
Bard College Bard College

Bard Digital Commons Bard Digital Commons

Senior Projects Spring 2019 Bard Undergraduate Senior Projects

Spring 2019

Self-Driving Cars: Exploring the Potential of Using Convolutional Self-Driving Cars: Exploring the Potential of Using Convolutional

Neural Network to Overcome Road Variation Neural Network to Overcome Road Variation

Shida Wang
Bard College

Follow this and additional works at: https://digitalcommons.bard.edu/senproj_s2019

 Part of the Artificial Intelligence and Robotics Commons

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Recommended Citation Recommended Citation
Wang, Shida, "Self-Driving Cars: Exploring the Potential of Using Convolutional Neural Network to
Overcome Road Variation" (2019). Senior Projects Spring 2019. 136.
https://digitalcommons.bard.edu/senproj_s2019/136

This Open Access work is protected by copyright and/or
related rights. It has been provided to you by Bard
College's Stevenson Library with permission from the
rights-holder(s). You are free to use this work in any way
that is permitted by the copyright and related rights. For
other uses you need to obtain permission from the rights-
holder(s) directly, unless additional rights are indicated by
a Creative Commons license in the record and/or on the
work itself. For more information, please contact
digitalcommons@bard.edu.

http://www.bard.edu/
http://www.bard.edu/
https://digitalcommons.bard.edu/
https://digitalcommons.bard.edu/senproj_s2019
https://digitalcommons.bard.edu/undergrad
https://digitalcommons.bard.edu/senproj_s2019?utm_source=digitalcommons.bard.edu%2Fsenproj_s2019%2F136&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=digitalcommons.bard.edu%2Fsenproj_s2019%2F136&utm_medium=PDF&utm_campaign=PDFCoverPages
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://digitalcommons.bard.edu/senproj_s2019/136?utm_source=digitalcommons.bard.edu%2Fsenproj_s2019%2F136&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@bard.edu
http://www.bard.edu/
http://www.bard.edu/

 Self-Driving Cars: Exploring the Potential of Using Convolutional Neural Network to

Overcome Road Variation

 Senior Project Submitted to

 The Division of Science, Mathematics, and Computing

 of Bard College

 by

 Shida Wang

 Annandale-on-Hudson, New York

 May 2019

 Acknowledgements

Thank you to Professor Sven Anderson for advising me through the whole year. Also thank you

to Vivian Han for staying with me through highs and lows and helping me with writing. And to

my close friend in these four years, Xishixin Song for getting me through this semester.

Table of Contents

1. Introduction ..1

1.1 Purpose ...5

1.2 Scope ..6

2. Background ...7

2.1 Neural Network ..7

2.1.1 Neuron ...8

2.1.2 Activation Function ...9

2.1.3 Training ...9

2.1.4 Overfitting ...10

2.1.5 Early Stopping ...10

2.2 Convolutional Neural Network ..11

2.2.1 Filters ...12

2.3 Proportional-Integral-Derivative Controller ...13

2.3.1 Proportional Control ..13

2.3.2 Integral Control..14

2.3.3 Derivative Control ...14

2.4 Unity ...15

2.5 Keras ...15

3. Methods ..16

3.1 Network Structure...16

3.2 Road ..17

3.3 Vehicle ..18

3.4 Data Collecting and Training ...19

3.5 Steering Angle ..19

3.6 Deviation Distance ...20

4. Results and Analysis ...21

4.1 Chosen Model ...21

4.2 Testing Track ..22

4.3 Track Completeness ...23

4.3.1 PID Controller’s Performance ...23

4.3.2 CNN’s Performance on Road with Edges ...24

4.3.3 CNN’s Performance on Road with Missing Edges ...24

4.4 Steering Angle ..25

4.5 Deviation Distance ...27

5. Conclusion ...28

Abstract

The use of self-driving cars can benefit the society in many ways, such as reducing traffic

accidents and enabling disabled people to travel independently. The potential of reducing traffic

accidents can be considered most important, since in 2017, mistakes made by human drivers

were the cause of over 90% of the traffic accidents, leading to 40,100 people’s deaths in the

United States. If human drivers were replaced by autonomous systems, the number of traffic

accidents would decrease. Although the concept of self-driving car was raised since at least the

1920s, a commonly accepted development of self-driving car has not yet appeared. A significant

challenge is the creation of a system that can accurately detect the environment around itself and

then form the right driving command. Recent progress in deep learning suggested that

convolutional neural networks are a form of machine learning that can be trained to extract

features and use those features to control a car. This project focuses on extending the network

model in the paper published by NVIDA in 2016 [1]. The aim of the project is to evaluate how

well a convolutional neural network could perform on a simple, simulated roadway with road

varying and missing road edges.

1

1 Introduction

A self-driving car, also known as an autonomous car, is a vehicle that is able to sense

the environment around it and move from the start point to the destination with no

human input. Since the most significant difference between a self-driving car and a

normal car is that a self-driving car does not need human while driving, it could

decrease the number of traffic accidents caused by human drivers’ mistakes. Human

drivers’ mistakes can be generally split into two groups. One of these is active

mistakes, such as when a driver is trying to drink coffee while driving; he may be not

fully paying attention to driving and made a careless decision leading to a traffic

accident. The other one is passive mistakes: for example, something not expected

suddenly happens in front of a car and the driver does not have enough time to make

the optimal decision to deal with the situation and thus makes a mistake. With self-

driving cars, the active mistakes may be avoided completely, since the only thing the

cars focus on is driving safely. Passive mistakes may be reduced by creating systems

that respond faster and more reliably than humans.

The concept of self-driving car was raised since at least the 1920s, before

computers became widely used. Therefore, people built self-driving cars with

infrastructure navigating the cars. One of those developments was the RCA’s

automatic electric highway tested in Nebraska in 1957 (Figure 1) [2]. A series of RCA

2

experimental detector circuits buried in the pavement and the lights along the edge of

the road were used to send signals to the RCA special radio receivers and visual

devices equipped in the test car. These devices then transformed those signals to

driving commends and guide the car. The test showed ultimate possibilities of the

automatic electric highway; however, the huge cost of building that highway limited

its application for public use. Also, the experiment did not include anything other than

cars (e.g. traffic lights) and it was proven that the system was stable only when the car

was driving in low speed. This system was not intelligent enough to drive the car in a

real-world situation.

Figure 1: RCA’s automatic electronic highway experiment

 By the 1960s, artificial intelligence researchers began dreaming of cars smart

enough to navigate on their own. The goal essentially changed to reverse-engineer the

relevant systems in a moving animal: sensing, processing and reacting [3]. Then, after

3

the digital revolution, the digital computer became able to make this goal come true.

The first truly automated car in the world was developed by Japan’s Tsukuba

Mechanical Engineering Laboratory in 1977 [4] (Figure 2). This vehicle carried two

cameras and used analog computer technology for signal processing. It tracked white

street markings on a dedicated circuit and could drive up to 20 miles per hour. This

development marked the beginning of the new era of achieving self-driving cars.

Since then, many automobile giants started taking efforts to build autonomous

vehicles.

Figure 2: Tsukuba Mechanical Engineering Laboratory’s self-driving car.

 In 2004, the Defense Advanced Research Projects Agency (DARPA) held the

DARPA Grand Challenge 2004 to accelerate the development of autonomous vehicle

technologies that can be applied to military requirements. The goal was to build an

autonomous car to run a 142-mile course across the Mojave Desert from Barstow,

California to Primm, Nevada. No team was able to complete the difficult task. Then,

4

in 2005, when the same challenge was raised again, the Stanford Racing Team won

the competition with 5 out of 195 teams completed the task. In 2007, the DARPA

Grand Challenge shifted its focus to urban city traffic. In all 11 vehicles, 6 of them

succeeded in finishing a 60-mile urban course in moving traffic in less than 6 hours

[5][6]. The most significant advance was in the ability of a car to detect useful

features around it. Most of the competitors participating the DARPA Challenge went

through this part with different ways of implementing their own feature extractors.

 Convolutional neural networks (CNN) are a wise solution to the challenge of

computer vision due to its ability to find out the most important features from the

training data through feature extraction. Thus, it should also help with building self-

driving cars. CNN was first used in building self-driving cars by Pomerleaus

Autonomous Land Vehicles in Neural Networks (ALVINN) in 1989. A car steered by

CNN ran at a speed of 19 miles per hour. Since then, more and more people started to

use CNN in building self-driving cars. Today, companies like Google, Tesla and

NVIDA are all using deep neural network for environment detection as a part of their

autonomous vehicles. This project focuses on extending the network model in the

paper published by NVIDA in 2016[1]. This project explores the possibility of using a

single output convolutional neural network to drive a car on the road with missing

road edges in a simulated environment.

5

1.1 Purpose

This project focuses on developing a self-driving car with convolutional neural

networks. The network model used in this project is inspired from NVIDA’s

published paper [1]. There are two goals in this project:

1. Compare the performance of a convolutional neural network

driving the car on road with road edges and the performance of a

proportional-integral-derivative (PID) controller driving the car

on road with road edges.

2. Compare the performance of a convolutional neural network

driving on a simulated road with road edges and the performance

of the same convolutional neural network driving on a simulated

road with partly missing road edges.

The first comparison aims to find out if CNN is a better solution to driving a car

on a simple road than PID controller. A proportional-integral-derivative controller is a

control method used in industrial control. Since the PID controller does not learn

anything from examples, using a PID controller to control the car can be seen as a

method that predates machine learning. As opposed to PID controller, a CNN could

learn from training examples to form better solutions to tasks. Therefore, using a well-

trained CNN to drive the car may give a better performance than using a PID

controller.

6

 The second goal of this project explores the capacity of CNN encountering a

real-world situation that the road edges suddenly disappear while driving. Since road

edges could be important features for a CNN to form accurate driving commands,

missing road edges may affect the performance of CNN.

1.2 Scope

This whole project is simulated in Unity, not in the real world, therefore, there are

limitations:

1. The simulated car is only able to predict the steering angle. It should not

be considered fully autonomous.

2. The physics of driving the car in this project cannot fully simulate driving

a car in the real world.

3. Road variables other than turning and missing road edges are not

simulated in this project.

7

2 Background

This chapter includes the information needed for this project. Convolutional neural

network, proportional-integral-derivative control and Unity simulator are introduced

here.

2.1 Neural Network

A neural network is a computational learning system that transforms input data to

desired output through a network of functions [7]. The concept of neural network was

first inspired by biological neural networks. A neural network contains a collection of

connections of nodes called artificial neurons. Through training, a neural network is

able to form outputs to finish a given task. Inputs become desired outputs by getting

calculated in neurons while passing through connected neurons. Figure 3 is an

example of a neural network consist of 3 input units, 2 output units and a hidden

layer.

8

Figure 3: A neural network with 3 input units, 2 output units and a hidden layer

2.1.1 Neuron

Neurons are elementary units in neural networks. Each neuron has its own weight

which is initialized with a random number and then changed during training process.

After training, when a neuron receives inputs, it first sums up the weighted inputs and

then adds a bias to the sum. Figure 4 shows the calculation in a neuron with three

inputs.

https://upload.wikimedia.org/wikipedia/commons/4/46/Colored_neural_network.svg

9

Figure 4: Calculation in a neuron with three inputs is shown here. In this figure, x are

the inputs, w are the weights for each value, b represents the bias term. The sum of

weighted inputs and bias is calculated and transformed by the function to the output.

2.1.2 Activation Function

Activation function determines if a neuron should fire or not based on the summed

value of weighted inputs and bias. The activation function used in this project is

rectified linear unit function. The rectified linear unit function only allows a neuron to

send its output to other neurons connected to that neuron if the output is greater than

0. Otherwise, 0 is sent to the connected neurons.

2.1.3 Training

Once a neural network has been structured for a particular application, that network

needs to be trained in order to output the desired output values. During the training

process, example inputs are provided to the network. The network generates the

10

output with its current weight and then calculates the error between the output value

and the desired output value in the training example. Then, propagating in the reverse

direction from output layer to input layer, each weight is changed due to its portion

contribution to the error. This process occurs over and over as the weights are

changed to reduce the error. In this project, the function for calculating error is mean

squared error (MSE) formula. It is chosen since its differentiable and also with the

square sign, positive errors and negative errors will not cancel out each other. In this

formula shown below, n is the number of training examples, f(X) is the actual output

value and Y is the desired output value.

2.1.4 Overfitting

When the error value reaches its minimum, the training process stops. However, a

neural network with smallest error does not guarantee the best performance when

testing since it may overfit the data. An overfitted model is a model that contains

more parameters than can be justified by the data. In other words, this model more

perfectly fits the training data but gives a poor performance on testing data

2.1.5 Early Stopping

One of the ways to prevent overfitting is to take a part of training examples out to be a

validation set. As the validation data is independent of the training data, a network’s

performance on the validation data is a good measure of training process [8]. During

https://en.wikipedia.org/wiki/Statistical_model
https://en.wikipedia.org/wiki/Parameter

11

the training process, when the error value for validation set stops decreasing, stopping

the training process produces a model that better fits the testing data – a more general

model. In Figure 5, t represents the time when the training process should be stopped.

Figure 5: The value t indicates the time to stop the training process [8].

2.2 Convolutional Neural Networks (CNN)

Convolutional neural networks(CNN) are a type of neural network that has proven

very effective in areas such as image recognition and classification. CNN was first

introduced by Lecun in 1998 to classify hand written digits in a 32x32 image [9]. The

advantage of using a CNN to deal with image processing is that a CNN can vastly

reduce the number of parameters in the network by applying filters. In other words, a

CNN learns useful features in an image faster than a usual neural network. Since in

this project the only input to the network model is an image, using a CNN is an

effective solution.

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjEj5r3y_XhAhVhRN8KHd_bBzUQjRx6BAgBEAU&url=http%3A%2F%2Fcnl.salk.edu%2F~schraudo%2Fteach%2FNNcourse%2Foverfitting.html&psig=AOvVaw3jHHPQdz20RRYNH-IjFTl7&ust=1556637243419815

12

2.2.1 Filters

The word convolutional in convolutional neural network describes how the input

image of the network is modified by a filter. The filter slices left to right across the

image from top to bottom to form a convolved output as shown in Figure 6. Figure 6

shows how a 2x2 filter modifies a 5x5 input image and forms the convolved output. In

the formula given, c is the filter’s output, n stands number of rows, m stands for

number of columns, I represents the value of the input image and F is filter’s value.

The sums of the products of each pair of image value and filter value together

generate the convolved output.

Figure 6: A filter modifying an input image to a convolved output by calculating the

sum of the products of the corresponding values in the input image and the filter.

13

2.3 Proportional–Integral–Derivative (PID) Controller

A proportional–integral–derivative controller is a control loop feedback mechanism

widely used in industrial control systems and a variety of other applications requiring

continuously modulated control. A PID controller continuously calculates an error

value as the difference between a desired setpoint (SP) and a measured process

variable (PV) and applies a correction based on proportional, integral, and derivative

terms (denoted P, I, and D respectively) which give the controller its name. The

difference between the desired output and actual output is called cross-track error

(CTE). In this project, Kp and Kd were set to 10, and Ki was set to 1.

Figure 7: The PID controller takes an input and produce its output

r(t) = SP e(t) = CTE u(t) = change y(t) = output K = gain factor

2.3.1 Proportional Control

P as the component that is proportional to the CTE, which is SP − PV = e(t). In this

project, it has a direct impact on the car’s path because it makes the car “correct” in

https://en.wikipedia.org/wiki/Setpoint_%28control_system%29
https://en.wikipedia.org/wiki/Proportional_control
https://en.wikipedia.org/wiki/Integral
https://en.wikipedia.org/wiki/Derivative
https://upload.wikimedia.org/wikipedia/commons/4/43/PID_en.svg

14

proportion to the error in the opposite direction. For example, if the error value is

large and positive, by applying gain factor K, the control output will also be

proportionately large and positive. There is a natural overturning effect that will cause

the car to swing left and right eventually driving the car off-track while only using

proportional control. Larger values of P will cause the car to oscillate faster.

2.3.2 Integral Control

A way to cancel the overturning is to add integral control. Term I considers the past

value of the CTE and it is measured by the integral of the CTE over time. The reason

we need it is that there is likely residual error after applying the proportional control.

Error in proportional control ends up causing a bias over a period of time that

prevents the car stay in the center. This integral term seeks to eliminate this residual

error by adding a historic cumulative value of the error.

2.3.3 Derivative Control

Term D is the best estimate of the next round’s error in the future, based on its current

rate of change. When the car has turned enough to reduce the cross-track error, D will

inform the controller that the error has already declined. As the error becomes smaller

over time, the counter steering won’t be as sharp helping the converge the movement

to the target trajectory.

15

2.4 Unity

Unity is a cross-platform real-time engine developed by Unity Technologies. It was

first announced and released in June 2005 at Apple Inc.'s Worldwide Developers

Conference as an OS X-exclusive game engine [10]. The primary programming

language used in this engine is C#. Unity can be used to create three-dimensional

games as well as simulations for the real world. This project uses the Unity engine in

order to obviate the time and money cost by implementing roads, cars and

experiments in the real world.

2.5 Keras

The convolutional neural network used in this project is implemented with Keras.

Keras is an open-source neural-network library written in Python. It was developed as

a part of the research effort of project ONEIROS (Open-ended Neuro-Electronic

Intelligent Robot Operating System) [10]. Implemented with many commonly used

elements of building neural networks such as layers and activation functions, Keras

was designed to enable fast experimentation with neural networks. In addition to

standard neural networks, Keras has support for convolutional and recurrent neural

networks.

https://en.wikipedia.org/wiki/Cross-platform
https://en.wikipedia.org/wiki/Unity_Technologies
https://en.wikipedia.org/wiki/Apple_Inc.
https://en.wikipedia.org/wiki/Apple_Worldwide_Developers_Conference
https://en.wikipedia.org/wiki/Apple_Worldwide_Developers_Conference
https://en.wikipedia.org/wiki/MacOS
https://en.wikipedia.org/wiki/Game_engine
https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Convolutional_neural_networks
https://en.wikipedia.org/wiki/Recurrent_neural_networks
https://en.wikipedia.org/wiki/Recurrent_neural_networks

16

3 Methods

This chapter includes how the neural network is trained.

3.1 Network structure

Figure 8 shows the structure of the neural network used in this project. From the

bottom to the top, there are a normalization layer, 5 convolutional layers and 3 fully

connected layers. Normalization layer is used to accelerate GPU processing. The

convolutional layers perform feature extraction, which chooses useful features. In the

first 3 convolutional layers, the filter size was set to 5x5 with a 2x2 stride. The forth

convolutional layer has a filter size was set to 3x3 with a 2x2 stride. In the last

convolutional layer, the filter size was still 3x3 but the stride was changed to 1x1. The

fully connected layers are designed to function as a controller for steering. They give

out the output control value. The input for this model is the pictures taken of the road.

The output of this single output model can be any number between -1 and 1 and used

as the steering command for the self-driving car.

17

Figure 8: Network model used in this project

3.2 Road

The road simulated in this project is a two-way road with two white line on its

sides representing the load edges and a yellow line splitting the two lanes. Each

lane is 3.5m in width. The car drives on the right lane, following the traffic rules.

The road is composed of 2-meter segments and each segment is randomized to

have an angle in the range from 90 to -90. However, the turnings are limited by

18

minimum turning radius. This road’s minimum turning radius is set to 6m,

according to the road construction standard used in China. When the CNN is tested

on road with missing road edges, each road edge on the side of the road randomly

disappears with a probability of 0.05. The length of the missing road edges is also

randomized between 2m to 10m with a standard normal distribution. There is no

road variation such as signs and other cars simulated in this project. The only two

types of variation involved in this project are turning and accidentally missing road

edges. Figure 9 is an above view of a part of the road.

Figure 9: An aerial view of the road. The upper and lower lines are the road edges in

white color. The line in the middle is a yellow line.

3.3 Vehicle

The size of the vehicle simulated in this project has a length of 3m and a width of

1.8m, which matches the size of a small car. The vehicle is designed as a two-wheel

drive car with only two front wheels that can turn to simulate the most common car

existing in real world. A camera is located in the front of the vehicle. During data

collecting processes, the camera keeps taking pictures with the speed of 30fps. The

19

images are stored in the size of 160x120 pixels. During testing, the camera also

continuously takes pictures at 30fps for CNN to navigate the car. The speed of the car

was set to 18 miles per hour. Figure 10 shows a sample image taken by the camera

while the car is driving on the road.

Figure 10: Sample images taken by the camera while the car is driving on the road.

3.4 Data Collecting and Training

In this project, all data were collected in Unity simulator. The car was driven by PID

controller during data collecting process. A total of 100000 images were collected

while the car was driving on the road with complete road edges. Then, 50000 images

were collected while the car was driving on the road with incomplete road edges.

When the loss of validation data continuously increases for 5 epochs, the training

process stopped. For each training session, the model took about 4 hours to train. The

model was given 10 training sessions beginning from random initial conditions and

the model with least error value was chosen to be tested.

3.5 Steering Angle

In a real-world approach, driving a car with less unnecessary steering makes it better

and safer. Therefore, steering angles are important data for judging whether a driving

method is good or not. When evaluating the steering angles of the performances, both

20

the PID controller and the CNN model were tested on different sets of data other than

the training dataset and the validation dataset. The variances of steering angles were

calculated in order to compare the smoothness of driving by the following formula:

 In this formula, s² stands for variance, M is the mean of the steering angles, x

is the actual steering angle and n is the number of steering angles.

3.6 Deviation Distance

With steering angles, only the smoothness of driving can be evaluated but the ability

of a method to keep the car on the center line is not known yet. Therefore, evaluating

the deviation distance from the car to the center line is also necessary to evaluate a

driving method. The means of deviation distances are used here to compare the

performances of different driving methods.

21

4 Results and Analysis

After the network model was trained, it was tested on 5 different tracks. This chapter

includes the results and data analysis.

4.1 Chosen Model

In all 10 trained models, the model with least error value, 0.22, was chosen for testing.

Error values fell in between 0.34 and 0.22. The average error value for 10 models was

0.279. Table 1 shows the error values of each model. Figure 11 demonstrates the

distribution of the error values.

Model number MSE

1 0.31

2 0.27

3 0.29

4 0.34

5 0.28

6 0.23

7 0.22

8 0.26

9 0.30

10 0.29

Table 1: Error value for models

22

Figure 11: Box plot of the error values. The maximum was 0.34 and the minimum

was 0.22. The median was 0.285.

4.2 Testing Track

5 different Tracks were generated in Unity engine for testing the network model. They

are each 2km in length. Figure 12 shows all the tracks. Tracks 1 to 5 are listed in the

order from top to bottom, left to right. The red point at one end of each track is the

car’s start point.

23

Figure 12: Test tracks 1 to 5. Each track is 2km in length. In all 5 tracks, there are

approximately 3.7km nearly straight road; the remaining 6.3km are all turnings.

4.3 Track Completeness

Successfully driving the car through the test tracks is the most obvious indication that

a driving method is able to handle that track.

4.3.1 PID Controller’s performance

With the help of the low speed limitation, the PID controller was guaranteed to have

enough time to drive the car towards the further side before driving the car off the

road. Also, since the PID controller knew the distance between the car and the center

of the lane and did not form decisions based on road edges, missing road edges did

not affect its performance.

24

4.3.2 CNN’s Performance on Road with Edges

The CNN model completed 8.41km out of 10km in total while driving on the road

with edges. It was able to navigate the car through track 1, 2, 4 and 5 but failed to

complete track 3. The car went off the road when the road was crossing itself [Figure

13]. This failure showed that the CNN model could possibly get confused by

crossings. Training the model with more road crossing examples may help eliminate

this kind of failure.

Figure 13: The place the car went off the road

4.3.3 CNN’s Performance on Road with Missing Edges

While driving the car on road with missing edges, the model completed 5.29km out of

10km with only completing track 2 and 5. In all other 3 tracks, the car completed part

of the road with straight line and some turnings and then went off when the road

edges disappeared at relatively sharp turnings. Also, knowing that track 2 and 5 had

the smallest ratios of turnings among all 5 tracks, a conclusion maybe drawn that the

CNN model could not handle all cases of missing road edges. Figure 14 points out the

places where the car went off the road.

25

Figure 14: The place the car went off the road

4.4 Steering Angle

The variances of steering angles of the three driving methods were compared here to

show which method of steering drove the car more stably. Table 2 shows the

variances of each performance. Data for track 3 is not shown here since only PID

controller finished the road.

Track

number

PID

Controller

CNN Driving

with edges

CNN Driving with

missing edges

1 0.41 0.33 Incomplete

2 0.36 0.35 0.36

4 0.39 0.32 Incomplete

5 0.33 0.29 0.34

Table 2: The variances of steering commands

26

 ANOVA test was used here to compare the performances for each track. Since

the CNN model failed to drive the car on track 2 and 5 with missing edges, an

ANOVA test for track 1, 2, 4 and 5 between the PID controller and the model driving

with edges and another test for only track 2 and 5 among all three methods were

performed here. Through the tests, the F statistics for only track 2 and 5 were 2.81 and

2.74, greater than the critical value of 2.60 at p value of 0.05, and the F statistics for

track 1, 2, 4 and 5 were 4.12, 3.32, 3.86 and 3.19, also greater than the critical value

of 3.00, leading to the rejections to null hypothesis of having not significant

differences among variances. Table 3 shows the F statistics for each test.

Track

number

F statistics for the test between the PID

controller and the CNN model

Critical value: 3.00

F statistics for the test among all

three different driving methods

Critical value: 2.60

1 4.12 None

2 3.32 2.81

4 3.86 None

5 3.19 2.74

Table 3: F statistics for each test

After ANOVA calculations, from the data in Table 2, it could be concluded

that the CNN model driving the car on roads with edges performed better than the

PID Controller. The reason was that the PID controller never truly learned to predict a

steering angle. Instead, it was keeping fixing its current error and making new error at

the same time. Also, the CNN model only completed 2 of the tracks, its performances

did not outperform PID controllers’ due to the loss of edges. This result showed that

27

while the CNN model had the ability of handling roads with missing roads edges, the

edges were still important features for the network to correctly navigate the car.

4.5 Deviation Distance

The average deviation distances were calculated here to compare the performances of

driving methods. Table 4 shows the average deviation distances for each method.

Data for track 3 are not shown since the CNN model failed to finish track 3 both with

edges and without edges.

Track

Number

PID

Controller

CNN Driving

with edges

CNN Driving with

missing edges

1 0.23 0.17 None

2 0.18 0.15 0.20

4 0.20 0.16 None

5 0.17 0.15 0.17

Table 4: Average deviation distance for each track

 Data in Table 4 shows that the CNN model driving with edges had smaller

average deviation distances than PID controller driving the car for all four tracks. The

reason is basically the same with the one explained for steering angles. Again, the

CNN model’s performances on road with missing edges were influenced by road

edges’ disappearances and thus did not outperform PID controller’s performances.

28

5 Conclusion

This project shows that a convolutional neural network model outperforms the PID

controller when driving a car on road with edges. Also, the CNN network proved its

ability and potential to driving on road with missing road edges with completing two

tracks. After training the model, the CNN model was able to drive on the road with

edges with an average deviation of 0.14m, which was better than the PID controller’s

average deviation of 0.19m. While driving on the road with missing edges, the model

was able keep an average distance of 0.18m, with an average successfully driving

distance of 1.76km before it navigates the car off the road.

 By testing the model’s performances on road with edges, it was shown that the

model was not trained enough to encounter with road crossing. Training the network

model with more road crossing examples in the future may help to improve the model

handling this kind of problem.

Interestingly, for track 1,3, and 4 with missing road edges, the model drove the

car off the road when it was facing similar situations: the right edges disappeared at a

left turning. After checking the images taken by the camera on the car right before the

car went off the road, it was shown the cause of these failures was that the camera lost

more road edges in its sight while the road is turning left. Knowing that the camera

was always facing the same direction with the car, it first captured less sight of the left

edge when the road is turning left because of the difference of the directions between

the road and the car. Then, if the left edge disappeared at this time, the neural network

29

suddenly lost too many features to form right driving commends. Future work to solve

this problem may include giving the camera a wider sight and adding more left

turning training examples to let the model learn that the yellow line in the middle of

the road which never disappears could help to navigate the car in this case.

30

References

1. Bojarski, Mariusz, et al. “End to End Learning for Self-Driving

Cars.” ArXiv.org, 25 Apr. 2016, arxiv.org/abs/1604.07316.

2. “High Way of The Future.” Electronic Age, Jan. 1958, pp. 12–14

3. Weber, Marc. “Where to? A History of Autonomous Vehicles.” Computer

History Museum, 8 May 2014, www.computerhistory.org/atchm/where-to-a-history-of-

autonomous-vehicles/.

4. “The Future of the Self-Driving Automobile.” Trends Magazine, 13 July 2011,

audiotech.com/trends-magazine/the-future-of-the-self-driving-automobile/.

5. DARPA, Overview, archive.darpa.mil/grandchallenge05/overview.html.

6. DARPA, PRIZES FOR ADVANCED TECHNOLOGY ACHIEVEMENTS. Jan.

2008, archive.darpa.mil/grandchallenge/docs/DDRE_Prize_Report_FY07.pdf.

7. “Build with AI.” DeepAI, deepai.org/machine-learning-glossary-and-

terms/neural-network.

8. Schraudolph, Nic, and Fred Cummins. “Introduction to Neural

Networks.” Overfitting, cnl.salk.edu/~schraudo/teach/NNcourse/overfitting.html.

9. Lecun, Y., et al. “Gradient-Based Learning Applied to Document

Recognition.” Proceedings of the IEEE, vol. 86, no. 11, Nov. 1998, pp. 2278–2324.,

doi:10.1109/5.726791.

10. Takahashi, Dean. “John Riccitiello Sets out to Identify the Engine of Growth

for Unity Technologies (Interview).” VentureBeat, VentureBeat, 12 Dec. 2018,

http://www.computerhistory.org/atchm/where-to-a-history-of-autonomous-vehicles/
http://www.computerhistory.org/atchm/where-to-a-history-of-autonomous-vehicles/

31

venturebeat.com/2014/10/23/john-riccitiello-sets-out-to-identify-the-engine-of-

growth-for-unity-technologies-interview/.

11. Keras, “Keras: The Python Deep Learning Library.” Home - Keras

Documentation, keras.io/#why-this-name-keras.

12. Kramer, Tawn. “Tawnkramer/Sdsandbox.” GitHub, 28 Feb. 2017,

github.com/tawnkramer/sdsandbox.

	Self-Driving Cars: Exploring the Potential of Using Convolutional Neural Network to Overcome Road Variation
	Recommended Citation

	tmp.1558598562.pdf.zT8xv

