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Abstract

Ordinary representation theory has been widely researched to the extent that there is a
well-understood method for constructing the ordinary irreducible characters of a finite
group. In parallel, John McKay showed how to associate to a finite group a graph con-
structed from the group’s irreducible representations. In this project, we prove a structure
theorem for the McKay graphs of products of groups as well as develop formulas for the
graphs of two infinite families of groups. We then study the modular representations of
these families and give conjectures for a modular version of the McKay graphs.
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1
Introduction

A representation of a finite group G is a homomorphism ρ : G −→ GL(V ) for some

finite-dimensional vector space V . In ordinary representation theory, V is defined over

the complex numbers C, while modular representation theory refers to representations in

positive characteristic. This project focuses on certain graphs arising from the irreducible

representations of a finite group.

We begin by leading the reader through definitions of ordinary representation theory. In

particular, we describe what it means for a representation to be irreducible and highlight

key points in character theory, where the character of a representation ρ of a finite group

G is the function χρ : G −→ C given by χρ(g) = Tr(ρ(g)). Throughout most of the project,

we use character data to study the representation theory of the groups in question.

In 1981, John McKay associated a graph to each irreducible representation of a group

[2]. Essentially, this graph visualizes the interaction between its defining representation

and the other irreducibles of the group at hand. More precisely, since every representation

can be decomposed into a direct sum of irreducible representations, one can decompose a

tensor product into a direct sum of irreducibles. The decomposition data is what generates
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the McKay graph. We give a rigorous definition in Chapter 3, as well as construct this for

several groups. We contrast the McKay graph with the Cayley graph, another structure

which comes to mind when discussing graphs associated with groups.

Having presented necessary background in ordinary representation theory, we go on to

prove several theorems in Chapter 4. We show that the McKay graphs of the product of

two groups G1 ×G2 have a direct relationship to the McKay graphs of the groups taken

individually. We also give formulas for the decomposition of tensor products of represen-

tations of the family of dihedral groups Dn. This tells us how to construct any McKay

graph for a given dihedral group. Our last result in ordinary representation theory has to

do with another family of groups, SL2(p), the special linear group of 2× 2 matrices over

the field of p elements. Members of this family have a distinguished representation called

the Steinberg representation. We provide formulas for the tensor product decomposition

of this representation with itself.

In Chapter 5, we depart from ordinary representation theory and introduce modular

representations. These send a finite group to GL(V ) in characteristic p, so we work with

K = Fp or its algebraic closure, Fp. We introduce a notion of McKay graphs in character-

istic p and show that the formulas for the McKay graphs of dihedral groups hold for Dp

in characteristic 2 and characteristic p. Similarly, for SL2(p) we give a conjecture for the

tensor product decomposition of the Steinberg representation with itself in characteristic

p. Throughout the project we used substantial computational techniques in Magma and

Mathematica. Sample code appears in Appendix B.1.
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Preliminaries

In this chapter, we give a brief background of representation theory, with a focus on

ordinary representations and their characters. We introduce key notation and illustrate

several interesting properties by way of examples. In particular, attention is paid to the

effect of a group’s structure on its representations.

2.1 Definitions

Definition 2.1.1. Let G be a finite group and let V be a finite dimensional vector space

defined over a field K. A representation of G is a homomorphism ρ : G −→ GL(V ) where

GL(V ) is the general linear group over V . Each element g ∈ G gives rise to an invertible

n× n matrix ρ(g) with entries in K. We call n the degree of ρ. 4

If the characteristic of K is 0 or prime to |G|, we call ρ an ordinary representation.

Otherwise, ρ is a modular representation, which we will cover in a later chapter. For now,

K = C.
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Example 2.1.2. The trivial representation is the homomorphism ρ1G : G −→

GL1(K) = K∗, sending all g ∈ G to 1 ∈ K. For ease of notation, we denote this as

ρ1 from here on.

Definition 2.1.3. If ker ρ is trivial, then ρ is a faithful representation of G. Otherwise,

it is unfaithful. 4

Example 2.1.4. For any group G, the trivial representation is unfaithful since ker(ρ1) =

G.

Example 2.1.5. Let G = S3, V = C3, and ρ : G −→ GL3(C) such that ρ(g) permutes

the coordinates of V . Explicitly, we have

ρ(()) =

1 0 0
0 1 0
0 0 1

 , ρ((12)) =

0 1 0
1 0 0
0 0 1

 , ρ((13)) =

0 0 1
0 1 0
1 0 0

 ,

ρ((23)) =

1 0 0
0 0 1
0 1 0

 , ρ((123)) =

0 1 0
0 0 1
1 0 0

 , and ρ((132)) =

0 0 1
1 0 0
0 1 0

 .

Then ker(ρ) contains just the trivial element (), making ρ a faithful representation.

Definition 2.1.6. Let W be a subspace of V . If for all g ∈ G and w ∈ W it is the case

that ρ(g) · w ∈W , then W is a G-invariant subspace, or stable subspace of V . 4

All representations have the stable subspaces {0} and V . To see that {0} is stable, note

that matrix multiplication sends 0 to 0. Similarly, W = V is a stable subspace as well

since if v ∈ V , then ρ(g)v ∈ V by definition of ρ(g).

Example 2.1.7. Recall ρ : S3 −→ GL3(C) from 2.1.5 and let ` be the line spanned by[
1
1
1

]
. Then for any w ∈ `, g ∈ S3, it is the case that ρ(g) · w ∈ ` as well. (In fact, we find

that ρ(g) · w = w.) Thus ` is a stable subspace of C.
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Definition 2.1.8. For any stable subspace W of V , there exists a related stable subspace

W⊥ where W⊥ is the orthogonal complement of W ∈ V . Here, orthogonality requires

a suitably defined inner product on V . The proof of this can be found in Appendix A. 4

Remark 2.1.9. If the characteristic of the field divides the order of the group - which

means ρ is a modular representation - then there does not exist such a suitably defined

inner product.

The fact that stable subspaces come in pairs is especially clear when we consider the

two trivial subspaces {0} and V . For a nontrivial pair, let us further extend Examples

2.1.5 and 2.1.7.

Example 2.1.10. Let ρ be the permutation representation from Example 2.1.7. For this

representation of S3, it just so happens that the required inner product is the dot product

as defined for Euclidean space, yielding the intuitive notion of orthogonality. Then the

orthogonal complement of our stable subspace ` is the plane `⊥ = {(x, y, z)|x+y+z = 0}.

One can see that for any w =
[
x
y
z

]
∈ `⊥, ρ(g) · w simply permutes the values of x, y, z.

This means ρ(g) · w satisfies x+ y + z = 0 which implies ρ(g) · w ∈ `⊥, verifying that `⊥

is a stable subspace.

Definition 2.1.11. If the only stable subspaces of V are {0} and V , we call ρ an irre-

ducible representation of G. 4

Definition 2.1.12. Consider ρ1 : G −→ GLn(V1) and ρ2 : G −→ GLm(V2). Then their

direct sum, ρ1 ⊕ ρ2 : G −→ GLn+m(V1 ⊕ V2), is defined as

(ρ1 ⊕ ρ2)(g) · (v1, v2) = (ρ1(g) · v1, ρ2(g) · v2).

If one chooses an appropriate basis, then ρ1 ⊕ ρ2 can be expressed in matrix form like so:

(ρ1 ⊕ ρ2)(g) · (v1, v2) =

[
ρ1(g) · v1 0

0 ρ2(g) · v2

]
. 4
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Definition 2.1.13. Let A and B be n × n and m ×m matrices, respectively. Then the

Kronecker product A⊗B of A and B is the nm× nm matrix
a11B a12B . . . a1nB
a21B a22B . . . a2nB

...
an1B an2B . . . annB


,

where aijB denotes the m×m matrix obtained by multiplying all entries of B by aij . See

Figure 4.1.1 for an expanded version of the above matrix. 4

Definition 2.1.14. Given ρ1 : G→ GL(V1) and ρ2 : G→ GL(V2), we define the tensor

product ρ1⊗ ρ2 : G→ GL(V1⊗ V2) such that for all g ∈ G, (ρ1⊗ ρ2)(g) = ρ1(g)⊗ ρ2(g),

where the latter tensor product denotes the Kronecker product of matrices. 4

Theorem 2.1.15. The tensor product of two representations of G is a representation of

G.

Proof. It suffices to show that ρ1 ⊗ ρ2 is a homomorphism of G. See that

(ρ1 ⊗ ρ2)(gh) = ρ1(gh)⊗ ρ2(gh) by definition

= ρ1(g)ρ1(h)⊗ ρ2(g)ρ2(h) since ρ1, ρ2 are homomorphisms

= [ρ1(g)⊗ ρ2(g)] · [ρ1(h)⊗ ρ2(h)] by multiplication of Kronecker products

= (ρ1 ⊗ ρ2)(g) · (ρ1 ⊗ ρ2)(h)

as desired.

Theorem 2.1.16. If ρ1 is the trivial representation of G, then ρ1 ⊗ ρi = ρi where ρi is

any representation of G.

Proof. Let g ∈ G and take (ρ1 ⊗ ρi)(g). Then

(ρ1 ⊗ ρi)(g) = ρ1(g) · ρi(g)

= In · ρi(g)

= ρi(g).
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The following is Maschke’s Theorem - one of the foundational theorems of ordinary

representation theory.

Theorem 2.1.17. [1, 3.1, p.16] Every representation is a direct sum of irreducible repre-

sentations, and this decomposition is unique.

It is not necessarily the case that the tensor product of two irreducible representations is

itself irreducible. However, it can be decomposed into a direct sum where each component

is irreducible. More explicitly, for any pair of irreducible representations ρi, ρj , it is the

case that

ρi ⊗ ρj =
n

⊕
k=1

akρk

= a1ρ1 ⊕ a2ρ2 ⊕ ...⊕ anρn

where ak ∈ N denotes the multiplicity of the irreducible representation ρk.

These last few theorems are integral to the project and will be used frequently.

2.2 The Characters of a Representation

Let M be an n×n matrix. If aij denotes the ith entry in the jth row of M , then the trace

Tr(M) is defined as
n∑
i=1
aii. It is a nontrivial fact that Tr(M) also equals the sum of the

eigenvalues.

Definition 2.2.1. For every representation ρ : G −→ GLn(V ), there exists the function

χρ : G −→ K, with χρ(g) = Tr(ρ(g)). We call χρ the character of a given representation.

If ρ is irreducible, we say χρ is an irreducible character. 4

From the definition alone, we see that χρ(1) = n where ρ is any representation of G

since ρ(1) = In. It is also the case that for g, h ∈ G,

χρ(g) = χρ(hgh
−1). (2.2.1)
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Observe that

χρ(hgh
−1) = Tr(ρ(hgh−1))

= Tr
(
[ρ(h)ρ(g)][ρ(h−1)]

)
since representations are homomorphisms

= Tr
(
[ρ(h)][ρ(h−1)ρ(g)]

)
by Tr(AB) = Tr(BA)

= Tr(Inρ(g))

= Tr(ρ(g))

= χρ(g).

This shows that χρ is constant on conjugacy classes, which means we can talk about

the action of ρ on G in terms of conjugacy classes alone. Related to this are some deep

facts about representations and characters that we will use throughout the project. In

particular, these are:

1. The number of conjugacy classes of G is equal to the number of irreducible repre-

sentations G has.

2. If all the irreducible representations of G are ρ1, ..., ρα, then
α∑
j=1

dim(ρj)
2 = |G|.

Proving the above would require an in-depth excursion into heavily theoretical material,

taking us farther than we can afford from our immediate topic. We instead outline several

theorems and provide citations for those wishing to dive further into the related proofs.

These are Lemma 2.2.4 and Theorems 2.2.7, 2.2.9, and 2.2.10.

Definition 2.2.2. Let f : G −→ C be a function. If f(g) = f(hgh−1) for all g, h ∈ G, then

we call f a class function and Z(L(G)) the set of class functions. [7, 4.2, p. 36] 4

Example 2.2.3. From its definition and Equation 2.2.1, we can see that χρ is a class

function.

Lemma 2.2.4. The set of class functions forms a vector space over C under pointwise

addition and scalar multiplication.
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Proof. Let f, g be two class functions and define (f + g)(x) = f(x) + g(x). Under this

definition, it is clear that the sum of two class functions is itself a class function. Moreover,

for any scalar a ∈ C, defining (af)(x) = af(x) shows that a scalar multiple of a class

function is a class function itself. The zero function is a class function and serves as the

additive identity. Thus set the class functions Z(L(G)) forms a complex vector space.

Remark 2.2.5. It is known that Z(L(G)) has dimension |Cl(G)|. For a proof of this, see

[7, 4.3.8, p.37].

Definition 2.2.6. For a group G with |Cl(G)| = α, we define the inner product of two

characters χρi , χρj as

〈χρi , χρj 〉 = 1
|G|

α∑
k=1

|Clk|
(
χρi(gk) · χρj (gk)

)
.

The above differs from the standard inner product due to the fact that χρ is a class func-

tion. Rather than sum over all g ∈ G, we iterate over gk where the latter is a representative

of Clk. 4

Theorem 2.2.7. [7, 4.3.9, p. 37] The irreducible characters of G form an orthonormal

set of class functions.

Example 2.2.8. Let G = S3. We present its irreducible characters in the table below, to

be introduced formally in Definition 2.2.12. For now, it is an α× α matrix which encodes

information about a group’s irreducible characters.

() (12) (123)

χρ1 1 1 1
χρ2 1 -1 1
χρ3 2 0 -1

We now compute 〈χρi , χρ3〉. Observe that

〈χρ1 , χρ3〉 = 1
6

(
1(2 · 1) + 3(0 · 1) + 2(−1 · 1)

)
= 1

6

(
2− 2

)
= 0

〈χρ2 , χρ3〉 = 1
6

(
1(2 · 1) + 3(0 · −1) + 2(−1 · 1)

)
= 1

6

(
2− 2

)
= 0
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〈χρ3 , χρ3〉 = 1
6

(
1(2 · 2) + 3(0 · 0) + 2(−1 · −1)

)
= 1

6

(
4 + 2) = 1

as expected, verifying Theorem 2.2.7.

In fact, it will always be the case that 〈χρi , χρi〉 = 1, 〈χρi , χρj 〉 = 0 for i 6= j.

Corollary 2.2.9. [7, 4.3.10, p. 38] There are at most |Cl(G)| equivalence classes of irre-

ducible representations of G.

Two inequivalent irreducible representations will have inequivalent characters, and will

thus belong to different equivalence classes in Z(L(G)). This means there are |Cl(G)|

distinct irreducible representations. Then for a finite group G, not only are there finitely

many irreducible representations, but there are precisely |Cl(G)| of them.

Theorem 2.2.10. [6, Corollary 2.4.2(a)] Dimensionality Theorem: Let ρ1, ρ2, ..., ρα be the

set of irreducible representations of G. Then it is the case that

α∑
k=1

dim(ρk)
2 = |G|

Example 2.2.11. We look at G = S3 once more. Then |G| = 6 and G has three irreducible

representations with dimensions 1, 1, 2 respectively. (For more information on these, see

3.2.4.) See that 12 + 12 + 22 = 6 = |G|.

From our knowledge about the number of irreducible representations of G and their

characters, there exists a logical and efficient way of organizing data on G’s irreducible

representations.

Definition 2.2.12. To group G is associated an α × α character table of the form

below. The columns correspond to conjugacy classes with column j denoting the jth con-

jugacy class Clj , while the rows correspond to characters of G’s irreducible representations

ρ1, ρ2, ..., ρα. As defined, ρ1 is the trivial representation. The ijth entry in this table tells

us χρi(Clj), the character value of ρi on the jth conjugacy class. By convention, we list
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the trivial representation and the identity class Cl1 first. Through abuse of notation, we

set χi := χρi .

Cl1 Cl2 Cl3 . . . Clα
χ1 1 1 1 . . . 1
χ2 dim(ρ2) χρ2(Cl2) χρ2(Cl3) . . . χρ2(Clα)
χ3 dim(ρ3) χρ3(Cl2) χρ3(Cl3) . . . χρ3(Clα)
...

...
χα dim(ρα) χρα(Cl2) χρα(Cl3) . . . χρα(Clα)

4

We now provide several examples of character tables, in order for the reader to familiarize

themselves with the notation.

Example 2.2.13. Representations of a cyclic group

LetG be a finite abelian group. Then the number of conjugacy classes ofG is |G|, since each

element is its own conjugacy class. This means there are |G| irreducible representations.

By 2.2.10, it follows that dim(ρ) = 1 for each irreducible representation ρ of G. Further,

let G = Cn, the cyclic group of order n with elements of the form gx for 0 ≤ x ≤ n − 1

where we set g0 = 1. Then for any ρ : Cn −→ GL1(C), we have ρ(1) = 1 = ρ(gn) = (ρ(g))n.

Let ρ(g) = z. It is the case that z must satisfy

1 = zn which implies

0 = zn − 1

0 = (z − 1)(zn−1 + zn−2...+ z2 + z + 1).

This yields the solutions z = ρ(g) = 1, which corresponds to the trivial representation,

and z = ρ(g) = σ where σ is a nontrivial nth root of unity. Then σ = ωj for ω = e2πi/n,

1 ≤ j ≤ n− 1. There are n− 1 possibilities for σ, each yielding one irreducible represen-

tation. Thus the only irreducible representations of Cn are of the form ρj+1(gx) = (ωj)x.
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Now let n = 5, and let us examine the resulting character table.

1 g g2 g3 g4

χ1 1 1 1 1 1
χ2 1 ω ω2 ω3 ω4

χ3 1 ω2 ω4 ω ω3

χ4 1 ω3 ω ω4 ω2

χ5 1 ω4 ω3 ω2 ω

In fact, we can construct a general character table of Cn, relying on the formula for

ρj+1(g). This is displayed below.

1 g g2 g3 . . . gn−1

χ1 1 1 1 1 . . . 1
χ2 1 ω ω2 ω3 . . . ωn−1

χ3 1 ω2 ω4(mod n) ω6(mod n) . . . ω2(n−1)(mod n)

χ4 1 ω3 ω6(mod n) ω9(mod n) . . . ω3(n−1)(mod n)

...
...

χn 1 ωn−1 ω2(n−1)(mod n) ω3(n−1)(mod n) . . . ω(n−1)2 (mod n)

Theorem 2.2.14. Let G be a finite nonabelian group and ρ : G −→ GL(V ) of degree 1.

Then ρ is unfaithful.

Proof. Let G be nonabelian with ρ : G −→ GL1(C) = C? of degree 1. Suppose ρ is faithful.

Then ρ is injective, which means ρ(G) is a subgroup of C? that is isomorphic toG. However,

C? is abelian while ρ(G) is not. Since an abelian group cannot have nonabelian subgroups,

this is impossible. Thus ρ must be unfaithful.

Example 2.2.15. Constructing the representations of D4 and Q8

Consider D4 = {1, r, r2, r3, s, rs, r2s, r3s} and Q8 = {1, i, j, k,−1,−i,−j,−k} where

i2 = j2 = k2 = ijk = −1. It is clear that |D4| = |Q8|. Furthermore, they both have five con-

jugacy classes: {1}, {r2}, {r, r3}, {s, sr2}, {sr, sr3} and {1}, {−1}, {i,−i}, {j,−j}, {k,−k},

respectively. Then each of the two groups have five irreducible representations by Corol-

lary 2.2.9. Let a, b, c, d, e denote the degrees of these representations. By 2.2.10, these must
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satisfy 8 = a2 + b2 + c2 + d2 + e2. Accounting for the trivial representation yields

8 = 12 + b2 + c2 + d2 + e2 =⇒ 7 = b2 + c2 + d2 + e2.

The only solution set to the latter equation is {1, 1, 1, 2}. Thus both groups have four

irreducible representations of degree 1 and one irreducible representation of degree 2.

Note that these groups are nonisomorphic since Q8 has more elements of order 4 than D4.

Let us now discuss the irreducible representations of both groups.

We refer to the four irreducible 1-dimensional representations ofD4 as χ1, ..., χ4 where χ1

is the character of the trivial representation. Since D4 is nonabelian, we know χi has a non-

trivial kernel by 2.2.14. Then we can proceed by assigning normal subgroups of the group

to ker(χi). Said subgroups are H1 = {1, r2}, H2 = {1, r, r2, r3}, H3 = {1, r2, s, sr2}, H4 =

{1, r2, sr, sr3}, and D4. The full group serves as ker(χ1), so we can dismiss it. Since

H1 ⊆ Hi and we have four χi, it follows that χi(H1) = 1 for all i. Then we can dis-

tribute the remaining subgroups among our χi in the following manner: ker(χ2) = H2,

ker(χ3) = H3, and ker(χ4) = H4. For any g ∈ D4, we find that if g 6∈ ker(χi), then

χi(g) = −1 since g2 ∈ ker(χi). Verification is left to the reader.

The last irreducible representation of D4 is two dimensional - denote this as R. This

representation corresponds to visualizing our group’s action on the unit square in R2. For

example, we have

1

23

4

R(1)

4

12

3

R(r)

2

14

3

R(s)

We conclude from the previous pictures that R(g) : R(rm) =
([0 −1

1 0

])m
, R(s) =[

−1 0
0 1

]
. Then R(srm) = R(s)R(rm). Computing the traces for all R(g) yields χR(1) =
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2, χR(r2) = −2, and χR(g) = 0 for g 6= 1, r2. Having now obtained all its characters, we

construct the character table for D4.

D4 {1} {r2} {r, r3} {s, sr2} {sr, sr3}
χ1 1 1 1 1 1
χ2 1 1 1 -1 -1
χ3 1 1 -1 1 -1
χ4 1 1 -1 -1 1
χR 2 −2 0 0 0

We repeat this process with Q8. Call its 1-dimensional irreducible representations

X1, ..., X4 and let S be the irreducible representation of degree 2. Like D4, Q8 is non-

abelian so we can find Xi in a similar fashion: we assign normal subgroups of Q8 to ker(Xi).

Said subgroups are {1}, {−1, 1}, 〈i〉, 〈j〉, 〈k〉, and Q8. Let X1 be the character of the triv-

ial representation. By definition, ker(X1) = Q8 so we move on to the nontrivial normal

subgroups. Call any of them J . Since {−1, 1} ⊆ J and we have exactly four Xi, we know

−1 ∈ ker(Xi) for all i. Then we can assign 〈i〉 = ker(X2), 〈j〉 = ker(X3), and 〈k〉 = ker(X4).

Now take X2 and consider X2(ijk). Since ijk = −1 and X2(−1) = X2(i) = 1, we must

have X2(j) = X2(k) = −1 so that the multiplicative group structure of Q8 is preserved.

By the same reasoning we have X3(i) = X3(k) = −1 and X4(i) = X4(j) = −1.

This gives us enough information to compute χS without explicitly defining the repre-

sentation. We use 2.2.7, which tells us that for any inequivalent xi, xj , we have 〈xi, xj〉 = 0

with the inner product operating as defined in 2.2.6. First, recall that S is of de-

gree 2, which means S(1) = I2 and so XS(1) = 2. Together with the facts that

XS(−1) 6= 2, (XS(−1))2 = 2, this implies XS(−1) = −2. To obtain the rest of XS ,

we use 2.2.7 and 2.2.6 to generate equations of the form

〈Xi, S〉 =
(
|Cl1|(Xi(1)XS(1)) + |Cl2|(Xi(Cl2)XS(Cl2)) + ...+ |Cl5|Xi(Cl5)XS(Cl5))

)
.
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These create the following system of linear equations,

〈X1, S〉 = 2 + (−2) + 2(1)(α) + 2(1)(β) + 2(1)(δ) = 0

〈X2, S〉 = 2 + (−2) + 2(1)(α) + 2(−1)(β) + 2(−1)(δ) = 0

〈X3, S〉 = 2 + (−2) + 2(−1)(α) + 2(1)(β) + 2(−1)(δ) = 0

〈X4, S〉 = 2 + (−2) + 2(−1)(α) + 2(−1)(β) + 2(1)(δ) = 0

which in turn yields the solutions α = β = δ = 0. Our result is XS = [2,−2, 0, 0, 0].

Now that we have a complete set of irreducible characters for both groups, we can

compare them. We find that D4 and Q8 have identical character tables, overlaid below.

D4 {1} {r2} {r, r3} {s, sr2} {sr, sr3}
Q8 {1} {−1} {i,−i} {j,−j} {k,−k}

χ1, X1 1 1 1 1 1
χ2, X2 1 1 1 -1 -1
χ3, X3 1 1 -1 1 -1
χ4, X4 1 1 -1 -1 1
χR, XS 2 −2 0 0 0

This example shows that non-isomorphic groups may have identical character tables.

Lemma 2.2.16. Let ρr, ρs, ρt be representations of G such that ρt = ρr ⊕ ρs. Then χρt =

χρr + χρs.

Recall from Definition 2.1.12 that ρ1 ⊕ ρ2 may be put into block diagonal form by

changing basis. Furthermore, the trace of a matrix is independent of basis and Tr(A) +

Tr(B) = Tr(A+B). Then by definition of χρ, the above holds.

This lemma extends Theorems 2.1.15, 2.1.16, 2.1.17, to the characters of a representa-

tion. This means that the product of two irreducible characters is a character of G - one

which can be decomposed uniquely into a sum of irreducible characters. More explicitly,

if G is a group with α irreducible representations, then it is the case that for any two
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irreducible characters χi, χj , their product χi · χj is also a character of G and

χi · χj =
α∑
k=1

akχk

= a1χ1 + a2χ2 + ...+ aαχα.

The multiplicities ak are one of the key components in constructing the McKay graph of

a representation, which we will discuss in the next section.



3
Graphs of Representations

We introduce two types of graphs related to any given group: the Cayley graph and

the McKay graph. Though the former has little to do with representation theory, its

familiarity provides a nice setting for the more complicated McKay graph. We lead the

reader through some graph theoretical definitions and introduce a method of constructing

the McKay graph of a group’s representation. This is to give background for the proof of

Theorem 4.1.3.

3.1 The Cayley Graph

Definition 3.1.1. A symmetric subset of G is a set S ⊆ G such that 1G 6∈ S and if

g ∈ S, then g−1 ∈ S as well. 4

Example 3.1.2. Recall Q8 from Example 2.2.15. All of its conjugacy classes, except for

the identity, are symmetric subsets. This is evident upon writing them out: {−1}, {i,−i},

{j,−j}, {k,−k}. Any union of these is also a symmetric subset of the group.

Example 3.1.3. The set S = G− {1G} is a symmetric subset of G for any group G.
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Definition 3.1.4. Let G be a group and let S be a symmetric subset of G. Then the

Cayley Graph ΓS of G with respect to S is defined by the following rules:

1. The vertex set V (Γ) is equal to G, and

2. There exists an edge between vertices g1, g2 ∈ V (Γ) if g1g
−1
2 ∈ S.

4

Example 3.1.5. Let G = S3 and let A = {(12), (13), (23)}, B = {(123), (132)}. It is easy

to see that A,B are each symmetric subsets. Then the Cayley graphs ΓA,ΓB of G with

respect to A and B are

()

(12) (13) (23)

(123) (132)

ΓA

()

(12) (13) (23)

(123) (132)

ΓB

Example 3.1.6. Now let G = Z/7Z and let S = {2, 3, 4, 5}. We take G to be the additive

group, so e = 0. Then ΓS of G is

0

1

2 3

4

56
Γ

3.2 The McKay Graph

Given a group G with irreducible representations ρ1, ρ2, ..., ρα, each ρi has an associated

McKay graph Γρi which we derive through tensor product decompositions of the repre-

sentations’ characters [2]. This is best constructed through MΓρi
, the adjacency matrix of

Γρi . For the sake of notation, let us rename this Mρi .
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Definition 3.2.1. The adjacency matrix MΓ of a graph Γ is a square matrix of size

|V (Γ)| × |V (Γ)| where the ijth entry is nonzero if there exists an edge between vertices vi

and vj . 4

Suppose that for some G, we want to construct Γρi , the McKay Graph of its irreducible

representation ρi. The first step in creating the adjacency matrix Mρi is to compute

χρi · χρj =
α∑
k=1

m(j,k)χρk

= m(j,1)χρ1 +m(j,2)χρ2 + ...+m(j,α)χρα

for each irreducible ρj with 1 ≤ j ≤ α. Then the row vector [m(j, 1),m(j, 2), ...,m(j, n)]

becomes the jth row in Mρi . This gives us a formula for Mρi in terms of m(j,k):

Mρi =


m(1,1) m(1,2) . . . m(1,α)

m(2,1) m(2,2) . . . m(2,α)
...

. . .
...

m(α,1) m(α,2) . . . m(α,α)


.

Theorem 3.2.2. For a group G with α irreducible representations, the adjacency matrix

Mρi = Iα if and only if ρi is the trivial representation.

Proof. Suppose for ρi 6= ρ1 we have Mρi = Iα. Then m(i,j) = 0 for i 6= j and m(i,j) = 1

otherwise. Since ρi is not the trivial representation, it is the case that χρi · χρ1 = χρi by

Theorem 2.1.16. Then m(1,i) = 1 but by hypothesis, i 6= 1. This contradicts Mρi = Iα.

Now suppose Mρ1 6= Iα. Then there exists some j such that m(j,j) 6= 1 or m(j,i6=j) = 0.

This means χ1 · χρj 6= χρj , which contradicts the definition of ρ1.

Corollary 3.2.3. Γi is totally disconnected if and only if ρi is the trivial representation.

We only consider nontrivial edges here. More concretely, the self-loops resulting from

nonzero entries on the diagonal of Mρ1 are ignored.

Example 3.2.4. Let G = S3 and let us construct the McKay graphs for each of its

irreducible representations. Below is its character table, for reference.
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() (12) (123)

χ1 1 1 1
χ2 1 -1 1
χ3 2 0 -1

We now compute χi · χj for fixed i = {1, 2, 3}. The symbol · will denote the dot product

of rows (that is, [a, b, c] · [d, e, f ] = [ad, be, cf ]). We derive the following:

χ1 · χ1 = [1, 1, 1] · [1, 1, 1] = [1, 1, 1] = χ1

χ1 · χ2 = [1, 1, 1] · [1,−1, 1] = [1,−1, 1] = χ2

χ1 · χ3 = [1, 1, 1] · [2, 0,−1] = [2, 0,−1] = χ3

χ2 · χ1 = [1,−1, 1] · [1, 1, 1] = [1,−1, 1] = χ2

χ2 · χ2 = [1,−1, 1] · [1,−1, 1] = [1, 1, 1] = χ1

χ2 · χ3 = [1,−1, 1] · [2, 0,−1] = [2, 0,−1] = χ3

χ3 · χ1 = [2, 0,−1] · [1, 1, 1] = [2, 0,−1] = χ3

χ3 · χ2 = [2, 0,−1] · [1,−1, 1] = [2, 0,−1] = χ3

χ3 · χ3 = [2, 0,−1] · [2, 0,−1] = [4, 0, 1] = χ1 + χ2 + χ3

Recall the formula for the adjacency matrix Mρi from the previous page. Using the above

tensor product decompositions, we construct the adjacency matrices for the three repre-

sentations of S3.

1 0 0
0 1 0
0 0 1


Mρ1

0 1 0
1 0 0
0 0 1


Mρ2

0 0 1
0 0 1
1 1 1


Mρ3

These matrices yield the graphs below, respectively.

•1

•2

•3
Γρ1

•1

•2

•3
Γρ2

•1

•2

•3
Γρ3
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Example 3.2.5. Since the character table determines a group’s McKay graphs, it is the

case that D4 and Q8 have the same McKay graphs. We skip Γρ1 since its adjacency matrix

is I5. For reference to the computations, here is the character table from Example 2.2.15:

D4 {1} {r2} {r, r3} {s, sr2} {sr, sr3}
Q8 {1} {−1} {i,−i} {j,−j} {k,−k}

χ1, X1 1 1 1 1 1
χ2, X2 1 1 -1 -1 1
χ3, X3 1 1 -1 1 -1
χ4, X4 1 1 1 -1 -1
χR, XS 2 −2 0 0 0

Using this data, we compute the tensor product decompositions.

χ2 · χ1 = χ2

χ2 · χ2 = [1, 1,−1,−1, 1] · [1, 1,−1,−1, 1] = [1, 1, 1, 1, 1] = χ1

χ2 · χ3 = [1, 1,−1,−1, 1] · [1, 1,−1, 1,−1] = [1, 1, 1,−1,−1] = χ4

χ2 · χ4 = [1, 1,−1,−1, 1] · [1, 1, 1,−1,−1] = [1, 1,−1, 1,−1] = χ3

χ2 · χR = [1, 1,−1,−1, 1] · [2,−2, 0, 0, 0] = [2,−2, 0, 0, 0] = χR

χ3 · χ1 = χ3

χ3 · χ2 = [1, 1,−1, 1,−1] · [1, 1,−1,−1, 1] = [1, 1, 1,−1,−1] = χ4

χ3 · χ3 = [1, 1,−1, 1,−1] · [1, 1,−1, 1,−1] = [1, 1, 1, 1, 1] = χ1

χ3 · χ4 = [1, 1,−1, 1,−1] · [1, 1, 1,−1,−1] = [1, 1,−1,−1, 1] = χ2

χ3 · χR = [1, 1,−1, 1,−1] · [2,−2, 0, 0, 0] = [2,−2, 0, 0, 0] = χR

χ4 · χ1 = χ4

χ4 · χ2 = [1, 1, 1,−1,−1] · [1, 1,−1,−1, 1] = [1, 1,−1, 1,−1] = χ3

χ4 · χ3 = [1, 1, 1,−1,−1] · [1, 1,−1, 1,−1] = [1, 1,−1,−1, 1] = χ2

χ4 · χ4 = [1, 1, 1,−1,−1] · [1, 1, 1,−1,−1] = [1, 1, 1, 1, 1] = χ1

χ4 · χR = [1, 1, 1,−1,−1] · [2,−2, 0, 0, 0] = [2,−2, 0, 0, 0] = χR

χR · χ1 = χR

χR · χ2 = [2,−2, 0, 0, 0] · [1, 1,−1,−1, 1] = [2,−2, 0, 0, 0] = χR

χR · χ3 = [2,−2, 0, 0, 0] · [1, 1,−1, 1,−1] = [2,−2, 0, 0, 0] = χR

χR · χ4 = [2,−2, 0, 0, 0] · [1, 1, 1,−1,−1] = [2,−2, 0, 0, 0] = χR

χR · χR = [2,−2, 0, 0, 0] · [2,−2, 0, 0, 0] = [4, 4, 0, 0, 0] = χ1 + χ2 + χ3 + χ4
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These yield the following nontrivial adjacency matrices and their respective graphs,

with vertices labeled 1, 2, 3, 4 and 5 corresponding to the irreducible representations

ρ1, ρ2, ρ3, ρ4, and R: 
0 1 0 0 0
1 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 1


Mρ2

•1

•2•3

•4
•5

Γρ2
0 0 1 0 0
0 0 0 1 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 1


Mρ3

•1

•2•3

•4
•5

Γρ3
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0
0 0 0 0 1


Mρ4

•1

•2•3

•4
•5

Γρ4
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
1 1 1 1 0


MR

•1

•2•3

•4
•5
ΓR

Example 3.2.6. Multiplicities greater than 1

Let G = A4. Displayed below is its character table, which we use to compute χρ4 · χρ4 .

Here, ω = e2πi/3.

() (12) (123) (12)(34)

χ1 1 1 1 1
χ2 1 1 ω2 ω
χ3 1 1 ω ω2

χ4 3 -1 0 0
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See that

χ4 · χ4 = [3,−1, 0, 0] · [3,−1, 0, 0] = [9, 1, 0, 0].

Notice that the direct sum χ1 + χ2 + χ3 + χ4 yields [5, 2, 0, 0]. This tells us that for at

least one χi, its multiplicity is greater than 1. We then obtain the correct decomposition,

χ4 · χ4 = χ1 + χ2 + χ3 + 2χ4.

In order to show the McKay graph of this representation, we must compute χ4 · χi for

i = 1, 2, 3. From the character table, one can see that χ4 · χi = χ4, so we omit these

calculations in favor of brevity. We show the resulting adjacency matrix Mρ4 and McKay

graph Γρ4 . The vertex i corresponds to ρi and we label the edge of nontrivial weight.

Mρ4 =


0 0 0 1
0 0 0 1
0 0 0 1
1 1 1 2

 −→ •1

•2•3

•4

w.2

Γρ4
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4
Results in Ordinary Representation Theory

In this chapter we discuss two new theorems in ordinary representation theory. The first

theorem focuses on the representations of direct products of groups and what this means for

the McKay graphs of direct products of groups. The second theorem establishes formulas

for the McKay graphs of Dn.

4.1 Direct Products of Groups

As we look at more complicated groups, the number of conjugacy classes grows, thus

increasing the number of irreducible representations a given group has. This makes char-

acter tables difficult to generate by hand and increases the complexity of tensor prod-

uct decompositions. Because of this, we rely on the Magma Calculator available at

http://magma.maths.usyd.edu.au/calc/ to provide us with character tables. We also use

Mathematica to aid in tensor product decompositions. An example of the two methods

can be found in Appendices B.1 and B.2, respectively.

We now present a preexisting theorem having to do with the representations of the

direct product of two groups, G1 ×G2, followed by our extension of this theorem.
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Theorem 4.1.1. [6, Thm. 10, 3.2] For any irreducible representations ρi, ρj of groups

G1, G2 respectively, ρi⊗ ρj is an irreducible representation of G1×G2. Furthermore, each

irreducible representation of G1 ×G2 is isomorphic to some ρi ⊗ ρj where ρi, ρj are each

some irreducible representation of G1, G2.

A similar fact exists for the character of a representation. Specifically, for χ1, χ2 of

G1, G2 respectively, it is the case that

χρ1⊗ρ2(g1, g2) = χ1(g1) · χ2(g2) (4.1.1)

for (g1, g2) ∈ G1 ×G2 and g1 ∈ G1, g2 ∈ G2. [6, 3.2, p. 27]

Our goal is to extend the above to McKay graphs. First, let us show an example demon-

strating the feasibility of this.

Example 4.1.2. Let G = S3 and recall the adjacency matrices for its McKay graphs from

3.2.4: 1 0 0
0 1 0
0 0 1


Mρ1

0 1 0
1 0 0
0 0 1


Mρ2

0 0 1
0 0 1
1 1 1


Mρ3

.

Let us compute the nine Kronecker products Mρi ⊗Mρj in order to compare these to

Mσk , which correspond to the irreducible representations σk of S3×S3 for k = 1, ..., 9 and

will be constructed afterwards. We obtain the following:

Mρ1 ⊗Mρ1 = I9

Mρ1 ⊗Mρ2 =

1 0 0
0 1 0
0 0 1

⊗
0 1 0
1 0 0
0 0 1

 =



0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1



Mρ1 ⊗Mρ3 =

1 0 0
0 1 0
0 0 1

⊗
0 0 1
0 0 1
1 1 1

 =



0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1 1


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Mρ2 ⊗Mρ1 =

0 1 0
1 0 0
0 0 1

⊗
1 0 0
0 1 0
0 0 1

 =



0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1



Mρ2 ⊗Mρ2 =

0 1 0
1 0 0
0 0 1

⊗
0 1 0
1 0 0
0 0 1

 =



0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1



Mρ2 ⊗Mρ3 =

0 1 0
1 0 0
0 0 1

⊗
0 0 1
0 0 1
1 1 1

 =



0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 1 1 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1 1



Mρ3 ⊗Mρ1 =

0 0 1
0 0 1
1 1 1

⊗
1 0 0
0 1 0
0 0 1

 =



0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1



Mρ3 ⊗Mρ2 =

0 0 1
0 0 1
1 1 1

⊗
0 1 0
1 0 0
0 0 1

 =



0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1
0 1 0 0 1 0 0 1 0
1 0 0 1 0 0 1 0 0
0 0 1 0 0 1 0 0 1



Mρ3 ⊗Mρ3 =

0 0 1
0 0 1
1 1 1

⊗
0 0 1
0 0 1
1 1 1

 =



0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1 1
0 0 1 0 0 1 0 0 1
0 0 1 0 0 1 0 0 1
1 1 1 1 1 1 1 1 1



We must now compute Mσk of S3×S3. Below is the character table of S3×S3 generated

by the Magma Calculator via the code CharacterTable(DirectProduct(Sym(3),Sym(3)));.
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This provides us with the data needed to decompose χσn · χσm , which we leave out for

brevity’s sake. The above gives us

Mσ1
= I9,



0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


Mσ2



0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1


Mσ3



0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1


Mσ4



0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
1 0 1 0 1 0 0 0 0
0 1 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1 1


Mσ5



0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0
0 1 0 1 0 1 0 0 0
1 0 1 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1 1


Mσ6



0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
1 1 0 0 0 0 1 0 0
0 0 1 1 0 0 0 1 0
0 0 0 0 1 1 0 0 1


Mσ7



0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
0 0 1 1 0 0 0 1 0
1 1 0 0 0 0 1 0 0
0 0 0 0 1 1 0 0 1


Mσ8



0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 1 1
0 0 0 0 1 1 0 0 1
0 0 0 0 1 1 0 0 1
1 1 1 1 1 1 1 1 1


Mσ9

Upon inspection, it is evident that Mρi ⊗Mρj 6= Mσk unless i = j = k = 1. However,

the reader may have noticed patterns in Mσk similar to the earlier Kronecker products.

For example, one can see that Mσk for k = 7, 8, 9 all have a 6 × 6 block of zeros in the
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same location as that of Mρ3 ⊗Mρi . This suggests that there may be more to Mσk than

was evident upon first inspection.

For Mσ9 in particular, observe that swapping row 3 with row 4 and columns 3 with

column 5 gives us Mρ3⊗ρ3 . Then a change of basis - which amounts to listing σk, Cl` in

a different order within the character table of S3 × S3 - may generate Mσk such that the

equality to Mρi⊗ρj holds.

We create a method of generating a character table of S3 × S3 under the desired order.

First we make a notation change, for if the order of the characters changes, then the

subscripts of σk will change as well. To avoid confusion, let us call our newly ordered

representations τm for m = 1, ..., 9. We create τm by exploiting the isomorphism property

discussed in (2) of Theorem 4.1.1. More specifically, we compute χρi⊗ρj for each conjugacy

class CliClj of S3×S3, where Cli, Clj denote the conjugacy classes of S3 and ρi⊗ρj ∼= σm.

We can do this by Equation 4.1.1 and the fact that characters are class functions. For

example,

χρ2⊗ρ3 = [
(
χ2(Cl1) · χ3(Cl1)

)
,
(
χ2(Cl1) · χ3(Cl2)

)
,
(
χ2(Cl1) · χ3(Cl3)

)
,
(
χ2(Cl2) · χ3(Cl1)

)
,(

χ2(Cl2) · χ3(Cl2)
)
,
(
χ2(Cl2) · χ3(Cl3)

)
,
(
χ2(Cl2) · χ3(Cl1)

)
,
(
χ2(Cl3) · χ3(Cl2)

)
,(

χ2(Cl3) · χ3(Cl3)
)
]

= [(1 · 2), (1 · 0), (1 · (−1)), ((−1) · 2), ((−1) · 0), ((−1) · (−1)), (1 · 2), (1 · 0), (1 · (−1))]

= [2, 0,−1,−2, 0, 1, 2, 0,−1].

This corresponds to the sixth row of our new character table, shown on the following page.

Of course, σk = σm for some nine pairs (k,m). For the above example of m = 6, k = 6

satisfies this. However, it is not the case that k = m for every pair (k,m). One can see

this by noting the difference between the rows corresponding to k = 3 and m = 3 in the

two character tables. We now present the character table resulting from this method of

construction.
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Cl1Cl1 Cl1Cl2 Cl1Cl3 Cl2Cl1 Cl2Cl2 Cl2Cl3 Cl3Cl1 Cl3Cl2 Cl3Cl3
χ1 · χ1 = σ1 1 1 1 1 1 1 1 1 1
χ1 · χ2 = σ2 1 -1 1 1 -1 1 1 -1 1
χ1 · χ3 = σ3 2 0 -1 2 0 -1 2 0 -1
χ2 · χ1 = σ4 1 1 1 -1 -1 -1 1 1 1
χ2 · χ2 = σ5 1 -1 1 -1 1 -1 1 -1 1
χ2 · χ3 = σ6 2 0 -1 -2 0 1 2 0 -1
χ3 · χ1 = σ7 2 2 2 0 0 0 -1 -1 -1
χ3 · χ2 = σ8 2 -2 2 0 0 0 -1 1 -1
χ3 · χ3 = σ9 4 0 -2 0 0 0 -2 0 1

This table yields the following Mσm :

Mσ1 = I9,



0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1


Mσ2



0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1 1


Mσ3



0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


Mσ4



0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1


Mσ5



0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 1 1 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1 1


Mσ6



0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1


Mσ7



0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1
0 1 0 0 1 0 0 1 0
1 0 0 1 0 0 1 0 0
0 0 1 0 0 1 0 0 1


Mσ8



0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1 1
0 0 1 0 0 1 0 0 1
0 0 1 0 0 1 0 0 1
1 1 1 1 1 1 1 1 1


Mσ9
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It is clear that each Mσm created using this character table is of the form Mρi⊗ρj where

σm = ρi ⊗ ρj . Furthermore, m = 3(i− 1) + j.

We now present our extension of Theorem 4.1.1.

Theorem 4.1.3. If ρ and σ are representations of groups G1, G2 with adjacency matrices

M1, M2 respectively, then M1 ⊗ M2 is the adjacency matrix of ρ ⊗ σ : G1 × G2 −→

GL(V1 × V2) where M1 ⊗M2 denotes the Kronecker product of M1,M2.

Proof. Let G1, G2 be groups with irreducible representations ρ1, ρ2, ..., ρn and σ1, σ2, ...,

σm respectively. Then for each ρi and σj , their adjacency matrices are

Mρi =


a(1,1) a(1,2) a(1,3) a(1,4) . . . a(1,n)

a(2,1) a(2,2) a(2,3) a(2,4) . . . a(2,n)

a(3,1) a(3,2) a(3,3) a(3,4) . . . a(3,n)
...

. . .
...

a(n,1) a(n,2) a(n,3) a(n,4) . . . a(n,n)


and

Mσj =


b(1,1) b(1,2) b(1,3) b(1,4) . . . b(1,m)

b(2,1) b(2,2) b(2,3) b(2,4) . . . b(2,m)

b(3,1) b(3,2) b(3,3) b(3,4) . . . b(3,m)
...

. . .
...

b(m,1) b(m,2) b(m,3) b(m,4) . . . b(m,m)


.

These yield the Kronecker product Mρi ⊗Mσj of dimension nm:
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By Theorem 4.1.1, ρ1 ⊗ σ1, ρ1 ⊗ σ2, ..., ρ1 ⊗ σm, ρ2 ⊗ σ1, ..., ρ2 ⊗ σm, ..., ρn ⊗ σ1, ...,

ρn⊗σm are irreducible representations of G1×G2. Call these τ1, ..., τnm and choose some

τα, τβ. Then τα = ρi ⊗ σj and τβ = ρs ⊗ σt for 1 ≤ i, s ≤ n, 1 ≤ j, t ≤ m. Notice that

α = im+ j and β = sm+ t. Consider Mτα and the tensor product τα ⊗ τβ =
nm∑
λ=1

c(β,λ)τλ.

Then the βth row of Mτα will be the horizontal vector [c(sm+t,1), c(sm+t,2), ..., c(sm+t,nm)],

so Mτα is of the following form:

Mτα =


c(1,1) c(1,2) . . . c(1,nm)

c(2,1) c(2,2) . . . c(2,nm)
...

. . .
...

c(nm,1) c(nm,2) . . . c(nm,nm)


.

Note that λ = qm + u for 1 ≤ q ≤ n and 1 ≤ u ≤ m. Then c(β,λ) = c(sm+t,qm+u). Our

goal is to show c(sm+t,qm+u) = a(s,q)b(t,u).

Observe that

τα ⊗ τβ = τim+j ⊗ τsm+t

= (ρi ⊗ σj)⊗ (ρs ⊗ σt)

= (ρi ⊗ ρs)⊗ (σj ⊗ σt)

=
( n∑
k=1

a(s,k)ρk

)
⊗
( m∑
r=1

b(t,r)σr

)
= (a(s,1)ρ1 ⊕ a(s,2)ρ2 ⊕ ...a(s,n)ρn)⊗ (b(t,1)σ1 ⊕ b(t,2)σ2 ⊕ ...b(t,m)σm)

= a(s,1)ρ1 ⊗ (b(t,1)σ1 ⊕ b(t,2)σ2 ⊕ ...b(t,m)σm)

⊕ a(s,2)ρ2 ⊗ (b(t,1)σ1 ⊕ b(t,2)σ2 ⊕ ...b(t,m)σm)

...

⊕ a(s,n)ρn ⊗ (b(t,1)σ1 ⊕ b(t,2)σ2 ⊕ ...b(t,m)σm)
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= a(s,1)b(t,1)(ρ1 ⊗ σ1)⊕ a(s,1)b(t,2)(ρ1 ⊗ σ2)⊕ ...⊕ a(s,1)b(t,m)(ρ1 ⊗ σm)

⊕ a(s,2)b(t,1)(ρ2 ⊗ σ1)⊕ a(s,2)b(t,2)(ρ2 ⊗ σ2)⊕ ...⊕ a(s,2)b(t,m)(ρ2 ⊗ σm)

...

⊕ a(s,n)b(t,1)(ρn ⊗ σ1)⊕ a(s,n)b(t,2)(ρn ⊗ σ2)⊕ ...⊕ a(s,n)b(t,m)(ρn ⊗ σm)

= a(s,1)b(t,1)τ1 ⊕ a(s,1)b(t,2)τ2 ⊕ ...⊕ a(s,1)b(t,m)τm

⊕ a(s,2)b(t,1)τm+1 ⊕ a(s,2)b(t,2)τm+2 ⊕ ...a(s,2)b(t,2)τ2m

...

⊕ a(s,n)b(t,1)τ(n−1)m+1 ⊕ a(s,n)b(t,2)τ(n−1)m+2...⊕ a(s,n)b(t,m)τnm.

Then the β = (sm+t)th row ofMτα is the horizontal vector [a(s,1)b(t,1), a(s,1)b(t,2), ..., a(s,1)b(t,m),

a(s,2)b(t,1), a(s,2)b(t,2), ..., a(s,2)b(t,m), ..., a(s,n)b(t,1), a(s,n)b(t,2), ..., a(s,n)b(t,m))]. Since the βth

row of Mτα was defined as [c(sm+t,1), c(sm+t,2), ..., c(sm+t,nm)], it must be the case that

c(sm+t,qm+u) = a(s,q)b(t,u). This completes the proof.

Definition 4.1.4. Let G,H be two graphs. Then their tensor product G×′H is defined

as follows:

1. V (G×H) = V (G)× V (H) where × is the Cartesian product and

2. There exists an edge between (u, u′), (v, v′) ∈ V (G×H) if

(a) u is adjacent to v in G and

(b) u′ is adjacent to v′ in H.

4

Corollary 4.1.5. If Γ1, Γ2 are the McKay graphs of representations ρ, σ of G1, G2

respectively, then Γ1 ×′ Γ2 is the McKay graph of ρ⊗ σ.
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Example 4.1.6. We demonstrate the above using S3 × S3 once more. Let us compute

the nine Γρi ×′ Γρj for the McKay graphs of S3.

Γρ1 ×′ Γρ1 = •1

•2

•3 ×′ •1

•2

•3 = •1,1

•1,2

•1,3

•2,1

•2,2

•2,3

•3,1

•3,2

•3,3

Γρ1 ×′ Γρ2 = •1

•2

•3 ×′ •1

•2

•3 = •1,1

•1,2

•1,3

•2,1

•2,2

•2,3

•3,1

•3,2

•3,3

Γρ1 ×′ Γρ3 = •1

•2

•3 ×′ •1

•2

•3 = •1,1

•1,2

•1,3

•2,1

•2,2

•2,3

•3,1

•3,2

•3,3

Γρ2 ×′ Γρ1 = •1

•2

•3 ×′ •1

•2

•3 = •1,1

•1,2

•1,3

•2,1

•2,2

•2,3

•3,1

•3,2

•3,3

Γρ2 ×′ Γρ2 = •1

•2

•3 ×′ •1

•2

•3 = •1,1

•1,2

•1,3

•2,1

•2,2

•2,3

•3,1

•3,2

•3,3
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Γρ2 ×′ Γρ3 = •1

•2

•3 ×′ •1

•2

•3 = •1,1

•1,2

•1,3

•2,1

•2,2

•2,3

•3,1

•3,2

•3,3

Γρ3 ×′ Γρ1 = •1

•2

•3 ×′ •1

•2

•3 = •1,1

•1,2

•1,3

•2,1

•2,2

•2,3

•3,1

•3,2

•3,3

Γρ3 ×′ Γρ2 = •1

•2

•3 ×′ •1

•2

•3 = •1,1

•1,2

•1,3

•2,1

•2,2

•2,3

•3,1

•3,2

•3,3

Γρ3 ×′ Γρ3 = •1

•2

•3 ×′ •1

•2

•3 = •1,1

•1,2

•1,3

•2,1

•2,2

•2,3

•3,1

•3,2

•3,3
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We will compare these graph tensor products to Γσm , constructed from Mσm below.

Mσ1
= I9 −→ •1

•2

•3

•4

•5

•6

•7

•8

•9

Γ1

,



0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1


Mσ2

−→ •1

•2

•3

•4

•5

•6

•7

•8

•9

Γσ2



0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1 1


Mσ3

−→ •1

•2

•3

•4

•5

•6

•7

•8

•9

Γσ3

,



0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


Mσ4

−→ •1

•2

•3

•4

•5

•6

•7

•8

•9

Γσ4



0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1


Mσ5

−→ •1

•2

•3

•4

•5

•6

•7

•8

•9

Γσ5

,



0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 1 1 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1 1


Mσ6

−→ •1

•2

•3

•4

•5

•6

•7

•8

•9

Γσ6



0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1


Mσ7

−→ •1

•2

•3

•4

•5

•6

•7

•8

•9

Γσ7

,



0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1
0 1 0 0 1 0 0 1 0
1 0 0 1 0 0 1 0 0
0 0 1 0 0 1 0 0 1


Mσ8

−→ •1

•2

•3

•4

•5

•6

•7

•8

•9

Γσ8



0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1 1
0 0 1 0 0 1 0 0 1
0 0 1 0 0 1 0 0 1
1 1 1 1 1 1 1 1 1


Mσ9

−→ •1

•2

•3

•4

•5

•6

•7

•8

•9

Γσ9
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As expected, Γσm = Γρi ×′ Γρj for each m. In fact, we have m = 3(i− 1) + j.

4.2 Dihedral Groups

A family of groups is unified by some underlying group structure. Since representations

of a group rely on its group structure, it is implied that families of groups will have some

underlying representation structure as well.

In this section, we will focus on the family of dihedral groups, Dn. There exist formulas

for their character tables, which will be presented over the next few pages. Our goal is to

extend these in a way that allows us to generate the McKay graphs of Dn. First, let us

discuss its conjugacy classes and representations.

For Dn where n is odd, there are n−1
2 + 2 conjugacy classes: {1}, {s, rs, r2s, ..., rn−1s},

{r, rn−1}, {r2, rn−2}, . . . , and {r
n−1

2 , r
n−1

2 +2}. Then Dn has n−1
2 + 2 irreducible repre-

sentations. In particular, there are two irreducible representations of degree 1 and n−1
2

irreducible representations of degree 2. We discuss the group’s n−1
2 + 2 representations in

terms of where each sends g ∈ Cli, a representative of a given conjugacy class. We call the

one dimensional representations of Dodd χ1 and χ2, where χ1 is trivial. We have χ2(s) = −1

and for g 6= s, χ2(g) = 1. From this, one can see that =(χ2) ' {±1} ⊂ GL1(C). Let us

denote the irreducible representations of degree 2 as R1, R2, ..., Rn−1
2

. We have seen one

such R in Example 2.2.15, from which we know χRj (1) = 2, χRj (s) = 0. These Rj are

uniquely determined by where each sends the conjugacy class of r, so we say Rj the rep-

resentation for which Tr(Rj(r)) = ωj + ω−j with ω = e
2πi
n . Using the above notation, we

present the character table for Dodd.
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1 s r r2 . . . r
n−1
2

χ1 1 1 1 1 1 1
χ2 1 -1 1 1 1 1

χR1
2 0 ω + ω−1 ω2 + ω−2 . . . ω

n−1
2 + ω−(

n−1
2 )

χR2
2 0 ω2 + ω−2 ω4 + ω−4 . . . ωn−1 + ω−(n−1)

χR3 2 0 ω3 + ω−3 ω6 + ω−6 . . . ω3(
n−1
2 ) + ω−3(

n−1
2 )

...
. . .

χRn−1
2

2 0 ω
n−1
2 + ω−(

n−1
2 ) ω2(

n−1
2 ) + ω−2(

n−1
2 ) . . . ω

n−1
2 (

n−1
2 ) + ω−(

n−1
2 )(

n−1
2 )

It is important to note how Dn for n of different parities are related. If m,n are integers

such that m|n, then there exists a subgroup H ⊆ Dn such that H ' Dm. This becomes

clear when we envision an inscribed m−gon within an n-gon. Consider D15, for example.

We can inscribe a regular 3-gon and a regular 5-gon inside a regular 15-gon. For n = 2m,

it will always be the case that Dm ⊂ Dn. In fact, one can find the character table of Dm

within that of Dn. However, the tables will not be the same since Z(Dn) is nontrivial.

This alters its conjugacy classes and thus its representations. Let us go into more detail.

When n is even,Dn has n
2 +3 conjugacy classes. These are {1}, {s, r2s, r4s, ...}, {rs, r3s, ...},

{r, rn−1}, {r2, rn−2}, ..., {r
n
2−1, r

n
2 +1}, and {r

n
2 }. Then there are n

2 + 3 irreducible repre-

sentations, four of which are 1-dimensional. Call them χ1, χ2, χ3, χ4 where χ1 is the trivial

representation and χ2 is defined by χ2(s) = χ2(rs) = −1. The remaining irreducibles of

degree 1 function similarly to each other. Namely, we have χ3(g) = χ4(g) for g 6= s, rs and

χ3(g) = −χ4(g) otherwise. Then their labeling is arbitrary. For the sake of consistency,

we will say χ3(s) = 1 and χ3(rs) = −1, thus fixing χ4(s) = −1 and χ4(rs) = 1. Then

χ3(r) = χ4(r) = −1, which means χ{3,4}(r
n
2 ) is determined by whether or not n ≡ 0

(mod 4). If so, we have χ{3,4}(r
n
2 ) = χ{3,4}(r

even) = (χ{3,4}(r))
even = (−1)even = 1. On

the other hand, n ≡ 2 (mod 4) implies n
2 is odd, so χ{3,4}(r

n
2 ) = −1 by similar reasoning.

As with Dodd, we have =(χ{i 6=1}) ' {±1} ∈ GL1(C) for Deven as well.

We now move on to the remaining n
2 − 1 representations, all of which have degree 2. As

with Dn for odd n, let us call them R1, R2, ..., Rn
2
−1. Once again, we define Rj such that
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Tr(Rj(r)) = ωj + ω−j where ω = e
2πi
n . The general character table of Deven is presented

below.

1 s rs r r2 . . . r
n
2

−1
r
n
2

χ1 1 1 1 1 1 . . . 1 1
χ2 1 -1 -1 1 1 . . . 1 1

χ3 1 1 -1 -1 1 . . . −χ3(r
n
2 ) ±1

χ4 1 -1 1 -1 1 . . . −χ3(r
n
2 ) χ3(r

n
2 )

χR1
2 0 0 ω + ω−1 ω2 + ω−2 . . . ω

n
2

−1
+ ω

−(n
2

−1)
ω
n
2 + ω

−n
2 = −2

χR2
2 0 0 ω2 + ω−2 ω4 + ω−4 . . . ω

2(n
2

−1)
+ ω

−2(n
2

−1)
ω

2(n
2

)
+ ω

−2(n
2

)
= 2

χR3
2 0 0 ω3 + ω−3 ω6 + ω−6 . . . ω

3(n
2

−1)
+ ω

−3(n
2

−1)
ω

3(n
2

)
+ ω

−3(n
2

)
= −2

.

.

.

.

.

.
.
.
.

χRn
2

−1
2 0 0 ω

n
2

−1
+ ω

−(n
2

−1)
ωn−2 + ω−(n−2) . . . ω

(n
2

−1)2
+ ω

−[(n
2

−1)2]
ω
n
2

·(n
2

−1)
+ ω

−n
2

·(n
2

−1)
= ±2

With regards to the last representation of degree 2, we have χRn
2−1

(r
n
2 ) = −2, 2 for n ≡ 0, 2

(mod 4), respectively.

Now that the reader is familiar with the general character tables of Dn, we can present

our derived tensor product decompositions. From these, we will generate the adjacency

matrices of each group’s McKay graphs. There is significant overlap in the decompositions

for odd and even n, so we present the two together. One will be able to distinguish which

cases apply to which parity by following the subscripts of the characters. For the more

complicated decompositions, we show that each holds for the group generators s and r

rather than iterate over each conjugacy class.

1. (trivial) χ1 · χk = χk and χ1 · χRj = χRj by Theorem 2.1.16.

2. χk · χk = χ1 since (±1)2 = 1.

3. χ2 ·χRj = χRj . One can see from either character table that for nontrivial χ2(g), we

have χRj (g) = 0. More explicitly, either χ2(g) · χRj (g) = (1) · χRj (g) = χRj (g), or

χ2(g) · χRj (g) = (−1) · 0 = χRj (g).

4. χ2 · χ3 = χ4. As with the following two decompositions, this is fairly obvious from

looking at the character table. We show this for s, r ∈ Dn. See that χ2(s) · χ3(s) =

−1 · 1 = −1 = χ4(s) and χ2(r) · χ3(r) = 1 · (−1) = −1 = χ4(r).
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5. χ2 · χ4 = χ3. Similarly, χ2(s) · χ4(s) = −1 · −1 = 1 = χ3(s) and χ2(r) · (χ4(r) =

1 · −1 = −1 = χ3(r).

6. χ3 ·χ4 = χ2. Again, χ3(s) ·χ4(s) = 1 ·−1 = −1 = χ2(s) and χ3(r) ·χ4(r) = −1 ·−1 =

1χ2(r).

7. χ3 · χRj = χ4 · χRj = χRn
2−j

. First note that n is even since we discuss χ3, χ4. Then

−1 = ω
n
2 , so we can rewrite χ{3,4}(r)·(χRj (r)) = (−1)·(ωj+ω−j) = ω(

n
2 +j)+ω

n
2−j =

ω−(
n
2−j) + ω

n
2−j = χRn

2−j
(r). For g = s, rs we have χRj (g) = 0 and ±1 · 0 = 0.

8. For ` = n
4 , χR` ·χR` = χ1 +χ2 +χ3 +χ4. The requirement on ` implies n ≡ 0 (mod 4),

which means its roots of unity are symmetric about both the real and imaginary axes.

In other words, ω
n
4 = −ω−

n
4 . See that χR` = [2, 0, 0, ω

n
4 +ω−

n
4 = 0, ω2(

n
4 )+ω−2(

n
4 ) =

−2, ω3(
n
4 ) + ω−3(

n
4 ) = 0, ..., ω(

n
2 )
n
4 + ω−(

n
2 )
n
4 = 2] = [2, 0, 0, 0,−2, 0, 2, ..., 2]. Then

χR` · χR` = [4, 0, 0, 0, 4, 0, 4, ..., 4] = χ1 + χ2 + χ3 + χ4.

9. For ` 6= bn4 c, χR` · χR` = χ1 + χ2 + χRk where k =

{
2` ` < n

4

n− 2` ` > n
4

.

Consider χR`(r) = ω` + ω−`. See that χR`(r) · χR` = (ω` + ω−`)2 = ω2` + ω0 + ω0 +

ω−2` = 2 + ω2` + ω−2` which by definition equals χ1(r) + χ2(r) + χR2`
(r) for ` < n

4 .

For larger `, this follows from the fact that we can rewrite

ω2` + ω−2` = ω2`−n+n + ω−2`+n−n

= ω2`−n · ωn + ωn−2l · ω−n

= ω2`−n(1) + ωn−2`(1)

= ω−(n−2`) + ωn−2`, and so we have

= χRn−2`
(r)

as desired. For g = s, rs, see that (χR`(g))2 = 02 = 0 = 1− 1 + 0 = χ1(g) + χ2(g) +

χRk(g).
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10. Without loss of generality, let ` > j. Then for `+ j = n
2 , χRj ·χR` = χ3 +χ4 +χR`−j .

See that χRj (r) · χR`(r) =

(ω` + ω`)(ωj + ω−j) = ω`+j + ω−`+j + ω`−j + ω−`−j

= ω
n
2 + ω−(`−j) + ω`−j + ω−

n
2

= −1 + ω`−j + ω−(`−j) + (−1)

= χ3(r) + χR`−j (r) + χ4(r).

For g = s, rs, the reasoning from (9) applies since χ3(g) = −χ4(g).

11. Otherwise, χRj ·χR` = χR`−j +χRk where k =

{
`+ j `+ j < n

2

n− (`+ j) `+ j > n
2

. Continuing

from line 1 of the equations in (10), we can see that ω`+j +ω−`+j +ω`−j +ω−`−j =

ω`+j + ω−(`+j) + ω`−j + ω−(`−j), which suffices for ` + j < n
2 . For ` + j > n

2 , this

simplifies further:

ω`+j + ω−(`+j) + ω`−j + ω−(`−j) = ω`+j−n+n + ω−(`+j)+n−n + χR`−j (r)

= ω−(n−(`+j))ωn + ωn−(`+j)ω−n + χR`−j (r)

= ω−(n−(`+j)) + ωn−(`+j) + χR`−j (r)

= χRn−(`+j)
(r) + χR`−j (r)

as needed. For g = s, rs we have χRj (g) · χR`(g) = 02 = 0 + 0 = χRk(g) + χR`−j (g).

This lets us generate Mρ of Dn for any reprsentation ρ. From this, we can create Γρ.

Below are several examples for varying n and ρ.

Example 4.2.1. Let G = D10. We create Mχ3 and MR1 using our formulas and construct

Γχ3 ,ΓR1 . The vertices corresponding to χi, χRj will be labeled i, rj.



4.2. DIHEDRAL GROUPS 51

Mχ3 =



0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0


−→ Γχ3 = •1

•2

•3

•4

•r1 •r2

•r3

•r4

MR3 =



0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
1 1 0 0 0 1 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1
0 0 1 1 0 0 1 0


−→ Γχ3 = •1

•2

•3

•4

•r1 •r2

•r3

•r4

Let us now look at Dn where n is odd.

Example 4.2.2. Consider G = D13 and let us compute Mχ2 ,MR4 with their respective

graphs. Notation is similar to the graphs of D10.

Mχ2 =



0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


−→ Γχ2 = •1

•2

•3

•4

•r1 •r2

•r3

•r4

MR4 =



0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 1 0
0 0 0 1 0 0 0 1
0 0 1 0 0 0 0 1
1 1 0 0 0 0 1 0
0 0 1 0 0 1 0 0
0 0 0 1 1 0 0 0


−→ ΓR4 = •1

•2

•r1

•r2

•r3 •r4

•r5

•r6
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As one can see, Γχ2 is fairly simple. This is because it acts as the identity on ρ 6= χ{1,2},

which will be true for all Dn.

We now provide another example of Deven, this time for n ≡ 0 (mod 4).

Example 4.2.3. For D16, we create Mχ4 ,MR4 ,MR7 with their corresponding graphs.

Mχ4 =



0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0



−→ Γχ4 = •1

•2

•3

•4

•r1 •r2

•r3

•r4

•r5

•r6

•r7

MR4 =



0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 1 0 0 0 0 0 1
1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 1 0 1 0 0



−→ Γχ4 = •1

•2

•3

•4

•r1 •r2

•r3

•r4

•r5

•r6

•r7

MR7 =



0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 1 0 1 0 0 0 0
1 1 0 0 0 1 0 0 0 0 0



−→ Γχ4 = •1

•2

•3

•4

•r1 •r2

•r3

•r4

•r5

•r6

•r7
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These examples show several patterns in the McKay graphs of general Dn. More specif-

ically,

1. Γχ2 will have a single nontrivial edge between χ1, χ2 and self-loops on all other

vertices.

2. For even n: if n ≡ 2 (mod 4), Γχ{3,4} will have
n
2 +3

2 pieces, each consisting of two

vertices connected by an edge. Otherwise, we have n ≡ 0 (mod 4), which yields Γχ{3,4}

with
n−1

2 +3

2 + 1 pieces. More specifically,
n−1

2 +3

2 of them will have two vertices each,

while the last piece corresponds to Rn
4

with a self-loop.

3. ΓRj is connected for all Rj with the following edge patterns for a given vertex v:

(a) If v corresponds to χi, v has exactly one edge.

(b) Else for v = Rk, v has m edges where 2 ≤ m ≤ 4.

In actuality, we know which vertices are connected for every Γρ. Recall that there exists

an edge between v1, v2 if v1 appears in the decomposition of χρ ·v2. Since we have formulas

for the decompositions of all ρ of any Dn, we can produce identical ones for the group’s

McKay graphs. In order to avoid redundancy, we chose to highlight structural patterns of

the graphs instead.

4.3 The Steinberg Representation of SL2(p)

In addition to Dn, we discuss another family of groups, SL2(p). These groups not only

have a well-known character table of ordinary representations, but also have a good theory

of reduction (mod p) which will be discussed in the next chapter. By definition, SL2(p)

is the special linear group of 2× 2 matrices of determinant 1 with entries from Fp.

We now discuss the p + 4 conjugacy classes of SL2(p) where 4 is interpreted as

|Z(SL2(p))|2. These are {1}, {z}, {a}, {a2}, ..., {a`}, {b}, {b2}, ..., {bm}, {c}, {d, d2, ..., d(p−1)},
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{zc}, {zd, zd2, ..., zd(p−1)} for ` = (p−3)/2,m = (p−1)/2 (or m = 1 for p = 2), 1 =

I2, z = −I2, a =
[
v 0
0 v−1

]
, b is some element of order p + 1 that is undiagonalizable over

Fp, c = [ 1 1
0 1 ] , and d = [ 1 v

0 1 ] where v generates the multiplicative group of Fp.[3, 28]

The character table for general SL2(p) is given below, adhering to the original nota-

tion from [3, 30]. We omit the conjugacy classes zc, zd for the sake of brevity. For any

representation ρ, it is the case that χρ(zc) = χρ(z)(χρ(1))−1χρ(c) - this holds for zd as

well.

1 z a` bm c d

χ1 1 1 1 1 1 1
χψ p p 1 -1 0 0
χζi p+ 1 (−1)i(p+ 1) τ i` + τ−i` 0 1 1
χξ1

1
2(p+ 1) 1

2ε(p+ 1) (−1)` 0 1
2(1 +

√
εp) 1

2(1−√εp)
χξ2

1
2(p+ 1) 1

2ε(p+ 1) (−1)` 0 1
2(1−√εp) 1

2(1 +
√
εp)

χθj p− 1 (−1)j(p− 1) 0 −(σjm + σ−jm) -1 -1

χη1
1
2(p− 1) −1

2ε(p− 1) 0 (−1)m+1 1
2(−1 +

√
εp) 1

2(−1−√εp)
χη2

1
2(p− 1) −1

2ε(p− 1) 0 (−1)m+1 1
2(−1−√εp) 1

2(−1 +
√
εp)

Figure 4.3.1. General Character table of SL2(p)

Here, 1 ≤ i ≤ (p−3)
2 , 1 ≤ j ≤ (p−1)

2 , ε = (−1)(p−1)/2, τ is a primitive (p− 1)th root of unity,

and σ is a primitive (p+ 1)th root of unity.

Example 4.3.1. We will illustrate the above formulas through the character table of

G = SL2(2) ' S3. We replicate the familiar character table below.

() (12) (123)

χ1 1 1 1
χ2 1 -1 1
χ3 2 0 -1

Notice that dim(χ2) = 1 = p − 1 and dim(χ3) = 2 = p. Since we are in F2, z = 1

and c = d. Because of how small our p is, a` does not arise. The conjugacy class of

(123) corresponds to b since |(123)| = 3 = p + 1, and the conjugacy class of (12) is that

of c. Then clearly χ2((12)) = −1 = χθj (c). See that σ is a 3rd root of unity, which
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means χθj (b) = −(σ + σ−1) = −(−1) = 1 = χ2((123)). Similarly, χ3((12)) = χψ(c) and

χ3((123)) = −1 = χψ(b). Thus the general character table holds for SL2(2).

For any p, the group SL2(p) has a particular representation called the Steinberg rep-

resentation. It is one of the most important representations in Lie theory and is funda-

mental in the theory of reductive groups. For details, see [4]. It can be identified as the

only representation of dimension p and corresponds to ψ in the general character table of

SL2(p). If one wants to construct it by hand, it is Symp−1(ρ); the (p − 1)th symmetric

power representation where ρ is the standard representation defined by ρ(g) = g for all

g ∈ SL2(p). The former are representations such that Symk(ρ) : G −→ GLk+1(V ). We

construct this for p = 2 and p = 3, highlighting the special case of SL2(p).

Example 4.3.2. Note: This example will not generalize to other p and does not showcase

the subtlety involved in constructing the Steinberg representation. We include it for its

uniqueness.

Let G = SL2(2) once more. Constructing ψ : G −→ GL2(Fp), the Steinberg representation

of this group, means taking Sym1(ρ), the 1st symmetric power representation. Let g ∈ G.

Then g =
[
a b
c d

]
where a, b, c, d ∈ Fp. We now take the basis elements u = [ 1

0 ] , v = [ 0
1 ] of

GL2(Fp) and take the dot product of each with g to yield ψ(g) = [g · u, g · v]. This results

in

g · u =

[
a b
c d

]
·
[
1
0

]
=

[
a
c

]
= au+ cv

g · v =

[
a b
c d

]
·
[
0
1

]
=

[
b
d

]
= bu+ dv.

Perhaps somewhat surprisingly, this means ψ(g) = g. This will only happen for p = 2.

The next example illustrates a more general case.

Example 4.3.3. Let G = SL2(3) with g =
[
a b
c d

]
for a, b, c, d ∈ F3 now. Then ψ of G is

Sym2(ρ), the 2nd symmetric power representation, which sends elements of G to GL3(Fp).



56 4. RESULTS IN ORDINARY REPRESENTATION THEORY

Once again, we take the basis elements of the codomain and take their respective dot

products with g to obtain ψ(g) =
[
g · u2, g · uv, g · v2

]
. The former are u2 =

[
1
0
0

]
, uv =

[
0
1
0

]
,

and v2 =
[

0
0
1

]
. Then

g · u2 = gugu = (au+ cv)(au+ cv) = a2u2 + 2acuv + c2v2

g · uv = gugv = (au+ cv)(bu+ cd) = abu2 + (ad+ bc)uv + cdv2

g · v2 = gvgv = (bu+ cd)(bu+ cd) = b2u2 + 2bduv + d2v2

yield ψ(g) =

ψ

([
a b
c d

])
=

 a2 ab b2

2ac ad+ bc 2bd
c2 cd d2

 .
The previous example shows what occurs when we construct the Steinberg representa-

tion of SL2(p). Naturally, complexity increases with larger p. Because of the importance

of the Steinberg representation and the fact that there is a well-known formula for it, we

direct our focus to one of its decompositions. Specifically, we want to know how ψ ⊗ ψ

decomposes as a direct sum. We find that the decomposition varies slightly depending on

whether p ≡ 1 (mod 4) or p ≡ 3 (mod 4). Using this notation discounts p = 2; this is fine

since we know ψ ⊗ ψ = 1G ⊕ θ1 ⊕ ψ, as demonstrated in Example 3.2.4.

Using the notation from the general character table of SL2(p) in Figure 4.3.1, we present

the following:

Theorem 4.3.4. 1. For p ≡ 1 (mod 4), the tensor product ψ ⊗ ψ decomposes into the

direct sum

ψ ⊗ ψ = 1G ⊕ ξ1 ⊕ ξ2 ⊕ 2ψ ⊕ 2(θ2 ⊕ θ4 ⊕ . . .⊕ θ (p−1)
2

)⊕ 2(ζ2 ⊕ ζ4 ⊕ . . .⊕ ζ (p−5)
2

).

2. For p ≡ 3 (mod 4), the tensor product ψ ⊗ ψ decomposes into the direct sum

ψ ⊗ ψ = 1G ⊕ η1 ⊕ η2 ⊕ 2ψ ⊕ 2(θ2 ⊕ θ4 ⊕ . . .⊕ θ (p−3)
2

)⊕ 2(ζ2 ⊕ ζ4 ⊕ . . .⊕ ζ (p−3)
2

).
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Our knowledge of character theory tells us that we are able to prove the above theorems

by showing

(χψ(α))2 = χ1(α) + χξ1(α) + χξ2(α) + 2χψ(α) + 2(χθ2(α) + χθ4(α) + . . .+ χθ (p−1)
2

(α))

+ 2(χζ2(α) + χζ4(α) + . . .+ χζ (p−5)
2

(α))

and

(χψ(α))2 = χ1(α) + χη1(α) + χη2(α) + 2χψ(α) + 2
(
χθ2(α) + χθ4(α) . . . χθ (p−3)

2

(α)
)

+ 2
(
χζ2(α) + χζ4(α) + · · ·+ χζ (p−3)

2

(α)
)

hold for each conjugacy class α of SL2(p) where p ≡ 1, 3 (mod 4), respectively. We proceed

to show this for α = 1, z, a` for 1 ≤ ` ≤ p−3
2 , bmfor 1 ≤ m ≤ p−1

2 , c, d, zc, zd. We now prove

this for p ≡ 1 (mod 4).

Proof. Let α = 1. Then (χψ(1))2 = p2. See that

χ1(1) + χξ1(1) + χξ2(1) + 2χψ(1) + 2(χθ2(1) + χθ4(1) + . . .+ χθ (p−1)
2

(1))

+ 2(χζ2(1) + χζ4(1) + . . .+ χζ (p−5)
2

(1))

= 1 + 1
2(p+ 1) + 1

2(p+ 1) + 2p+ 2((p− 1)( (p−1)
4 )) + 2((p+ 1)( (p−5)

4 ))

= 1 + p+ 1 + 2p+ (p− 1)(p−1
2 ) + (p+ 1)(p−5

2 )

= 3p+ 2 + p2−2p+1
2 + p2−4p−5

2

= 3p+ 2 + 2p2+−6p−4
2

= 3p+ 2 + p2 − 3p− 2

= p2.

We move on to α = z. Naturally, χ1(z) = χ1(1) by definition. However, we also have

χψ(1) = χψ(z) = p. Then ζi, ξ1, ξ2, and θj are the only representations for which the
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character χ(z) seems to differ from χ(1). We will show that χ(z) = χ(1) for these repre-

sentations as well, implying that no separate proof is needed for α = z.

First, recall that χζi(z) = (−1)i(p+1), χη{1,2}(z) = 1
2ε(p+1), and χθj (z) = (−1)j(p−1)

where ε = (−1)
(p−1)

2 . Notice that we only use even i, j in our decomposition formula and

ε = (−1)even since p ≡ 1 (mod 4). This means χζi(z) = (1)(p + 1) = χζi(1), χη{1,2}(z) =

1
2(p+ 1) = χη{1,2}(1), and χθj (z) = (1)(p− 1) = χθj (1). Thus we move on to α = a`.

For general `, we have (χψ(a`))2 = 1, so we need to show equality to

χ1(a`) + χξ1(a`) + χξ2(a`) + 2χψ(a`) + 2(χθ2(a`) + χθ4(a`) + . . .+ χθ (p−1)
2

(a`))

+ 2(χζ2(a`) + χζ4(a`) + . . .+ χζ (p−5)
2

(a`))

= 1 + (−1)` + (−1)` + 2 + 2((0)( (p−1)
4 )) + 2((τ2` + τ−2`) + (τ4` + τ−4`)

+ . . .+ (τ (
(p−5)

2
)` + τ−(

(p−5)
2

)`))

= 1 + 2(

(p−5)/2∑
i=2

χζi(a
`)) for odd ` and

= 5 + 2(

(p−5)/2∑
i=2

χζi(a
`)) for even `.

where τ is a primitive (p − 1)th root of unity. Then we need to show
(p−5)/2∑
i=2

χζi(a
`) = 0

when ` is odd and
(p−5)/2∑
i=2

χζi(a
`) = −2 when ` is even.

Let β = τ2`. Since τ is a primitive (p − 1)th root of unity, then τ2 is a primitive (p−1)
2 th

root of unity. On the other hand, τ2` is not necessarily primitive. Regardless, we can now

rewrite

(p−5)/2∑
i=2

χζi(a
`) = (τ2` + τ−2`) + (τ4` + τ−4`) + . . .+ (τ (

(p−5)
2

)` + τ−(
(p−5)

2
)`)

= (β + β) + (β2 + β−2) + . . .+ (β
(p−5)

4 + β−
(p−5)

4 ).
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Set N = (p−5)
4 . Then (p−1)

2 = 2N + 2, N + 1 = (p−1)
4 and −N = − (p−5)

4 = N + 2. We

incorporate this into our notation to obtain

β + β−1 + β2 + β−2 + ...+ β
(p−5)

4 + β−
(p−5)

4 = β + β−1 + β2 + β−2 + ...+ βN + β−N

= β + β2N+1 + β2 + β2N + ...+ βN + βN+2

= β + β2 + ...+ βN + βN+2 + ...+ β2N+1.

This is similar to the expanded geometric series 1−β2N+2

1−β , without a select few terms. Then

we can rewrite our last equation

β + β2 + ...+ βN + βN+2 + ...+ β2N+1 = 1−β2N+2

1−β − 1− βN+1 and since β2N+2 = 1,

= 0− 1− βN+1.

Then we must show −1 − βN+1 = 0, or βN+1 = −1 for odd `, and −1 − βN+1 = −2, or

βN+1 = 1 for even `. Now let ` be odd and see that

βN+1 = (τ2`)
(p−1)

4

= (τ `)
(p−1)

2

= τ (`−1)(
(p−1)

2 )+
(p−1)

2

= (τ
(p−1)

2 )`−1τ
(p−1)

2 but since τ is primitive

= (−1)`−1(−1) and `− 1 is even since ` is odd,

= (1)(−1)

= −1.
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This completes the proof for odd `. For even `, βN+1 becomes

(τ2`)
(p−1)

4 = (τ2)( `
2

)(
(p−1)

2 )

= (τ2(
(p−1)

2 ))
`
2

= (τp−1)
`
2

= (1)
`
2 since τ is a primitive p− 1th root of unity

= 1.

Thus we can move on to the next set of conjugacy classes. For α = bm, (χψ(bm))2 =

(−1)2 = 1. Then we must show that 1 =

χ1(bm) + χξ1(bm) + χξ2(bm) + 2χψ(bm) + 2(χζ2(bm) + χζ4(bm) + . . .+ χζ (p−5)
2

(bm))

+ 2(χθ2(bm) + χθ4(bm) + . . .+ χθ (p−1)
2

(bm))

= 1 + 0 + 0− 2 + 2((0) (p−5)
4 ) + 2(−(σ2m + σ−2m)− (σ4m + σ−4m)

− . . .− (σ
(p−1)

2 m + σ−
(p−1)

2 m))

= −1 + 2(−(σ2m + σ−2m)− (σ4m + σ−4m)− . . .− (σ
(p−1)

2 m + σ−
(p−1)

2 m))

= −1− 2(σ2m + σ−2m + σ4m + σ−4m + . . .+ σ
(p−1)

2 m + σ−
(p−1)

2 m)

where σ is a primitive (p+ 1)th root of unity. Then it suffices to show that

σ2m + σ−2m + σ4m + σ−4m + . . .+ σ
(p−1)

2 m + σ−
(p−1)

2 m = −1.

We do this by setting γ = σ2m and M = (p+1)
2 . Then γ is a (p+ 1)th root of unity as well,

though it is not necessarily primitive, and (p−1)
4 = M−1

2 ,− (p−1)
4 = M+1

2 . Substituting γ
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and M into the above equation yields

γ + γ−1 + γ2 + γ−2 + . . .+ γ
(p−1)

4 + γ−
(p−1)

4 = γ + γM−1 + γ2 + γM−2

+ . . .+ γ
M−1

2 + γ
M+1

2

= γ + γ2 + . . .+ γ
M−1

2 + γ
M+1

2

+ . . .+ γM−1.

Notice that there are no integers between M−1
2 and M+1

2 . Keeping this in mind, we once

again, we put our equation in terms of a geometric series. This results in

γ + γ2 + . . .+ γ
M−1

2 + γ
M+1

2 + . . .+ γM−1 = 1−γM
1−γ − 1

and since γ is a (p+ 1)th root of unity,

1−γM
1−γ − 1 = 0− 1 = −1

as needed. This completes the proof for α = bm, so we move on to α = c. For this conjugacy

class we have (χψ(c))2 = 02 = 0. Now recall that ε = (−1)
(p−1)

2 = (−1)even = 1 since p ≡ 1

(mod 4). Then we need to show the following equals 0 :

χ1(c) + χξ1(c) + χξ2(c) + 2χψ(c) + 2(χζ2(c) + χζ4(c) + . . .+ χζ (p−5)
2

(c))

+ 2(χθ2(c) + χθ4(c) + . . .+ χθ (p−1)
2

(c))

= 1 + 1
2(1 +

√
εp) + 1

2(1−√εp) + 2(0 + 2((1)( (p−5)
4 ))) + 2((−1)( (p−1)

4 ))

= 1 + 1 + 2( (p−5)
4 )− 2( (p−1)

4 )

= 2 + 2( (p−5)
4 )− 2( (p−1)

4 )

= 2 + (p−5)
2 − (p−1)

2

= 2 + p−p−5+1
2

= 2 + −4
2

= 0
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which completes the proof for α = c.

Now let α = d. Notice that for all ρ 6= ξi, one can see from the character table that

χρ(c) = χρ(d). For ρ = ξi, we have χξ1(c) = χξ2(d) and χξ2(c) = χξ1(d). Then the sum

of the characters in our tensor product formula is identical for α = c and α = d, which

means we do not need a separate proof for α = d now that we know the formula holds

for α = c. This lets us move on to α = zc, a conjugacy class that was omitted from the

character table.

Recall that for any representation ρ, it is the case that χρ(zc) = χρ(z)χρ(1)−1χρ(c).

Then χψ(zc) = χψ(z)χψ(1)−1χψ(c) = p · 1
p · 0 = 0 so (χψ(zc))2 = 0 as well. Then we must

show 0 =

χ1(z)χ1(1)−1χ1(c) + χξ1(z)χξ1(1)−1χξ1(c) + χξ2(z)χξ2(1)−1χξ2(c) + 2(χψ(z)χψ(1)−1χψ(c))

+ 2((χζ2(z)χζ2(1)−1χζ2(c)) + (χζ4(z)χζ4(1)−1χζ4(c))

+ . . .+ (χζ (p−5)
2

(z)χζ (p−5)
2

(1)−1χζ (p−5)
2

(c)))

+ 2((χθ2(z)χθ2(1)−1χθ2(c)) + (χθ4(z)χθ4(1)−1χθ4(c))

+ . . .+ (χθ (p−1)
2

(z)χθ (p−1)
2

(1)−1χθ (p−1)
2

(c)))

= 1 + (1
2ε(p+ 1)(1

2(p+ 1))−1 1
2(1 +

√
εp)) + (1

2ε(p+ 1)(1
2(p+ 1))−1 1

2(1−√εp)) + 2(0)

+ 2(((p+ 1) 1
(p+1)(1)) (p−5)

4 ) + 2(((p− 1)( 1
(p−1))(−1)) (p−1)

4 ).

While the value of χζi(zc) depends on the parity of i according to the character table,

we use even i and so χζi(zc) is the same for all i, letting us group them together. The

same goes for θj . We then use the fact that ε = 1 to turn the above equation into

1 + 1
2(1 +

√
εp) + 1

2(1−√εp) + 2((1)( (p−5)
4 )) + 2((−1) (p−1)

4 ) = 2 + 2((1)( (p−5)
4 )) + 2((−1) (p−1)

4 )

= 2 + p−5−p+1
2

= 2 + −4
2

= 0



4.3. THE STEINBERG REPRESENTATION OF SL2(P ) 63

as desired. By the same reasoning that α = d was proved alongside α = c, the proof for

α = zc holds for α = zd as well. Thus we have proved our decomposition formula for all

conjugacy classes of SL2(p) where p ≡ 1 (mod 4).

We now prove the decomposition formula for p ≡ 3 (mod 4).

Let α = 1. This gives us (χψ(1))2 = p2. See that

χ1(1) + χη1(1)+χη2(1) + 2χψ(1) + 2
(
χθ2(1) + χθ4(1) . . . χθ (p−3)

2

(1)
)
+

2
(
χζ2(1) + χζ4(1) + · · ·+ χζ (p−3)

2

(1)
)

= 1 + 1
2(p− 1) + 1

2(p− 1) + 2(p) + 2
(
(p− 1)(p−3

2 )
)

+ 2
(
(p+ 1)(p−3

2 )
)

= 1 + p− 1 + 2(p) + (p− 1)(p− 3) + (p+ 1)(p− 3)

= 3p+ p(p− 3)

= 3p+ p2 − 3p

= p2

We now move on to α = z. Observe that for all representations except η1, η2, it is

explicitly clear that χρ(1) = χρ(z). For ζi, θj this holds since we only use even i, j in the

decomposition formula). For η1 and η2, χη{1,2}(z) = −1
2 ε(p − 1). However ε is defined as

(−1)
p−1

2 = −1 since p ≡ 3 (mod 4). Then −1
2 ε(p − 1) = p − 1, showing that η1, η2 have

the same character values for conjugacy classes 1 and z as well. Then in showing that our

formula worked for α = 1, we have shown the same for α = z. Thus we can move on to

α = a`.

For this conjugacy class we have (χψ(a`))2 = 1 and

χ1(a`) + χη1(a`) + χη2(a`) + 2χψ(a`) + 2
(
χθ2(a`) + χθ4(a`) . . . χθ (p−3)

2

(a`)
)

+ 2
(
χζ2(a`) + χζ4(a`) + · · ·+ χζ (p−3)

2

(a`)
)

= 1 + 0 + 0 + 2(1) + 2
(
(0(p−3

2 )
)

+ 2
(
(τ2` + τ−2`) + (τ4` + τ−4`) + ...+ (τ

p−3
2 ` + τ−

p−3
2 `)

)
= 3 + 2

(
(τ2` + τ−2`) + (τ4` + τ−4`) + ...+ (τ

p−3
2 ` + τ−

p−3
2 `)

)
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where τ is a primitive (p− 1)th root of unity. Then our goal is to show

(τ2` + τ−2`) + (τ4` + τ−4`) + ...+ (τ
p−3

2 ` + τ−
p−3

2 `) = −1.

Let β = τ2`. Then β is a p−1
2 = Nth root of unity, not necessarily primitive, and p−3

4 =

N−1
2 . Substituting these terms gives us

(β + β−1) + (β2 + β−2) + ...+ (β
N−1

2 + β−
N−1

2 )

= β + βN−1 + β2 + βN−2 + ...+ β
N−1

2 + β
N+1

2 = β + β2 + β3 + ...+ βN−1

= 1−βN
1−β − 1

since it is a geometric series. Because β is an Nth root of unity, this simplifies to

1−1
1−β − 1 = 0− 1 = −1

as desired. We move on to our next group of conjugacy classes, for which a similar proce-

dure is needed. We have (χψ(bm))2 = (−1)2 = 1 and

χ1(bm)+χη1(bm) + χη2(bm) + 2χψ(bm) + 2
(
χθ2(bm) + χθ4(bm) + . . .+ χθ (p−3)

2

(bm)
)
+

2
(
χζ2(bm) + χζ4(bm) + . . .+ χζ (p−3)

2

(bm)
)

= 1 + (−1)m+1 + (−1)m+1 + 2(−1)+

2
(
− (σ2m + σ−2m)− (σ4m + σ−4m)− . . .− (σ

p−3
2 m + σ−

p−3
2 m)

)
+ 2
(
0(p−3

4 )
)

where σ is a primitive (p + 1)th root of unity. Notice that the desired value of the main

parenthetical depends on m’s parity, and thus results in two cases. When m is odd, we

have

1− 2
(
(σ2m + σ−2m) + (σ4m + σ−4m) + · · ·+ (σ

p−3
2 m + σ−

p−3
2 m)

)
so we want

(σ2m + σ−2m) + (σ4m + σ−4m) + · · ·+ (σ
p−3

2 m + σ−
p−3

2 m) = 0
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in order for the equation to have the value (χψ(bm))2 = 1. Similarly, even m yields

−3− 2
(
(σ2m + σ−2m) + (σ4m + σ−4m) + · · ·+ (σ

p−3
2 m + σ−

p−3
2 m)

)
signifying that the following should be the case:

(σ2m + σ−2m) + (σ4m + σ−4m) + · · ·+ (σ
p−3

2 m + σ−
p−3

2 m) = −2.

We proceed to work solely with
(p−3)/2∑
j=2

χθj (b
m) for general m. Using a similar method of

substitution as when α = a`, we let γ = σ2m. Note that this is a p+1
2 th root of unity, not

necessarily primitive, and let M = p−3
4 . Then 2M + 2 = p+1

2 and −p−3
4 = −M = M + 2.

This gives us

(σ2m + σ−2m) + (σ4m + σ−4m) + . . .+ (σ
p−3

2 m + σ−
p−3

2 m)

= (γ + γ−1) + (γ2 + γ−2) + . . .+ (γM + γ−M )

= (γ + γ2M−1) + (γ2 + γ2M−2) + . . .+ (γM + γM+2)

= γ + γ2 + γ3 + . . .+ γM + γM+2 + . . .+ γ2M+1.

This can be rewritten as the geometric series

1−γ2M+2

1−γ − 1− γM+1.

Recall that γ is a p+1
2 = (2M + 2)th root of unity. Then this yields

1−1
1−γ − 1− γM+1 = 0− 1− γM+1 = −1− γM+1 = −1− (σ2m)

p+1
4

Now let m be odd. Then m− 1 is even and m−1
2 ∈ Z. This gives us

−1− (σ2m)
p+1

4 = −1− (σ2)m
p+1

4

= −1− (σ2)(m−1)
p+1

4 +
p+1

4

= −1− (σ2)(
m−1

2 )(
p+1

2 )+
p+1

4

= −1−
(
(σ2)

p+1
2
)m−1

2 (σ2)
p+1

4 .
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Recall that σ2 is a primitive p+1
2 root of unity. Then this simplifies into

−1− (1)
m−1

2 (σ2)
p+1

4 = −1− (σ2)
p+1

4

= −1− (−1)

= −1 + 1

= 0

which concludes the proof for bodd.

When m is even, m
2 ∈ Z. Then

−1− (σ2m)
p+1

4 = −1− (σ2)m
p+1

4

= −1− (σ2)(
m
2 )(

p+1
2 )

= −1−
(
(σ2)

p+1
2
)m

2

= −1− (1)
m
2 since σ2 is primitive

= −1− 1

= −2

as desired for beven. This allows us to move on to α = c.

Note that as in the case for p ≡ 1 (mod 4), χρ(c) = χρ(d) unless ρ = η1, η2. For the

latter representations, it is the case that χη1(c) = χη2(d) and χη1(d) = χη2(c). Then∑
akχρ(c) =

∑
akχρ(d) for ak, ρ as in our decomposition formula, so it suffices to show

that this holds for the conjugacy class α = c only. We have (χψ(c))2 = 02 = 0, so we must

show the following equals 0:

χ1(c) + χη1(c) + χη2(c) + 2χψ(c) + 2
(
χζ2(c) + χζ4(c) + . . .+ χζ (p−3)

2

(c)
)

+ 2
(
χθ2(c) + χθ4(c) + . . .+ χθ (p−3)

2

(c)
)
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= 1 + 1
2(−1 +

√
εp) + 1

2(−1−√εp) + 2(0) + 2((1)( (p−3)
4 ) + 2((−1)( (p−3)

4 ))

= 1− 1 + 2( (p−3)
4 )− 2( (p−3)

4 )

= 0.

Finally, we reach the last pair of conjugacy classes, zc and zd. Recall that χρ(zc) =

χρ(z)χρ(1)−1χρ(c) for any ρ. Because of the fact that χρ(c) = χρ(d) for ρ 6= η1, η2, we

have χρ(zc) = χρ(zd). However, we have χη1(c) = χη2(d) and χη2(c) = χη1(d), so it is the

case that
∑
akχρ(zc) =

∑
akχρ(zd) for ak, ρ as in our decomposition formula. Then we

need only show that said formula holds for zc.

We have (χψ(zc))2 = (χψ(z)χψ(1)−1χψ(c))2 = (p · 1
p ·0)2 = 02 = 0. It remains to show 0 =

χ1(z)χ1(1)−1χ1(c) + χη1(z)χη1(1)−1χη1(c) + χη2(z)χη2(1)−1χη2(c) + 2(χψ(z)χψ(1)−1χψ(c))

+ 2((χζ2(z)χζ2(1)−1χζ2(c)) + (χζ4(z)χζ4(1)−1χζ4(c))

+ . . .+ (χζ (p−5)
2

(z)χζ (p−5)
2

(1)−1χζ (p−5)
2

(c)))

= 1 + (−1
2ε(p− 1) · (1

2(p− 1))−1 · 1
2(−1 +

√
εp))

+ (−1
2ε(p− 1) · (1

2(p− 1))−1 · 1
2(−1−√εp)) + 2(0)

+ 2(((p+ 1) 1
(p+1)(1))( (p−3)

4 )) + 2(((p− 1)( 1
(p−1))(−1))( (p−3)

4 )).

As in the proof for p ≡ 1 (mod 4), we group χζi which each other since i is even, and

similarly for χθj . Recall that ε = −1. Then the above simplifies to

1− 1 + 0 + 2( (p−3)
4 )− 2( (p−3)

4 ) = 0.

Thus the decomposition formula holds for all conjugacy classes of p ≡ 3 (mod 4), conclud-

ing the proof.
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5
Conjectures in Modular Representation Theory

5.1 Introduction

Recall that an ordinary representation sends G to GL(V ) where V is a vector space over

some field K of characteristic 0. A modular representation sends G to GL(V ′) where V ′

is over K ′, a field of characteristic p for some prime p dividing the order of G. Among

many other consequences, modular representations are not completely reducible, negating

Maschke’s theorem (2.1.17). We illustrate this in the following example.

Example 5.1.1. Let G = C2, the cyclic group of order 2 and consider ρ : G −→ GL2(2).

We define ρ such that

ρ(1) =

[
1 0
0 1

]
and ρ(−1) =

[
1 1
0 1

]
.

See that

(ρ(−1))2 =

[
1 1
0 1

] [
1 1
0 1

]
=

[
1 2
0 1

]
=

[
1 0
0 1

]
= ρ(1)

in characteristic 2. This shows that the multiplicity of G is preserved, so ρ is a faithful

representation. Notice that ρ is not irreducible since [ 1
0 ] is stable under ρ(g). Furthermore,
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there is no complementary subspace W to [ 1
0 ] such that V = W ⊕ [ 1

0 ]. This means ρ is

not completely reducible.

Thus we run into representations that are neither irreducible nor completely reducible,

which means we cannot concern ourselves with tensor product decompositions. In turn,

we are unable to create McKay graphs for such representations.

Further issues arise for groups G which contain elements of order pm when we attempt

to construct representations of G in characteristic p.

Example 5.1.2. Let G = Cp and recall that there are p disctinct irreducible represen-

tations of Cp in characteristic 0. We will illustrate that this is not the case for ρ : G

−→ GL1(F∗p). See that since |F∗p| = p−1 and since it is cyclic, it has no nontrivial elements

of order p. In contrast, all elements of Cp have order p, which means any representation

of this group in characteristic p is trivial.

When given a group G, there will be two general ways to create its modular represen-

tations:

1. Take some ordinary representation ρ of G and reduce it (mod p). We call this

Redp(ρ).

2. Find modular representations that arise solely from the characteristic of the field.

These do not have analogues in characteristic m 6= p.

For reference, ρ : C2 −→ GL2(2) from Example 5.1.1 falls into the latter category. This

is because (ρ(−1))2 6= I2 unless we are in characteristic 2. With regards to representa-

tions from the first category, there exists a theorem which determines whether Redp(ρ) is

irreducible. Namely,

Theorem 5.1.3. [8, 7.3, Theorem 2.6] Let ρ be a Q-representation of G of degree d. If p

is prime to n
d where n = |G|, then Redp(ρ) is irreducible.
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It is important to note that the converse of this statement is not necessarily true. More

explicitly, there are groups G with ordinary irreducibles ρ of degree d such that (p, |G|d ) 6= 1,

yet Redp(ρ) is irreducible. We will see an example of this in the next section.

There exists a theory of modular characters, but it is beyond the scope of this project.

Moreover, it is difficult to find the modular characters of a given group G. For a basic

introduction, we refer the reader to [8].

We now proceed to illustrate that there is a significant difference between the ordinary

and modular irreducible characters of a given group.

Example 5.1.4. Let G = A5. Below are its ordinary and modular character tables, which

we obtained from the Magma Calculator via the code CharacterTable(AlternatingGroup(5));

and [5] respectively. The latter table is of characteristic 2.

() (12)(34) (123) (12345) (12354)

χ1 1 1 1 1 1

χ2 3 -1 0 1−
√

5
2

1+
√

5
2

χ3 3 -1 0 1+
√

5
2

1−
√

5
2

χ4 4 0 1 -1 -1
χ5 5 1 -1 0 0

Cl1∗ Cl2∗ Cl3∗ Cl4∗

X1 1 1 1 1

X2 2 -1 −1−
√

5
2

1+
√

5
2

X3 2 -1 1+
√

5
2

−1−
√

5
2

X4 4 1 -1 -1

Observe that χ2, χ3, and χ5 are not present in characteristic 2. The fact that X2 and X3

look similar to χ2 and χ3 is purely coincidental, for X2 and X3 correspond to represen-

tations of A5 unique to characteristic 2. On the other hand, we can apply Theorem 5.1.3

to χ4 and obtain the following: since |G| = 60, it is clear that 2 is prime to 60/4 = 15.

Then ρ4 is irreducible in characteristic 2. More explicitly, X4 = Red2(ρ4). This means we

can use X(g) to determine which conjugacy class of A5 each Cli represents. We find that

Cl1∗ = (), Cl2∗ = (123), Cl3∗ = (12345), and Cl4∗ = (12354). See that for g that consists
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of two 2-cycles, |g| = 2. Then g = () in characteristic 2. This explains why the conjugacy

class of (12)(34) is not explicitly present in the modular character table of our group.

The next two sections will explore the irreducible modular representations of Dp and

SL2(p) in a similar fashion. Additionally, we will present several conjectures of tensor

product decompositions for each of the two groups.

5.2 Dihedral Groups: Dp (mod 2) and Dp (mod p)

Having created formulas for the tensor product decompositions of the irreducible ordinary

representations of Dn, we were curious to see if similar formulas existed for modular

representations. As general Dn has fairly complicated modular representations, we instead

look at Dp. More specifically, we map this family of groups to the algebraic closures F2

and Fp. We replicate the ordinary character table of Dp below, with ω = e2πi/p, as it will

be used to construct the relevant modular character tables.

1 s r r2 . . . r
p−1
2

χ1 1 1 1 1 1 1
χ2 1 -1 1 1 1 1

χR1
2 0 ω + ω−1 ω2 + ω−2 . . . ω

p−1
2 + ω−(

p−1
2 )

χR2
2 0 ω2 + ω−2 ω4 + ω−4 . . . ωp−1 + ω−(n−1)

χR3
2 0 ω3 + ω−3 ω6 + ω−6 . . . ω3(

p−1
2 ) + ω−3(

p−1
2 )

...
. . .

χRp−1
2

2 0 ω
p−1
2 + ω−(

p−1
2 ) ω2(

p−1
2 ) + ω−2(

p−1
2 ) . . . ω

p−1
2 (

p−1
2 ) + ω−(

p−1
2 )(

p−1
2 )

Remark 5.2.1. [3, 8.1] Let q be prime and let Cl1, ..., ClA be the conjugacy classes of

Dp for which (|g|, q) = 1 where g ∈ Clk and 1 ≤ k ≤ i. Then A = # of irreducible

representations Dp has in characteristic q.

Let us use the above remark to determine how many irreducible representations Dp has in

characteristic p. As discussed in Section 4.2, Dp has (p−1)/2+2 conjugacy classes. These are

{1}, {s, rs, r2s, ..., rp−1s}, {r, rp−1}, {r2, rp−2}, . . . , and {r
p−1

2 , r
p−1

2 +2}, with elements of

order 1, 2, p, p, . . . , and p respectively. Then there are two conjugacy classes with elements
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of order prime to p, which means Dp has two irreducible representations in characteristic

p. Alternatively, there are (p−1)/2 + 1 conjugacy classes with elements of order prime to

2, so Dp has (p−1)/2 irreducible representations in characteristic 2. We now present the

character table of Dp in characteristic p.

1 s

χ1 1 1
χ2 1 -1

See that ρ2 has degree 1, but (p, 2p
1 ) 6= 1. Then ρ2 is a modular representation that is ir-

reducible despite not having satisfied Theorem 5.1.3. This is to show that the converse of

said theorem does not necessarily hold. Since the above is a small character table, we can

easily see that χ2 · χ2 = χ1 corresponds to our only nontrivial tensor product decomposi-

tion. Then the formulas (1) and (2) for the ordinary tensor product decompositions of Dp

hold in characteristic p as well. We will see that something similar occurs in characteristic

2.

Take any ordinary irreducible representationRj ofDp which has degree 2. Since (2, 2p
2 ) =

1, we know that Red2(Rj) is irreducible by Theorem 5.1.3. Note that there are (p−1)
2 such

Rj , which will account for (p−1)
2 irreducible representations in characteristic 2. Along with

the trivial representation, this gives us the (p−1)
2 +1 irreducible representations of Dp. Since

the representations of degree 2 remain irreducible after reduction, it suffices to use the

ordinary character table and interpret the complex characters as elements in the algebraic

closure of F2. We can do this because p is an odd prime, so the algebraic closure F̄2 contains

all pth roots of unity. Let ω be a fixed nontrivial pth root of unity in characteristic 2. Then

the modular character table for Dp (mod 2) is given by the following:

1 r r2 . . . r
p−1

2

χ1 1 1 1 1 1

χRed2(R1) 2 ω + ω−1 ω2 + ω−2 . . . ω
p−1

2 + ω
−(

p−1
2

)

χRed2(R2) 2 ω2 + ω−2 ω4 + ω−4 . . . ωp−1 + ω−(p−1)

χRed2(R3) 2 ω3 + ω−3 ω6 + ω−6 . . . ω
3(
p−1

2
)
+ ω

−3(
p−1

2
)

.

.

.
.
.
.

χRed2(R (p−1)
2

) 2 ω
p−1

2 + ω
−(

p−1
2

)
ω

2(
p−1

2
)
+ ω

−2(
p−1

2
)

. . . ω
p−1

2
(
p−1

2
)
+ ω

−(
p−1

2
)(
p−1

2
)
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Without loss of generality, let ` > j and let us see what happens to the general character

dot product χRj · χR` . Clearly χRj (1) · χR`(1) = 4. We proceed to focus on the conjugacy

class of r, since this determines the product for all other conjugacy classes as well. Then

(ω` + ω−`)(ωj + ω−j) = ω`+j + ωj−` + ω`−j + ω−`−j

= ω`−j + ω−(`−j) + ω`+j + ω−(`+j)

= χR`−j (r) + χRk(r)

where k =

{
`+ j `+ j < bp2c
p− (`+ j) `+ j > bp2c

, as in (11) of the tensor product decomposition

formulas for the ordinary representations of Dn. The proof of this is identical to that of

(11), so we do not replicate it here.

As the reader may have predicted, our result for the decomposition of χRed2(Rj)·χRed2(Rj)

is similar. We focus on the conjugacy class of r once more. See that

(ωj + ω−j)2 = ω2j + ω0 + ω0 + ω−2j

= ω2j + 2 + ω−2j

= 2χ1(r) + χRed2(Rk)(r)

where k =

{
2` ` < bp4c
n− 2` ` > bp4c

as in (9) of the original tensor product decomposition for-

mulas. Once again, the proof of the above is identical to that of (9), with χ1 replacing χ2

in the decomposition since no such χ2 exists in characteristic 2.

From this we gather that the tensor product decomposition formulas for the ordinary

irreducible representations of Dn hold for the modular irreducible representations of Dp.

Then we can create the McKay graphs of Dp for any p in characteristic 2 and characteristic

p. Since the tensor product decompositions of the group’s modular characters are essen-

tially the same as that of its ordinary characters, the McKay graphs of Dp in characteristic

2 and p will be very similar to its ordinary McKay graphs.
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5.3 The Steinberg Representation: SL2(p) (mod p)

Let us move on to our other family of groups, SL2(p). We look at its irreducible modu-

lar representations in characteristic p. As in the previous section, we present its ordinary

character table for reference in constructing its modular characters. The Steinberg repre-

sentation is denoted by ψ, as before.

1 z a` bm c d

χ1 1 1 1 1 1 1
χψ p p 1 -1 0 0
χζi p+ 1 (−1)i(p+ 1) τ i` + τ−i` 0 1 1
χξ1

1
2(p+ 1) 1

2ε(p+ 1) (−1)` 0 1
2(1 +

√
εp) 1

2(1−√εp)
χξ2

1
2(p+ 1) 1

2ε(p+ 1) (−1)` 0 1
2(1−√εp) 1

2(1 +
√
εp)

χθj p− 1 (−1)j(p− 1) 0 −(σjm + σ−jm) -1 -1

χη1
1
2(p− 1) −1

2ε(p− 1) 0 (−1)m+1 1
2(−1 +

√
εp) 1

2(−1−√εp)
χη2

1
2(p− 1) −1

2ε(p− 1) 0 (−1)m+1 1
2(−1−√εp) 1

2(−1 +
√
εp)

It is known that |SL2(p)| = p3 − p = p(p + 1)(p − 1) [3, 5.1]. Then by Theorem 5.1.3,

we know Redp(ψ) is irreducible since (p, p(p+1)(p−1)
p ) = 1. This reinforces the possibility of

there existing a formula for the tensor product decomposition of Redp(ψ) ⊗ Redp(ψ) for

any given p. First, let us discuss all modular irreducible representations of the group for

a given p.

Recall that SL2(p) has p+4 conjugacy classes, which are {1}, {z}, {a}, {a2}, ..., {a
(p−3)

2 },

{b}, {b2}, ..., {b
(p−1)

2 }, {c}, {d, d2, ..., d(p−1)}, {zc}, {zd, zd2, ..., zd(p−1)} for 1 = I2, z =

−I2, a =
[
v 0
0 v−1

]
, b is some element of order p+ 1 ,c = [ 1 1

0 1 ] , and d = [ 1 v
0 1 ] for v such that

〈v〉 = F∗p. Then by definition of v, |ak| = p− 1 and |d| = pj for some integer j. This gives

us enough information to know which congjugacy classes of SL2(p) have elements of order

prime to p. These are {1}, {z}, {a}, {a2}, ..., {a`}, {b}, {b2}, ..., {bm} with elements of or-

ders 1, 2, p−1, ..., p−1, p+1, ..., p+1 respectively. Altogether, this yields 2+ p−3
2 + p−1

2 = p

such conjugacy classes. Then by Remark 5.2.1, SL2(p) has p irreducible representations

in characteristic p.
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It is known that the full list of irreducible modular representations of SL2(p) are Symk(ρ)

for k = 0, ..., p − 1. Recall that for representations of this form, ρ is the standard repre-

sentation and k ∈ Z+. See that since Symk(ρ) is defined over the ground field, we do not

need to consider the algebraic closure Fp in order to obtain modular representations of

the group as was needed for Dp. For ease of notation, we will denote Symk(ρ) by φk. Then

φ0 is the trivial representation and φp−1 = Redp(ψ).

Conjecture 5.3.1. The tensor product Redp(ψ)⊗Redp(ψ) decomposes into the direct sum

3φ0 ⊕ 4φ2 ⊕ 4φ4 ⊕ ...⊕ 4φp−3 ⊕ 2φp−1i.

Let us show that this decomposition holds for conjugacy classes 1 and z. It is the case

that the character values φk(1) = φk(z) for any φk used in the above decomposition. Then

it suffices to show that the decomposition holds for the identity conjugacy class. See that

3φ0(1) + 4φ2(1) + 4φ4(1) + ...+ 4φp−3(1)+2φp−1(1) = 3 + 4(3) + 4(5) + ...+ 4(p− 2) + 2p

= 3 + 4

(p−3)/2∑
k=1

(2k + 1) + 2p

= 3 + 4(2

(p−3)/2∑
k=1

k) + 4

(p−3)/2∑
k=1

1 + 2p

= 3 + 8
( (p−3)

2 ( (p−3)
2 + 1))

2
+ 4( (p−3)

2 ) + 2p

= 3 + 4( (p−3)
2 ( (p−1)

2 )) + 2p− 6 + 2p

= 3 + (p− 3)(p− 1) + 4p− 6

= 3 + p2 − 4p+ 3 + 4p− 6

= p2

as desired. We have checked that the above holds for other conjugacy classes on a case by

case basis. This provides good evidence for our conjecture, but is not a proof.



Appendix A
Preliminaries

Below is an exercise from a Bard course on Representation Theory taught a few years ago
to illustrate the nuances of stable subspaces. This is referenced in 2.1.6.

Exercise: Write out the alternate proof of Mashke’s Theorem using an inner product when
k = R or C.

Solution. Let 〈 , 〉 be an inner-product on V . Define a new inner-product 〈 , 〉new by

〈x, y〉new =
∑
g∈G
〈ρ(g)x, ρ(g)y〉.

Start by checking that is indeed an inner-product. First, 〈 , 〉new is linear in both
variables since matrix multiplication is linear, and it’s a finite sum of such. Explicitly, if
{e1, e2, . . . , en} is a basis for V , and x =

∑
αiei, y =

∑
βjej , then we need to check that

〈x, y〉new =
∑

i,j αiβj〈ei, ej〉new:

〈x, y〉new =
∑
g∈G
〈ρ(g)x, ρ(g)y〉

=
∑
g∈G
〈ρ(g)

∑
αiei, ρ(g)

∑
βjej〉

=
∑
g∈G
〈
∑

αiρ(g)ei,
∑

βjρ(g)ej〉

=
∑
g∈G

∑
i,j

αiβj〈ρ(g)ei, ρ(g)ej〉 (since 〈 , 〉 is linear)

=
∑
i,j

αiβj
∑
g∈G
〈ρ(g)ei, ρ(g)ej〉 (since the sums are finite)

=
∑
i,j

αiβj〈ei, ej〉new.
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Moreover, it’s easy to check that 〈x, x〉new ≥ 0 with equality precisely when x = 0.

Next, we should check that the new inner-product is invariant under the action of G:

〈ρ(h)x, ρ(h)y〉new =
∑
g∈G
〈ρ(g)ρ(h)x, ρ(g)ρ(h)y〉

=
∑
g∈G
〈ρ(gh)x, ρ(gh)y〉

=
∑
σ∈G
〈ρ(σ)x, ρ(σ)y〉

= 〈x, y〉new.

Now let W ⊂ V be G-stable, and let W⊥ be the orthogonal complement to W under
the new inner-product, i.e.

W⊥ = {v ∈ V : 〈w, v〉new = 0 for all w ∈W}.

Let x ∈ W⊥ so that 〈w, x〉new = 0 for all w ∈ W . We need to show that ρ(h)x ∈ W⊥
for all h ∈ G. But for any w ∈W we have

〈w, ρ(h)x〉new =
∑
g∈G
〈ρ(g)w, ρ(g)ρ(h)x〉

=
∑
g∈G
〈ρ(g)ρ(h)ρ(h)−1w, ρ(g)ρ(h)x〉

=
∑
g∈G
〈ρ(g)ρ(h)w′, ρ(g)ρ(h)x〉 (for some w′ ∈W since W is G-stable)

=
∑
g∈G
〈ρ(gh)w′, ρ(gh)x〉

=
∑
σ∈G
〈ρ(σ)w′, ρ(σ)x〉

= 〈w′, x〉new = 0.

Therefore W⊥ is G-stable. This finishes the proof since dimW + dimW⊥ = dimV .



Appendix B
Sample Code

B.1 Magma

Character tables are difficult to produce by hand, so we turn to an online resource. More
specifically, we use the Magma Calculator at http://magma.maths.usyd.edu.au/calc/. In
general, the command

CharacterTable(G′);

yields the character table of the group G where G′ is the notation for G used by Magma.
We go through the calculations needed to obtain the character table of D8 as an example.
The code CharacterTable(DihedralGroup(8)); generates

Assuming no previous knowledge of the characters of D8, this we can also find in Magma.
The console includes an explanation of character value symbols alongside each generated
character table. Here, it defines Z1 via the following:

Then we can obtain the minimal polynomial of Z1 and solve for the variable. The code
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MinimalPolynomial((CyclotomicField(8: Sparse := true)) ! [ RationalField() — 0, 1, 0, -1 ]);

yields the solution

which, by adopting the notation used, is

x2 − 2.

Then

(Z1)2 − 2 = 0⇒ Z1 = ±
√

2.

Since Z1 and −Z1 are featured interchangeably in the character table, we allow sign
ambiguity. Reflecting on our knowledge of the characters of general Dn, we know Z1 =
e2πi/8 + e−2πi/8 =

√
2 which matches the output from Magma.

We see that obtaining character tables in Magma is fairly straight forward. For
the two infinite families of groups this project focuses on, the codes for the char-
acter tables ofre CharacterTable(DihedralGroup(n)); for that of Dn, and Charac-
terTable(SpecialLinearGroup(2,p)); for the that of SL2(p) for any positive n, p. The
Magma Calculator was an important resource for this project and we thank the University
of Sydney for providing public access.

B.2 Mathematica

We now demonstrate how to decompose a tensor product in Mathematica by using
G = SL2(11) (mod 11) as an example. More specifically, we are looking for the decompo-
sition of the Steinberg representation in characteristic 11 with itself, ψ ⊗ ψ.

The first step is to replicate the group’s character table in matrix form. Here we can
afford to take a shortcut, for we know that the decomposition of ψ⊗ψ only involved repre-
sentations of the form χi(1) = χi(z) since (χψ(1))2 = (χψ(z))2.. Thus we eliminate χeven.
We begin by replicating the character table such that it only includes representations that
may appear in the decomposition at hand. The following encodes this:

Here, b5 = 1−
√

5
2 and b5s = −1−

√
5

2 . One can see these characters clearer in matrix
form, easily identifying which row corresponds to which representation. Conveniently, row
i corresponds to χi for us.
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Since there are six representations, we create a vector containing six variables. Each
serves as the coefficient of a representation. Multiplying it by A yields the system of equa-
tions we solve to obtain our answer. The code for these steps is below.

We obtain the solution

ψ ⊗ ψ = aρ1 ⊕ bρ3 ⊕ cρ5 ⊕ dρ7 ⊕ eρ9 ⊕ fψ
= 3ρ1 ⊕ 4ρ3 ⊕ 4ρ5 ⊕ 4ρ7 ⊕ 4ρ9 ⊕ 2ψ

which supports Conjecture 5.3.1.
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