
Bard College Bard College

Bard Digital Commons Bard Digital Commons

Senior Projects Spring 2016 Bard Undergraduate Senior Projects

Spring 2016

Constructing a Categorical Framework of Metamathematical Constructing a Categorical Framework of Metamathematical

Comparison Between Deductive Systems of Logic Comparison Between Deductive Systems of Logic

Alex Gabriel Goodlad
Bard College

Follow this and additional works at: https://digitalcommons.bard.edu/senproj_s2016

 Part of the Logic and Foundations Commons

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Recommended Citation Recommended Citation
Goodlad, Alex Gabriel, "Constructing a Categorical Framework of Metamathematical Comparison
Between Deductive Systems of Logic" (2016). Senior Projects Spring 2016. 137.
https://digitalcommons.bard.edu/senproj_s2016/137

This Open Access work is protected by copyright and/or
related rights. It has been provided to you by Bard
College's Stevenson Library with permission from the
rights-holder(s). You are free to use this work in any way
that is permitted by the copyright and related rights. For
other uses you need to obtain permission from the rights-
holder(s) directly, unless additional rights are indicated by
a Creative Commons license in the record and/or on the
work itself. For more information, please contact
digitalcommons@bard.edu.

http://www.bard.edu/
http://www.bard.edu/
https://digitalcommons.bard.edu/
https://digitalcommons.bard.edu/senproj_s2016
https://digitalcommons.bard.edu/undergrad
https://digitalcommons.bard.edu/senproj_s2016?utm_source=digitalcommons.bard.edu%2Fsenproj_s2016%2F137&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/182?utm_source=digitalcommons.bard.edu%2Fsenproj_s2016%2F137&utm_medium=PDF&utm_campaign=PDFCoverPages
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://digitalcommons.bard.edu/senproj_s2016/137?utm_source=digitalcommons.bard.edu%2Fsenproj_s2016%2F137&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@bard.edu
http://www.bard.edu/
http://www.bard.edu/

Constructing a Categorical Framework of
Metamathematical Comparison Between

Deductive Systems of Logic

A Senior Project submitted to
The Division of Science, Mathematics, and Computing

of
Bard College

by
Alex Goodlad

Annandale-on-Hudson, New York
May, 2016

Abstract

The topic of this paper in a broad phrase is “proof theory”. It tries to theorize the general
notion of “proving” something using rigorous definitions, inspired by previous less general
theories. The purpose for being this general is to eventually establish a rigorous framework
that can bridge the gap when interrelating different logical systems, particularly ones
that have not been as well defined rigorously, such as sequent calculus. Even as far as
semantics go on more formally defined logic such as classic propositional logic, concepts
like “completeness” and “soundness” between the “semantic” and the “deductive system”
is too arbitrarily defined on the specific system that is applied to for it to carry as an
adequate definition. What we shall do then is come up with an adequate definition for
a characterization of every logic that one has worked with, and show what can be done
with it for a few basic logical systems that include classic propositional logic, intuitionistic
propositional logic and intuitionistic sequent calculus. To make this definition work with
eloquence, we go the category theory route of constructing a category with objects that
correspond to collections of logical formulae and arrows that correspond to deductions
from one such collection to another.

Contents

Abstract 1

Dedication 4

Acknowledgments 5

1 Introduction 6

2 Preliminaries 10
2.1 Definition by Recursion and Structural Induction 10
2.2 Natural Deduction Informally Presented . 13
2.3 Preliminary Category Theory . 15
2.4 The Free Category . 22
2.5 The Path Category and the Cartesian Path Category 24

3 Language and Inference 30
3.1 Languages . 31
3.2 Formula Vectors . 34
3.3 Inferences and Proofs . 36
3.4 Natural Deduction and Hypotheses . 40
3.5 Functoral Semantics . 42
3.6 Valuation Logic . 47

4 Classical Propositional Logic 50
4.1 The Classical Language and Deductive System 51
4.2 Soundness and Completeness with Ordinary Classical Propositional Logic . 56
4.3 Classical Semantics . 59
4.4 Classical Completeness and Consequences 62

Contents 3

5 Sequent Calculus 66
5.1 The Metalanguage and Sequents . 67
5.2 Intuitionistic Sequent Logic Definition . 68
5.3 The Cut Rule . 76
5.4 Properties of Intuitionistic Sequent Logic 81

6 Conclusion and Future Work 88
6.1 Fixing Mistakes and Tightening Rigor . 88
6.2 Exploring More on “Deduction Class Equivalence” 89
6.3 Generalizing for Infinite Formula-Vectors . 89
6.4 Generalizing Consistency and Satisfiability 89
6.5 Exploring Intuitionistic Logic . 89
6.6 Exploring Linear Logic . 91
6.7 Exploring More Languages . 94
6.8 Exploring Predicate Logic . 94

Bibliography 95

Dedication

To my grandmother Mathilde and father Peter

Acknowledgments

There are too many people to be thankful for to list. But I just want to thank my senior
project advisor Bob McGrail, who has been an excellent logician mentor who I think has
guided me well in my aspirations to be a logician. Next I want to thank Ethan Bloch
who I extremely look up to as a mathematician and professor. As not only the writer of
my first ever abstract math textbook Proofs and Fundamentals but also my instructor for
that class, he has really inspired me to pursue my undergraduate studies–and ultimately
my graduate studies–in mathematics. Finally, I want to give thanks to my project board
Japeth Wood and James Belk, and also the senior project supervisor John Cullinan.

Of course I am thankful for my family, who really supported me every step of the way
in all these years of attending Bard College and seeking my degree. I want to give one
final thanks to the three math students who I feel really had an impact on me as a math
student at Bard. The first is Jeffrey Pereira, whose positive enthusiasm when it came the
subject of mathematics I still remember like it was yesterday, even though he graduated
three years ago. The next person is Andy Huynh, who I would call my mentor, and I would
say is the main reason I have gotten far as I have with studying mathematics. Finally, I
want to give the best of regards to Erik Lovece, who really is one of my best friends at
Bard and is yet another math alumnus who set a good example for me at Bard. As of
writing this, he is part of the national guard and his services for this country should be
greatly acknowledged.

1
Introduction

So the main question at hand is what exactly does this paper seek out to do. While a

very necessary question, it is not a very easy one to anwer since proof theory in general is

somewhat of an obscure discipline with motivations that, although existant, do not come

to mind immediately. In this case, what I am doing has not really been mathematically

constructed, so much as given a mathematical definition. I shall nevertheless do what I

can to explain what it is that is being done and why it is being done this way

I shall start with the easy part first, which is why. Proof theory–to the extent that there

is first order logic, classical logic, intuitionistic logic, sequent calculus, and linear logic–

has not been rigorously defined in a way that is adequate for discussing all these logics

together in unison. While one can talk about these structures in an intuitive way that

captures the right idea when analyzing the logic as its own structure, there is a lot that

gets lost from the lack of formality when it comes to comparing two deductive systems.

An example of comparing two deductive systems that is very popular in logic, since the

discipline came to be, is showing that we can derive aspects (or all) of one system from

another.

1. INTRODUCTION 7

For example, we have a notion of “soundness” and “completeness” between the deduc-

tive system of classical logic and the semantic system of classical logic, but that notion

does not really extend generally once we get to things like sequent calculus. What also does

not extend generally very well is what an “inference rule” exactly is or a “logical axiom”.

We have a horizontal bar style of deduction/inference, but comparing two different logical

systems again becomes problematic because the definitions have not been unified between

these sorts of things.

What this paper proposes to fix this is to define things like language, inference rules,

deductions, soundness and completion, and finally logic, very generally using category the-

ory, which gives us the tools to do this very effectively. After defining all these things, it is

shown how they apply to very familiar systems of logic. Various propositional varieties of

logic, which include classical propositional, intuitionistic propositional, and intuitionistic

sequent calculus, get a chapter’s worth of attention each, but various widely known pred-

icate logics get attention, too, in my variety of examples. The exact organization of how

I do this is as follows:

Chapter 2 covers the preliminary information that one needs to know which includes

a theoretical treatment of structural induction, an informal presentation of horizontal bar

style deductions and sequent calculus, category theory, and a little bit of graph theory. It

is expected that the reader has a fairly comprehensive background in mathmatical logic

and category theory in particular, but this chapter does provide the necessary background

information in these subjects should the reader need it. Moreover, Chapter 2 is very crucial

in deriving a very important, yet infrequently oberved concept in category theory known

as the “free category”. While a category under the name of “free category” is discussed

in MacLane, this turns out to be only the special case of a general sort of category that

happens to be majorly useful in this paper.

1. INTRODUCTION 8

Chapter 3 lays down the definitions, much of which have been shown to exist by virtue of

the free category that was derived in Chapter 2. In the first section, we define languages.

Afterwards, the construction of a category called the“deductive category”–intended to

standardize all logical deductive systems–shall take place. First the objects will be con-

structed in one section, and the arrows shortly afterwards. A crucial section lays down

the general concept of “soundness” (and analogously “completeness”) between two logics,

which will allow us to assess the ability for one deductive system to “imply” another. Other

sections make a few general applications to the deductive category to more general verions

of useful logical constructs such as valuation mappings and hypothesis construction.

Chapter 4 applies this categorical treatment of logic to the most simple of the con-

ventional logic: Classical propositional logic. Here, the language and inference rules are

defined in the most minimal, yet eloquent, way possible. From this, the familiar properties

of propositional logic are derived and it is then shown to be sound and complete with the

very familiar truth table treatment of classical propositional logic.

Chapter 5 covers the final application of this categorical treatment to definitely the

most complicated deductive logic that this paper derives in rigorous detail. And that is

intuitionistic sequent calculus. As a language that uses a construct as exotic as sequents

with a very bizarre method of doing inferences with propositions, it is necessary to define a

whole new language that is different from any that one is familar with. This new language

in general is called the “metalanguage” since the idea of categorical logic here is to make

inferences on objects in a language and sequent calculus makes these inferences on a class

of objects that correspond to the metalanguage of propositions. It then only makes sense

to mathematically construct a language that corresponds to a “metalanguage” of a base

language and observe derivability with respect to that language.

Once this metalanguage has been created, the attention of Chapter 5 will then focus to

the construction of intuitionistic sequent calculus. Again the minimal amount of inference

1. INTRODUCTION 9

rules and symbols needed to create this logic will be used, meaning a lot of Chapter 6 will

be setting up a theoretical framework that will effectively derive these other rules. The

main rule at hand is called the “cut rule”, or “cut elimination”, which turns out to take

a proof so long and technical that the process (particularly the proof itself) gets its own

section. Once all the desired rules of intuitionistic sequent calculus are established, the

next sections derive some properties of major note, which include its untimate relationship

with propositional logic as it is conventionally done.

Finally, Chapter 6 will conclude this paper, and lay the road map as to where to go

with this theory next. Most vitally this will include deriving linear logic, as this turns out

to be a major motivation for creating this categorical system. An informal discussion of

linear logic is then in order. But other future topics will be discussed such as the possibility

of generalizing this logic to infinite vectors (functions) of propositions, defining a general

notion of “satisfiability” and “consistency”, and finally a little bit on how one can apply

this system to more complicated predicate systems.

2
Preliminaries

This chapter explores some preliminary mathematical concepts that are both obscure

and required to understand in order to proceed with the theoretical conquest of this paper.

Section 2.1 deals with the bread and butter to much of our constructions and proofs of

their qualities: Definition by Recursion and Structural Induction. Section 2.2 presents

an informal presentation of Natural Deduction, which will be a style of proof that this

text will adapt. Section 2.3 is a crash course on Category Theory, which is mostly there

to establish the terminology and notation that shall be used throughout. Section 2.4 is

devoted to deriving the “free category”–a very useful tool in category theory that will allow

us to establish a robust definition for logical deductions. Finally, Section 2.5 is provides

preliminary information on graph theory and then uses graph theory and the free category

to derive some very necessary tools.

2.1 Definition by Recursion and Structural Induction

Induction is useful. If there is anywhere that one will see this fact, it will be in this paper.

Knowledge shall be assumed of Peanno’s Axioms and the many variants of mathematical

2. PRELIMINARIES 11

induction (such as strong induction). But induction is used to the point where it can

definitely get obscure, hence clear the obscurity up with this section. Note that it will be

assumed that the reader has been exposed to the Peanno Axioms, but for anyone in need

of reference can find a treatment, here. [1]

First, acknowledgement shall be made about Definition by Recursion. It appears so

much in mathematics that one often forgets that it happens, until one runs into a strange

implementation of Definition by Recursion and thinks to oneself, “But you can’t do that!”

It’s very intuitive why, but theoretically it is not straightforward why it is that given a

function k : E �Ñ E one can conjure up a unique function f : N �Ñ E such that fs � kf ,

where s : N �Ñ N is the successor function. Here is the theorem.

Theorem 2.1.1. (Definition By Recursion) Let E be a set. Given a function k : E �Ñ E

and e P E, there exists a unique function f : N �Ñ E such that

fpnq �

#
e, if n � 1

kpfpn� 1qq, if n ¡ 1.

The proof to this theorem can be found in Theorem 2.5.5 of Bloch’s Real Analysis text.

[1]

To understand structural induction, what should be first cleared up is what exactly is

“structural induction”? It’s when there is a mathematical structure that is “inductive” in

the sense that there is a “basic” or “atomic” component and then a “recursive” component,

where one form new objects by taking objects in the element (these objects playing the

role of “recursion”) and then forming new objects. How this differs from original induction

is that now the structure itself does not correspond in any way to the natural numbers, or

any peanno object for that matter. Oftentimes the structure doesn’t even share the same

cardinality. For example, a vector space, which has a basis, is an example of a structurally

inductive set since every element can be formed by operations that bring about recursion

that stems from a basis.

2. PRELIMINARIES 12

What does, however, make the structure inductive is the recursion. The structure starts

with “basic” component which one can call the “order one” instance of our structure, since

one cannot generate the occurence of a given “basic” object from other objects (in the

same way that in Peanno’s Axioms one cannot get the number 1 from any input of our

successor function). Then the structure has “recursive component” where an object is

labeled “order n” based on how many acts of recursion were done from the base case to

get the new object.

Rigorously, a set which is structurally inductive can be thought as a set E along with

a set C of functions f : Enf �Ñ E such that there is a base case set A such that for every

G � E, if A � G and G is closed under the function class C, then G � E. If one thinks

about it, this is really the generalized Peanno Axioms because the Peanno Axioms can

be viewed this way two with t1u as the base case set and then the function class as tsu,

where s is again a successor function

This theorem establishes how easily constructible this sort of set is. Given any set and

any set of function classes on that set, we can form a subset that is structurally inductive.

This sort of thing is exactly what we shall need for our theoretical constructions starting

in the next chapter.

Theorem 2.1.2. Let W be a set. Let C be a collection of functions f : Wmf �Ñ W , for

some mf ¥ 1. Let A be a set disjoint from fpWmf q, for each f P C and the corresponding

mf ¥ 1. Then there exists some E � W such that A � G � E and fpe1, . . . , emf
q P G,

for any f P C and e1, . . . , emf
P G, imply G � E.

Proof. Define Gn recursively for n ¥ 1 as follows

En �

#
A, if n � 1,�
fPC fpE

mf

n�1q, otherwise.

We shall prove that E �
�
n¥1En is a set with the desired properties. Note first that

A � E. Let G be a set such that A � G � E and fpe1, . . . , emf
q P G, for any f P C and

2. PRELIMINARIES 13

e1, . . . , emf
P G. We need to prove E � G. Let p P E. Then p P En, for some n ¥ 1. We

shall prove that p P G by induction on n. For n � 1, we have p P A � G. For our inductive

step, if p1 P G, for all p1 P En, we find p P fpE
mf
n q, for some f P C; so it follows by inductive

hypothesis that p � fpe1, . . . , emf
q, for e1, . . . , emf

P G, hence p P G by hypothesis.

2.2 Natural Deduction Informally Presented

In logic, a mathematical process called “natural deduction”, or more generally “hori-

zontal bar style proofs”, is a nice thing. It’s nice because oftentimes deriving new formulas

in a logical scheme is a very technical, step-heavy process that could use an eloquent

shorthand method of laying out, as opposed to simply writing all the steps by paragraphs

and words. However, eloquence comes at the price of obscurity. These horizontal bar con-

ventions are rather notation heavy; therefore, they are unclear, and morover do not have

much of a rigorous definition behind them. Chapter 3 will try to resolve the latter problem

and provide a rigorous definition, but rigorous definitions do not always provide provide

clarity. This section shall try to provide clarity and alleviate such confusion.

Natural deduction is a system that is typically used in propositional/predicate logic

with the usual ^,_, ,Ñ,Ø,K,J connectives and @, D quantifiers. What the horizontal

bar style does is try to incorporate various inference rules that one has in a given system

in the style of an input-output formula. On the top is one or more input formulas, and

on the bottom is an output formula; in other words, a single bar plays the role of taking

one formula and “infering” a new formula. To the right side of these horizontal bars is the

type of inference rule that it is, which is essentially the label for an overall formula. What

will be helpful at this time is some examples, so here are a few familiar ones

φ
_I1,

φ_ ϕ

ϕ
_I2,

φ_ ϕ

φ φÑ ϕ
Ñ E,

ϕ

φ ϕ
^I,

φ^ ϕ

φ^ ϕ
^E1,

φ

φ^ ϕ
^E2,

ϕ

2. PRELIMINARIES 14

As one can see, these inference rules provide an algorithm to be able to make a multistep

process that would make up a lot of tedious writing into a proof in a few lines. For example,

proving φ^ ϕ derives pθ _ φq _ ϕ, one writes

φ^ ϕ
^E1

φ
_I2

θ _ φ
_I1.

pθ _ φq _ ϕ

So far this is pretty accessible for the most part (assuming somewhat of a background

in symbolic logic), but there is one more roadblock to understand that is not very clear

at first, and the lack of a great “rigorous” definition does not help, and this the use of

hypotheses. A very motivating way of understanding the Ñ connective is really concieving

it as implication in the colloquial sense of “pÑ q means assuming p, we deduce q.” So to

provide an inference rule for Ñ, this is where hypotheses notation comes in with making

a hypothesis p and deducing things from such hypothesis to show we can indeed deduce

q, which allows us to infer p Ñ q. Any hypothesis formula in natural deduction one

places a box rφs around it to indicate that it is a hypothesis. From this, inference rules

can be formed using hypotheses and conclusions, with vertical dots indicating steps of

inference in between the hypotheses and the conclusion. Here are two such inference rules

in propositional logic

φ_ ϕ

rφs
�
�
�
θ

rϕs
�
�
�
θ
_E,

θ

rφs
�
�
�
ϕ

Ñ I.
φÑ ϕ

For example, to prove that one go from no formula at all to derive φÑ φ_ ϕ, the proof

is presented as

rφs
_1

φ_ ϕ
Ñ I.

φÑ pφ_ ϕq

2. PRELIMINARIES 15

One confusing thing, however, to deal with is when there is more than one hypothesis

happening at once. What is the protocol, there? Well now natural deduction starts to

become a story of “charging” and “discharging” hypotheses. In other words, one can

“charge” a hypothesis statement anytime in the deduction and inference rules such as

_E and Ñ I play the roll of “discharging” hypotheses after they have been made. A

legitimate deduction has all its hypotheses that were made at any point of the deduction

discharged. To eliminate ambiguity, the boxes and discharging inference rule uses have

upper script numbers that correspond to which inference rule cancels what. For example,

in the deduction from no formula to derive ppφ^ ϕq Ñ θq Ñ pφÑ pϕÑ θqq, one writes

rφs2 rϕs1

^I
φ^ ϕ rpφ^ ϕq Ñ θs3

Ñ E
θ

Ñ I1

ϕÑ θ
Ñ I2

φÑ pϕÑ θq
Ñ I3.

ppφ^ ϕq Ñ θq Ñ pφÑ pϕÑ θqq

For further inquiries, it is recommended to explore Van Dalen’s introductory logic text.

[3]

2.3 Preliminary Category Theory

This section shalll introduce some Category theory. For any outside source inquirey,

Mac Lane’s text is strongly recommended. [7] Here is the basic definition of a category.

Definition 2.3.1. A Category C is class of objects ObpCq and a class of arrows ArpCq

with the following properties.

1. Composition. For every arrow A
f
ÞÑ B and B

g
ÞÑ A, there exists some arrow A

gf
ÞÑ C.

2. Associativity. For every arrow f, g, h, it holds that pfgqh � fpghq.

3. Identity. For every object A, there exists some arrow A
1AÞÑ A such that f1A � f and

1Ag � g, for every arrow A
f
ÞÑ B and C

g
ÞÑ A.

2. PRELIMINARIES 16

For an arrow A
f
ÞÑ B, a right inverse is an arrow B

f 1

ÞÑ A such that ff 1 � 1B. For an

arrow A
f
ÞÑ B, a left inverse is an arrow B

f 1

ÞÑ A such that f 1f � 1A. For an arrow

A
f
ÞÑ B, an inverse is an arrow B

f 1

ÞÑ A that is both a right inverse and a left inverse. 4

Remark 2.3.2. With regards to notation, it is standard in category theory to denote a

category C as both a set of objects and a set of arrows. In other words, when one says

A P ObpCq, it is pretty standard to write A is in C, and same for f P ArpCq. So if no

ambiguity arises, be alert to see C used interchangably with instances where the object

class is being referenced or those where the arrow class is being referenced. ♦

Here are a few good examples of commonly-used categories.

Example 2.3.3. The first (and most intuitive) category is the category Set of all sets.

The object class is all sets and the arrow class is all functions between those sets.

There are similar “set with structure” categories. One is Grp with the object class of

all groups and arrow class of all homomorphisms between those groups. Another is Top

with the object class of all topological spaces and arrow class of all continuous functions

between those spaces. Yet another analogous example, which for the purposes of this paper

will be very useful, is the category Grph with the object class of all graphs and arrow

class the class of all homomorphisms between those graphs. Note that the last section of

this chapter will expand on particularly the graph category. ♦

Example 2.3.4. A couple of other categories set don’t involve functional arrows include

the following:

One is the category generated by a group pG, �q. The object class is actually the singular set

itself and the arrows are the elements in the group, which can be thought of as having the

same domain and codomain. Notice that this is a category since group elements g, f P G

are by definition closed under its operation �, hence g � f forms a compsition arrow. It is

furthermore easy to verify that e suffices for the identity arrow.

2. PRELIMINARIES 17

Another category is one formed by a poset pP,¤q. We can think of the relation a ¤ b as

an arrow between the elements a, b P P . The property of transitivity gives us composition

since given a ¤ b and b ¤ c we can always form a ¤ c. Since arrows in the poset between

domains are unique by construction, we find the relexive property a ¤ a gives us an

identity arrow for each element. ♦

Example 2.3.5. Now some categories formulated from other categories shall be defined.

Given a category C, the dual category Cop (sometimes called the “opposite category”) has

the object class the same as C and the arrow class is formulated as follows: For every

arrow A
f
ÞÑ B in C, there exists an arrow B

fop
ÞÑ A in Cop. It is easy to verifty that Cop is a

category.

Given two categories C1 and C2, a product category C1 � C2 has the object class

ObpC1q �ObpC2q and the arrow class ArpC1q �ArpC2q. Composition forms from the oper-

ation pg1, g2qpf1, f2q :� pg1f1, g2f2q and the identity is p1A1 , 1A2q for any object pA1, A2q.

This can be easily generalized to a family of categories tCαuαPJ for an arbitrary index J

to form the product category
±
αPJ Cα with the object class

±
αPJ ObpCαq ad the arrow

class
±
αPJ ArpCαq.

Given two categories C1 and C2, one can also form a coproduct category C1 � C2. The

object class is the union pObpC1q � t1uq Y pObpC2q � t2uq and the arrow class is the union

pArpC1q�t1uqY pArpC2q�t2uq. Here, it holds that the categorical structure of the arrows

are preserved, and there are no arrows that map any object in ObpC1q � t1u to any object

in ObpC2q � t2u, since the object and arrow classes are disjoint by obvious design.

Like product categories, this can be generalized to a family of categories tCαuαPJ for

an arbitrary index J to form the product category
²
αPJ Cα with the object class�

αPJpObpCαq � tαuq and the arrow class
�
αPJpArpCαq � tαuq. ♦

2. PRELIMINARIES 18

Remark 2.3.6. One should take special notice to how the co-product category was

formed. Not only will this category prove useful in proving a major result very soon,

but the way it was constructed brings note to a little known, yet useful process called

the “disjoint union”. This is a procedure that is typically done when one wants to either

include the same element more than once or to include something “different” but for some

reason is mathematically convenient to denote it under the same name. ♦

Next this section defines the thing that in some ways is more important than the category

itself when it comes to how it gets utilized. This of course is the functor, which essentially

maps one category to another. The thing to understand is that it is essentially a two piece

function that maps objects to objects and then arrows to arrows, in a way that preserves

the structure of how the arrows are arranged. In other words, if there is an arrow A
f
ÞÑ B,

the functor F makes sure that some arrow F pAq
F pfq
ÞÑ F pBq exists, and hence our domain

and codomain get preserved in the mapping of F . The definition is as follows.

Definition 2.3.7. A Functor F : C �Ñ D is a mapping from the category C to the category

D. More specifically a functor is a bi-product of two functions FOb : ObpCq �Ñ ObpDq and

FAr : ArpCq �Ñ ArpDq such that the following conditions are satisfied:

1. Arrow domain and codomain structure is preserved under F . Hence, every arrow A
f
ÞÑ B

in C gets mapped to the arrow FObpAq
FArpfq
ÞÑ FObpBq in D.

2. FArp1Aq � 1FObpAq, for every object A in C

3. FArpgfq � FArpgq � FArpfq, for every arrow A
f
ÞÑ B and B

g
ÞÑ C in C.

A category C is called isomorphic with D if there exists a functor F : C �Ñ D such that

there exists an inverse functor F�1. 4

Remark 2.3.8. A few additional things to note about functors. First is that although

it is “clear notation” to differentiate the object component of the functor from the arrow

component, the functor is really one function that maps arrows to arrows. This is because

2. PRELIMINARIES 19

the composition properties imply that the objects, which are the domain and codomain of

each arrow, are consistently mapped to a single object that is the domain and codomain

of the single mapped arrow.

Functors, as functions, also have the property that a given functor F : C �Ñ D is injective

if and only if F has a left inverse and F is surjective if and only if F has a right inverse

(as a function typically does). Moreover, it is easy to verify that the image of a functor

F pDq is a category.

Finally, one should note the general limitations of isomorphism functors as a way of denot-

ing “categorical equivilance”. This is because the the identity functor is only one functor

object that is equivilent up to so-called “natural isomorphism”, which arises in the “cat-

egory of functors”, and captures more generally what it means to think of a category as

“essentially the same”. ♦

In category theory, there is a distinction one needs to make between “small” and “large”

categories. Now that functors have been defined it is a good place to now make this

distinction.

Definition 2.3.9. Basically, a small category is a category whose object class can be

expressed as a set in ZFC set theory. A large category, on the other hand, is a category

that is not small. In other words, the object class cannot be expressed as a set in ZFC

set theory (such as the “universal set”). Furthermore, any functor whose domain and

codomain is a small category will be called a small functor, and any functor whose

domain or codomain is large will analogously be called a large functor. 4

Remark 2.3.10. Unfortunately, for the rigor-bent reader, this is not a rigorous definition

since the involved axiomatic set theory brings much more technicality than it does insight

to the theory this paper deals with. The curious reader looking for a more rigorous treat-

ment should consult Bloch’s introductory proofs text for the ZFC axioms, [2] MacLane for

2. PRELIMINARIES 20

much more standard treatment of large categories. [7] The reader may also appreciate for

a starting explanation of the NBG axioms used to rigorously define the “proper classes”

for which make up the object classes of large categories. [9] ♦

Example 2.3.11. It is now a good time to define a the category Cat of all small categories.

The object class is the class of small categories and the arrow class is the class of all small

functors between those small classes. ♦

Next in the list of vital definitions is the notion of products and coproducts. A product

as an object with projections to a family of objects is no new one. The co-product is a

family of objects that all commonly project to the coproduct. Interestingly, a co-product

in C is the product in Cop., and vice versa. Provided is first a definition of the specific case

of product and coproduct where the family has specifically two elements (as this is the

easier one to digest on first glance). Then the more general case is defined, which for this

paper’s purposes has its much needed utility.

Definition 2.3.12. Given two objects A and B in a category C, a cartesian bi-product

A�B of A and B in a category C is an object with the following properties.

1. There exists two projection arrows A�B
πAÞÑ A and A�B

πBÞÑ B.

2. Given a collection of arrows Y
fAÞÑ A and Y

fBÞÑ B, there exists a unique arrow Y
f
ÞÑ A�B

such that fπA � fA and fπB � fB.

A cartesian co-bi-product A� B of A and B in C is an object with the following two

properties.

1. There exists two projection arrows A
µAÞÑ A�B and B

µAÞÑ A�B.

2. Given a collection of arrows A
fAÞÑ Y and B

fBÞÑ Y , there exists a unique arrow A�B
f
ÞÑ Y

such that µAf � fA and µBf � fB. 4

Definition 2.3.13. Given a family of objects Xi in a category C under an index set I, a

cartesian product
±
iPI Xi is an object with the following properties.

2. PRELIMINARIES 21

1. For every k P I, there exists a projection arrow
±
iPI Xi

πkÞÑ Xk.

2. Given a collection of arrows Y
fkÞÑ Xk, for each k P I, there exists a unique arrow

Y
f
ÞÑ
±
iPI Xk such that fπk � fk, for each k P I.

A cartesian co-product
²
iPI Xi in C is an object with the following two properties.

1. For every k P I, there exists a projection arrow Xk
µiÞÑ
²
iPI Xi.

2. Given a collection of arrows Xk
fkÞÑ Y , there exists a unique arrow

²
iPI Xi

f
ÞÑ Y such

that µkf � fk, for each k P I. 4

Now is the point to discuss what is very central to this paper’s application of category

theory, and that is so-called “diagrams”.

Definition 2.3.14. A diagram on a category C is a functor F : J �Ñ C, where J is some

category (that one might call the “index category”).

A small diagram is a diagram F : J �Ñ C whose index category (but not necessarily the

codomain category C) J is small. Any diagram whose index category is not small shall be

called a large diagram. 4

Note that it does not matter what exactly the given “index category” is–in a similar way

to an arbitrary index set–so much as it is does its job of taking a collection of objects, and

describing its categorical structure of objects and arrows (in the category). In a similar

way that an index set is used to index a family of elements in a set, an index category is

used to index the objects in the category as well as the arrows between them.

Now here is one more definition before moving on to two more sections of applications.

First is a cone, which is an intuitive geometric description of what is going on because

a cone has a single point with a lot of points (in many cases uncountably many!) that

connect to that point, which is more or less what is going on here. A limit on a diagram we

can describe as essentially the “smallest cone” that exists–the measurement of size being

2. PRELIMINARIES 22

the existance of a unique arrow from single point in one cone to a single point in another

cone, such that the structure of the other cone commutes with that arrow.

Definition 2.3.15. In a category C, a cone pN,ψq in a diagram F : J �Ñ C is an object

N with a family of arrows N
ψXÞÑ X such that for any arrow X

f
ÞÑ Y in J , we have

F pfqψX � ψY .

A cone pL,ϕq in the diagram F is a limit if given any cone pN,ψq, there exists a unique

arrow N
u
ÞÑ L such that for any arrow X

f
ÞÑ Y in J , we find the arrows L

ϕXÞÑ X and

L
ϕYÞÑ Y and arrows N

ψXÞÑ X and N
ψYÞÑ Y that exist by definition of a cone are such that

uϕX � ψX and uϕY � ψY . 4

Remark 2.3.16. It is pretty easy to verify that a limit pL,ϕq in a given diagram is unique

up to object isomorphism. This fact will be very useful in this paper. ♦

2.4 The Free Category

This section derives a concept that is very valuable, and that is the notion of a “free

category”. Now the “free category” has definitely been mentioned before in standard

category theory texts. However, they are not entirely the holy grail “free category” that

this paper seek, and neither are they really a “less general version”, although in some

respects it can be thought that way. Although that is not to say that this other “free

category” is not useful as it definitely is, and is co-integrated heavily with the new free

category

What the free category is intuitively is a category that one can generate “for free”

from a diagram that essentially constructs a category with desirable properties. For ex-

ample, one may want to make into products, or even co-products, while still preserving its

original arrows, without adding arrows that are unneeded, or worse doesn’t have desirable

2. PRELIMINARIES 23

properties. Can it be done? With the free category, we can. However, its existence is not

so straightforward. And that is why it is proven here.

First some additional vocabulary must be presented, which is the notion of categorical

completeness.

Definition 2.4.1. A category C is small-complete if every small diagram F : J �Ñ C has

a limit. 4

While this definition seems rather arbitrary, it is more powerful than it appears. The power

shall be demonstrated this after showing that Cat is a category that meets the “small

complete” criterion. It does so with major ease, actually, since after all it is the category of

ALL (small) categories, with just about every category possible, including categories that

make up the limit of any diagram. Ok, he proof is not that simple, but it’s surprisingly

not that complicated. It requires a bit of an understanding of how to commute arrows,

particularly with co-products. The theorem shall now be presented.

Theorem 2.4.2. Cat is small-complete.

Proof. Let F : J �Ñ Cat be a small diagram. Let V be the set of cones on F . Let

L �
²

pN,ψqPV N be the coproduct category of categories N indexed by the cone pN,ψq

on F . Let uN : N �Ñ L be the co-projection. For each X in J , let ψNX : N �Ñ F pXq be

the component functors in each cone pN,ψq on F . It follows that there exists a unique

mapping φX such that uNφX � ψNX , for every cone pN,ψq.

We shall first prove that pL, φq is a cone on F , and in doing so prove that pL, φq is a limit.

Given a cone pN,ψq, we find uN as the co-projection arrow is unique. Furthermore, we

2. PRELIMINARIES 24

find that given the arrow F pXq
F pfq
ÞÑ F pY q in Cat, we have ψX and ψY such that

ψXF pfq � ψY

uNφXF pfq � uNφY

φXF pfq � φY .

Now the free category in its most general sense can be defined.

Definition 2.4.3. Given a small diagram F : J �Ñ Cat, the the limit category C1 of F ,

which exists by Theorem 2.4.2, we shall call the Free Category generated by the small

diagram F . 4

2.5 The Path Category and the Cartesian Path Category

This paper is one that definitely incorporates a lot of category theory. But in doing so,

there is a healthy dose of graph theory as well. Graph theory meets category is essentially a

vital application of the free category. For more graph theory, one should consult Churchill,

but some brief graph theory definitions are provided here. [8]

Definition 2.5.1. A graph G � xV pGq, EpGqy is a set GpV q called the vertices with a

multiset GpEq � V pGq � V pGq � I, for some index set I, called the edges. The index set

I will often be called EpGq index class.

Given a graph G, a path p � ppE , pV q of order n ¥ 0 in a graph G is a finite sequence

of edges pE � pe1, . . . , enq and a function pV : t0, . . . , nu �Ñ V pGq such that ek � pppk �

1q, ppkq, ikq, for each 1 ¤ k ¤ n, for some index ik in the EpGq index class.

A graph homomorphsim h : G �Ñ C between a graph G and a category C is a mapping

between them in the following way: h consists of two functions hV : V pGq �Ñ ObpCq and

2. PRELIMINARIES 25

hE : EpGq �Ñ ArpCq such that the following condition is satisfied: hEppx, y, iqq � f , for

some arrow hV pxq
f
ÞÑ hV pyq.

A graph homomorphsim h : G1 �Ñ G2 between a graph G1 and another graph G2 is

a mapping between them in the following way: h consists of two functions hV : V pG1q

�Ñ V pG2q and hE : EpG1q �Ñ EpG2q such that the following condition is satisfied:

hEppx, y, i1qq � phV pxq, hV pyq, i2q, for some index i2 in the EpG2q index class.

Any graph homomorphism h (of both graph and categorical varieties) is said to be a

graph isomorphism if hV and hE is bijective. 4

In this definition, one should also note that there is yet another instance of the multiset,

this time with the definition of edges. This is a practical necessity, since more than one

edge may connect a given pair of vertices, in the same way that there may be more than

one arrow in a category.

Speaking of which, graphs can be thought of in a way as its own category, with paths

(as defined earlier) playing the roll as the arrow, with the domain and codomain being the

start and endpoints of the path respectively. This works because this gives the graph struc-

ture identity and composition. For identity, one has the trivial path of p1xq, with an empty

sequence of edges and a function 1x : t0u �Ñ GpV q defined by 1xp0q � x. For composi-

tion, given two paths ppe1, . . . , en1q, p1V q and ppe11, . . . , e
1
n2
q, p2V q such that p1pn1q � p2p0q,

one can form the path ppe1, . . . , en1 , e
1
1, . . . , e

1
n2
q, p1V p2V q, where p1V p2V : t1, . . . , n1 � n2u

defined by p1V p2V pnq � p1pnq for 1 ¤ n ¤ n1 and p1V p2V pnq � p2pnq for n1 ¤ n ¤ n2.

Definition 2.5.2. The path category G1 of a graph G has the object class of vertices

GpV q and arrows the class of all paths GpP q. 4

Defining the category seems easy. But deriving a way to generate functors between two

path categories? Not so much. It would be really nice if one could have a functor C : Grph

�Ñ Cat that can generate a functor that goes from a graph homomorphism between two

2. PRELIMINARIES 26

graphs and a functor in the path categories. Turns out there is such a functor, but in order

to derive this effectively, one needs the free category. It turns out the path category can

be constructed in another way, which is going to be the diagram provided in the following

definition.

Definition 2.5.3. The graph diagram F : J �Ñ Cat of a graph G shall be defined as

follows. F pJq is the category of all categories F pXq for X in J such that there exists

a graph homomorphism ObpF pXqq is surjectively mapped by a graph homomorphism

h : G �Ñ F pXq such that hV surjectively maps GpV q to ObpF pXqq. The arrows F pfq for

f in J are functors F pfq : F pXq �Ñ F pY q such that given two graph homomorphisms

hY : G �Ñ F pXq and hY : G �Ñ F pY q such that phY qV and phY qV are surjective and

F pfq �hX � hY . (in other words F pfqOb. � phXqV � phY qV and F pfqAr. � phXqE � phY qE)

The free category G� generated by a graph G is the free category generated by the

graph diagram F . 4

Lemma 2.5.4. Let h : G �Ñ C be a graph homomorphism between a graph G and a

category C. Let G1 be the path category. Then there exists a functor H : G1 �Ñ C such that

HOb.pxq � hV pxq and HAr.pppeq, pV qq � hEpeq.

Proof. Let H : ArpG1q �Ñ ArpCq be defined by

Hpfq �

$'&
'%

1hV paq, if f � 1a for some vertex a in G,

hEpeq, if f is order 1, where f � ppeq, pV q,

Hpf 1qHpsq, if f � f 1s, where f 1 is a path and s is an order 1 path.

We shall first show H is a well-defined function by induction on the order of arrows in G1.

Note that H is defined on all order zero and one arrows of G1. Given that H is defined on

order n arrows, and f is an order n� 1 arrow, we find f � f 1s for some order n arrow f 1

and some order 1 arrow s, which completes our inductive hypothesis.

2. PRELIMINARIES 27

Next we show that H satisfies the essental conditions for a functor as an arrow mapping.

The condition that for all vertices a in G, there exists some object A in C such that Hp1aq �

1A, is is immediate. Given an arrow f � f1f2, the condition that Hpfq � Hpf1qHpf2q

follows by very straightforward induction on the order of f2.

By construction, we find H is such that HOb.pxq � hV pxq and HAr.pppeq, pV qq � hEpeq.

Lemma 2.5.5. Let G be a graph and G1 be the path category of G, and F : J �Ñ Cat be

the graph diagram. G1 is an object of F pJq.

Proof. Define hV : GpV q �Ñ G1 by hV � idGpV q and hE : GpEq �Ñ G1 by hEpeq �

ppeq, pV q. This forms a graph homomorphism h : G �Ñ G1.

Now for the important theorem.

Theorem 2.5.6. Let G be a graph. The free category G� generated by G is isomorpihic

to the path category G1 of G.

Proof. Let F : J �Ñ Cat be the graph diagram. For every object X in J , choose a graph

homomorphism hX : G �Ñ F pXq with the property that phXqV is surjective. By Lemma

2.5.4, we can choose a functor H : G1 �Ñ C such that HAr.pppeq, pV qq � hEpeq.

We shall first prove that pG1, Hq is a cone. Given an arrow F pXq
F pfq
ÞÑ F pY q in the graph

diagram, we shall prove that F pfq �HX � HY by induction on the order of the path p. If

p is order zero, then p � 1a, for some vertex a, and

HY p1aq � 1hY paq � 1pF pfq�hXqpaq � pF pfq �HXqp1aq.

If p � ppeq, pV q, and is order 1, we find that HY ppq � hY peq � pF pfq � hXqpeq � pF pfq �

HXqppq. If p is order n � 1 and our inductive hypothesis holds for order n, then p � p1s

for some order n path p1 and order 1 path s, hence

HY ppq � HY pp
1qHY psq � pF pfq �HXqpp

1qpF pfq �HXqpsq � pF pfq �HXqppq.

2. PRELIMINARIES 28

We shall now prove that G1 and G� are isomorphic. We find by Lemma 2.5.5 that G1 is an

object in F pJq. Note there is some cone pG�, φq that forms a limit in F . Then there exists

some unique u : G1 �Ñ G� such that φG1 � µ � HG1 . It is easy to verify that HG1 � idG1 .

It follows that φG1 is a left inverse of µ, hence by uniqueness of µ we conclude that µ is a

categorical isomorphism.

While the path category and the free functor has very proven utility, it turns out that

for the purposes of this paper, one needs to construct something fairly more sophisticated

and unfortunately less intuitive. The motivation, however, is simple. It would sometimes

be very nice to construct a category out of a graph that not only is a category but is a

category that has various desired qualities, namely cartesian products, without taking away

any originally desired arrows. Turns out that a bit more creativity with small diagrams

provides exactly this results.

Definition 2.5.7. The cartesian graph diagram F : J �Ñ Cat of a graph G shall be

defined as follows. F pJq is the category of all cartesian categories F pXq for X in J such

that ObpF pXqq is surjectively mapped by a graph homomorphism h : GpV q �Ñ ObpF pXqq.

The arrows F pfq for f in J are cartesian-preserving functors F pfq : F pXq �Ñ F pY q such

that there exsts surjective graph homomorphisms hX : GpV q �Ñ ObpF pXqq and hY : GpV q

�Ñ ObpF pY qq such that F pfq � hX � hY .

The free cartesian category G� generated by a graph G is the free category generated

by the cartesian graph diagram F . 4

This next theorem, like the earlier one, shows what the free cartesian category is.

Essentially, it is the path category except with more arrows–to be precise, exactly the

arrows needed to assure that it is a cartesian category, no more, and no less. The free

cartesian category, as a result, manifests itself in the following way. At this current stage

2. PRELIMINARIES 29

of research, although this is an accepted fact, a proof is currently in the working stage

(and not quite finished at this time) so this will simply be an accepted construct.

Theorem 2.5.8. Let G be a graph. The free cartesian category G� generated by G has

the following characteristics.

1. G� is in the cartesian graph diagram.

2. There exists an embedding functor κ : CpGq �Ñ G�.

3. f is an arrow in G� is an arrow if and only if f is in κpCpGqq or f � f 1ΠiPIfi such

that I is a small index, and f 1 and tfiuiPI are in G�.

Lemma 2.5.9. Let G be a graph and C be a cartesian category. Let H : CpGq �Ñ C be a

functor and G� be the free cartesian category generated by G. Then there exists a cartesian

functor CH : G� �Ñ C.

Also this corollary will be very important throughout this text.

Corollary 2.5.10. Let G1 and G2 be graphs. Let G�
1 be the free categories generated by G1.

Let G��
1 and G��

2 be the free cartesian categories generated by G1 and G2. The following

are equivalent.

1. There exists a graph homomorphism h : G1 �Ñ G��
2 .

2. There exists a functor H : G�
1 �Ñ G��

2 .

3. There exists a cartesian functor CH : G��
1 �Ñ G��

2 .

3
Language and Inference

This Chapter is the center of what this project seeks to do, which is to not only come

up with an adequate definition of “logic”, but also to find a way to appropriately compare

two logics. In logic, it seems like there is not a lot of great ways to compare logic besides

the normal paradigm of classical logic and model theory.

The first section deals with languages and a general analogue that fits most of the

languages that have appeared in logic.

The section section deals with formula vectors, which will suffice to be the objects of a

categorical treatment that will be implemented.

Construction of these formula vector objects set stage for the third section, which very

importantly defines what a logic is and provides a precise definiton of the arrows in this

categorical definition provided. Vital to this is a rigorous definition for inference maps

which overlay the horizontal bar inference scheme.

The fourth section quickly touches on how versatile the inference definition can be by

showing that it can portray hypotheses in the way they ought to be.

3. LANGUAGE AND INFERENCE 31

The fifth section makes a sort of semantics that will prove very helpful in this logic as

they are “functoral semantics”. This will allow us to compare logics and give us a richer

sense of “soundness” and “completeness”.

Finally, for more general notions of semantics, a general notion of “truth tables” will

be created as a class of “valuation mappings” that one can think of as “possible worlds”

as sometimes one thinks of in model theory.

3.1 Languages

Whether one knows it or not, when one reads, writes, and speaks math, one is working

with a language that is not English! Or rather, math is a language that deep to its core has

a very constructive nature, whereas with a literary language such as English one typically

takes the constructive rules one has (such as grammar, sentence, even idiomatic structure)

as they are, not really concerned with analyzing the nature of the language’s construction

itself.

While most mathemeticians do not really go as in depth with the language’s construc-

tion as the typical logician, most concern themselves with the basic structure in what

they are studying. For example, with a group, topology, poset, etc., they concern them-

selves just as much with the inherent structure of what the object is as we are with its

consequences.

This first definition tries to stay true to this strong tradition in mathematics hereby

described–which is often called “rigor”. It also tries to generally define what logicians have

defined for as long as Tarski, which is the notion of “language”: Something mathemeticians

use in every day math.

Definition 3.1.1. A Language L consists most basically of a class of formula called

Form. This class is defined recursively as follows.

3. LANGUAGE AND INFERENCE 32

1. Atomic Formula: A class of atomic formula Atom.

2. Propositional Connectives: conj , for each j P J , where J is a finite index set. Each

propositional connective is a mapping of a finite integer n ¥ 0 of propositions to another

proposition conj : Formn �Ñ Form In other words, if φ1, . . . , φn are all propositions then

conjpφ1, . . . , φnq forms a new proposition that is linguistically distinct from any atomic

prior proposition. 4

As one might infer from this definition, math is hard, but at least the language behind

it is simple. In other words, there are these “atomic” things that is taken at the most

basic level of formula composition and then join formulae together with connectives to

make new formula. And the kicker: ALL of our statements in the language can be broken

down into that atomic formulae joined together by connectives. If only English behaved

that way. Here are some examples that are prevalent in logic.

Example 3.1.2. The most basic example of a language is a propositional language with

Atom being composed of “propositional variables” p1, p2, . . . , pn, . . . and “propositional

constants” K,J with connectives _,^, ,Ñ. This language shall be more rigorously in

Chapter 4, and this paper will work with variants of this sort of language throughout. ♦

Example 3.1.3. One of the most applied sort of language of all logic is called the “first

order predicate language”. This language is more complex in the sense that its Atom class

is constructed from a Term class made up of the following.

1. Variables: A class of variables V ars consisting of one symbol for each natural number

x1, x2, . . . , xn,

2. Constants: A class of constant symbols ck indexed by some arbitrary K. What exactly

(and how many of) these constant symbols there are varies from language to language.

3. Functions: For each n P N, a class of countably many n-ary function symbols fn : Termn

�Ñ Term.

3. LANGUAGE AND INFERENCE 33

The class Atom is then constructed through the usual K,J constants. But our “proposi-

tional variables” are more elaborately n-ary relation symbols Rn (up to countably many

for each n P N), such as � (this one appears quite frequently), which take n terms and

form our atomic formulas. This is to say, Rnpt1, . . . , tnq P Atom, for pt1, . . . , tnq P Term
n.

We then have the usual connectives _,^, ,Ñ, as our last example. But we also have

quantifiers @, D, which are not exactly connectives but can be defined using connectives.

We define Qx : Form �Ñ Form as a connective, for every variable x and a given quantifier

Q. So @xφ and Dxφ would be a formulae, and @x and Dx would be a connectives. ♦

Example 3.1.4. The next language is an expanded version of the “First Order Predicate

Language” called the “Second Order Predicate Language.” There is the class Term1,

which are “first order terms” which contain only the variable and constant classes as

described in the last example. But what really distinguishes this language is that there

are a class of second order terms called Term2, which essentially contains “predicate

symbols” that show up in n-ary form for each n P N. These n-ary predicate symbols

are either variables Xn
1 , X

n
2 , . . . , X

n
m, . . ., for which are indexed by N, or constants Pnk

indexed by an arbitrary Kn. Atomic formulas are not of the form Tnpt1, . . . , tnq, where

Tn P Term2 and pt1, . . . , tnq P Term1. The connectives and quantifiers are still _,^, ,Ñ

,K,J and @, D, except that the quantifiers are now able to quantify variables from Term2

in addition to those from Term1 (in other words @Xn and DXn are connectives for each

n-ary variable). ♦

Example 3.1.5. This one is not prevalent in logic...but maybe it should be. A general

kind of language that we shall be dealing with (a term that I as the writer made up,

but for good reason) is called the “Meta-Language” M. The idea is that when there is a

language and the metalinguistic usage becomes so vast with symbols and rules, such as

with sequents, that it necessitates a language of its own. This language shall be defined

3. LANGUAGE AND INFERENCE 34

more rigorously in Chapter 5, but the basic idea is that formulas FormL in a base language

L become our new class of terms, and our class of formulas FormM become n-ary relation

symbols that operate on FormL. ♦

Keep in mind that within the context of this paper, the main (and most inherently

basic) language dealt with is that of the propositional variety. While predicate languages

(ones that utilize quantifiers) are very important in mathematics (and not to mention

computer science), introducing quantifiers in a reasonably rigorous way involve a level of

technical sophistication that clouds what is really going on with the nature of deductive

systems.

3.2 Formula Vectors

Typically in logic, one makes theorems about a relation between a given set of formulas

and a single formula. That is to say, the relations look something like Γ $ φ or Γ (φ,

where Γ is a set of formulas (of arbitrary cardinality) and φ is a formula. This is a very

unideal relation to work with since the relation is one that relates between two different

domains of objects. Wouldn’t it be nicer if relations like $ and (were binary relations on

a given domain?...especially if such relations happened to have had a transitive property

where Γ1 $ Γ2 and Γ2 $ Γ3 ùñ Γ1 $ Γ3?

Turns out that can be done. This is where the category theory will come in. In a

potential categorical scheme of a given language, which is the plan for this section, this

definition gives the notion of objects in the category that will be worked with. However,

there are two important disclaimers to address as to why this definition was chosen to be

the way it is, which at first definitely appears odd.

The first disclaimer:“formula vectors” were decided instead of “sets of formulas”. This

is because vector objects are better-suited for some of the later definitions than sets ever

3. LANGUAGE AND INFERENCE 35

will be; and while there is trade offs that results from this definition, they are nothing

that does not have a straightforward fix. The second disclaimer follows from the first:

Exclusively finite “formula vectors” were decided on instead of possibly infinite formula

vectors (which could have been done by defining my formula vectors using functional

mappings f : J �Ñ Form, for any index set J of cardinality |J | ¤ |Form|). The decision

was not including infinite vectors because they are a big complication that makes the

system harder to work with, and for less theorecal insight than some of the other things

that could be given atention.

Definition 3.2.1. Given a language L, a L-vector is an ordered pair of L-formulas. The

set of all L-vecters we shall denote as V. Note that in addition to all ordered pairs of order

n ¥ 1,the “empty” vector shall be included with no tuples and call it ~0.

Additionally defined are some operations on V. Suppose Γ � xθ1, . . . , θny and ∆ �

xφ1, . . . , φmy.

First defined is x�,�y on V by xΓ,∆y � xθ1, . . . , θn, φ1, . . . , φmy. An anologous more

general definition will be given for x�, . . . ,�ylooooomooooon
n times

.

Then defined the projection mapping πi on V for each i ¥ 1, provided that a given

vector has an i-th tuple. This is to say that πipΓq � θi, for every 1 ¤ i ¤ n, but is

undefined for all i ¡ n.

Next, defined is the order of a given L-vector as the number of tuples it contains, and

notate it |Γ|, that is to say |Γ| � n.

Finally defined is the binary relation ¨ on V, so then Γ ¨ ∆ if and only if for every

1 ¤ i ¤ |Γ|, there is some 1 ¤ j ¤ |∆| such that πipΓq � πjp∆q. 4

3. LANGUAGE AND INFERENCE 36

3.3 Inferences and Proofs

Out of everything in this whole paper, this specific section out of all sections of all is

perhaps the MOST IMPORTANT out of everything written. This is because the rest of

this paper cannot do what it has done without first going back and placing sufficiently

general definitions that can be rigorously worked with. Once that has been accomplished,

the nature of deductions, the nature of metamath, becomes arithmatic–and that is just

beautiful!

First, here is a definition of an “inference rule” that is pretty standard for the most

part.

Definition 3.3.1. In a language L, an Inference Rule is an ordered pair xΓ, φy, where

Γ is an L-formula vector and φ is an L-formula. 4

Now here is something that is not really standard at all. When dealing with inference

rules, many mathematical texts simply take it for granted that we can take a collection of

these “inference rules” and make an algorithmic “horizontal bar style”’ equation that is

supposed to make sense. But in order to work meaningfully with this “horizontal bar style”

thing, one should, like anything, define it rigorously, and this is done here as standard as

a functional mapping.

Definition 3.3.2. An Inference Map I is a family of inference rules txΓ, φΓyuΓPΩ indexed

by some Ω � V. In other words, it corresponds to a function I : Ω �Ñ V. When defining

inference maps, very standard horizontal bar notation shall be used. So IpΓq � ∆ shall be

written as

π1pΓq π2pΓq . . . π|Γ|pΓq
I,

∆

3. LANGUAGE AND INFERENCE 37

although it will be very convenient to not just write the projections spaced, but simply

Γ
I.

∆

4

Next we define a logic, which is something of a new abstract concept, inspired by the

“set with structure” motif. Except what a logic is, and what it really always has been,

is a language with additional inference structure that allow one to make deductions. The

structure will be a set of inference maps that will establish the framework for how the logi

to work.

Definition 3.3.3. A Logic L is an ordered pair xL,T y, where L is a language and T

is a finite family of inference rules. 4

Now, with the inference rules, it’s crucial to generate a deductive system that behaves

categorically. By defining inference maps, essentially half the battle has been won, which

is to have our “one step proofs”, by going from the inference input to the inference output.

But now one must be able to 1. make proofs that combine our “one step proofs” and 2.

find a way to keep our proof closed under products in the way that one would want. This

is where “free cartesian categories”–which was focused in chapter two towards deriving–

come in very handy. This is because free categories essentially say that the category that

one “wants” to have exists, as one shall witness from the following definition.

Definition 3.3.4. A language L, an Logic is an ordered pair xΓ,∆y, where Γ,∆ are

L-formula vectors. The Deductive Graph GpL q generated by L is defined as follows:

Vertices: All formula vectors in L.

Edges: An edge xΓ,∆y between two formula vectors Γ and ∆ exist if and only if

1. There is a projection map πi such that Γ
πiÞÑ ∆. In other words, if Γ � xφ1, . . . , φny,

then ∆ � φi, for some 1 ¤ i ¤ n. These edges shall be called projection edges

3. LANGUAGE AND INFERENCE 38

2. There is an inference map I P T such that

Γ
I.

∆

These edges shall be called inference edges.

Let the Deductive Category CpL q be the free cartesian category generated by GpL q.

4

Remark 3.3.5. If there exists a path between two formula vectors Γ and ∆ in a given

logic we shall metalinguistically write Γ " ∆...or Γ $ ∆, Γ (∆, and other symbols

corresponding to standard notation in the particular logic with which we are working. ♦

Now here is proof that this category has desired properties.

Lemma 3.3.6. Let Γ,∆1,∆2 be formula vectors in a logic L . Suppose Γ " ∆1 and

∆1 " ∆2. Then Γ " ∆2.

Proof. By hypothesis there exists two arrows Γ
f
ÞÑ ∆1 and ∆1

g
ÞÑ ∆2 in CpL q, so our

conclusion follows from existance of the arrow Γ
gf
ÞÑ ∆2.

Lemma 3.3.7. Let Γ,∆ be formula vectors in L . If Γ " πip∆q for each 1 ¤ i ¤ |∆|,

then Γ " ∆.

Proof. Follows from CpL q being a cartesian category.

Proposition 3.3.8. Let Γ1,Γ2 be formula vectors in L . If Γ1 ¨ Γ2, then Γ2 " Γ1.

Proof. Suppose Γ1 ¨ Γ2. Then by definition, we have Γ2 " πipΓ1q, for each 1 ¤ i ¤ |Γ1|.

It follows from Lemma 2.3.7 that Γ2 " Γ1.

Corollary 3.3.9. Let Γ1,Γ2,∆ be formula vectors in L . If Γ1 " ∆ and Γ1 ¨ Γ2, then

Γ2 " ∆.

3. LANGUAGE AND INFERENCE 39

It shall moreover be useful to define “logical equivalence” in the category CCpL q, since

categorically it is possible to run into scenarios where both Γ " ∆ and ∆ " Γ. This holds

a lot of theoretical significance since being able to deduce one thing from another and

vice versa captures the essence of “logical equivalence”–similar to what has been captured

before in a language with something like φØ ϕ. But this new convention can do something

more general metalinguistically.

Definition 3.3.10. Let Γ and ∆ be formula vectors in a given logic L � xL,T y. If

Γ " ∆ and ∆ " Γ, we shall call these two vectors Logically Equivalent and denote this

quality with the notation Γ !" ∆ (or alternatively Γ %$ ∆, Γ)(∆, etc.).

Furthermore, the definition of derivability shall be extended in terms of inference maps.

Sn inference map I : Ω �Ñ V shall be said to be Derivable in a given logic L , and write

L " I if Γ " IpΓq, for every Γ P Ω. 4

It is firstly important to understand !" is an equivalence relation.

Lemma 3.3.11. In a given logic L , !" is an equivalence relation.

Proof. Reflexivity follows from Lemma 3.3.8 since Γ ¨ Γ, for every formula vector Γ.

Symmetry follows by definition. Transitivity follows directly from Lemma 3.3.6.

One should ask themselves what one would “want” to be logically equivalent. What should

be logically eqivalent, first off, is when two vectors of the same order contain the same

tuples but are not necessarily the same order. Actually...more generally want two formula

vectors Γ,∆ such that Γ ¨ ∆ and ∆ ¨ Γ to be logically equivalent, which follows from

two uses of Proposition 2.3.7. The following corollaries shall be presented to make the

point clear, but with their proofs omitted.

Corollary 3.3.12. Let Γ,∆ be formula vectors such that Γ ¨ ∆ and ∆ ¨ Γ. Then

Γ !" ∆.

3. LANGUAGE AND INFERENCE 40

Corollary 3.3.13. Let xφ1, . . . , φny be a formula vector in a logic L and let σ be a

permutation on n. Then xφ1, . . . , φny !" xφσp1q, . . . , φσpnqy.

Definition 3.3.14. We shall define Basic Arrows in a given logic L as follows:

1. If Γ,∆ are formula vectors such that ∆ ¨ Γ, we shall call the unique arrow–that exists

by virtue of projection edges existing from Γ to πip∆q, for each 1 ¤ i ¤ |∆|–a Projection

Arrow

2. If Γ,∆ are formula vectors such that ∆ �¨ Γ and there exists an inference edge pΓ,∆q,

then the arrow Γ
P
ÞÑ ∆ mapped by pΓ,∆q is called an Inference Arrow

Any arrow that is not an basic arrow is called a composite arrow. We shall call any arrow

between Γ and ∆ generated by a family of arrows from Γ to πip∆q, for each 1 ¤ i ¤ |∆|,

a product arrow.

Finally, the order of an arrow will be defined recursively as follows: Given a single-product

composite arrow, the order is defined as the number of inference arrows used to compose it.

Given a product arrow, take the maximum order of the projection arrows used to compose

it. 4

Do note that the nature of the free category allows this definition to work properly.

3.4 Natural Deduction and Hypotheses

While my definition for inference rules is a very rigorous definition that embodies

essentially what they are, up until this point there has not been a rigorous treatment

of hypotheses...such as the sort of chargin and discharging of hypotheses that one would

frequently see in classical/intuitionistic propositional/predicate logic, such as

rφs
�
�
�
ϕ

Ñ I
φÑ ϕ

In this section, the much needed answer is provided.

3. LANGUAGE AND INFERENCE 41

The answer is doing what will be done a lot in this paper, which is to be clever with the

domain of the inference map. The inference map will map all inference vectors such that a

hypothesized vector incorporated with theoriginal vector reaches a given conclusion vector.

The input of the inference map, is then defined into components that are the hypothesis

component and conclusion component. This gets us something rigorous that essentially

makes hypotheses work the way one would like.

Definition 3.4.1. A hypothesis inference map in a given language L is an inference

map H : ΩΓ �Ñ V, where ΩΓ � V such that for each ∆ P ΩΓ, we have ∆ :� xΦ,∆1y such

that xΓ,Φy " ∆1. Γ shall be called the hypothesis componenet of ∆ and ∆1 shall be

called the conclusion component. Such an inference map is written

rΓs
�
�
�

∆1

H,
Hp∆q

where Γ and ∆1 are the hypothesis and conclusion components respectively. 4

More generally, there might be more than one hypothesis and conclusion component.

For instance,

φ_ ϕ

rφs
�
�
�
θ

rϕs
�
�
�
θ
_E,

θ

in the usual propositional logic. To deal with that, there inference map could instead

compose of as many vectors of hypothesis and conclusion components as needed. This is

done in the next definition

Definition 3.4.2. Extending the earlier definition, a hypothesis inference map H : ΩΓ

�Ñ V in a given language L more generally is defined as follows. Γ :� xΓ1, . . . ,Γny and

∆ :� xΦ,∆1
1, . . . ,∆

1
ny such that for every 1 ¤ i ¤ n, we have xΓi,Φy " ∆1

i. Each Γi and ∆1
i

3. LANGUAGE AND INFERENCE 42

are called hypothesis and conclusion components for each 1 ¤ i ¤ n, and shall be written

rΓ1s
�
�
�

∆1
1 . . .

rΓns
�
�
�

∆1
n
H,

Hp∆q

Where Γi and ∆1
i are hypothesis and conclusion components respectively for each 1 ¤ i ¤

n. 4

3.5 Functoral Semantics

This section is where the law of the land is laid down as far as “semantics” go. Typically

in logic (as it is presented in a typical introductory course), one thinks of semantics as

a disdinct notion from that of so-called “natural deduction” and “proof theory”. This

paper is of the opinion that this approach misses the point at what semantics intends to

do, which is capture the meaning and interpretation of a given system. Really the way

“semantics” as one has seen, i.e. truth tables and models, captures the way a given system

works through entailment, is really in and of itself a kind of logical deduction.

What is meant by this? This means that the deductive category we’ve been using

captures the essence of model theory AS WELL AS proof theory. There are objects that

are generated by the language, and there are arrows that are brought about by “truth

tables” which embody the most exquisite of inference rules in a way that shall soon be

explored. That is all there really is to it.

In this perspective, so-called “soundness” and “completeness” shed a new, more com-

plete, light. As a result of this categorical treatment, one can now talk about soundness

and completeness as a relation between two different “logics”, as opposed to one between

“truth” and “provability”. And yes, truth table/interpretation entailment in a given lan-

guage IS a logic, now, different from so-called “propositional logic” or “propositional cal-

culus”.

3. LANGUAGE AND INFERENCE 43

Now what is important with soundness from one logics L1 to L2 is two things: 1. That

every derivation arrow in CpL1q can be expressed as a derivation arrow in CpL2q via a

functor F 2. The image of the functor F captures essentially all of the logical system of

CpL2q. To clarify what is meant by 2, here is what one would not want for a definition of

soundness: Simply having a more existance of functors between the two logics. The would

make logics sound between each other that really shouldn’t be, via a fixed functor that

just sends a bunch of arrows to an identity arrow.

One way to fix this problem is to require that F is surjective, which definitely fixes up

a lot. However, this seems like too strong of a criteria. What about two logics L1 and L2

such that the language of L1 is a sublanguage of L2. It is certainly the case, for example,

(and something that will be derived in the next chapter) that all of classical propositional

logic can be derived using the connectives Ñ,K. One states this because every statement

in propositional logic is logically equivalent to some formula that is formed only using

Ñ,K.

It seems like the remedy is for the criteria to be existence of a surjective functor F

between an equivalence class category CpL1q{ !" and CpL2q{ C B, where " and B

denotes derivability in L1 and L2 respectively, and for this paper that in the end will be

the convention that shall be adapted. However, the main hurdle to this definition is that

a “quotient category” CpL1q{ !" in the desired sense has not been defined yet. What

is desired is a functor Q that maps objects to their equivalence classes in the sense that

the only thing that changes about the arrow structure is that the domain and codomain

become the analogous equivalence class. In other words, each arrow is injectively mapped

by Q even though the objects are surjectively mapped by Q to the quotient classes.

The question is if such an arrow exists. Turns out it does, but a few specific tools need

to be defined before proving such a notion.

3. LANGUAGE AND INFERENCE 44

Definition 3.5.1. Let G be a graph. Let � be an equivalence relation on V . The quotient

graph G{ � of G with respect to � is a graph such that G{ � pV q is the quotient set

GpV q{ � and two equivalence classes rus, rvs and an index i of the GpEq index set forms

an edge prus, rvs, iq in G{ � pEq if and only if pu, v, iq forms an edge in GpEq.

The forgetful functor U : Cat �Ñ Grph is the functor defined by UpCq UpHq
ÞÑ UpDq being

a graph homomorphism between two graphs defined in the following way.

1. For any category C, UOb.pCq is the graph with the vertices as ObpCq and edges pa, b, fq

indexed by the arrows a
f
ÞÑ b in C.

2. For any functor F : C �Ñ D, UpF q : UpCq �Ñ UpDq is the graph homomorism

(easy to verify it as such) Such that UpF qV paq � FOb.paq and UpF qEppa, b, fqq �

pF paq, F pbq, F pfqq.

It is easy to verify that U is a functor. A treatment of the forgetful functor can be found

in Mac Lane. [7] 4

Now the existance of a desired functor Q can be recognized.

Lemma 3.5.2. Given any logic L , there exists a Q : CpL q �Ñ D, where D is a category,

such that.

1. QpΓq � rΓs, where rΓs is the Γ equivalence class of the relation !".

2. Q is a cartesian functor.

3. Q maps arrows injectively.

Proof. Let L be a logic. Let G � UpCpL qq, where U : Cat �Ñ Grph is the forgetful

functor. Let G{ !" be the quotient graph generated by the relation !". Let q : G �Ñ

G{ !" be the quotient homomorphism from G to G{ !". By design we find qE is injective.

Let D � CpGq, where CC : Grph �Ñ Cat is the free cartesian category functor. Define

hE : G �Ñ CpGq by hEpeq � fe, where fe is the order 1 path corresponding to the edge

3. LANGUAGE AND INFERENCE 45

e. It is easy to verify that hEqE � phqqE is injective, hence the functor Q : CpL q �Ñ D

generated by hq exists that follows conditions 1.-3. as advertised.

Now soundness can be defined as desirable.

Definition 3.5.3. Given any logic L , the quotient deductive category is the image

QpCpL qq of the functor Q as it is described in Lemma 3.5.1. This category shall be

written CpL q{ !". Moreover, Q shall be called quotient functor of the category CpL q.

Let L1 and L2 be two logics. L1 is said to be sound on L2 if there exists a cartesian

functor F � : CpL1q{ !"�Ñ CpL2q{ !" such that F �
Ob. is surjective. L1 is said to be

complete on L2 if L2 is sound on L1.

Two logics L1 and L2 are said to be deduction class equivilent if there exists a

cartesian functor F � : CpL1q{ !"�Ñ CpL2q{CB such that F �
Ob. is bijective. 4

The first thing to notice about this definition is that there is this notion of deduction

class equivalence, which is really classifying two logics as “essentially the same”. This

notion of “essentially the same” is inspired by why one views propositional classical logic

defined only in a language with the Ñ,K connectives as the same logic as one defined

with more connectives: And that is because there is a one-to-one correspondence between

derivability inference maps. Also, one might notice that completeness has been defined

here as well, which is really just soundness in the opposite direction. Once one sees some

of the applications of this definition, this link will be very evident.

To get into some of the applications of this definition of soundness, it will help to define

some special cases where the criteria is met. These next few lemmas will derive some of

these conditions. The first is simply finding the functor F between two logic categories

CpL1q and CpL2q that is surjectively maps the object class. It suffices to assume that

a graph homomorphism exists since this paper has shown that constructing the two is

equivalent by Corollary 2.5.11.

3. LANGUAGE AND INFERENCE 46

Lemma 3.5.4. Let L1 and L2 be two logics on the same language. Let " and B be the

derivability relations for L1 and L2 respectively. If there exists a graph homomorphism

h : GpL1q �Ñ CpL2q such that hV is surjective, then L1 is sound on L2.

Proof. Define H� : CpL1q{ !"�Ñ CpL2q{CB such that H�prf sq � rHpfqs. It is easy to

verify that H� is a well-defined functor. Given r∆s in CpL2q{CB, we find there is some

Γ in CpL1q such that HpΓq � ∆, hence r∆s � rHpΓqs � H�prΓsq.

Now an even more special case will be derived that will bring lots of utility these next few

chapters.

Proposition 3.5.5. Let L1 and L2 be two logics on the same language L. Let " and B

be the derivability relations for L1 and L2 respectively. If there exists a graph homomor-

phism h : GpL1q �Ñ CpL2q such that hV pΓq � Γ, then L1 is sound on L2. Moreover, the

following are eqivalent.

1. There exists a graph homomorphism h : GpL1q �Ñ CpL2q such that hV pΓq � Γ

2. Γ " ∆ implies ΓB∆.

3. The inference maps of L1 are all derivable by L2.

Proof. Soundness follows directly from Lemma 3.5.4. For the next part, we shall do

1. ùñ 2. ùñ 3. ùñ 1.

1. ùñ 2. There exists a graph homomorphism h : GpL1q �Ñ CpL2q such that hV pΓq � Γ.

Then there exists a functor H : CpL1q �Ñ CpL2q such that HpΓq � Γ. Our conclusion

follows.

2. ùñ 3. Suppose Γ " ∆ implies Γ B∆. Given an inference map I in L1, we find that

ΓB IpΓq, since Γ " IpΓq.

3. ùñ 1. Suppose the inference maps of L1 are derivable by L2. For every inference

edge pΓ,∆, iq in GpL1q, we find ΓB∆. Then for every inference edge e � pΓ,∆, iq, choose

3. LANGUAGE AND INFERENCE 47

some Γ
fe
ÞÑ ∆ in CpL2q. Define hE : EpGpL1qq �Ñ ArpCpL2qq by hEpeq � fe. This forms

the graph homomorphism h : GpL1q �Ñ CpL2q as advertised.

3.6 Valuation Logic

Now, we bring our attention to the next concept of this section, and that is what I shall

call “valuation logic”. Essentially, it is a generalized notion of “truth tables” , or more

rigorously, “model theory” of first-order/propositional languages.

Definition 3.6.1. Let L be a language. A Valuation Class on L (which we shall also

call a L-Valuation Class), is a class V al of “valuation mappings” v : Form �Ñ t0, 1u.

Moreover, for any L-valuation class V al, the Valuation Inference Map V generated by

V al is the inference map such that

Γ
V

∆
,

if and only if vpπipΓqq � 1, for all v P V al and 1 ¤ i ¤ |Γ|, implies vpπjp∆qq � 1, for all

1 ¤ j ¤ |∆|.

Note that LV � xL, tV uy forms a logic, which we shall call a Valuation Logic, or a

V -Logic when being specific to the particular semantic inference map V . 4

As seen from the definition, valuation is defined as a logic, but just because it’s layed it

out “proof theoretically” does not mean there is a lot of proving that is done on this system.

Valuation logics still retain their model theoretic structure and hence their applications.

For the “deduction” to determine whether Γ (V ∆ is often to declare “∆ is always true in

LV .” In fact, the following proposition says one can find Γ (V ∆ if and only if there exists

an inference edge. This result corresponds valuation mappings as they are traditionally

done, since (V is a metalinguistic relation that holds if and only if the right side is true for

all possible valuations that the left side is true. This principle holds in this more general

definition.

3. LANGUAGE AND INFERENCE 48

Proposition 3.6.2. Γ (V ∆ if and only if there exists an inference edge pΓ,∆, iq in

GpLV q generated by V .

Proof. pΓ,∆, iq in GpLV q implying Γ (V ∆ is trivial. Conversely suppose Γ (V ∆. Then

there exists some arrow Γ
f
ÞÑ ∆. We shall prove this by structural induction by arrows in

CpLV q that the domain and codomain corresponds to an edge. In the base case that f

is an order 1 path, if f is an inference edge, we are done. If f is a projection edge, then

∆ ¨ Γ, so vpπkpΓqq � 1, for each 1 ¤ k ¤ |Γ|, implies vpπkp∆qq � 1, for each 1 ¤ k ¤ |∆|.

In the first inductive step where f � f 1s for an order n path Γ
f 1

ÞÑ Γ1 and an order

1 path Γ1 s
ÞÑ ∆. We find vpπkpΓqq � 1, for all valuations v and 1 ¤ k ¤ |Γ| implies

vpπkpΓ
1qq � 1, for all valuations v and 1 ¤ k ¤ |Γ1|, which further implies vpπkp∆jqq � 1,

for all 1 ¤ k ¤ |∆j | and for all 1 ¤ j ¤ n.

In the inductive step, suppose f � f 1pΠn
j�1fkq such that the inductive hypothesis applies to

Γ
f 1

ÞÑ Γ1 and Γ
fj
ÞÑ ∆j for each 1 ¤ j ¤ n. By inductive hypothesis, we find vpπkpΓqq � 1, for

all valuations v and 1 ¤ k ¤ |Γ| implies vpπkpΓ
1qq � 1, for all valuations v and 1 ¤ k ¤ |Γ1|,

which further implies vpπkp∆jqq � 1, for all 1 ¤ k ¤ |∆j | and for all 1 ¤ j ¤ n. Since

∆ � x∆1, . . . ,∆ny, we conclude vpπkpΓqq � 1, for all valuations v and 1 ¤ k ¤ |Γ| implies

vpπkp∆qq � 1, for all valuations v and 1 ¤ k ¤ |∆|.

Now, it’s a good idea to look at some examples!

Example 3.6.3. Let us look at the complete semantic for propositional classic logic. This

can be straightforwardly defined as the class of valuation maps V such that each v P V

has the following two properties: 1. vpKq � 0. 2. vpφÑ ϕq � maxt1� vpφq, vpϕqu. ♦

Example 3.6.4. Classic Predicate First Order Logic is a little more complicated, since

generally we look at semantics in terms of so-called “interpretations” of “language-

structures” (often notated A for a given language structure and LpAq for the interpre-

tation) in place of valuation mappings. But that doesn’t mean we can be clever with our

3. LANGUAGE AND INFERENCE 49

valuation mappings and not capture the semantics of predicate logic. Each interpretation

of a given language structure LpAq valuation map can be regarded as a valuation map

vLpAq : Prop �Ñ t0, 1u that works given a condition associated with the variable assign-

ment of LpAq. So if φ is atomic, then vLpAqpφq � 1 if and only if φLpAq P R
n
A for some

n-ary relation (including “�”). With connectives, we have the propositional rules stated

in Example 2.5.6 plus the quantifier rule: vp@xφq � mintvpφrx|asq | a P |A|u, where |A|

is the set of constant symbols corresponding to A. ♦

4
Classical Propositional Logic

This chapter shall explore how this paper’s rigorous treatment of logic in the previous

Chapter works on one of the more basic and popular form of logics: Classic propositional

logic. Note that with classical propositional logic, there are a great many ways to define

the language and axiomize the system. As any mathematician knows, there are the con-

nectives ^,_,Ñ,Ø, ,K,J. As any logic-savy mathematician definitely knows, we can

form classical propositional logic from a language consisting of two connectives/constants

and a few inference maps. All the other connectives we can derive in terms of those two.

For example, a language with propositional variables plus the connectives _ and , we are

able to talk about ^ as φ^ϕ :� p φ_ ϕq, Ñ as φÑ ϕ :� φ_ϕ, K as K:� p1^ p1,

for some atomic proposition p1, and so on.

In this paper, the minimal approach shall be used by defining the language in terms

of the least amount of connectives, since it leads to much more efficient proofs with less

redundant cases. But instead of _, , it will be most convenient to use Ñ,K for the

simple reason that it is most eloquent in defining this system, especially bearing in mind

that intuitionistic propositional logic is around the corner in the next chapter. The way

4. CLASSICAL PROPOSITIONAL LOGIC 51

propositional logic is derived, here, ought to be as analogous to intuitionistic as possible,

not only to save tedious derivations but to make clear what exactly is changing between

the two systems.

The sections of the chapter will break down as follows. In the first section, the deductive

system shall be defined and derive some of its properties will be derived, both the usual

ones but also some new ones that are unique this paper’s categorical approach. The second

section shall show that the minimal approach to the logic results in a “deduction class

equivalent” logic to a similar sort of logic that defines all its connectives initially. The third

section shall define the valuation logic (as it is usually done) that this paper claims classical

propositional logic is sound and complete on. Finally, the fourth section shall quickly verify

the result classical propositional logic is sound and complete on this valuation logic.

4.1 The Classical Language and Deductive System

Definition 4.1.1. The Classical Propositional Language denoted LC is defined as

follows

1. The class Atom. contains an element pi, called a Propositional Variable, for each

i ¥ 1.

2. The connectives in LC include the constant K and the binary connective Ñ.

Furthermore, we shall further define the connectives ,_,^,Ø,J as shorthand notation

for the following:

1. φ :� φÑK

2. φ_ ϕ :� φÑ ϕ,

3. φ^ ϕ :� p φ_ ϕq,

4. φØ ϕ :� pφÑ ϕq ^ pϕÑ φq,

5. J :� K. 4

4. CLASSICAL PROPOSITIONAL LOGIC 52

before defining exact logic on LC , this next definition will be provided as a reference

to what some prominent inference maps of note in LC .

Definition 4.1.2. These inference maps on LC will be named as follows:

1.

rφs
�
�
�
ϕ

Ñ I,
φÑ ϕ

φ φÑ ϕ
Ñ E,

ϕ

2.

rφs
�
�
�
K
 I,

 φ

φ φ
 E,

ϕ

3.

φ
_I1,

φ_ ϕ

ϕ
_I2,

φ_ ϕ φ_ ϕ

rφs
�
�
�
θ

rϕs
�
�
�
θ
_E,

θ

4.

φ ϕ
^I,

φ^ ϕ

φ^ ϕ
^E1,

φ

φ^ ϕ
^E2,

ϕ

5.

K
K,

φ
J,

J

6.

φÑ ϕ ϕÑ φ
Ø I,

φØ ϕ

φØ ϕ
Ø E1,

φÑ ϕ

φØ ϕ
Ø E2,

ϕÑ φ

7.

 φ
RAA,

φ
LEM.

φ_ φ

4

4. CLASSICAL PROPOSITIONAL LOGIC 53

Now we are not quite up to the point where we define classical propositional logic yet;

the definition shall first be motivated–and the careful way this language was defined–to

show that contrary to popular belief, one is not obligated to have the law of excluded

middle LEM or for that matter reducto ad absurdum RAA as an inference maps for

the logic, for the language is set up such that Ñ I,Ñ E alone can derive LEM , and

Ñ I,Ñ E,_E,K can derive RAA. In fact, the proposition below tells even more: The

logic xLC , tÑ I,Ñ E,_E,Kuy is sound and complete on xLC , tÑ I,Ñ E,RAAuy.

Proposition 4.1.3. 1. For the logic L � xLC , tÑ I,Ñ Euy, we find that LEM is

derivable.

2. The logic LC � xLC , tÑ I,Ñ E,_E,Kuy is sound and complete with the logic L 1 �

xLC , tÑ I,Ñ E,RAAuy.

Proof. 1. Note that φ_ φ :� φÑ φ. We find

r φs1

_I1.
φ_ φ

2. It shall suffice to prove that RAA is derivable by LC and K and _E is derivable by

L 1. The derivations go as follows:

RAA in LC .

LEM
φ_ φ rφs1

r φs1 φ
_E

K
K

φ
_E1.

φ

4. CLASSICAL PROPOSITIONAL LOGIC 54

_E in L 1.

rφs1
�
�
�
θ r θs2

Ñ E
K
Ñ I1

 φ φ_ ϕ
Ñ E

ϕ
�
�
�
θ r θs2

Ñ E
K

Ñ I2

 θ
RAA.

θ

K in L 1.

K
Ñ I1

 φ
RAA.

φ

Since the proof of this proposition shows that all inference maps of L are derivable in LC

and vice versa, Proposition 3.5.5 deduces the following corollary.

Corollary 4.1.4. Let L and LC (as they are defined in Proposition 4.1.3) are deduc-

tion class equivalent.

It has been seen before that the logic xLC , tÑ I,Ñ E,RAAuy is sufficient for classical

propositional logic; however, xLC , tÑ I,Ñ E,_E,Kuy is just as sufficient a choice...apart

from the fact that the latter has more inference maps. But this one time, efficiency and

conciseness shall be sacrificed for a method of proof that will be more analogous to intu-

itionistic propositional logic down the road.

Definition 4.1.5. The logic LC � xLC , tÑ I,Ñ E,_E,Kuy shall be called Classical

Propositional Logic. 4

Now for the big proposition showing that the other inference maps of note can be derived.

4. CLASSICAL PROPOSITIONAL LOGIC 55

Proposition 4.1.6. The inference rules I, E, _I1, _I2, ^I, ^E1, ^E2, J, Ø I,

Ø E1, Ø E2 are all derivable in LC .

Proof. Note throughout the proof that φ :� φÑK.

 I. Since φ :� φÑK, this is just a special case of Ñ I

 E.

φ φ
Ñ E,

K
K .

ϕ

I1. Note that φ ϕ :� pφÑKq Ñ ϕ. We find

φ r φs1

Ñ E
K
K

ϕ
Ñ I1.

φ_ ϕ

_I2.

ϕ
Ñ I1.

φ_ ϕ

^I. Remember that φ^ ϕ :� p φ_ ϕq. By _E proved in part 2., we find

r φ_ ϕs2

φ r φs1

Ñ E
K

ϕ r ϕs1

Ñ E
K
_E1

K
Ñ I2.

φ^ ϕ

^E1. By _I1 proved in part 1., we find

r φs1

_I1
 φ_ ϕ φ^ ϕ

Ñ E
K

Ñ I1

 φ
RAA.

φ

^E2. is similar except using _I2, also proved in part 1., in place of _I1.

4. CLASSICAL PROPOSITIONAL LOGIC 56

J. Remember that J :� K. We find

rKs1

Ñ I1.
J

Ø I. Since φØ ϕ :� pφÑ ϕq ^ pϕÑ φq, this is just a special case of ^I.

Ø E1. Just a special case of ^E1.

Ø E2. Just a special case of ^E2.

There is an important question looking at the logical structure of LC . There is a

symbolic way Ñ of expressing logical implication $ in the language. That is to say that

if we find $ φ Ñ ϕ, that is the same as finding φ $ ϕ. That is nothing new. But with

the metalinguistic symbol %$ of logical equivalence between formula vectors, it should be

that %$ behaves nicely with Ø, which is shown in this corollary.

Corollary 4.1.7. Let φ, ϕ be LC-formulas.

1. φ $ ϕ if and only if $ φÑ ϕ,

2. φ %$ ϕ if and only if $ φØ ϕ.

Proof. For part 1, we have φ $ ϕ ùñ $ φÑ ϕ from Ñ I and the converse from Ñ E.

For part 2, remember that φØ ϕ :� pφÑ ϕq ^ pϕÑ φq. If φ %$ ϕ, then by part 1., we

have $ φÑ ϕ, and $ ϕÑ φ, so

φÑ ϕ ϕÑ φ
^I.

φØ ϕ

Conversely, if $ φ Ø ϕ, we find by ^E1 and ^E2 that $ φ Ñ ϕ and $ ϕ Ñ φ. Part 1.

completes our proof.

4.2 Soundness and Completeness with Ordinary Classical
Propositional Logic

Definition 4.2.1. The Ordinary Propositional Language denoted LO is defined as

follows

4. CLASSICAL PROPOSITIONAL LOGIC 57

1. The class Atom. contains an element pi, called a Propositional Variable, for each

i ¥ 1.

2. The connectives in LO include the constants K,J, the unary connective , and the

binary connectives Ñ,^,_.

Ordinary classical propositional logic LCO shall be defined as the logic under the

language LO with all the inference maps Definition 4.1.2. 4

Lemma 4.2.2.

1. φ %$ φÑK,

2. φ_ ϕ %$ φÑ ϕ,

3. φ^ ϕ %$ p φ_ ϕq,

4. J %$ K,

5. φØ ϕ %$ pφÑ ϕq ^ pϕÑ φq

Proof. Note that Corollary 4.1.7 holds in LCO since it contains the same rules, so to

prove anything of the form ϕ %$ φ, it shall suffice to prove $ ϕØ φ.

1.

rφs1 r φs2

 E,
K

Ñ I1

φÑK
Ñ I2

 φÑ pφÑKq

rφs3 rφÑKs4

Ñ E
K
 I3

 φ
Ñ I4

pφÑKq Ñ φ
Ø I.

 φØ pφÑKq

2.

φ_ ϕ

rφs3 r φs1

Ñ I1

 φÑ ϕ

rϕs3

Ñ I2

 φÑ ϕ
_E3,

 φÑ ϕ

so we find that φ_ ϕ $ φÑ ϕ.

LEM
φ_ φ

rφs1

_I1
φ_ ϕ

r φs1 φÑ ϕ
Ñ E

ϕ
_I2

φ_ ϕ
_E1,

φ_ ϕ

4. CLASSICAL PROPOSITIONAL LOGIC 58

so we find that φÑ ϕ $ φ_ ϕ.

3.

r φ_ ϕs2

r φs1

rφ^ ϕs3

^E1
φ
 E

K

r ϕs1

φ^ ϕ
^E2

ϕ
 E

K
_E3

K
 I2

 p φ_ ϕq

so φ^ ϕ $ p φ_ ϕq.

LEM
φ_ φ

rφs2 rϕs1

^I
φ^ ϕ r pφ^ ϕqs3

 E
K
 I1

 ϕ
_I2

 φ_ ϕ

r φs2

_I1
 φ_ ϕ

 E
K

 I3,
φ^ ϕ

so p φ_ ϕq $ φ^ ϕ.

4.

J
J

Ñ I1

 KÑ J

rKs2

Ñ I3

J Ñ K
Ø I,

J Ø K

5.

φØ ϕ
Ø E1

φÑ ϕ

φØ ϕ
^I,

pφÑ ϕq ^ pϕÑ φq

so φØ ϕ $ pφÑ ϕq ^ pϕÑ φq.

pφÑ ϕq ^ pϕÑ φq
^E1

φÑ ϕ

pφÑ ϕq ^ pϕÑ φq
^E2

ϕÑ φ
Ø I,

φØ ϕ

so pφÑ ϕq ^ pϕÑ φq $ φØ ϕ.

Theorem 4.2.3. LC is deduction class equivalent with LCO.

4. CLASSICAL PROPOSITIONAL LOGIC 59

Proof. Let hV : LO �Ñ LC be a function defined by

hV pφq �

$''''''&
''''''%

φ, if φ is atomic, or φ :� φ1 Ñ φ2, or φ :�K,

hV pφ
1q ÑK, if φ :� φ1,

KÑK, if φ :� J,

hV p φ1q Ñ hV pφ2q, if φ :� φ1 _ φ2,

hV p p φ1 _ φ2qq, if φ :� φ1 ^ φ2.

We can then extend the function HV : ObpCpLCOqq �Ñ ObpCpLCqq to HV pΓq �

xhV pπ1pΓqq, . . . , hV pπ|Γ|pΓqqy. Notice that Lemma 4.2.2 implies that formula vectors in

LCO are logically equivalent to some formula vector in LC . Then since HV pΓq B C B Γ

and hV p∆q C B∆, we find for every edge p∆,Γ, iq in LCO, we get HpΓq B Hp∆q. But

since HpΓq, Hp∆q are also objects in CpLCq and all inference maps in LCO are deriv-

able in LC , we find HpΓq " Hp∆q. Then choose arrows HpΓq
fe
ÞÑ Hp∆q in CpLCq, for

each edge e � pΓ,∆, iq, and define HE : GpLCOqpEq �Ñ ArpCpLCqq. We find H : GpLCOq

�Ñ CpLCq form a graph homomorphism. Note that it is surjective on vertices.

Then there exists a cartesian functor H : GpLCOq �Ñ GpLCqq. Define H� : ArpGpLCOq{ !"

q �Ñ ArpGpLCq{CBqq by H�prf sq � rHpfqs. It is easy to verify that this is a well-defined

functor. Moreover, since rΓs � r∆s implies H�
Ob.prΓsq � H�

Ob.pr∆sq, we find H� is injective

on vertices, as well as surjective, which completes our proof.

4.3 Classical Semantics

In this section shall quickly define a classical valuation logic that turns out to be the

one desired that is complete with LC , and derive a few of its essential properties.

Definition 4.3.1. Let φ, ϕ be LC-formulas. A mapping v : Prop �Ñ t0, 1u is a classical

valuation, and part of the valuation class V alC if

1. vpKq � 0,

2. vpφÑ ϕq � 1 if and ony if vpφq � 0 or vpϕq � 1.

4. CLASSICAL PROPOSITIONAL LOGIC 60

The logic LV C on LC generated (using Definition 4.6.1) by the class V alC of classical

valuation mappings shall be called the classical propositional valuation logic. 4

First, this lemma will derive a very important tool for constructing valuation maps.

Lemma 4.3.2. Let w : Atom. �Ñ t0, 1u be a function. Then there exists a unique extension

v : Prop. �Ñ t0, 1u that is a classic valuation mapping.

Proof. For existence, define v : Prop. �Ñ t0, 1u by

vpφq �

$'&
'%
wpφq, if φ is Atomic,

0, if φ :�K,

maxt1� vpφ1q, vpφ2qu, if φ :� φ1 Ñ φ2.

It follows by straightforward structural induction on L that v is well-defined. It follows by

definition that v is a valuation mapping. And it finally follows by the same straightforward

structural induction on L that v is unique.

As it turns out, these two conditions in Definition 4.3.1 are enough to derive the

sufficient conditions that hold on valuation maps for ,_,^,J, and Ø.

Proposition 4.3.3. Let φ, ϕ be LC-formulas. Let Γ be a LC-vector. Then

1. vp φq � 1 if and only if vpφq � 0,

2. vpφ_ ϕq � maxtvpφq, vpϕqu,

3. vpφ^ ϕq � mintvpφq, vpϕqu,

4. vpJq � 1,

5. vpφØ ϕq � 1 if and only if vpφq � vpϕq.

for all valuations v : Prop �Ñ t0, 1u.

Proof. 1. Our conclusion follows directly from the fact that φ :� φÑK.

2. Note that φ _ ϕ :� φ Ñ ϕ. If vpφq � 1, then vp φq � 0, hence vpφ _ ϕq � 1. If

vpϕq � 1, then vpφ _ ϕq � 1. If vpφq � vpϕq � 0, then we find vp φq � 1 and vpϕq � 0,

hence vpφ_ ϕq � 0.

4. CLASSICAL PROPOSITIONAL LOGIC 61

3. Note that φ^ϕ :� p φ_ ϕq. If vpφq � 0 or vpϕq � 0, then vp φq � 1 or vp ϕq � 1.

It follows by part 2 of this proposition that if vpφq � 0 or vpϕq � 0, then vp φ_ ϕq � 1,

hence vpφ^ ϕq � 0.

4. Follows directly from part 1 of this proposition.

5. Note that φ Ø ϕ :� pφ Ñ ϕq ^ pϕ Ñ φq. We find vpφ Ø ϕq � 1 ðñ vpφ Ñ ϕq �

vpϕÑ φq � 1. Suppose vpφq � vpϕq. In both the case that vpφq � 0 and vpφq � 1, we get

vpφÑ ϕq � vpϕÑ φq � 1.

Conversely, suppose vpφØ ϕq � 1. We have two cases.

Q1. Suppose vpφq � 0. Then vpϕÑ φq � vpφÑ ϕq � 1. It must be that vpϕq � 0.

Q2. Suppose vpφq � 1. By similar argument, we get vpϕq � 1.

With the next proposition, it shall be shown that finding (φÑ ϕ is equivalent to finding

that φ (ϕ, and then the analogous principle for (φ Ø ϕ and φ)(ϕ, similar to what

was found in the last section with $ and LC .

Proposition 4.3.4. Let φ, ϕ be LC-formulas, let Γ be LC-formulas.

1. xφ, ϕy)(φ^ ϕ,

2. φ (ϕ if and only if (φÑ ϕ,

3. φ)(ϕ if and only if (φØ ϕ,

4. K(φ,

5. If xΓ, φy (ϕ, then Γ (φÑ ϕ,

6. xφ, φÑ ϕy (ϕ,

7. If xΓ, φ1y (ϕ and xΓ, φ2y (ϕ then xΓ, φ1 _ φ2y (ϕ.

Proof.

1. Note that Proposition 4.3.3 tells us vpφq � vpϕq � 1 ðñ vpφ^ ϕq � 1.

2. Suppose φ (ϕ. Then vpφq � 0 ùñ vpφ Ñ ϕq � 1 and vpφq � 1 ùñ vpϕq � 1 ùñ

vpφÑ ϕq � 1.

4. CLASSICAL PROPOSITIONAL LOGIC 62

Conversely, suppose (φÑ ϕ. By hypothesis, we find vpφÑ ϕq Ñ vpφq � 0 or vpϕq � 1.

Then given vpφq � 1, we have vpϕq � 1.

3. Suppose φ)(ϕ. Then by part 3, we have (φ Ñ ϕ and (ϕ Ñ φ. Then since

φØ ϕ :� pφÑ ϕq ^ pϕÑ φq, so vpφØ ϕq � mintvpφÑ ϕq, vpϕÑ φqu � 1.

Conversely, suppose (φ Ø ϕ. By part 2, we have (xφ Ñ ϕ,ϕ Ñ φy. Our conclusion

then follows by part 3.

4. Trivial.

5. Follows directly from part 2.

6. Suppose v is a valuation mapping that satisfies xφ, φÑ ϕy. It follows from vpφÑ ϕq � 1

that either vpφq � 0 or vpϕq � 1. Since vpφq � 1, our conclusion is satisfied.

7. Suppose v is a valuation mapping that satisfies xΓ, φ1_φ2y (ϕ. Then vmaxtvpφ1q, vpφ2qu �

vpφ1_φ2q � 1. This gives us two similar cases, either of which satisfy xΓ, φ1y and xΓ, φ2y.

Either way, our conclusion follows.

4.4 Classical Completeness and Consequences

This is the much awaited section where we show that LC is sound and complete on

LV C , which is alas no trivial matter thanks to the puzzle of completeness. The problem

is the valuation inference map V in LV C does not keep very good track of the inference

process of LC . While it may be that LV C is regarded as a logic in this paper, one must

remember that LV C is nevertheless not crafted to be deductively powerful when it comes

to a sequential inference process. Rather, it “verifies truth” based on valuation maps in a

one-step process that would take LC an arbitrarily large finite number of steps.

So what should be done about this? The one reasonable thing there is to do: Use LV C

for its strength and not its weakness. LV C is very good at analyzing “truth” given a

valuation, so why not try to come up with a sufficient condition for completeness that

involves coming up with a specific valuation. On that note, it seems more natural to prove

4. CLASSICAL PROPOSITIONAL LOGIC 63

completeness contrapositively, which is to say, proving Γ & ∆ ùñ Γ * ∆. Now given

a pretty manageable hypothesis, all that has to be done is prove there exists a valuation

mapping such that vpφq � 0, for some φ ¨ ∆. That doesn’t look so bad!

It especially looks manageable when one sees that the deductive system is surprisingly

very good at building bigger vectors from smaller ones that conserve a given property, and

eventually from a recursive collection of consistent vectors one can make valuation mapping

out of them. Actually, the standard proof for completeness in a standard treatment of first

order propositional logic involves creating a “maximal consistent set” that contains Γ.

Unfortunately, that can’t be done with vectors since vectors are finite, and all the things

one could add to Γ that would keep it consistent is infinite. However, the method can

still be captured by creating a recursive sequence of consistent vectors ∆0,∆1, . . . ,∆n, . . .

with ∆0 � Γ and for each n� 1, go through FormC in an enumeration φ1, φ2, . . . , φn, . . .

(since there are countably many!), and if it’s consistent, set ∆n�1 equal to x∆n, φn�1y;

otherwise, keep ∆n�1 the same as ∆n. Actually, a similar idea in the standard treatment

is used to show a maximal consistent set exists in the first place, but why not just make

a valuation mapping out of it?

Lemma 4.4.1. Suppose Γ & φ, for some LC-formula φ. Enumerate all propositions in

LC φ1, φ2, . . . , φn, For each n ¥ 0, define a LC vector recursively as follows

∆n �

$'&
'%

Γ, if n � 0,

x∆n�1, φny, if x∆n�1, φny & φ,

x∆n�1, φny otherwise.

Define a function v : Prop �Ñ t0, 1u as follows

vpφq �

#
1, if φ ¨ ∆n, for some n ¥ 0,

0, otherwise.

Then v is a classical valuation mapping.

Proof. We shall first prove the following claims.

4. CLASSICAL PROPOSITIONAL LOGIC 64

Claim 1. If Γ & φ and Γ $ ϕ, then xΓ, ϕy & φ.

If xΓ, ϕy $ φ, it follows that Γ $ xΓ, ϕy and xΓ, ϕy $ φ, so we would have Γ $ φ, which

cannot happen.

Claim 2. If ∆n1 $ ϕ, for some n1 ¥ 0, then there exists some n2 ¥ 0 such that ϕ ¨ ∆n2.

Suppose ∆n1 $ ϕ, for some n1 ¥ 0. Then by Claim 1, we find p∆n1 , ϕq & φ. Note that

ϕ :� φn2 , for some n2 ¥ 1. We have two cases.

W1. Suppose n2 ¤ n1. Since x∆n2�1, ϕy ¨ x∆n1 , ϕy, we find x∆n2�1, ϕy � x∆n2�1, φn2y &

φ. It follows that ϕ ¨ x∆n2�1, φn2y � ∆n2 .

W2. Suppose n2 ¡ n1. Then n2 � 1 ¥ n1. Then since ∆n1 ¨ ∆n2�1, we have ∆n2�1 $ ϕ.

It follows by Claim 1 that x∆n2�1, ϕy & φ, hence ϕ ¨ x∆n2�1, φn2y � ∆n2 .

Now we shall prove the lemma. Define a function v : Prop �Ñ t0, 1u as follows.

vpφq �

#
1, if φ ¨ ∆n, for some n ¥ 0,

0, otherwise.

We shall prove that this is indeed a valuation mapping in V alC . Since x∆n,Ky $ φ, for

all n ¥ 0, we find vpKq � 0. We shall spend the remainder of this proof showing that

vpϕ1 Ñ ϕ2q � 1 ðñ vpϕ1q � 0 or vpϕ2q � 1.

Suppose vpϕ1 Ñ ϕ2q � 1. Then ϕ1 Ñ ϕ2 ¨ ∆n1 , for some n1 ¥ 0. It shall suffice

to prove that vpϕ1q � 0 ùñ vpϕ2q � 1. Suppose vpϕ1q � 0. Then ϕ1 ¨ ∆n2 , for

some n2 ¥ 0. It shall suffice to prove ϕ2 ¨ ∆n3 , for some n3 ¥ 0. Note that since

xϕ1, ϕ1 Ñ ϕ2y ¨ ∆maxtn1,n2u, we find ∆maxtn1,n2u $ ϕ2 by Ñ E. Then our conclusion

follows by Claim 2.

For the converse, it shall suffice by Claim 2 to prove that ∆m $ ϕ1 Ñ ϕ2, for some m ¥ 0.

We have two cases.

R1. Suppose vpϕ1q � 0. Note that ϕ1 :� φm, for some m ¥ 1. We find φm ª ∆m. Then

x∆m�1, φmy $ φ, so ∆m � x∆m�1, φmy. It follows from _I1 that ∆m $ ϕ1 Ñ ϕ2.

4. CLASSICAL PROPOSITIONAL LOGIC 65

R2. Suppose vpϕq � 1. Then ϕ ¨ ∆m, for some m ¥ 1. We find ∆m $ ϕ1 Ñ ϕ2 by

Ñ I.

Theorem 4.4.2. LC is sound and complete on LV C .

Proof. For soundness, Proposition 4.3.4 confirms that every inference map is derivable

in LV C .

For completeness, suppose Γ & ∆. Then Γ & φ for some φ :� πqp∆q, for some 1 ¤ q ¤ |∆|.

Using Lemma 4.4.1, we get a valuation mapping v such that vpπkpΓqq � 1 but vpφq � 0,

hence Γ * ∆.

Corollary 4.4.3. Let Γ,∆ by LC-formula vectors. If Γ * ∆, then Γ & ∆.

Corollary 4.4.4. V ars is consistent (and hence so is LC). Every atomic variable, and

its negation, is underivable.

Proposition 4.4.5. Let φ, ϕ be LC-formulas, let Γ be LC-formulas.

1. φ_ ϕ & φÑ ϕ and φ_ ϕ & ϕÑ φ,

2. φÑ ϕ & ϕÑ φ,

3. φÑ ϕ & φÑ ϕ.

5
Sequent Calculus

Now this chapter gets to a rather different way of doing logic, which is sequent calculus.

It is a very exotic system and much more difficult/counterintuitive to work with, but the

system is overall a better way of doing deductions, since one can look at more than one

propositions and one does not have the awkward mechanic of hypothesizing. Additionally,

it lays out a straightforward system of doing logic on a collection of propositions as opposed

to ordingary “natural deduction”, which is really only good for deriving single propositions.

The first section will be about constructing the language on which inferences are made.

It turns out to be sufficient in the context of the deductive category to do deductions

not directly on the propositional language but rather on a metalanguage for reasons that

will be discussed in that section. The second section defines intuitionistic sequent calculus

in an analogous way to chapter 5, where only three connectives Ñ,K,^ are used and

the rest of the connectives, and inference maps with them, are derived. The third section

shall be devoted to the cut rule, and proving the surprising result that it can be derived

from the other inference maps. The fourth section derives some important properties of

intuitionistic sequent calculus that gives an idea as to what the system really means in

5. SEQUENT CALCULUS 67

the context of propositional logic. Finally, the fifth section shows an easy semantic view

of sequent calculus that is complete, and moreover that intuitionistic sequent calculus is

sound and complete with intuitionistic propositional calculus.

5.1 The Metalanguage and Sequents

With the way sequent calculus is presented, it calls for a new order of language since the

formal deductive system of logic that has been derived in this paper does inferences directly

on a language, and the objects which Gentzen style inference operates on are different

than typical propositions, and for that matter lists of them. This world of inference rather

operates on metalinguistic relations of Γ $ ∆. So in order for the definitions of deduction

to carry over in this instance, it is imperitive that this “metalinguistic” format be defined

as a formal language itself. The definition below does exactly that.

Definition 5.1.1. Given a language L, a Sequent Metalanguage M is a language with

a single binary relation symbol $. To represent a M-formula, we shall write pΓ $ ∆q for

any two L-vectors Γ and ∆. The terms in the language, i.e. the L-vectors, shall be referred

to as the Sequents. 4

Remark 5.1.2. Although it is standard to write “Γ $ ∆” in most sequent calculus text

to essentially say “∆ is derivable by Γ”, we shall forgo standard notation in the name

of “good syntax”. Instead we write “pΓ $ ∆q” to denote the specific M-formula that

our definition represents. To talk about derivability in M, we shall continue with our

common practice in Chapter 3 and write A " B, where A and B are M-vectors, that is

to say A � xpΓ1 $ ∆1q, . . . , pΓn $ ∆nqy and B � xpΦ1 $ Ψ1q, . . . , pΦm $ Ψmqy, where

Γi,∆i,Φi,Ψi are sequents for every i. ♦

One thing that will be important later down the road of sequent calculus is a notion

of interchangeability of a propositional symbol, because although the logical deduction is

5. SEQUENT CALCULUS 68

really done on the metalanguage, one is really interested in how the propositions inter-

relate to each other. The notion of propositional equivalance in sequent calculus then is

interchangeability where given the sequent Γ1, θ,Γ2, one can substitute θ for θ1 and vice

versa. The exact definition is provided below.

Definition 5.1.3. In a sequent metalanguage M, if a two formula θ, ϕ are such that

pΓ $ ∆1, θ,∆2q !" pΓ $ ∆1, ϕ,∆2q and pΦ1, θ,Φ2 $ Ψq !" pΦ1, ϕ,Φ2 $ Ψq, for every

sequent Γ,∆1,∆2,Φ1,Φ2,Ψ, then we shall call θ is interchangeable with ϕ. Define the

binary relation m on Form such that θ m ϕ if and only if θ is interchangeable with ϕ. 4

5.2 Intuitionistic Sequent Logic Definition

This section will be about sequent calculus of the intuitionistic variety, using the in-

tuitionistic language defined in Chapter 5. Remember that this language uses only the

Ñ,K,^ connectives in order to again keep the axioms at a minimum, as shall be defined

here

Definition 5.2.1. The Intuitionistic Propositional Language denoted LI is defined

as follows

1. The class Atom. contains an element pi, called a Propositional Variable, for each

i ¥ 1.

2. The connectives in LI include the constant K and the binary connectives Ñ,^.

Furthermore, we shall further define the connectives ,_,^,Ø,J as shorthand notation

for the following:

1. φ :� φÑK

2. φ_ ϕ :� φÑ ϕ,

3. φØ ϕ :� pφÑ ϕq ^ pϕÑ φq,

4. J :� K. 4

5. SEQUENT CALCULUS 69

Remark 5.2.2. While everything seems eloquent with having intuitionistic logic defined

in terms of three connectives, it is not 100 % certain that doing so is possible without not

catching the full scope of intutionistic logic. It is the writer’s opinion, and a lot of research

that unfortunately did not make it to this paper, that suggests that indeed it does. So

it will be an assumption that will be made, alas. For a standard inquiry on intuitionistic

logic in general, Chapter 5 of Van Dalen’s introductory logic text is a great resource for

the basics. [3] To absorb what is going on with Getzen Calculus, an adequate resource for

that is Girard’s Proofs and Types. [5] ♦

The rest of this section is devoted to deriving the rest of the more practical and versatile

inference maps to work with when it comes to doing these proofs in a more efficient manner,

as well as the missing inference rules for connectives ,_,J.

Definition 5.2.3. Let θ, ϕ be propositional variables and Γ,∆,Φ,Ψ be sequents. Intu-

itionistic Sequent Calculus LS is a logic with the propositional sequent metalanguage

with the following rules of inference.

1. Identity

I
pθ $ θq

2. Exchange

pΓ, θ, ϕ,Φ $ ∆q
LX

pΓ, ϕ, θ,Φ $ ∆q

pΓ,$ Ψ, θ, ϕ,∆q
RX

pΓ,$ Ψ, ϕ, θ,∆q

3. Weakening

pΓ $ ∆q
LW

pΓ, θ $ ∆q

pΓ $ ∆q
RW

pΓ $ θ,∆q

4. Contraction

pΓ, θ, θ $ ∆q
LC

pΓ, θ $ ∆q

pΓ $ θ, θ,∆q
RC

pΓ $ θ,∆q

5. SEQUENT CALCULUS 70

5. Impication

pΓ $ θ,∆q pΦ, ϕ $ Ψq
LÑ

pΓ,Φ, θ Ñ ϕ $ ∆,Ψq

pΓ, θ $ ϕ,∆q
RÑ

pΓ $ θ Ñ ϕ,∆q

6. Falsum

K
pK$ q

7. Conjunction

pΓ, θ $ ∆q
L1^

pΓ, θ ^ ϕ $ ∆q

p∆, ϕ $ ∆q
L2^

pΓ, θ ^ ϕ $ ∆q

pΓ $ θ,∆q pΦ $ ϕ,Ψq
R^

pΓ,Φ $ θ ^ ϕ,∆,Ψq

4

Definition 5.2.4. Important Inference maps to be aware of (that shall be show later in

this section can be derived from LS as they are defined) are as follows

1. Cut

pΓ $ θ,∆q pΦ, θ $ Ψq
Cut,

pΓ,Φ $ ∆,Ψq

2. Negation

pΓ, θ $ ∆q
L

pΓ $ θ,∆q

pΓ $ θ,∆q
R

pΓ, θ $ ∆q

3. Top

J
p $ Jq

4. Disjunction

pΓ, θ $ ∆q p∆, ϕ $ Ψq
L_

pΓ,Φ, θ _ ϕ $ ∆,Ψq

pΓ $ θ,∆q
R1_

pΓ $ θ _ ϕ,∆q

pΓ $ ϕ,∆q
R2_

pΓ $ θ _ ϕ,∆q

4

5. SEQUENT CALCULUS 71

What makes derivations in this language rather tedious first of all is the fact that the

exchange rule does not explicitly allow one to rearrange sequents in any order all in one

step. However, given that the exchange rule allows simply for one two switch the position

of two terms in the sequent, one can derive the fact that seqents can be rearranged in

any order corresponding to any permutation, as this next proposition shows. A basic

understanding of permutations is in order from then on, since arbitrary permutations will

be placed on sequents a lot to signify that the order does not matter. It should also be noted

that the permutations placed on sequents from then on will be done rather informally, as

in the exact logistics of the domain and codomain of the permutation will be implied

from the fact that a permutation σ (the often-used permutation letter of choice) is being

operated specifically on an arbitrary sequent ∆ to get a rearranged sequent σp∆q.

Note that a lot of work will be done with permutations from here on out and somewhat

of a background in algebra is assumed. For more information on the basics, however,

looking through section 1.3 Dummit and Foote’s Algebra text is recommended. [4]

Proposition 5.2.5. Let Γ,∆ be vectors in LI-vectors. Let σ be a permutation. Then the

inference maps:

pΓ $ ∆q
LX�

pσpΓq $ ∆q

pΓ $ ∆q
RX�

pΓ $ σp∆qq

are derivable in LS.

Proof. For a given permutation σ, note that it can be expressed as a finite number of

transpositions τ1τ2 . . . τn for n ¥ 1. If LX� applies to any transposition, than we can

apply LX� any finite number of times for τi, for each 1 ¤ i ¤ n, to get LX�, for any

permutation σ � τ1τ2 . . . τn. It shall suffice to prove LX� applies to transpositions, and

let R� follow from similarity.

Let τ be a transposition. We can express any permutation τ 1 as pj, kq, where j � k and

1 ¤ j, k ¤ |Γ|, and τpπipΓqq � πjpΓq and τpπjpΓqq � πipΓq. Let a, b ¥ 1 such that

5. SEQUENT CALCULUS 72

τ � pa, bq. Without loss of generality, suppose a b. Then we find τ � pa, a�1qpa�1, a�

2q . . . pa� pb� a� 1q, bq. For each 1 ¤ r ¤ b� a, we find

pa� r � 1, a� rqpφ1, . . . , φnq :� φ1, . . . , φa�r�2, φa�r, φa�r�1, φa�r�1, . . . , φn,

for any order n ¥ b � a sequent φ1, . . . , φn. It follows that for each Φ :� φ1, . . . , φn and

1 ¤ r ¤ b� a, we get

pΦ $ Ψq
LX.

ppa� r � 1, a� rqpΦq $ Ψq

Our conclusion then follows by repeated use of LX on each pa� r� 1, a� rq on the result

after it, for each 1 ¤ r ¤ b� a.

Essentially, one has shown that the order of sequents are invariant, which is to say that

a sequent ∆ and σp∆q for any permutation σ are logically equivalent. This result shall be

reflected in the next corollary which allows one to be very liberal with the order at which

connective operations are applied.

Corollary 5.2.6. The following inference maps are derivable in LS. Let σ1, σ2, σ3 be

permutations

1.

pΓ $ ∆q
LGW

pσ1pΓ, θq $ ∆q

pΓ $ ∆q
RGW

pΓ $ σ1pθ,∆qq

2.

pσ1pΓ, θ, θq $ ∆q
LGC

pσ2pΓ, θq $ ∆q

pΓ $ σ1pθ, θ,∆qq
RGC

pΓ $ σ2pθ,∆qq

3.

pΓ $ σ1p∆, θqq pσ2pΦ, ϕq $ Ψq
LGÑ

pσ3pΓ,Φ, θ Ñ ϕq $ ∆,Ψq

pσ1pΓ, θq $ σ2pϕ,∆qq
RGÑ

pΓ $ σ3pθ Ñ ϕ,∆qq

5. SEQUENT CALCULUS 73

4.

pσ1pΓ, θq $ ∆q
LG1^

pσ1pΓ, θ ^ ϕq $ ∆q

pσ1pΓ, ϕq $ ∆q
LG2^

pσ1pΓ, θ ^ ϕq $ ∆q

pΓ $ σ1p∆, θqq pΦ $ σ2pϕ,Ψqq
RG^

pΓ,Φ $ σ3pθ ^ ϕ,∆,Ψqq

Proof. The main insight here is that for every permutation σ, there exists an inverse

permutation σ�1 such that σ�1σ � σσ�1 � id.

Yet another way one can generalize inference maps is not just through repeated use of

exchange, but also repeated use of weakening and contraction. The generalized inference

rules that result from this observation are given in the following proposition.

Proposition 5.2.7. Let σ be a permutation. The inference rules

1.

pΓ $ ∆q
LGW�

pσpΓ,Θq $ ∆q

pΓ $ ∆q
RGW�

pΓ $ σpΘ,∆qq

2.

pσpΦ,Γ,Γq $ ∆q
LGC�

pΦ,Γ $ ∆q

pΓ $ σp∆,∆,Ψqq
RGC�

pΓ $ ∆,Ψq

3.

K �
pK$ Θq

are derivable in LS.

Proof.

1. LGW� and RGW� follow from repeated use of LW and RW respectively, followed

by LX� and RX� respectively.

5. SEQUENT CALCULUS 74

2. LGC� and RGC� follow from repeated use of LC and RC respectively, followed by

LX� and RX� respectively.

3. Follows directly from RW�.

This brings light to a new insight, which is that intuitionistic sequent calculus the way

that it is presented in the initial definition is a sound and completete system of logic that

starts with these generalized rules. This will be very useful when doing proofs by structural

induction, which will hapen very soon.

Corollary 5.2.8. Let LGS be a logic with the language as the sequent metalanguage MLI

of LI and the inference rules I, LX�, RX�, LGW , RGW , LGC, RGC, LGÑ, RGÑ,

K, LG^, and RG^. LGS is a complete logic to LS.

Now is the point where further theoretical insight takes some very advanced machinery,

which turns out to be the Cut rule. Most texts utilize the Cut rule as an axiom to sequent

calculus since it is essential to deriving theorems in any sort of reasonable way. However,

it is a rather surprising result that actually applied to all provable sequent formulas in

sequent calculus, one can derive Cut from simply the other axiomized maps in intuitionistic

sequent calculus. What the rule is exactly is provided in the definition, however there is a

more general version GCut that in sequent calculus is logically equivalent to Cut, which

for practical purposes is not only better to use but actually easier to prove.

Theorem 5.2.9. the inference map

pΓ $ σ1pθ,∆qq pσ2pΦ, θq $ Ψq
GCut,

pΓ,Φ $ ∆,Ψq

for permutations σ1, σ2 is derivable in intuitionistic propositional calculus.

Since the proof of this theorem is a rather involved laborious process that takes sophisti-

cated structural inductive techniques and a lot of cases, this proof shall be put off until the

5. SEQUENT CALCULUS 75

very next section–one that is entirely devoted to the Cut map and the proof to deriving

it.

This final proposition does the job of deriving the inferece maps for the other con-

nectives. Given the definition of these other connectives in terms of the three Ñ,K,^, it

terms out that one can derive all the others, which is definitely a good pitstop result to

be in to untimately figure out that LS is sound and complete with LI .

Proposition 5.2.10. L , R , J, L_, R1_, R2_ are derivable in LS.

Proof. L

pΓ $ θ,∆q

I
pθ $ θq

K
pK$ q

LÑ
pθ, θ $ q

GCut.
pΓ, θ $ ∆q

R

I
pθ $ θq

RW
pθ $K, θ

RÑ
p $ θ, θq pΓ, θ $ ∆q

GCut.
pΓ $ θ,∆q

J Using R , we get

K
pK$ q

R .
p $ Jq

L_ Using L , we get

Γ, θ $ ∆
R

Γ $ θ,∆
L

Γ, θ $,∆
R

Γ $ θ,∆ Φ, ϕ $ Ψ
LÑ .

Γ, φ_ ϕ,Φ $ ∆,Ψ

5. SEQUENT CALCULUS 76

R1_

Γ $ θ,∆
RGW

Γ $ θ, ϕ,∆
L

Γ, θ $ ϕ,∆
R

Γ $ θ, ϕ,∆
L

Γ, θ $ ϕ,∆
RÑ .

Γ $ θ _ ϕ,∆

R2_ Similar to R1_.

5.3 The Cut Rule

When one first hears the result that the Cut rule is derivable in LS , it is easy to

think that this is an absurd notion that is easy to find some sort of counterexample. After

all, no rule takes a proposition and eliminates them, except for the very specific case of

the contraction rule. But the Cut rule really happens as a result of atomically derivable

formulas being limited to only pθ $ θq and pK$ q, and it just happening that from the

structurally inductive ground up, given that one can prove Γ $ θ,∆ and Φ, θ $ Ψ, one

can always find a way to prove Γ,Φ $ ∆,Ψ using the original inference map axioms of

LS .

As stated before this theorem really seeks to prove a more general result GCut, which

is a more general and easier to prove result because it gives a more powerful inductive

hypothesis to work with (that one gets for free from the base case), and proving GCut

involves structural induction on the left formula. Where it gets tricky, however, is when

one is to prove that GCut works for θ :� ϕ1 Ñ ϕ2 or θ :� ϕ1^ϕ2 with no straightforward

way to backtrack and cut eliminate ϕ1 and ϕ2 since the right side has not been broken

down. What then is in order is when proving specifically R Ñ and L^ is doing such by

structural induction on the right hand formula.

5. SEQUENT CALCULUS 77

Thankfully, this proof is made a little similar by the fact that there are a lot of similar

cases, and also by the idea of doing structural induction on LGS instead of LS because

remember those two systems are sound and complete on each other. Now the rest of this

section will be the theorem restated again and its proof.

Theorem 5.3.1. the inference map

pΓ $ σ1pθ,∆qq pσ2pΦ, θq $ Ψq
GCut,

pΓ,Φ $ ∆,Ψq

for permutations σ1, σ2 is derivable in intuitionistic propositional calculus.

Proof. It shall suffice to prove our result on the logic LGS in Corollary 6.2.6, since

it is sound with LS . Let pΓ $ σ1pθ,∆qq and pσ2pΦ, θq $ Ψq be M-formulae. We shall

proceed by structural induction on by LGS . We shall prove GCut by structural induction

on pΓ $ σ1pθ,∆qq based on all derivable formulae. For our atomic case, we have two cases.

I Suppose pΓ $ σ1pθ,∆qq :� pθ $ θq

K Since |σ1pθ,∆qq| ¥ 1, we cannot have pΓ $ σ1pθ,∆qq :� pK$ q. We are done.

For the inductive step, given n ¥ 1, suppose "n�1 pΓ $ σ1pθ,∆qq and we can apply Gcut

with pσ2pΦ, θq $ Ψq to all order n derivable MLI
-formula. We have ten cases.

LX� Suppose pΓ $ pσ1pθ,∆qq :� σ1pΓ1q $ σ1pθ,∆q and "n Γ1 $ σ1pθ,∆q, where σ1 is a

permutation. We have

pΓ1 $ σ1pθ,∆qq pσ2pΦ, θq $ Ψq
GCut

pΓ1,Φ $ ∆,Ψq
LX � .

pΓ,Φ $ ∆,Ψq

RX� Suppose pΓ $ σ1pθ,∆qq :� pΓ $ σ1pθ,∆qq and "n pΓ $ σ1pθ,∆qq, where σ1 is a

permutation. We have

pΓ1 $ σ1pθ,∆qqq pσ2pΦ, θq $ Ψq
GCut

pΓ,Φ $ ∆1,Ψq
RX � .

pΓ,Φ $ ∆,Ψq

5. SEQUENT CALCULUS 78

LGW Suppose pΓ $ σ1pθ,∆qq :� σ1pΓ1, γq $ σ1pθ,∆q and "n pΓ
1 $ σ1pθ,∆qq, where σ1 is

a permutation. We have

pΓ1 $ σ1pθ,∆qq pσ2pΦ, θq $ Ψq
GCut

pΓ1,Φ $ ∆,Ψq
RGW.

pΓ,Φ $ ∆,Ψq

RGW Suppose pΓ $ σ1pθ,∆qq :� pΓ $ σ1pϕ,∆1qq and "n pΓ $ ∆1q, where σ1 is a

permutation. If ϕ is not θ, we find ∆1 :� σ2pθ,∆2q, for some sequent ∆2 and permutation

σ2, and we have

pΓ $ ∆1q pσ2pΦ, θq $ Ψq
GCut

pΓ,Φ $ ∆2,Ψq
LGW.

pΓ,Φ $ ∆,Ψq

Otherwise, if ϕ :� θ, we find ∆ :� σ2p∆1q, for some permutation σ2, and we have

pΓ $ ∆1q
LW

pΓ,Φ $ ∆1q
RGW.

pΓ,Φ $ ∆,Ψq

LGC Suppose pΓ $ σ1pθ,∆qq :� pσ1pΓ1, γ, γq $ σ1pθ,∆qq and "n σ
2pΓ1, γq $ σ1pθ,∆q,

where σ1 and σ2 are permutations. We find

pσ1pΓ1, γ, γq $ σ1pθ,∆qq pσ2pΦ, θq $ Ψq
GCut

pΓ1, γ, γ,Φ $ ∆,Ψq
LGC.

pΓ,Φ $ ∆,Ψq

RGC Suppose pΓ $ σ1pθ,∆qq :� pΓ $ σ1pϕ,ϕ,∆qq and "n Γ $ σ2pϕ,∆1q, where σ1 and

σ2 are permutations. If ϕ is not θ, we find ∆1 :� σ3pθ,∆2q, for some sequent ∆2 and

permutation σ3, and we have

pΓ $ σ2pϕ,ϕ,∆1qq pσ2pΦ, θq $ Ψq
GCut

pΓ,Φ $ ϕ,ϕ,∆2,Ψq
RGC.

pΓ,Φ $ ∆,Ψq

Suppose ϕ :� θ. Throughout the proof, we have actually proven a more general hypothesis

that follows directly from our current hypothesis; this is only just the first instance where

I use it (hence I bring it up now, since you have the motivation). This hypothesis is: GCut

5. SEQUENT CALCULUS 79

may be applied with pσ2pΦ, θq $ Ψq and the result pΓ,Φ $ ∆,Ψq after using GCut on

pσ2pΦ, θq $ Ψq (should any θ exist in Γ,Φ). This certainly occurs in our base case since

in the I case pΓ,Φ $ ∆,Ψq :� pθ $ θq, which is just pΓ $ σ1pθ,∆qq again, and in the K

case we cannot satisfy our given hypothesis. In our inductive step (in every case), this just

follows simply through deriving pΓ,Φ $ ∆,Ψq entirely through inductively hypothesized

formulas and inference maps that we woud then have established to be closed under our

inductive step (so proving the more general hypothesis would follow from similarity of

proving the less general one).

We find that

pΓ $ σ2pϕ,ϕ,∆1qq pσ2pΦ, θq $ Ψq
GCut

pΓ,Φ $ θ,∆1,Ψq pσ2pΦ, θq $ Ψq
GCut.

pΓ,Φ,Φ $ ∆,Ψ,Ψq
LGC�

pΓ,Φ $ ∆,Ψ,Ψq
RGC�

pΓ,Φ $ ∆,Ψq

LG Ñ Suppose ϕ :� ϕ1 Ñ ϕ2 and pΓ $ σ1pθ,∆qq :� pσ1pΓ1,Γ2, ϕq $ σ1pθ,∆1,∆2qq and

"n ppΓ1 $ σ1pϕ1, θ,∆1qq, pσ
2pΓ2, ϕ1q $ ∆2qq, where σ1 and σ2 are permutations. We find

that

pΓ1 $ σ1pϕ1, θ,∆1qq pσ2pΦ, θq $ Ψq
GCut

pΓ1,Φ $ ϕ1,∆1,Ψq pσ2pΓ2, ϕ2q $ ∆2q
LGÑ .

pΓ,Φ $ ∆,Ψq

RGÑ Suppose ϕ :� ϕ1 Ñ ϕ2 and pΓ $ σ1pθ,∆qq :� pΓ $ σ1pϕ,∆1qq and "n pσ
2pΓ, ϕ1q $

σ3pϕ2,∆
1qq, where σ1, σ2, σ3 are permutations. If ϕ is not θ, then ∆1 :� σM p∆

2, θq, for

some permutation σM , so we have

pσ2pΓ, ϕ1q $ σ3pϕ2,∆
1qq pσ2pΦ, θq $ Ψq

GCut
pΓ, ϕ1,Φ $ ϕ2,∆

2,Ψq
RÑ .

pΓ,Φ $ ∆,Ψq

Now suppose ϕ :� θ. We shall proceed by structural induction on pσ2pΦ, θq $ Ψq (in other

words the right side). Note that the subcases RGÑ: I, RGÑ:K work similarly to our base

5. SEQUENT CALCULUS 80

cases done earlier. For the inductive step, we find RGÑ: LX, RGÑ: RX, RGÑ: LGW ,

RG Ñ: RGW , RG Ñ: LGC, RG Ñ: RGC follows similarly to our previous cases. The

remaining subcases include RGÑ: LGÑ, RGÑ: RGÑ, RGÑ: LG^, RGÑ: LG^.

RGÑ: LGÑ Suppose $:� $1 Ñ $2 and pσ2pΦ, θq $ Ψq :� pσ�pΦ1,Φ2, $q $ Ψ1,Ψ2q and

"n ppΦ1 $ σ��p$1,Ψ1qq, pσ
���pΦ2, $2q $ Ψ2qq, where σ�, σ��, σ��� are permutations. If $

is not θ, then we are left with a case similar to LGÑ when ϕ was not θ. Suppose $:� θ.

Then $1 :� ϕ1 and $2 :� ϕ2. We find

pσ2pΓ, ϕ1q $ σ3pϕ2,∆
1qq ppΦ1 $ σ��p$1,Ψ1qq

GCut
pΓ,Φ1 $ σ3pϕ2,∆

1q,Ψ1q pσ���pΦ2, $2q $ Ψ2q
GCut.

Γ,Φ $ ∆,Ψ

RG Ñ: RG Ñ Suppose $:� $1 Ñ $2 and pσ2pΦ, θq $ Ψq :� pσ2pΦ, θq $ σ�p$,Ψ1qq and

"n pσ
��pΦ, θ, $1q $ σ���p$2,Ψ

1qq, where σ�, σ��, σ��� are permutations. Then

pΓ $ σ1pθ,∆qq pσ��pΦ, θ, $1q $ σ���p$2,Ψ
1qq

GCut
pΓ,Φ, $1 $ ∆, $2,Ψ

1q
RGÑ .

pΓ,Φ $ ∆,Ψq

RG Ñ: LG ^ 1 Suppose $:� $1 ^ $2 and pσ2pΦ, θq $ Ψq :� pσ2pΦ
1, $, θq $ Ψ and

"n pσ
�pΦ1, $1, θq $ Ψ, where σ� is a permutation. Then

pΓ $ σ1pθ,∆qq pσ�pΦ1, $1, θq $ Ψq
Gcut

pΓ,Φ1, $1 $ ∆,Ψq
LG^ 1.

pΓ,Φ $ ∆,Ψq

RGÑ: LG^ 2 Similar to RGÑ: LG^ 1, except using $2 and sub-LG^ 2 in place of $1

and sub-LG^ 1, respectively.

RG Ñ: RG^ Suppose $:� $1 ^ $2 and pσ2pΦ, θq $ Ψq :� pΦ1,Φ2q $ σ�pΨ1,Ψ2, $q

and "n ppΦ1 $ σ��pΨ1, $1q, pΦ2 $ σ���pΨ2, $2qq, where σ�, σ��, σ��� is a permutation.

Without loss of generality, suppose θ ¨ Φ1. Then Φ1 :� σCpΦ
1
1, θq, for some permutatin

σC and

pΓ $ σ1pθ,∆qq pΦ1 $ σ��pΨ1, $1q
GCut

Γ,Φ1
1 $ ∆,Ψ1, $1 pΦ2 $ σ���pΨ2, $2q

RG^ .
pΓ,Φ $ ∆,Ψq

5. SEQUENT CALCULUS 81

LG ^ 1 Suppose ϕ :� ϕ1 ^ ϕ2 and pΓ $ σ1pθ,∆q :� pσ1pΓ1, ϕq $ σ1pθ,∆q and "n

pσ2pΓ1, ϕ1q $ ∆q, where σ1, σ2 are permutations. Follows similarly from the subcase RGÑ:

LG^ 1.

LG^ 2 Similar to RGÑ: LG^ 1.

RG^ Suppose ϕ :� ϕ1^ϕ2 and pΓ $ σ1pθ,∆qq :� pΓ1,Γ2 $ σ1pϕ,∆1,∆2qq and "n ppΓ1 $

σ2pϕ1,∆1qq, pΓ2 $ σ3pϕ2,∆2qqq, where σ1, σ2, σ3 are permutations. If ϕ is not θ, then we

have a case similar to sub-RG^ of RÑ.

Suppose ϕ :� θ. We shall prove this result via structural induction on pσ2pΦ, θq $ Ψq. All

subcases except RG^ : LG^ 1 and RG^ : LG^ 2 follow similarly the previous cases or

subcases of RGÑ, so it shall suffice to prove those subcases.

RG^ : LG ^ 1 Suppose $:� $1 ^ $2 and pσ2pΦ, θq $ Ψq :� pσ2pΦ
1, $q $ Ψq and "n

ppσ�pΦ1, $1q $ Ψq, where σ� is a permutation. If $ is not θ, then this case is similar to

RGÑ: LG^ 1. Suppose $:� θ. We find $1 :� ϕ1, so

pΓ1 $ σ2pϕ1,∆1qq ppσ�pΦ1, $1q $ Ψq
GCut

pΓ1,Φ $ ∆1,Ψq
LGW�

pΓ,Φ $ ∆1,Ψq
RGW � .

pΓ,Φ $ ∆,Ψq

RG^ : LG^ 2 Similar to RG^ : LG^ 1.

5.4 Properties of Intuitionistic Sequent Logic

This section deals with some important properties of LS , including many properties to

do with propositions that are interchangable. Interchangability of θ with ϕ turns out to

be equivalent to proving the formula p $ θ Ø ϕq. The other crucial find is the property

that ^ is a connective that corresponds in a way to commas between propositions on

the left side of $ and _ is a connective that corresponds in a way to commas between

propositions on the right side of $. In other words, from pσ1pΓ, θ, ϕq $ ∆q one can prove

5. SEQUENT CALCULUS 82

pσ2pΓ, θ^ϕq $ ∆q and vice versa for permutations σ1, σ2, and a similar principle applies to

. Moreover, when combining sequents in LS with L or R^, this logically equivalently

corresponds to a product arrangement of the sequent broken down by the propositions

connected by _ or ^ in the fashion given in the proposition below.

Proposition 5.4.1.

1. xpΓ $ σ1p∆, θqq, pΓ $ σ2p∆, ϕqqy !" pΓ $ σ3p∆, θ ^ ϕqq;

2. pΓ $ σ1p∆, θ, ϕqq !" pΓ $ σ2p∆, θ _ ϕqq;

3. pσ1pΓ, θ, ϕq $ ∆q !" pσ2pΓ, θ ^ ϕq $ ∆q.

4. xpσ1pΓ, θq $ ∆q, pσ2pΓ, ϕq $ ∆qy !" pσ3pΓ, θ _ ϕq $ ∆q.

Proof. 1. We find

pΓ $ σ1p∆, θqq pΓ $ σ2p∆, ϕqq
RG^

pΓ,Γ $ ∆,∆, θ ^ ϕq
LGC�

pΓ $ ∆,∆, θ ^ ϕq
RX�

pΓ $ σ3pθ ^ ϕ,∆qq

and

pσ3pΓ $ ∆, θ ^ ϕqq

pθ $ θq
L^ 1

pθ ^ ϕ $ θq
RX�

pΓ $ σ1pθ,∆qq

pσ3pΓ $ ∆, θ ^ ϕqq

pϕ $ ϕq
L^ 2

pθ ^ ϕ $ ϕq
RX � .

pΓ $ σ2pϕ,∆qq

2. We find

pΓ $ σ1p∆, θ, ϕqq

pθ $ θq
R_ 1

pθ $ θ _ ϕq
GCut

pΓ $ ϕ,∆, θ _ ϕq

pϕ $ ϕq
R_ 2

pϕ $ θ _ ϕq
GCut

pΓ $ ∆, θ _ ϕ, θ _ ϕq
RGC,

pΓ $ σ2pθ _ ϕ,∆qq

and

pΓ $ σ2pθ _ ϕ,∆qq

pθ $ θq pϕ $ ϕq
L_

pθ _ ϕ $ θ, ϕq
GCut

pΓ $ ∆, θ, ϕq
RX � .

pΓ $ σ1pθ, ϕ,∆qq

3. and 4. we will let follow from similarity to 2. and 1. respectively.

5. SEQUENT CALCULUS 83

This next lemma shows the analogue in LS of Ñ E is derivable in the system, which

further establishes the equivalence between showing θ m ϕ and " p $ θ Ø ϕq.

Lemma 5.4.2.

1. The inference map

pΓ $ θ,∆q pΦ $ θ Ñ ϕ,Ψq
Ñ E,

pΓ,Φ $ ϕ,∆,Ψq

is derivable in LS.

2. " p $ θ Ñ ϕq if and only if for all sequents Γ,∆ we have pΓ $ θ,∆ " Γ $ ϕ,∆q.

3. " p $ θ Ø ϕq if and only if θ m ϕ.

Proof. 1.

Φ $ θ Ñ ϕ,Ψ

I
pϕ $ ϕq pΓ $ θ,∆q

LÑ
Γ, θ Ñ ϕ $ ϕ,∆

GCut.
pΓ,Φ $ ϕ,∆,Ψq

2. Suppose pΓ $ θ,∆ " Γ $ ϕ,∆q, for all sequents Γ,∆. Then we have " θ $ ϕ and our

conclusion follows from RÑ. Conversely, suppose " p $ θ Ñ ϕq. Let Γ,∆ be sequents.

By Ñ E, which we proved in part 1 is a derivable in LS , we get

I
pθ $ θq p $ θ Ñ ϕq

Ñ E
θ $ ϕ

LGW�
Γ, θ $ ϕ

RGW � .
Γ, θ $ ϕ,∆

3. Follows directly from part 2.

Next is this lemma, which shows some of the formulas that are interchangeable in LS .

Do note that the proofs for some of these results involve rather sophisticated Getzen

derivations, but are definitely worth it to see some insights to the system, as well as prove

a very central theorem in this chapter.

5. SEQUENT CALCULUS 84

Lemma 5.4.3.

1. θ _ pϕ^ λq m pθ _ ϕq ^ pθ _ λq and θ ^ pϕ_ λq m pθ ^ ϕq _ pθ ^ λq

2. θ ^J m θ and θ_ Km θ;

3. θ^ KmK and θ _J m J;

4. pθ ^ ϕq ^ λ m θ ^ pϕ^ λq and pθ _ ϕq _ λ m θ _ pϕ_ λq

Proof. It shall suffice by Lemma 5.4.2 (3) to prove " p $ θ1 Ø θ2q in order to prove

θ1 m θ2, for any propositions θ1, θ2.

1. We find

I
pθ $ θq

R_ 1
pθ $ θ _ ϕq

I
pθ $ θq

R_ 1
pθ $ θ _ λq

R^
pθ, θ $ pθ _ ϕq ^ pθ _ λqq

LC
pθ $ pθ _ ϕq ^ pθ _ λqq

I
pϕ $ ϕq

L^ 1
pϕ^ λ $ ϕq

R_ 2
pϕ^ λ $ θ _ ϕq

I
pλ $ λq

L^ 2
pϕ^ λ $ λq

R_ 2
pϕ^ λ $ θ _ λq

R^
pϕ^ λ, ϕ^ λ $ pθ _ ϕq ^ pθ _ λqq

LC
pϕ^ λ $ pθ _ ϕq ^ pθ _ λqq

L_
pθ _ pϕ^ λq $ pθ _ ϕq ^ pθ _ λqq

LÑ,
p $ pθ _ pϕ^ λqq Ñ ppθ _ ϕq ^ pθ _ λqqq

and

I
pϕ $ ϕq

I
pθ $ θq

I
pλ $ λq

L_
pθ _ λ $ θ, λq

RG^
pθ _ λ, ϕ $ θ, λ^ ϕq

LG^ 2.
ppθ _ ϕq ^ pθ _ λq, ϕ $ θ, λ^ ϕq

5. SEQUENT CALCULUS 85

It follows by Proposition 5.4.1 (2), we find " ppθ _ ϕq ^ pθ _ λq, ϕ $ θ _ pλ^ ϕqq. We

find

I
pθ $ θq

I
pϕ $ ϕq

L_
pθ _ ϕ $ θ, ϕq

L^ 2
ppθ _ ϕq ^ pθ _ λq $ θ, ϕq

R_ 1
ppθ _ ϕq ^ pθ _ λq $ θ _ pλ^ ϕq, ϕq ppθ _ ϕq ^ pθ _ λq, ϕ $ θ _ pλ^ ϕqq

GCut
ppθ _ ϕq ^ pθ _ λq, pθ _ ϕq ^ pθ _ λq $ θ _ pλ^ ϕq, θ _ pλ^ ϕqq

LC
ppθ _ ϕq ^ pθ _ λq $ θ _ pλ^ ϕq, θ _ pλ^ ϕqq

RC
ppθ _ ϕq ^ pθ _ λq $ θ _ pλ^ ϕqq

RÑ
p $ pθ _ pλ^ ϕqq Ñ ppθ _ ϕq ^ pθ _ λqqq

Using R^ on xp $ pθ_ pλ^ϕqq Ñ ppθ_ϕq ^ pθ_ λqqq, p $ pθ_ pϕ^ λqq Ñ ppθ_ϕq ^

pθ _ λqqqy, we conclude p $ pθ _ pϕ^ λqq Ø ppθ _ ϕq ^ pθ _ λqqq.

Showing θ ^ pϕ_ λq m pθ ^ ϕq _ pθ ^ λq is (tediously) similar using _ inferences in place

of ^ inferences and vice versa.

2.

I
pθ $ θq

L^ 1
pθ ^J $ θq

RÑ
p $ pθ ^Jq Ñ θq

I
pθ $ θq

J
p $ Jq

R^
θ $ θ ^J

RÑ
p $ θ Ñ pθ ^Jqq

R^ .
p $ pθ ^Jq Ø θq

We get θ_ Km θ by a similar derivation.

3.

K �
pK$Kq

RÑ
pθ^ K$Kq

p $ pθ^ Kq Ñ θq

K �
pK$ θ^ Kq

RÑ
p $ θ Ñ pθ^ Kqq

R^ .
p $ pθ^ Kq Ø θq

We get θ _J m J by a similar derivation.

5. SEQUENT CALCULUS 86

4. We find

I
pθ $ θq

I
pϕ $ ϕq

I
pλ $ λq

R^
pϕ, λ $ ϕ^ λq

R^ .
pθ, ϕ, λ $ θ ^ pϕ^ λqq

By repeated use of Proposition 5.4.1 (2), (3), we get " ppθ^ϕq ^ λ $ θ^ pϕ^ λqq, so

using RÑ, we get " p $ ppθ ^ ϕq ^ λq Ñ pθ ^ pϕ^ λqq. Furthermore, we find

I
pθ $ θq

I
pϕ $ ϕq

R^
pθ, ϕ $ θ ^ ϕq

I
pλ $ λq

R^ .
pθ, ϕ, λ $ pθ ^ ϕq ^ λq

It follows that " p $ pθ ^ pϕ ^ λqq Ñ ppθ ^ ϕq ^ λq, hence we get our desired result of

" p $ ppθ ^ ϕq ^ λq Ø pθ ^ pϕ^ λqq, which proves that pθ ^ ϕq ^ λ m θ ^ pϕ^ λq

proving pθ ^ ϕq ^ λ m θ ^ pϕ^ λq involves similar derivations using _ inferences in place

of ^ inferences.

The last statement of the above lemma has some major use in the highlight theorem

in this section to come. It basically shows that ^ and _ works associatively in a chain of

propositions (as one would expect them to). It allows one to talk about propositions like

φ1 ^ . . .^ φn and ϕ1 _ . . ._ ϕm very eloquently without really having to care about the

order at which the parantheses go since they end up all being interchangeable anyway. It

will then be not terrible abuse of notation to talk about φ1 ^ . . .^ φn and ϕ1 _ . . ._ ϕm

like it was one proposition and not really an interchangeability-class of propositions.

So finally is the theorem that will allow one to convert all sequents into one big propo-

sitions, which in the next section will allow one to do powerful things like...embed LS into

LI in order to establish that they are sound and complete with respect to one another.

Theorem 5.4.4. Let φ1, . . . , φn and ϕ1, . . . , ϕm be sequents. pφ1, . . . , φn $ ϕ1, . . . , ϕmq !"

p $ pφ1 ^ . . .^ φnq Ñ pϕ1 _ . . ._ ϕmqq.

5. SEQUENT CALCULUS 87

Proof. We find pφ1, . . . , φn $ ϕ1, . . . , ϕmq " pφ1^. . .^φn $ ϕ1_. . ._ϕmq by repeated use

of Proposition 6.4.1 (2) (3), and pφ1, . . . , φn $ ϕ1, . . . , ϕmq " p $ pφ1 ^ . . .^ φnq Ñ

pϕ1 _ . . ._ ϕmqq follows from RÑ.

Note that

I
pφ1 $ φ1q

I
pφ2 $ φ2q

R^
pφ1, φ2 $ φ1 ^ φ2q

I
pφ3 $ φ3q

R^
�
�
�

pφ1, . . . , φn�1 $ φ1 ^ . . .^ φn�1q
I

pφn $ φnq
R^,

pφ1, . . . , φn $ φ1 ^ . . .^ φnq

and a similar repetition of I and L_ gives us pϕ1 _ . . ._ ϕm $ ϕ1, . . . , ϕmq. We conclude

for Φ :� φ1, . . . , φn and Ψ :� ϕ1, . . . ϕn that

pΦ $ φ1 ^ . . .^ φnq pϕ1 _ . . ._ ϕm $ Ψq
LÑ

pΦ, pφ1 ^ . . .^ φnq Ñ pϕ1 _ . . ._ ϕmq $ Ψ p $ pφ1 ^ . . .^ φnq Ñ pϕ1 _ . . ._ ϕmqq
Cut.

φ1, . . . , φn $ ϕ1, . . . , ϕn

6
Conclusion and Future Work

It was a real honor to be able to inquire in the field of logic and try to make what may

have been a contribution however small. No reader should be entirely satisfied with what

was presented. For although this is the last chapter, this is by no means the end when it

comes to the direction that future research could go. In fact, there was a lot of ideas that

unfortunately did not make it to this paper since they were not polished at this time. The

end chapter will touch on a few of these sorts of ideas, hopefully clearing up some mystery

while also bringing some inspiring questions to the reader.

6.1 Fixing Mistakes and Tightening Rigor

By no means were the proofs, as well as the general writing, very pollished. Some proofs

for some theorems don’t exist and there are a few mistakes in the proofs that unfortunately

the writer had no time to remedy (although hopefully the all the proofs still communicate

the “right idea”). It is in the writer’s best interest to fix this up in the future.

Moreover, commutative diagrams would have been very nice.

6. CONCLUSION AND FUTURE WORK 89

6.2 Exploring More on “Deduction Class Equivalence”

“Deduction class equivalence” was a very late epiphany, and going back to the hastiness

of some proofs, there is a lot that one might be able to tweek about Deduction Class Equiv-

alence. The first thing one might wonder about is whether it is possibly still too strong

of a condition, or even too weak of one. The second thing is working on the framework

used to derive it. There was a lot of good machinery used that emphasized graph/category

theory, but it might have not been very efficient. Finally, this treatment of equivalence in

no way looked at natural transformations between functors and analyzed equivalence up

to natural isomorphism.

6.3 Generalizing for Infinite Formula-Vectors

One interesting limitation of this theory is that the collections of formulas were limited

to finite collections. There is definitely the machinery out there to extend the objects to

infinite formula vectors. However, doing so might complicate the inductive process for a

little while, especially if the logic in question was not compact, although most were.

6.4 Generalizing Consistency and Satisfiability

In case one didn’t notice, not a peep was mentioned involving “consistency” and “satis-

fiability”. It would definitely be a good idea to also extend a general notion of consistency

among inference maps, and also of “satisfiability” where it fits, such as the valuation logic

that was mentioned.

6.5 Exploring Intuitionistic Logic

This is a big one. While the Gentzen Calculus went fairly deep into the theory, intu-

itionistic logic in general has a propositional form whose theory was unmentioned due to

6. CONCLUSION AND FUTURE WORK 90

the chapter being made on it not being quick enough. It is a rather unfortunate scenario

and all apologies to any reader who was looking forward to a lot of intuitionistic logic.

Here are few definitions involving intuitionistic systems that the writer had, for which he

proposed is deduction class equivalent with the standard notion of intuitionistic logic. And

again the language will be presented here for reference

Definition 6.5.1. The Intuitionistic Propositional Language denoted LI is defined

as follows

1. The class Atom. contains an element pi, called a Propositional Variable, for each

i ¥ 1.

2. The connectives in LI include the constant K and the binary connectives Ñ,^.

Furthermore, we shall further define the connectives ,_,^,Ø,J as shorthand notation

for the following:

1. φ :� φÑK

2. φ_ ϕ :� φÑ ϕ,

3. φØ ϕ :� pφÑ ϕq ^ pϕÑ φq,

4. J :� K. 4

Definition 6.5.2. The Logic LI � xLI , tÑ I,Ñ E,^I,^E1,^E2,_E,Kuy is defined as

the intutionistic propositional logic

The Logic LIO called the intuitionistic propositional ordinary logic defined on the

language LO (as it was defined before) and has all inference maps previously mentioned

in LCO, except LEM and RAA. 4

It is a future work goal to show that these two logics are deduction class equivalent.

As for the semantics, an attempt at a valuation logic, i.e. a better suited truth table was

proposed. Essentially the idea is weakening the requirements for the valuation mapping

6. CONCLUSION AND FUTURE WORK 91

so that there are more of them, and moreover the conditions that assign truth are more

complicated.

Definition 6.5.3. Let φ, ϕ be LC-formulas. A mapping v : Prop �Ñ t0, 1u is an intuition-

istic valuation, and part of the valuation class V alI , if

1. vpKq � 0,

2. vpφÑ φq � 1,

3. if vpφÑ ϕq � 1, then vpφq � 0 or vpϕq � 1,

4. if vp φq � 0 or vpϕq � 1, then vp φÑ ϕq � 1,

5. vpφ^ ϕq � mintvpφq, vpϕqu.

The logic LV I on LC generated by the class V alI of of intuitionistic valuation mappings

shall be called the intuitionistic propositional valuation logic. 4

Interestingly, a lot of the proofs in chapter 4 were designed to be extended more gen-

erally to intuitionistic logic. So it is a good sign for future endeavors, particularly with

LV I .

6.6 Exploring Linear Logic

Believe it or not, this project was inspired by something that was not even close to

making it to the paper. And that is linear logic. Some definitions I had shall be provided

here

Definition 6.6.1. We shall define the linear language LL as follows.

1. The class Atom. contains a positive variable pi and negative variable pKi for each i P N.

By definition, we have pKKi � pi, for each i P N. We shall call the operation K Linear

Negation. Note that K is not a connective; rather is a convention for how atomic variables

interact in the language.

6. CONCLUSION AND FUTURE WORK 92

2. The connectives in LL include the binary connectives b,`,&,` and the unary con-

nectives ?, !, and the constant proposition symbol J. We shall call the b connective the

Tensor Product, the ` connective the Tensor Sum, the & connective the Direct

Product, the ` connective the Direct Sum, the ? and ! connectives the “why not”

and “of course” exponentials respectively, and the J symbol the Additive Truth.

Additionally, we shall extend linear negation symbol K to denote the following for any

LL-formulas θ, ϕ:

1. θK b ϕK :� pθ ` ϕqK,

2. θK ` ϕK :� pθ b ϕqK,

3. θK & ϕK :� pθ ` ϕqK,

4. θK ` ϕK :� pθ & ϕqK,

5. ?θK :� p!θqK,

6. !θK :� p?θqK. 4

Definition 6.6.2. We shall define a logic LL which uses the sequent metalanguage ML

of LL with the relation symbol $. The rules of inference shall be as follows for any

propositional variables θ, ϕ and any sequents Γ,∆,Φ,Ψ:

1. Negative Interchangeability

θ,Γ $ ∆
K1

Γ $ θK,∆

Γ $ θ,∆
K2

θK,Γ $ ∆

2. Identity

I
$ θK, θ

3. Exchange

$ Γ, θ, ϕ,∆
X

$ Γ, ϕ, θ,∆

6. CONCLUSION AND FUTURE WORK 93

4. Multiplicative Rules

$ θ, ϕ,Γ `
$ θ ` ϕ,Γ

$ θ,Γ $ ϕ,∆
b

$ θ b ϕ,Γ,∆

5. Additive Rules

$ θ,Γ $ ϕ,Γ
&

$ θ & ϕ,Γ

$ θ,Γ
1`

$ θ ` ϕ,Γ

$ ϕ,Γ
2`

$ θ ` ϕ,Γ

J
$ J,Γ

6. Exponential Rules

$ θ, ?Γ
!

$!θ, ?Γ

$ Γ
W?

$?θ,Γ

$?θ, ?θ,Γ
C?

$?θ,Γ

$ θ,Γ
D?

$?θ,Γ

4

And here, the writer stayed true to his style of defining the language in the fewest con-

nectives possible and deriving the others.

Definition 6.6.3. We shall further introduce the symbols (,K,1,0 to denote the fol-

lowing:

1. θ(ϕ :� θK ` ϕ,

2. 1 :�!J, K:� 1K,

3. 0 :� JK,

where θ and ϕ are LL formulas. 4

In short, linear logic has a lot going on, that even experts in the field don’t completely

understand. Looking at the inferences in terms of its meta-sequent language the way that

was done with intuitionistic sequents alas did not behave nicely with this metaframework.

However, a valuation class that is complete with this logic is in the works. But since that

would be cutting short everything else in this project that was already cut short, the

exploration of whether that would work was quickly abandoned.

6. CONCLUSION AND FUTURE WORK 94

There was quite a bit of inquiry of linear logic in this project that unfortunately didn’t

make it to this paper. But hopefully, future inquiry will be made

6.7 Exploring More Languages

The penultimate aspect of future work is that this gave quite a few examples of lan-

guages in the text, but alas there was not a lot of languages that were explored in full

depth. In the future, hopefully more languages will be explored.

6.8 Exploring Predicate Logic

Lastly, how exactly this works for predicate logic really is a question that is the basis

for a lot of research. Particularly, how would the so-called “logical axioms” fall into the

mix, as that definitely has its impact on what it means for two logics to be deduction

class equivalent, and for that matter, sound and complete. And how would quantifiers

be incorporated in the languages and logics that do? Moreover, how could valuations be

applied in a way that makes a system of logic that corresponds to possible models of a

language. I went about trying that in on my example of classic predicate semantics. But

that by no means does it complete justice.

Bibliography

[1] Ethan D. Bloch, The Real Numbers and Real Analysis, Springer, London, 2011.

[2] , Proofs and Fundamentals–Second Edition, Springer, New York, 2011.

[3] Dirk van Dalen, Logic and Structure–Fourth Edition, Springer-Verlag, Germany, 2004.

[4] David S. Dummit and Richard M. Foote, Abstract Algebra–Third Edition, John Wiley
and Sons, United States, 2004.

[5] Jean-Yves Girard, Proofs and Types, Cambridge University Press, Cambridge, UK,
1989.

[6] J. Lambek and P.J. Scott, Introduction to Higher Order Categorical Logic, Cambridge
University Press, Cambridge, UK, 1986.

[7] Saunders Mac Lane, Categories for the Working Mathematician, Springer-Verlag, New
York, 1971.

[8] Robin J. Wilson, Introduction to Graph Theory–Third Edition, Longman, New York,
1985.

[9] The Free Encyclopedia Wikipedia, Von NeumannBernaysGdel set theory, https://
en.wikipedia.org/wiki/Von_Neumann-Bernays-Godel_set_theory.

	Constructing a Categorical Framework of Metamathematical Comparison Between Deductive Systems of Logic
	Recommended Citation

	tmp.1462545968.pdf.iPIlZ

