
Bard College Bard College

Bard Digital Commons Bard Digital Commons

Senior Projects Spring 2022 Bard Undergraduate Senior Projects

Spring 2022

Interval Driven Melodic Mutation Using A Genetic Algorithm Interval Driven Melodic Mutation Using A Genetic Algorithm

Jack A. Carson
Bard College

Follow this and additional works at: https://digitalcommons.bard.edu/senproj_s2022

 Part of the Computer Sciences Commons

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Recommended Citation Recommended Citation
Carson, Jack A., "Interval Driven Melodic Mutation Using A Genetic Algorithm" (2022). Senior Projects
Spring 2022. 113.
https://digitalcommons.bard.edu/senproj_s2022/113

This Open Access is brought to you for free and open
access by the Bard Undergraduate Senior Projects at
Bard Digital Commons. It has been accepted for inclusion
in Senior Projects Spring 2022 by an authorized
administrator of Bard Digital Commons. For more
information, please contact digitalcommons@bard.edu.

http://www.bard.edu/
http://www.bard.edu/
https://digitalcommons.bard.edu/
https://digitalcommons.bard.edu/senproj_s2022
https://digitalcommons.bard.edu/undergrad
https://digitalcommons.bard.edu/senproj_s2022?utm_source=digitalcommons.bard.edu%2Fsenproj_s2022%2F113&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.bard.edu%2Fsenproj_s2022%2F113&utm_medium=PDF&utm_campaign=PDFCoverPages
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://digitalcommons.bard.edu/senproj_s2022/113?utm_source=digitalcommons.bard.edu%2Fsenproj_s2022%2F113&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@bard.edu
http://www.bard.edu/
http://www.bard.edu/

Carson 1

Interval Driven Melodic Mutation Using A Genetic Algorithm

Senior Project Submitted to

The Division of Science, Math, and Computing

of Bard College

by

Jack Carson

Annandale-on-Hudson, New York

May 2022

Carson 2

Carson 3

Dedicated to:

Chris and Judy Carson for always supporting me.

David Stoltz for teaching me everything I know about guitar and making me the musician I am

today.

Carson 4

Carson 5

Acknowledgements:

I would like to thank Robert McGrail for leading me through this process. A senior

project is a daunting undertaking, but his confidence became my confidence, and I could not

have finished this without him.

Everything I know about Max/MSP is due to . His classes haveMatthew Sargent

inspired me to think differently about not only music, but coding as well. I am grateful for all the

help he has given me over the last year, as well as all the advice he has given me about the

future.

made it possible for me to stick through my computer science degree,Keith O'Hara

even when I was faltering. I am thankful for all the ways he kept programming fun for me.

Finally, I would like to thank everyone I have met at Bard, faculty and friends alike, for

helping me along my undergraduate journey.

mailto:msargent@bard.edu
mailto:kohara@bard.edu

Carson 6

Carson 7

Table of Contents

Introduction 8

Chapter 1: Defining Consonance and Dissonance……………………………………………….10

Chapter 2: An Overview of Max/MSP…………………………………………………………..16

Chapter 3: Genetic Algorithms…………………………………………………………………..22

Chapter 4: A Walkthrough of the Code………………………………………………………….24

Conclusion……………………………………………………………………………………….37

Bibliography……………………………………………………………………………………..31

Appendix: Chord Forms…………………………………………………………………………42

Carson 1

Introduction:

Music has been composed algorithmically long before the computer was invented

(Collins & D’Escrivan 2007). Once computers were better equipped to handle the processes

necessary for composition, the field of computer music emerged. One result of this was the

advancement and automation of algorithmic composition. The ability of a computer program to

create music is a fascinating step towards encountering art that was created without any

biological or neurological input, human or otherwise.

As a musician and avid music listener, I find the songs I enjoy most are ones that

surprise me with compositional ideas unlike anything else I’ve heard. This typically correlates to

pieces of music with a significant level of dissonance, which became a key idea throughout the

entire project. Creating a program that can replicate these surprises and producing melodic ideas

that a human composer might never think of was my main objective. In this paper I will describe

how I approached this problem by creating a genetic algorithm using the programming language

Max/MSP.

To do this project, an understanding of basic music theory was necessary. Specifically,

the project was built around levels of consonance within different intervallic relationships of

notes, as well as utilizing common chord forms. I have been playing guitar for 16 years with a

focus on more technical styles, so I already had a working knowledge of all the theory necessary.

The first chapter will explain the way I define consonance between intervals and in other aspects

of music, and how I chose to represent that in my code.

Max/MSP is a visual, multimedia handling programming language. It is a very powerful

compositional tool that is used by many artists in many different disciplines, but it does have a

Carson 2

focus on music. The second chapter will give an overview of the language, consisting of a brief

history of the language’s development, ways it is utilized, its idiosyncrasies, and why I chose to

program in this language over more common ones such as Python.

The rest of the paper will go over genetic algorithms, and what it took to code one into

Max/MSP. In chapter three I will define genetic algorithms, detail how they work, and explain

why I chose to approach this project in this way instead of with the more commonly used model

of Markov Chains. The next chapter will detail my own code, walking through how a melody is

handled and subjected to the processes of the genetic algorithm.

Carson 3

Chapter 1: Defining Consonance and Dissonance

A central part of my senior project is the relationship between musical consonance and

dissonance. However, many other aspects of music were considered as well, such as different

chord forms, tempo or timing, and general music convention. In this section I will define these

terms and provide all the musical information necessary to understand my project.

Music theory itself is nothing more than a diagnostic tool for interpreting music. It helps

create a language that musicians and composers can speak to each other without having to

meticulously define what they mean. It is much easier to say “let’s play a 12 bar blues in C” than

“Let’s play over four measures made up of four quarter notes at 120 quarter notes per minute

over a chord that’s made up of the notes C, E, G, and Bb…”. Music theory is made up of a set of

conventions that make understanding what is happening in a song easier, but it provides no

answers to anything outside of those conventions. You can hear a piece of music and really like

it, but music theory has nothing to do with it. It can tell you the song follows a standard pop

chord progression at a certain speed, and it can tell you that those chords in that order are

considered to be very consonant, but it cannot tell you if the song is in any way “good” or why

you like it, only what is happening. These conventions can be broken as well. Modern western

music is almost always in the 12 tone equal temperament tuning system, but this is a tuning

system that has evolved over thousands of years, and isn’t even the only tuning system in use

today. My project aims to focus on a specific aspect of music theory, namely how songs can be

defined as consonant or dissonant, and see how this can be modeled and manipulated if you take

the composer out of the equation, leaving only the computer.

Consonance and dissonance are very easy to identify in music with just the ear, but to

quantify that in ways a computer can also understand requires defining those terms. I am mostly

Carson 4

using intervals, or the space between any two notes, as my main method of defining consonance

or dissonance. Musically, consonance is a very stable sound that does not have any need to

resolve. In western music we divide octaves into 12 tones that are roughly the same distance

apart from each other. This distance, i.e. the distance between a C and a C#, is also called a

semitone. These make up a chromatic scale, but the vast majority of written music is based off of

other scales, the most common two being Major and Minor. These, along with other common

scales, are built using only 7 tones instead of 12. All major scales are constructed using the same

intervallic distances in order, no matter what the tonic, or root, of the scale is. For example, the

first three notes in a C Major scale are C, the tonic, D, the major second and two semitones away

from the root, and E, the major third which is four semitones away from the root. The first three

notes in a G major scale are G, A, and B, all with the same relative distance to each other that is

present in the first three notes of the C major scale. Intervals can be defined by the mathematical

relationship between frequencies, such as a perfect fifth interval always having a 2 to 3 ratio

between the two notes. For example, the note A, oscillating at 440 hz, has a perfect fifth of E,

which oscillates at 660 hz. The simpler these ratio relationships are, the more consonant the

notes sound to the listener. The more complex the relationship between the two frequencies are,

such as the 32 to 45 ratio of the infamous tritone, the more dissonant they sound.

These interval relationships can be broken up into five groups, as shown in the table

below (Toro & Crespo 2017):

Interval Evaluation Interval Name Interval Ratio

Absolute Consonance Unison 1:1

Octave 1:2

Perfect Consonance Fifth 2:3

Carson 5

Fourth 3:4

Medial Consonance Major Sixth 4:5

Major Third 3:5

Imperfect Consonance Minor Third 5:6

Minor Sixth 5:8

Dissonance Major Second 8:9

Major Seventh 8:15

Minor Seventh 9:16

Minor Second 15:16

Tritone 32:45

Chords can also be consonant or dissonant, although this is harder to define as there are many

ways to construct the same chord. A C Major Triad will always be made up of the notes C, E,

and G, but they do not necessarily have to be in that order. Playing an E, G, C (when writing

chords out like this, assume the notes are being played in ascending order and without octave

skips. E would be the lowest note, followed by the next G higher in pitch, followed by the next

C) or G, C, E are still C major triads, namely the 1st and 2nd inversions. All chords are made up

of intervals, however, and can thus be defined by the notes’ intervallic relations within the chord.

C, E, G contains a major third interval (medial consonance) followed by a minor third interval

(imperfect consonance), with a perfect fifth interval (perfect consonance) between the first and

last note. E, G, C is a minor third followed by a perfect fourth, an imperfect and a perfect

consonance with a minor sixth imperfect consonance between the first and last notes. G, C, E is a

perfect fourth followed by a major third, a perfect and medial consonance, with a major sixth

medial consonance from G to E. To summarize:

Carson 6

● A Major Triad has one perfect consonance, one medial consonance, and one imperfect

consonance.

● The 1st inversion has one perfect consonance and two imperfect consonances.

● The 2nd inversion has one perfect consonance and two medial consonances.

From this, it can be concluded that the 2nd inversion of a major triad is the most consonant form

of a major triad.

This still is not a perfect solution to labeling a chord’s level of consonance. An

augmented triad, one that is made up of two major thirds stacked on top of each other, contains

two medial consonances and one imperfect. One would imagine this chord to be somewhat

consonant, but it is widely regarded as being dissonant. This has less to do with the harmonic

ratios of the notes within the chord, and more to do with other aspects of music theory. For one,

an augmented triad does not naturally exist in any major or minor scale, or any modes derived

from them. It is also impossible to invert, due to the nature of the three notes each being a fourth

of an octave away from each other; if you were to try and move the root note to the top of the

chord instead of the bottom, the ratios defining the chord would not change at all. I also

mentioned earlier that musical consonance implies no real need for resolution, while an

augmented chord can be said to “want” to resolve. A chord is typically resolved once it changes

in some way to be a more consonant chord, typically one that is derived from the tonic or fifth of

the key of the song (it is worth noting that while the terms “key” and “scale” are different in the

world of music theory, that difference is a lot less pronounced in my project. I do not use the

terms interchangeably, but you can think of them as roughly the same thing). To resolve an

augmented triad, all one would need to do is move the note(s) that exist outside of the key to

nearby ones that do fit the key. Lastly, augmented triads are a lot less common than major or

Carson 7

minor ones. While they definitely still appear in popular music, general audiences are a lot less

exposed to them, which could result in an unconscious bias against them. From looking at the

augmented triad in this way, it should be clear that the difference between a consonant and

dissonant chord is very delicate.

What I have described about the tonal aspect of music is in no way stagnant.

Compositions can, and often do, change tonal elements within the piece. Modulation is a musical

technique that changes the tonal center of a piece. This not only changes what notes would be

considered consonant or dissonant, but the modulation itself can hold those properties. Some

modulations are done between two keys that share notes and chords in common, making the

transition relatively seamless and otherwise consonant. Other modulations can happen abruptly

and jarringly, with seemingly nothing in common between the original and new keys, sounding

very dissonant. A composer might also choose to write a piece that has no tonal center, not

adhering to any conventions of key or mode. This is where atonal music comes from, which is

prevalent in experimental genres such as free jazz.

Lastly, there is one concept in music that can completely undercut the idea of dissonance:

repetition. The more the human ear hears something, the more familiar it becomes, and the more

consonant it will sound. Using a few dissonant notes that might even exist outside the key of a

song will grab the listener’s attention at first, but the more it happens the more natural it feels to

the song. This works especially well with chord progressions or lead melodies, parts of a song

that are repeated a lot. It is also utilized in music that has a lot of improvisation, where a soloist

might play a scale that juxtaposes the key of the song. Some composers will use a simple

repeated idea throughout a piece to provide a foundation that they can build on top of in any way

they want, and always have something solid to come back to that is consonant to the listener.

Carson 8

Other composers have written music with as little repetition as possible, even going so far as to

have none whatsoever, which sounds extremely dissonant.

Ultimately, the ideas of consonance and dissonance in music are extremely context

dependent. A single stray note might sound jarring in a simple melody, but sound perfectly

reasonable in one with more complex tones. Focussing solely on intervallic relationships is a

very simplistic way of thinking about consonance, but it is very easy to model. My program does

not account for the key of a song or an underlying chord progression in any way, and completely

ignores any temporal aspects of music. This causes my program's output to be biased towards

atonal melodies, but I do not consider this to be a detriment.

Carson 9

Chapter 2: An Overview of Max/MSP

Rather than use a more conventional programming language for my senior project, such

as Python or Java, I opted to use Max Signal Processing (Max/MSP). I learned how to use the

language over the course of doing this project, both by working on it and by taking a class this

semester. In this section I will give a brief history of the development of Max/MSP, what it is and

how it works, as well as why I choose to use this language over any other.

Miller Smith Puckette began work on Max in the 1980s at the Institute for Research and

Coordination in Acoustics/Music (IRCAM). It was originally written in C and could not

synthesize sound, instead only sending Midi data. In 1989, Max Faster Than Sound (Max/FTS)

was developed for the NeXT computer by IRCAM, adding the ability to synthesize sound in real

time using the computer's digital signal processor (DSP). IRCAM also licensed Max to Opcode

Systems that same year, leading to a 1990 comercial release of Max, developed by David

Zicarelli. In 1997, Zicarelli bought the rights to Max to prevent Opcode from canceling it, and

founded his own company Cycling ‘74 who still develops Max to this day. The next year,

Cycling ‘74 released Max/MSP, which allows for the manipulation of digital audio signals in real

time without a dedicated DSP. This gave composers/programmers the ability to create their own

custom synthesizer instruments and effect processors. In 2011, Max/MSP was made able to

integrate with the Ableton Live digital audio workstation (DAW), and in 2016 Ableton acquired

Cycling ‘74.

Max/MSP itself is a visual based programming language for multimedia, but with a focus

on music. It has a few basic data types, and more complex objects that can be connected to each

other. The program works right to left and top to bottom, although delays can be built into the

code to get around this if necessary. Max/MSP can handle both Midi data and soundwaves,

Carson 10

lending itself to a wide variety of uses. Users can create their own instruments or effects that can

be brought into Ableton Live for creating music. Users can also use Max/MSP without any

external DAW, and create compositions wholly within the program itself. It can be used to

generate procedural scores for performers to follow. Users can also create effect pedals for

instruments such as electric guitars if they have a way to port their program to hardware. Max’s

extendable API allows users to create and share packages to be implemented by other users.

There is a dedicated community around the program, and Cycling ‘74 even showcases user made

packages on their website, as well as hosts an online forum for users to learn from and share with

each other.

Max/MSP has a few basic building blocks: ints, floats, toggles, bangs, and messages. Ints

and floats behave similar to other programming languages; ints being

integer numbers and floats being numbers with decimals. Toggles and

bangs are how the program knows what functions to run and when. Toggles

are an on/off button, continuously sending a signal to do something when

on, and not when off. Bangs are like buttons in that they can be clicked for

a one time activation of any connected functions. Other objects might

output bangs as well. Messages hold and give instructions, sometimes numbers like ints or floats,

and other times specific functions an object may need to be called, such as a message that opens

a file to be put into an object.

All objects in Max/MSP, including the building blocks mentioned above, will have either

some amount of inputs that show up on top of the object box, outputs that are on the bottom, or

in most cases, both. Wires connect objects together, an output to an input. Some basic objects are

math operators. These operators also showcase a key aspect in how Max/MSP treats integers and

Carson 11

floats. The first example shows two integers, 10 and 5, being subtracted. The 5 is going into the

blue, or cold, inlet of the subtraction box. Cold inlets store information to the object, but do not

tell the object to do anything with that information yet. In this case, the subtraction object is

being told that when a

number goes into the

orange, or hot, inlet

on the right, 5 should

be subtracted from it. The 10 going into the hot inlet is what activates the mathematical

operation, outputting 5. If the 5 that goes into the cold inlet was not set, or was changed after the

10 was already put in, the outcome would be 10 as the subtraction object was not told what to

subtract from 10.

The middle example shows 1.5 being subtracted by 1.0, but it outputs 0.0 despite all the

number boxes being floats, and the equation being set up correctly, with the cold inlet being set

before anything came in through the hot inlet. This is because all math operators in Max/MSP

default to integers, and are not overloaded with float operations. The rightmost example shows

the fix for this, in which the user must input some float value into the subtraction object to signal

that it should be expecting floats. Math objects can also be given default values instead of having

to use the cold inlet. For example, if nothing was in the cold inlet for the correct float

subtraction, the object would default to subtracting any value that came in through the hot inlet

by 0.0. This value can be anything, if it were written as “- 1.0”, and 1.5 came in through the hot

inlet, it would still output 0.5 if there was nothing connected to the cold inlet.

Max/MSP has many objects, but most are created with the purpose of dealing with sound

waves or Midi data. This leads to Max/MSP not having many functions that are considered very

Carson 12

basic for other programming languages, such as any kind of loop. It is still possible to create

these functions, but they must be built from scratch. Here is a very basic example of a for loop

built using Max/MSP. The button, or bang, is connected to an object “counter”. Counter will

increment the value being output by 1 every

time it is activated, in this case when bang is

clicked. An integer goes into a cold inlet

telling the counter object what the maximum

value it can output is. There is another integer that is receiving the current count from the counter

object, and a toggle that will activate once the counter has reached its maximum value of 10. The

leftmost outlet of counter sends integer data,

but other functions might treat that as a

bang, or activation, which is why this is a

complete for loop. However, right now the

for loop only iterates when a user manually clicks the bang. To automate this, all that would need

to be done is attaching a metronome object, called “metro”, that sends a bang every click. In this

case I’ve written the speed of the

metronome into it, 1000 milliseconds, but

this could also be done with an input into

the rightmost inlet. The toggle is now

connected to the hot inlet of the

metronome, telling it to count continuously

as long as the toggle remains on. Once the

counter object has hit the maximum count

Carson 13

of 10, it will send a signal to the toggle, telling it to turn off, ending the now fully automated

loop.

Max/MSP also handles local variables in a very specific way. Each file, which is

analogous to a class in other languages, is considered to be global by default within itself.

Subpatches, similar to class functions, can still send and receive data from the main file, or even

other subpatches. This led to a complication where I had multiple of the same subpatches that

were meant to be called at different times. Every instance of the same subpatch would receive the

same data meant to be sent to only one of them, causing unwanted output from subpatches that

should not have been accessible. To solve this problem I had to take the code from my

subpatches, put them into their own files, and rename everything that acted as a variable to fit

Max/MSP’s syntax for local variables: #0_.

If Max/MSP doesn’t even have built in for loops or local variables, what advantages does

it have that would make me choose to use it for my senior project? The most obvious benefit is

built in Midi functionality. The point of my project is to be able to mutate a melody, and being

able to immediately play the end result without needing to port the data to another software sped

up the development process. It also allows for possible extensions to the project, such as a user

being able to input a custom melody via a Midi keyboard, or the ability to directly export the

melody to Ableton and play it with those instruments. When I first began working on the project,

I was using Python, and had a very guitar focussed idea what to do. After only a bit of coding, I

realized that trying to perform the math that I wanted to do on the notes had extra levels of

complexity that Max/MSP would be able to alleviate. Specifically, figuring out distances of notes

on a guitar fretboard. I have since moved away from the guitar centric approach towards one

Carson 14

more focussed purely on the intervallic relationship between the notes in a melody, which has

made the math easier, but also took away some of the need to use Max/MSP specifically.

Carson 15

Chapter 3: Genetic Algorithms

The name “genetic algorithms'' makes them sound much more complicated than they

actually are. Inspired by the work of Charles Darwin, genetic algorithms seek to solve a problem

by evolving to the correct answer using an iterative process, the same way an organism might

evolve to fit a niche over several generations and years upon years of genetic mutation. In this

chapter I will explain how a genetic algorithm works, and how I approached the creation of the

genetic algorithm used in my senior project.

The idea of a genetic algorithm is based on Darwin’s theory of evolution, specifically the

idea of “survival of the fittest.” Genetic algorithms begin with a user inputting some population

of data, and deciding a measure of fitness. Each data point is evaluated against the fitness

measure, and assigned a fitness score, contributing to the larger evaluation of fitness for the

entire population. The genetic algorithm will then iterate through the population, each iteration

being called a generation. While iterating through each generation, some data of the population is

selected, and then subjected to different mutation functions. These mutation functions change the

data in some way, typically based on what data was selected to be mutated. The mutations are

then evaluated according to the measure of fitness, and if the mutations are more fit, they are put

into the next generation. This process is then repeated many times, either until some large

number of new generations have been created, or until the fitness measure is sufficiently reached.

The paper “Sorting the Sortable from the Unsortable” (McGrail and McGrail 2006)

outlines a simple problem where use of a genetic algorithm is an appropriate solution. Consider

that a professor might drop some number of grades from assignments in the consideration of a

final class grade. This is rudimentary in the case that all grades are weighted equally; simply

eliminate the grades with the lowest values. A complication occurs when the grades are

Carson 16

weighted. The paper outlines how there is no readily available solution with the use of sorting

algorithms, and instead turns to a genetic algorithm to find the solution.

The algorithm takes an array A of lists of scores. Each score is defined as a tuple of a

grade and a weight. Initially, the array only consists of copies of the same list. The fitness the

algorithm is looking for is a maximum average of some number k of the grades in the list, with

the average being found by dividing the sum of the first k grades by the sum of the first k

weights. For the first half of the lists in A, the algorithm replaces a corresponding list in the

second half with two of the scores in the current list randomly switched. The algorithm then

finds the fitness of each list, and reorders A to be in descending order. The algorithm then repeats

the replacement, measurement, and reorder processes some amount of times, and outputs the first

list in A as the solution.

Another very common approach to computer aided composition is the implementation of

Markov chains. Markov chains consider a set of states, and how likely each one is to occur after

another. This approach is so popular due to the idea of music being probabilistic and operating

under a certain set of rules (Bill 2011), making it useful for trying to replicate human sounding

composition. This is not how I want the melodies my program produces to sound, which is why I

opted to use a genetic algorithm instead.

Carson 17

Chapter 4: A Walkthrough of the Code

In this section I will go over my code, and explain how my genetic algorithm works.

The first feature a user should take note of when using my program is the consonance

slider, as shown in figure 4.1. The user simply clicks or

drags on the bar between the words “dissonant” and

“consonant”, and the slider calculates the fitness

function for the rest of the program to reference. The

slider defaults to midi values, which are typically

between 0 and 127. The slider outputs an integer within

that range (0 being at “consonant”, 127 at “dissonant”)

to a scale function. This function takes numbers within

a range of values, and returns the relative value in a

different range. I wrote the code block as [scale 0 127

0. 1.] so that when given a midi value, it outputs the

normalized value from 0 to 1. This value is sent to a

float box for two reasons. The first simply being so that

the user can see what fitness value they are inputting on

the slider. The second reason is that if a user has a very

specific fitness measure in mind, they can manually enter it into the float box instead of needing

to find it on the slider. Everytime the value in the float box is changed, whether manually or via

the slider, it is sent as a global variable “fitness”. The “s” in the code block is a “send” command,

and any “receive fitness” or “r fitness” code blocks will output the value in the floatbox.

Carson 18

The main loop for iterating through the melody is shown in figure 4.2. The counter object

starts at 0, and each time it increments it sends its current count into the table holding the

melody. The table then returns the midi pitch value of the note at the index of the current counter

value. The counter also goes to a variable to keep track of which index is being accessed, cnt1,

and also accesses the next two notes in the

melody. Due to the counter looking ahead,

the maximum value the counter can reach

is set to be two less than the length of the

melody. The tables output the pitch of the

notes being looked at to an integer box,

which goes to variables storing the current

value of the notes, as well as mods them by

12 so that all notes are compared as if they

existed within the same octave. These

residues are also stored as variables, and

are put together into one list by the “pack”

function. The first note is delayed by 100

ms via the “pipe” function, because it is

going into the active inlet of “pack”, and I

wanted to make sure the other values had

enough time to be put into the cold inlets.

Once the three residues of the notes are put

Carson 19

together, they are sent to the “goto” subpatch, which returns a list of three mutated notes that are

unpacked and set as variables.

The “goto” subpatch I created takes the three notes given to it, and then based on their

intervallic relationships, decides which mutation functions to send them to. The square with the 1

on it in figure 4.3 is the input of the function, and sends the information to other functions.

Firstly, it takes the three given notes and computes their fitness score using the subpatch

“fmeasure”, which is then assigned

to the variable “inputm”. The list of

three notes are also stored as a

variable “input”. When receiving

information, the function also

activates a couple of messages,

“clear” and “0”. The clear message

resets a “coll”, or collection of

data, and the 0 resets other things

in the patch, as well as the variable “maxcount”. Lastly, the three notes are unpacked and sent to

different variables after a small delay to make sure everything has enough time to be properly

reset.

The three variables storing the note values (goto1-3) are compared against each other to

find the absolute value of their intervallic relationships, as shown in figure 4.4. These differences

are then sent to a selecting function, which ultimately determines what mutation functions are

available. The chords I have decided to use as the basis for my mutation functions never have

intervallic distances of 1, 2, or 9, which is why they are not able to be selected. The number that

Carson 20

goes into the selection function is sent to the outlet corresponding to the placement of the

numbers after “sel” (if 0 is inputted, it goes to the leftmost outlet, 3 goes to the second leftmost

outlet, etc.). These numbers are sent to another selection function that adds 1 to the variable

“maxcount” for every valid intervallic relationship, to a possible maximum of three.

Carson 21

Figure 4.5 shows the entire subpatch “got4”, which is only called if there is at least one

intervallic distance of 4 between the notes, corresponding to a major third. Before anything is

sent to this subpatches inlet, the reseter message first turns off a toggle, which acts as a gate so

Carson 22

that these functions are not mistakenly called or left accessible after every time they are called.

When given an input, the toggle is turned on, opening the gate, and a random number between 0

and 6 is generated and sent to a selection function. Based on what number is generated, the three

notes that were inputted to the “goto” function (accessed by “r input”) are sent to a mutation

function. As this is the “got4” subpatch, the notes can be sent to any chord mutation that has a

major third in it: a major triad, augmented triad, two kinds of major 7 chords, a dominant 7th

chord, a minor triad, and a half diminished chord. These mutation functions take three notes as

an input, and return mutated three notes and their fitness measure. The fitness measure from the

mutation is then compared to the fitness of the original three notes via the “if” statement code

block. The if statement makes it so that whatever has the lowest fitness score, either the mutation

or original three notes, are then added to the coll as a list of the index in the coll, the fitness

measure, and the three notes. All of the “gotx” subpatches behave essentially the same, the only

difference being how many mutation functions they are able to send notes to. None of these

subpatches return anything.

Carson 23

The last section of the “goto” subpatch determines its output and is shown in figure 4.6.

The “gotx” subpatches within goto all end by sending data to “toColl”, which is received here.

The data is immediately put into the coll, and a counter is activated once each time that happens.

Once the max count is reached by the counter, that means everything that would be added to the

coll has been, and the coll is then searched for the index of minimum float value within. This

index is then sent as a variable input to the “nth” messages, which search the coll for the three

Carson 24

notes that share the index the float value is stored in. These note values are then packed into a

list, which is outputted from the goto function.

After the goto subpatch returns the new notes, they are sent to the last pieces of code in

the main function. The code in figure 4.7 changes the

values of the melody to be the new, mutated values. The

new note is compared to the residue of the note that was

determined when the table holding the melody was first

accessed. The new note is sent to the active inlets of the

operator functions immediately below it, and the residue

of the old note is sent to the cold outlets. If the new note is

greater than the residue, it sets a message to 1, or 0 if it is

less than or equal to. This message is only accessed if the

two notes are different. If the notes are the same, then

there is no reason for the table to be changed and the code

stops there. If the new note was greater than the residue,

the difference between the two is added to the original

value of the current note in the table, making that now be

the same as the new note returned by the mutation

function, but in the octave of the original note. If the new

note is lower than the residue of the old note, it is

subtracted instead. Once the current note is given its new value, it is packed with the

corresponding count variable, and put back into the melody table at the correct index. The code

Carson 25

shown only does this for the first note, but is the same for the other notes as well, the variables

are just changed from “___1” to 2 or 3.

To explain the mutation functions, I will walk through the major triad mutation. Similar

to the goto subpatch, the mutation functions are given a list of

three notes, which are unpacked and sent as variables, as well

as activating a reset method, shown in figure 4.8. Notice that

these send methods all begin with with “#0_”. This is how

Max/MSP handles local variables. Originally, I had the

mutation functions as other subpatches as well, but because

the variables inside the mutations share the same names (i.e.

all major triad mutations had the variables n1-n3), they were being called whenever another

instance of the mutation function was, which lead to bad data. I had to copy the code from the

subpatches to be new, separate patches outside of the main, and rename the send and receive

methods to be local.

The notes are then compared against each other, shown in figure 4.9, to find what interval

they should be mutating on. In the example shown, the code is looking for an intervallic distance

of a major third, the first interval in a major triad. If it finds one, it adds 3 to the higher of the two

notes being compared, adding a minor third interval on top of the major third interval, which

completes the triad. The changed note is then packed with the notes that had the major third

relation, set as a variable of a possible option for the mutation function to return, and put into the

fitness measure function, the output of which is also set as a variable. If there is no major third

relationship, the fitness measure is set as 1, the highest it can be, which is to say not fit. There are

Carson 26

2 other sets of similar code, one looking for the minor third interval that exists in a major triad,

and the other looking for a perfect fifth.

Once the possible options of new notes and their fitness scores are found, they are sent to

the code in figure 4.10. The code shown is only comparing the fitness measures of a major third

being found between notes one and two, and a major third being found between notes one and

three, although there are a total of 18 similar pieces of code. The code only compares fitness

measures found via the same intervallic relationship, so the fitness measure found from a major

third is not compared to one found from a minor third or perfect fifth. If the first fitness measure

passed to the if statement is smaller, the first index of the results table is accessed, which

Carson 27

corresponds to the fact that the first fitness measure (m1) is more fit than the second (m2). The

value at this index is then incremented, keeping a tally of how many times the first fitness

measure beat out another, and sent as a list to the “res”, or result,

method.

The result method (figure 4.11) both passes the list given to it by

the last code into the results table, and finds the maximum value of

the results table after a short delay so that all results can be given to

the table. The maximum value is then used to find its index in the

table, which is sent to a select function that returns the

corresponding list of notes and their fitness score. The idea is that

the index of the table with the highest value must be the most fit.

Carson 28

Results method:

Carson 29

The last piece of code to look at is the fitness measure subpatch, or “fmeasure” (figure

4.13). This function is given a list of three notes, finds the differences

between them, and compares that to a table of interval scores that is

initialized when the program first opened (figure 4.12). The index of the

table represents an intervallic relationship, and the value represents the

weight of consonance. The 0th index corresponds to a unison interval,

which is perfectly consonant, giving it a score of 0. The 1st index is a

minor second interval, which is dissonant, giving it a score of 10. The scores of the intervals

between the three notes given to the function are summed, and then normalized from a range of 0

to 30 (the highest possible sum of

three dissonances) to a range of 0 to

1. This is then compared to the

fitness decided by the user using the

slider, and the absolute value of their

difference is found. The smaller this

value is, the more fit the three notes

are, as it means there is not a large

difference between their intervallic

relationships and the desired level of

consonance.

Carson 30

Conclusion:

The objective of my senior project was to create a program that would take a melody, and

transform it along the spectrum of consonance and dissonance as defined by intervallic

relationships. I created a genetic algorithm in Max/MSP, a visual coding language with built in

Midi functionality, to achieve this. I have tested the algorithm on multiple melodies, and overall

it successfully accomplishes what I want it to do.

Consonance and dissonance, the foundation of my project, are very broad terms in the

world of music. They are largely context dependent based on many aspects of a composition, and

are also informed by a listener’s subjective opinion of what sounds “correct” to their ear. In my

project, I chose to define consonance and dissonance based on the intervallic relationships

between notes. These relationships can be mathematically expressed as ratios, which removes

much of the need for context or subjectivity, as well as makes them easily comparable. The way

my program changes notes in melodies, however, is based on different three note chords. These

are more difficult to assign values of consonance to, and are often much more context dependent

than individual notes. I solved this problem by evaluating chords based on the intervals that

make them up, but this still leaves out ideas of key or chord progressions. As a result of this, the

algorithm behaves atonally regardless of if it is trying to make a melody more consonant or more

dissonant, causing a bias towards dissonance.

The entirety of my project is coded in the visual language Max/MSP. This was useful for

handling midi data, but led to other challenges. Max/MSP feels much more stripped down than

other coding languages like Python or Java, as even basic functions must be built manually by

the programmer. This allows for a wide variety of solutions for any problem, but it also makes it

easy to get lost when programming anything complicated. The main benefits of Max/MSP are

Carson 31

how the programs can be extended. Due to the inherent Midi functionality, it is easy to direct the

output of a Max/MSP program into a D.A.W. like Ableton. The multimedia capabilities of

Max/MSP also make it a great language for any coding that might be necessary for art

installations, or even an entire installation. Aside from handling Midi data, I do not know if there

was any aspect of Max/MSP as a language that was necessary for my senior project. However, it

is a language that I fully plan on using in the future, and coding my entire senior project in

Max/MSP was a great way of learning it.

The approach I chose to take for my senior project was a genetic algorithm. Over many

different iterations, a genetic algorithm gradually finds a solution to the problem given to it based

on some metric of fitness. My program does this by continuously going through the melody

given to it, and applying three note mutations that are found to be more fit than what is already

there. It decides what is fit based on the user's desired level of consonance. I chose this approach

over the use of markov chains, a more commonly implemented model used in computer

composition, because I did not want my algorithm to make decisions based on probability. One

of my goals was to create a program that could create melodies a human composer might never

think of, and markov chains are used to predict most likely outcomes, which is the opposite of

what I was looking to accomplish.

My genetic algorithm is coded to look at three sequential notes in the given melody, and

mutate them based on what intervallic relationships exist between the three notes. Different

intervals apply different mutations to fit common three note chords. The mutations and original

notes are compared against the fitness measure given by the user, and the closer of the two is put

back into the melody. There are not mutations for every possible interval. Specifically, any kind

of second interval or a major sixth have no associated mutation functions. Additionally, the

Carson 32

intervals of a unison, perfect fourth, and minor sixth only have one mutation function each,

whereas every other interval randomly selects from multiple possible mutations. Increasing the

amount of mutation functions to fill in these gaps would add variety to my program’s output.

Most of my mutation functions are based on triads or seventh chords, so I would need to look to

other chord forms to do this, or create mutation functions that are not based on chords.

I have run my algorithm on three different melodies: Shave and a Haircut, Never Meant

(American Football 0:11), and Party Smasher (Dillinger Escape Plan 1:01). Shave and a Haircut

is very short, only being seven notes, most of which are either a major or minor second apart.

This makes it a bad melody for my program to run on, and not much changes within the melody.

I realized that second intervals are very common in melodic lines, which is another reason to

create mutation functions based on them. I next ran the melody of Never Meant through my

program because I consider it to be both angular (a melody with larger leaps between notes than

typical) and consonant, which made it ideal for testing. I found that my algorithm was able to

produce more interesting results from this melody, but still left some sections largely untouched

regardless of what the fitness measure was. I believe this to be due to the fact that my melody

looks at three notes at a time, and in the part of the melody that remained unchanged, every other

note is the same. This would cause that part of the melody to always go through the single

mutation function correlated to unison, leading to a lack of variation. I found the most success

with the last melody. Party Smasher is extremely dissonant, mostly consisting of tritones and

minor seconds. It consistently produced the most changes on the original melody regardless of

the fitness score being more consonant or dissonant. The melody ends with a cluster of notes all

within a minor second of each other, which never get changed, but the rest of it worked great.

Carson 33

From this I conclude that my genetic algorithm was a success. It is able to evaluate the

consonance level of a collection of notes, and mutate them accordingly. My program works best

on melodies that are longer and more angular, but this is solvable by adding more mutation

functions for interval relationships underrepresented by the chords I chose to base mutations off

of. The results do not often sound like a melody a human composer would write, which is what I

set out to accomplish. Currently, I do not see much use for my project outside of looking for

inspiration when writing original melodies, but it is a proof of concept that genetic algorithms

can be used in computer driven composition.

Carson 34

Bibliography

American Football. “Never Meant.” Spotify.
https://open.spotify.com/track/51R5mPcJjOnfv9lKY1u5sW?si=9f6006cf0208475c

Bill, Chip. “Consortium for Computing Sciences in Colleges.” Consortium for Computing
Sciences in Colleges, Algorithmic Music Composition Using Dynamic Markov Chains and
Genetic Algorithms, 2011.

Collins N. and D’Escrivan J., The Cambridge Companion to Electronic Music, New York, NY:
Cambridge University Press, 2007.

Dillinger Escape Plan. “Party Smasher.” Spotify.
https://open.spotify.com/track/7D96FRFBAzdjokigZD7RtD?si=ec1c0961fdef46a2

McGrail, Tracey Baldwin, and Robert W. McGrail. “American Association for Artificial
Intelligence.” American Association for Artificial Intelligence, Sorting The Sortable From The
Unsortable, 2006.

Toro, Juan & Crespo, Paola. (2017). Consonance Processing in the Absence of Relevant
Experience: Evidence from Nonhuman Animals. Comparative Cognition & Behavior Reviews.
12. 33-44. 10.3819/CCBR.2017.120004.

Carson 35

Appendix:

These are the three note chord forms the mutation functions were derived from, as shown

on a guitar fretboard. The vertical lines are strings, incrementing by one semitone every

horizontal line. The horizontal lines are frets, all having a perfect fourth interval, or five

semitones, between the strings used. The diminished triad does show two notes being on the

same string, but the interval relationships are correct. The half diminished chord is only shown as

having a no 3rd form. This is because the no 5th form is the same as the minor 7th no 5th form.

Similarly, the minor 7th no 3rd form is the same as the dominant 7 no 3rd..

Carson 36

Carson 37

	Interval Driven Melodic Mutation Using A Genetic Algorithm
	Recommended Citation

	Jack Carson Senior Project Final

