car is only able to predict the steering angle. It should not 

be considered fully autonomous. 

2. The physics of driving the car in this project cannot fully simulate driving 

a car in the real world. 

3. Road variables other than turning and missing road edges are not 

simulated in this project. 
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2 Background 

 

This chapter includes the information needed for this project. Convolutional neural 

network, proportional-integral-derivative control and Unity simulator are introduced 

here. 

2.1 Neural Network 

A neural network is a computational learning system that transforms input data to 

desired output through a network of functions [7]. The concept of neural network was 

first inspired by biological neural networks. A neural network contains a collection of 

connections of nodes called artificial neurons. Through training, a neural network is 

able to form outputs to finish a given task. Inputs become desired outputs by getting 

calculated in neurons while passing through connected neurons. Figure 3 is an 

example of a neural network consist of 3 input units, 2 output units and a hidden 

layer. 
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Figure 3: A neural network with 3 input units, 2 output units and a hidden layer 

2.1.1 Neuron 

Neurons are elementary units in neural networks. Each neuron has its own weight 

which is initialized with a random number and then changed during training process. 

After training, when a neuron receives inputs, it first sums up the weighted inputs and 

then adds a bias to the sum. Figure 4 shows the calculation in a neuron with three 

inputs. 

https://upload.wikimedia.org/wikipedia/commons/4/46/Colored_neural_network.svg
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Figure 4: Calculation in a neuron with three inputs is shown here. In this figure, x are 

the inputs, w are the weights for each value, b represents the bias term. The sum of 

weighted inputs and bias is calculated and transformed by the function to the output. 

2.1.2 Activation Function 

Activation function determines if a neuron should fire or not based on the summed 

value of weighted inputs and bias. The activation function used in this project is 

rectified linear unit function. The rectified linear unit function only allows a neuron to 

send its output to other neurons connected to that neuron if the output is greater than 

0. Otherwise, 0 is sent to the connected neurons. 

 

2.1.3 Training 

Once a neural network has been structured for a particular application, that network 

needs to be trained in order to output the desired output values. During the training 

process, example inputs are provided to the network. The network generates the 
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output with its current weight and then calculates the error between the output value 

and the desired output value in the training example. Then, propagating in the reverse 

direction from output layer to input layer, each weight is changed due to its portion 

contribution to the error. This process occurs over and over as the weights are 

changed to reduce the error. In this project, the function for calculating error is mean 

squared error (MSE) formula. It is chosen since its differentiable and also with the 

square sign, positive errors and negative errors will not cancel out each other. In this 

formula shown below, n is the number of training examples, f(X) is the actual output 

value and Y is the desired output value.  

 

2.1.4 Overfitting 

When the error value reaches its minimum, the training process stops. However, a 

neural network with smallest error does not guarantee the best performance when 

testing since it may overfit the data. An overfitted model is a model that contains 

more parameters than can be justified by the data. In other words, this model more 

perfectly fits the training data but gives a poor performance on testing data 

2.1.5 Early Stopping 

One of the ways to prevent overfitting is to take a part of training examples out to be a 

validation set. As the validation data is independent of the training data, a network’s 

performance on the validation data is a good measure of training process [8]. During 

https://en.wikipedia.org/wiki/Statistical_model
https://en.wikipedia.org/wiki/Parameter
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the training process, when the error value for validation set stops decreasing, stopping 

the training process produces a model that better fits the testing data – a more general 

model. In Figure 5, t represents the time when the training process should be stopped. 

 

Figure 5: The value t indicates the time to stop the training process [8]. 

2.2 Convolutional Neural Networks (CNN) 

Convolutional neural networks(CNN) are a type of neural network that has proven 

very effective in areas such as image recognition and classification. CNN was first 

introduced by Lecun in 1998 to classify hand written digits in a 32x32 image [9]. The 

advantage of using a CNN to deal with image processing is that a CNN can vastly 

reduce the number of parameters in the network by applying filters. In other words, a 

CNN learns useful features in an image faster than a usual neural network. Since in 

this project the only input to the network model is an image, using a CNN is an 

effective solution. 

 

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjEj5r3y_XhAhVhRN8KHd_bBzUQjRx6BAgBEAU&url=http%3A%2F%2Fcnl.salk.edu%2F~schraudo%2Fteach%2FNNcourse%2Foverfitting.html&psig=AOvVaw3jHHPQdz20RRYNH-IjFTl7&ust=1556637243419815
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2.2.1 Filters 

The word convolutional in convolutional neural network describes how the input 

image of the network is modified by a filter. The filter slices left to right across the 

image from top to bottom to form a convolved output as shown in Figure 6. Figure 6 

shows how a 2x2 filter modifies a 5x5 input image and forms the convolved output. In 

the formula given, c is the filter’s output, n stands number of rows, m stands for 

number of columns, I represents the value of the input image and F is filter’s value. 

The sums of the products of each pair of image value and filter value together 

generate the convolved output. 

 

Figure 6: A filter modifying an input image to a convolved output by calculating the 

sum of the products of the corresponding values in the input image and the filter. 
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2.3 Proportional–Integral–Derivative (PID) Controller 

A proportional–integral–derivative controller is a control loop feedback mechanism 

widely used in industrial control systems and a variety of other applications requiring 

continuously modulated control. A PID controller continuously calculates an error 

value as the difference between a desired setpoint (SP) and a measured process 

variable (PV) and applies a correction based on proportional, integral, and derivative 

terms (denoted P, I, and D respectively) which give the controller its name. The 

difference between the desired output and actual output is called cross-track error 

(CTE). In this project, Kp and Kd were set to 10, and Ki was set to 1. 

 

Figure 7: The PID controller takes an input and produce its output  

r(t) = SP  e(t) = CTE  u(t) = change  y(t) = output K = gain factor 

2.3.1 Proportional Control 

P as the component that is proportional to the CTE, which is SP − PV = e(t). In this 

project, it has a direct impact on the car’s path because it makes the car “correct” in 

https://en.wikipedia.org/wiki/Setpoint_%28control_system%29
https://en.wikipedia.org/wiki/Proportional_control
https://en.wikipedia.org/wiki/Integral
https://en.wikipedia.org/wiki/Derivative
https://upload.wikimedia.org/wikipedia/commons/4/43/PID_en.svg
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proportion to the error in the opposite direction. For example, if the error value is 

large and positive, by applying gain factor K, the control output will also be 

proportionately large and positive. There is a natural overturning effect that will cause 

the car to swing left and right eventually driving the car off-track while only using 

proportional control. Larger values of P will cause the car to oscillate faster. 

2.3.2 Integral Control 

A way to cancel the overturning is to add integral control. Term I considers the past 

value of the CTE and it is measured by the integral of the CTE over time. The reason 

we need it is that there is likely residual error after applying the proportional control. 

Error in proportional control ends up causing a bias over a period of time that 

prevents the car stay in the center. This integral term seeks to eliminate this residual 

error by adding a historic cumulative value of the error. 

2.3.3 Derivative Control 

Term D is the best estimate of the next round’s error in the future, based on its current 

rate of change. When the car has turned enough to reduce the cross-track error, D will 

inform the controller that the error has already declined. As the error becomes smaller 

over time, the counter steering won’t be as sharp helping the converge the movement 

to the target trajectory. 
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2.4 Unity 

Unity is a cross-platform real-time engine developed by Unity Technologies. It was 

first announced and released in June 2005 at Apple Inc.'s Worldwide Developers 

Conference as an OS X-exclusive game engine [10]. The primary programming 

language used in this engine is C#. Unity can be used to create three-dimensional 

games as well as simulations for the real world. This project uses the Unity engine in 

order to obviate the time and money cost by implementing roads, cars and 

experiments in the real world. 

2.5 Keras 

The convolutional neural network used in this project is implemented with Keras. 

Keras is an open-source neural-network library written in Python. It was developed as 

a part of the research effort of project ONEIROS (Open-ended Neuro-Electronic 

Intelligent Robot Operating System) [10]. Implemented with many commonly used 

elements of building neural networks such as layers and activation functions, Keras 

was designed to enable fast experimentation with neural networks. In addition to 

standard neural networks, Keras has support for convolutional and recurrent neural 

networks.  

 

 

https://en.wikipedia.org/wiki/Cross-platform
https://en.wikipedia.org/wiki/Unity_Technologies
https://en.wikipedia.org/wiki/Apple_Inc.
https://en.wikipedia.org/wiki/Apple_Worldwide_Developers_Conference
https://en.wikipedia.org/wiki/Apple_Worldwide_Developers_Conference
https://en.wikipedia.org/wiki/MacOS
https://en.wikipedia.org/wiki/Game_engine
https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Convolutional_neural_networks
https://en.wikipedia.org/wiki/Recurrent_neural_networks
https://en.wikipedia.org/wiki/Recurrent_neural_networks
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3 Methods 

 

This chapter includes how the neural network is trained. 

3.1 Network structure 

Figure 8 shows the structure of the neural network used in this project. From the 

bottom to the top, there are a normalization layer, 5 convolutional layers and 3 fully 

connected layers. Normalization layer is used to accelerate GPU processing. The 

convolutional layers perform feature extraction, which chooses useful features. In the 

first 3 convolutional layers, the filter size was set to 5x5 with a 2x2 stride. The forth 

convolutional layer has a filter size was set to 3x3 with a 2x2 stride. In the last 

convolutional layer, the filter size was still 3x3 but the stride was changed to 1x1. The 

fully connected layers are designed to function as a controller for steering. They give 

out the output control value. The input for this model is the pictures taken of the road. 

The output of this single output model can be any number between -1 and 1 and used 

as the steering command for the self-driving car. 
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Figure 8: Network model used in this project 

 

3.2 Road 

The road simulated in this project is a two-way road with two white line on its 

sides representing the load edges and a yellow line splitting the two lanes. Each 

lane is 3.5m in width. The car drives on the right lane, following the traffic rules. 

The road is composed of 2-meter segments and each segment is randomized to 

have an angle in the range from 90 to -90. However, the turnings are limited by 
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minimum turning radius. This road’s minimum turning radius is set to 6m, 

according to the road construction standard used in China. When the CNN is tested 

on road with missing road edges, each road edge on the side of the road randomly 

disappears with a probability of 0.05. The length of the missing road edges is also 

randomized between 2m to 10m with a standard normal distribution. There is no 

road variation such as signs and other cars simulated in this project. The only two 

types of variation involved in this project are turning and accidentally missing road 

edges. Figure 9 is an above view of a part of the road. 

 

Figure 9: An aerial view of the road. The upper and lower lines are the road edges in 

white color. The line in the middle is a yellow line. 

3.3 Vehicle 

The size of the vehicle simulated in this project has a length of 3m and a width of 

1.8m, which matches the size of a small car. The vehicle is designed as a two-wheel 

drive car with only two front wheels that can turn to simulate the most common car 

existing in real world. A camera is located in the front of the vehicle. During data 

collecting processes, the camera keeps taking pictures with the speed of 30fps. The 
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images are stored in the size of 160x120 pixels. During testing, the camera also 

continuously takes pictures at 30fps for CNN to navigate the car. The speed of the car 

was set to 18 miles per hour. Figure 10 shows a sample image taken by the camera 

while the car is driving on the road. 

 

Figure 10: Sample images taken by the camera while the car is driving on the road. 

3.4 Data Collecting and Training 

In this project, all data were collected in Unity simulator. The car was driven by PID 

controller during data collecting process. A total of 100000 images were collected 

while the car was driving on the road with complete road edges. Then, 50000 images 

were collected while the car was driving on the road with incomplete road edges. 

When the loss of validation data continuously increases for 5 epochs, the training 

process stopped. For each training session, the model took about 4 hours to train. The 

model was given 10 training sessions beginning from random initial conditions and 

the model with least error value was chosen to be tested.  

3.5 Steering Angle 

In a real-world approach, driving a car with less unnecessary steering makes it better 

and safer. Therefore, steering angles are important data for judging whether a driving 

method is good or not. When evaluating the steering angles of the performances, both 



20 

 

the PID controller and the CNN model were tested on different sets of data other than 

the training dataset and the validation dataset. The variances of steering angles were 

calculated in order to compare the smoothness of driving by the following formula: 

 

 In this formula, s² stands for variance, M is the mean of the steering angles, x 

is the actual steering angle and n is the number of steering angles. 

3.6 Deviation Distance 

With steering angles, only the smoothness of driving can be evaluated but the ability 

of a method to keep the car on the center line is not known yet. Therefore, evaluating 

the deviation distance from the car to the center line is also necessary to evaluate a 

driving method. The means of deviation distances are used here to compare the 

performances of different driving methods. 
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4 Results and Analysis 

 

After the network model was trained, it was tested on 5 different tracks. This chapter 

includes the results and data analysis. 

4.1 Chosen Model 

In all 10 trained models, the model with least error value, 0.22, was chosen for testing. 

Error values fell in between 0.34 and 0.22. The average error value for 10 models was 

0.279. Table 1 shows the error values of each model. Figure 11 demonstrates the 

distribution of the error values. 

Model number MSE 

1 0.31 

2 0.27 

3 0.29 

4 0.34 

5 0.28 

6 0.23 

7 0.22 

8 0.26 

9 0.30 

10 0.29 

Table 1: Error value for models 
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Figure 11: Box plot of the error values. The maximum was 0.34 and the minimum 

was 0.22. The median was 0.285. 

4.2 Testing Track 

5 different Tracks were generated in Unity engine for testing the network model. They 

are each 2km in length. Figure 12 shows all the tracks. Tracks 1 to 5 are listed in the 

order from top to bottom, left to right. The red point at one end of each track is the 

car’s start point. 
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Figure 12: Test tracks 1 to 5. Each track is 2km in length. In all 5 tracks, there are 

approximately 3.7km nearly straight road; the remaining 6.3km are all turnings. 

4.3 Track Completeness 

Successfully driving the car through the test tracks is the most obvious indication that 

a driving method is able to handle that track.  

4.3.1 PID Controller’s performance 

With the help of the low speed limitation, the PID controller was guaranteed to have 

enough time to drive the car towards the further side before driving the car off the 

road. Also, since the PID controller knew the distance between the car and the center 

of the lane and did not form decisions based on road edges, missing road edges did 

not affect its performance.  
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4.3.2 CNN’s Performance on Road with Edges 

The CNN model completed 8.41km out of 10km in total while driving on the road 

with edges. It was able to navigate the car through track 1, 2, 4 and 5 but failed to 

complete track 3. The car went off the road when the road was crossing itself [Figure 

13]. This failure showed that the CNN model could possibly get confused by 

crossings. Training the model with more road crossing examples may help eliminate 

this kind of failure. 

 

Figure 13: The place the car went off the road 

4.3.3 CNN’s Performance on Road with Missing Edges 

While driving the car on road with missing edges, the model completed 5.29km out of 

10km with only completing track 2 and 5. In all other 3 tracks, the car completed part 

of the road with straight line and some turnings and then went off when the road 

edges disappeared at relatively sharp turnings. Also, knowing that track 2 and 5 had 

the smallest ratios of turnings among all 5 tracks, a conclusion maybe drawn that the 

CNN model could not handle all cases of missing road edges. Figure 14 points out the 

places where the car went off the road. 
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Figure 14: The place the car went off the road 

4.4 Steering Angle 

The variances of steering angles of the three driving methods were compared here to 

show which method of steering drove the car more stably. Table 2 shows the 

variances of each performance. Data for track 3 is not shown here since only PID 

controller finished the road. 

Track 

number 

PID 

Controller 

CNN Driving 

with edges 

CNN Driving with 

missing edges 

1 0.41 0.33 Incomplete 

2 0.36 0.35 0.36 

4 0.39 0.32 Incomplete 

5 0.33 0.29 0.34 

Table 2: The variances of steering commands 
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 ANOVA test was used here to compare the performances for each track. Since 

the CNN model failed to drive the car on track 2 and 5 with missing edges, an 

ANOVA test for track 1, 2, 4 and 5 between the PID controller and the model driving 

with edges and another test for only track 2 and 5 among all three methods were 

performed here. Through the tests, the F statistics for only track 2 and 5 were 2.81 and 

2.74, greater than the critical value of 2.60 at p value of 0.05, and the F statistics for 

track 1, 2, 4 and 5 were 4.12, 3.32, 3.86 and 3.19, also greater than the critical value 

of 3.00, leading to the rejections to null hypothesis of having not significant 

differences among variances. Table 3 shows the F statistics for each test. 

Track 

number 

F statistics for the test between the PID 

controller and the CNN model 

Critical value: 3.00 

F statistics for the test among all 

three different driving methods 

Critical value: 2.60 

1 4.12 None 

2 3.32 2.81 

4 3.86 None 

5 3.19 2.74 

Table 3: F statistics for each test 

After ANOVA calculations, from the data in Table 2, it could be concluded 

that the CNN model driving the car on roads with edges performed better than the 

PID Controller. The reason was that the PID controller never truly learned to predict a 

steering angle. Instead, it was keeping fixing its current error and making new error at 

the same time. Also, the CNN model only completed 2 of the tracks, its performances 

did not outperform PID controllers’ due to the loss of edges. This result showed that 
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while the CNN model had the ability of handling roads with missing roads edges, the 

edges were still important features for the network to correctly navigate the car. 

4.5 Deviation Distance 

The average deviation distances were calculated here to compare the performances of 

driving methods. Table 4 shows the average deviation distances for each method. 

Data for track 3 are not shown since the CNN model failed to finish track 3 both with 

edges and without edges. 

Track 

Number 

PID 

Controller 

CNN Driving 

with edges 

CNN Driving with 

missing edges 

1 0.23 0.17 None 

2 0.18 0.15 0.20 

4 0.20 0.16 None 

5 0.17 0.15 0.17 

Table 4: Average deviation distance for each track 

 Data in Table 4 shows that the CNN model driving with edges had smaller 

average deviation distances than PID controller driving the car for all four tracks. The 

reason is basically the same with the one explained for steering angles. Again, the 

CNN model’s performances on road with missing edges were influenced by road 

edges’ disappearances and thus did not outperform PID controller’s performances. 
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5 Conclusion 

 

This project shows that a convolutional neural network model outperforms the PID 

controller when driving a car on road with edges. Also, the CNN network proved its 

ability and potential to driving on road with missing road edges with completing two 

tracks. After training the model, the CNN model was able to drive on the road with 

edges with an average deviation of 0.14m, which was better than the PID controller’s 

average deviation of 0.19m. While driving on the road with missing edges, the model 

was able keep an average distance of 0.18m, with an average successfully driving 

distance of 1.76km before it navigates the car off the road. 

 By testing the model’s performances on road with edges, it was shown that the 

model was not trained enough to encounter with road crossing. Training the network 

model with more road crossing examples in the future may help to improve the model 

handling this kind of problem. 

Interestingly, for track 1,3, and 4 with missing road edges, the model drove the 

car off the road when it was facing similar situations: the right edges disappeared at a 

left turning. After checking the images taken by the camera on the car right before the 

car went off the road, it was shown the cause of these failures was that the camera lost 

more road edges in its sight while the road is turning left. Knowing that the camera 

was always facing the same direction with the car, it first captured less sight of the left 

edge when the road is turning left because of the difference of the directions between 

the road and the car. Then, if the left edge disappeared at this time, the neural network 
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suddenly lost too many features to form right driving commends. Future work to solve 

this problem may include giving the camera a wider sight and adding more left 

turning training examples to let the model learn that the yellow line in the middle of 

the road which never disappears could help to navigate the car in this case. 
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