
Bard College Bard College 

Bard Digital Commons Bard Digital Commons 

Senior Projects Spring 2022 Bard Undergraduate Senior Projects 

Spring 2022 

A New Way to Make Music: Processing Digital Audio in Virtual A New Way to Make Music: Processing Digital Audio in Virtual 

Reality Reality 

Gavin E. Payne 
Bard College 

Follow this and additional works at: https://digitalcommons.bard.edu/senproj_s2022 

 Part of the Composition Commons, Graphics and Human Computer Interfaces Commons, Music 

Performance Commons, Music Practice Commons, Software Engineering Commons, and the Systems 

Architecture Commons 

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. 

Recommended Citation Recommended Citation 
Payne, Gavin E., "A New Way to Make Music: Processing Digital Audio in Virtual Reality" (2022). Senior 
Projects Spring 2022. 277. 
https://digitalcommons.bard.edu/senproj_s2022/277 

This Open Access is brought to you for free and open 
access by the Bard Undergraduate Senior Projects at 
Bard Digital Commons. It has been accepted for inclusion 
in Senior Projects Spring 2022 by an authorized 
administrator of Bard Digital Commons. For more 
information, please contact digitalcommons@bard.edu. 

http://www.bard.edu/
http://www.bard.edu/
https://digitalcommons.bard.edu/
https://digitalcommons.bard.edu/senproj_s2022
https://digitalcommons.bard.edu/undergrad
https://digitalcommons.bard.edu/senproj_s2022?utm_source=digitalcommons.bard.edu%2Fsenproj_s2022%2F277&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/519?utm_source=digitalcommons.bard.edu%2Fsenproj_s2022%2F277&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/146?utm_source=digitalcommons.bard.edu%2Fsenproj_s2022%2F277&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1128?utm_source=digitalcommons.bard.edu%2Fsenproj_s2022%2F277&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1128?utm_source=digitalcommons.bard.edu%2Fsenproj_s2022%2F277&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/523?utm_source=digitalcommons.bard.edu%2Fsenproj_s2022%2F277&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=digitalcommons.bard.edu%2Fsenproj_s2022%2F277&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/144?utm_source=digitalcommons.bard.edu%2Fsenproj_s2022%2F277&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/144?utm_source=digitalcommons.bard.edu%2Fsenproj_s2022%2F277&utm_medium=PDF&utm_campaign=PDFCoverPages
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://digitalcommons.bard.edu/senproj_s2022/277?utm_source=digitalcommons.bard.edu%2Fsenproj_s2022%2F277&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@bard.edu
http://www.bard.edu/
http://www.bard.edu/


A New Way to Make Music: Processing Digital Audio in Virtual Reality
Senior Project Submitted to The Division of Science, Math, and Computing of Bard College
Annandale-on-Hudson, New York

Gavin Payne May 2022



Abstract

The work of this project attempts to provide new methods of creating music with

technology. The product, Fields, is a functional piece of virtual reality software, providing

users an immersive and interactive set of tools used to build and design instruments in a

modular manner. Each virtual tool is analogous to musical hardware such as guitar pedals,

synthesizers, or samplers, and can be thought of as an effect or instrument on its own.

Specific configurations of these virtual audio effects can then be played to produce music,

and then even saved by the user to load up and play with at a later time. There are still goals

to expand this project, and turn it into something more akin to a professional digital audio

workstation, but for the time being it remains a modular synthesizer with nearly limitless

configurations in a virtual 3D environment. Included is a developer library, giving users the

ability to integrate their own musical software solutions into the virtual environment and

expand the work of this project.

1



Table of Contents

1 Paper A_New_Way_to_Make_Music(Human reader)
2 {

3 Section Introduction() {
4 Introduction_To_Fields();

5

6 Software_Architecture_Diagram();

7 Background_Knowledge();

8

9 Fields_Library();

10 Materials();

11 }

12 Section User_Guide() {
13 Using_Fields();

14

15

16

17

18

19 }

20 Section Mechanics() {
21 DSPGraph();

22

23

24 Touching_The_Execute_Function();

25

26 AudioProcessor_and_ProcessorBundle();

27

28

29

30

31 }

32 Section Developer_Guide() {
33 Building_a_ProcessorBundle();

34

35

36 Building_an_IAudioKernel();

37

38

39

40

41

42

43

44 Building_an_AudioProcessor();

45

46

47

48 Building_an_IAudioKernelUpdate();

49

50

51 Building_a_ParameterController();

52 }

53 Section Making_Music() {
54 Synthesizer();

55

56

57

58

59

60 Creative_Environment();

61

62 }

63 Page Bibliography;
64 }

2



Introduction

3



Introduction to Fields
What is it?

Fields is going to be a digital audio workstation (DAW) in virtual reality. Currently however,

it only accomplishes part of what a DAW does, and in a sense, is just a glorified modular

synthesizer. In Fields, you can generate and manipulate sounds, from playing virtual

instruments to mixing and processing the instruments with effects. Similar to how modular

synthesizers run on a large analog circuit, the audio engine in Fields simulates the signal

flow architecture of those circuits by processing audio samples along a directed and acyclic

graph. Below is the graph of a basic synthesizer:

Figure 1: A signal flow graph of a basic audio synthesizer

In analog audio synthesis, Figure 2 represents a circuit of electronics that generates

and processes sound, such as a network of guitar pedals connecting a guitar to its amplifier.

In digital audio, the above graph represents the architecture of a signal processing

algorithm, where each node on the graph acts as either the guitar (generates sound), the

pedal (alters the sound), or the amplifier/speaker (makes the sound audible). Fields comes

included with a set of tools ready to make music with. To generate sound, Fields includes a

polyphonic synthesizer with multiple voices and stereo detune capabilities. To further

manipulate the sound, Fields includes a waveshaping saturator, a stereo delay with

4



feedback, a filter module with multiple modes, and a stereo panning device. The audio

devices included can be configured in any configuration, and can be put together in both

parallel and serial circuits that include duplicate instances of each effect. Fields is a

modular audio sandbox with limitless expansion.

Equally important as the software itself, is the Fields Library, which abstracts the

core elements of the Fields audio system into templated packages that developers can use

to construct their own audio processing devices within the Fields Virtual Environment. A

developer is able to not only implement their own custom audio processing algorithms into

a custom 3D model that can sit inside the audio processing graph, but can also implement

their own virtually interactable control devices for their audio effect. This means that if

someone has a unique idea for a way to interact with a virtual instrument in virtual reality,

they can implement their control device into Fields as well.

Fields is a live audio processing system, in an interactive 3D virtual environment,

with a developer toolbox, that facilitates the creation of music, entire new instruments, and

novel audio processing algorithms.

5



Software Architecture Diagram

Figure 2: Diagram of Fields. This is the underlying structure of the audio
processing system, from user input (blue box) to audio output (red box). The
black arrows show data communication between the different objects, and
the arrows in red show audio sample information being processed. In purple
are structures from external sources, and in black are new structures built for
the final software, available through the Fields Library. The Input/Output
system, IO, is in green because there are many structures of that system that
are not shown on this graph, but mediate the connections between the
Virtual Controller, AudioProcessors, and DSPNodes. For simplicity, the
ProcessorBundle class has been paired with the AudioProcessor. The
ProcessorBundle can contain multiple AudioProcessors in a complex
arrangement, and it manages the behaviors of those AudioProcessors as one
distinct audio effect object in the Virtual Environment.

6



Background Knowledge

This project involves topics such as virtual reality, digital audio, and multithreaded

programming. Most niche terms will be defined as they come up, however some

background will be useful. For the purposes of this project, virtual reality is in reference to

a 3D computer generated environment, like found in many modern video games, that is

interacted with through hardware that is strapped to the body, tracking movement and

translating it into the world. There are two screens, one for each eye, that display

stereographic information directly into the eyes. Disclaimer: the content of this project is

entirely software, and meant to run on a pre built virtual reality device.

More relevant to this project specifically is how the audio is generated and provided to the

listener in this experience. In short, digital audio is a collection of measurements of sound

pressure, measured so quickly that the continuous waveform of sound is reconstructed

without loss of information audible in the human range. The processing of sound in this

project is not through electrical signals, or vibrations in the air, but through manipulating

the recorded samples of sound with math. There will be more on the specifics of digitally

sampled audio in a later section, but it is helpful to know the collection of values stored on a

computer represent a sound wave traveling in air, and vice versa.

How all this audio work comes together in a virtual reality environment, relies on some

programming techniques that are not processing audio, nor generating the 3D world, but

rather performing a type of organization that allows all the code of interesting and

important things to run smoothly and communicate with each other. Some of the

description of this project will stray away from the fun of audio processing and virtual

reality, to describe a little more practically how Fields is able to run on a real device in the

7



real world. In short, modern computing occurs on multiple processor cores, and programs

that have strict and short deadlines for computing values, such as real time audio

processing, have multiple things going on at once. There are unique problems that occur

when running multiple bits of code at the same time, and some solutions will be explored

further on.

Here is a list of topics that could be useful to know more about in reference to this project:
The reader is encouraged to search for these terms as the need for greater background arises.

Virtual Reality
Modular Synthesis
Effects Unit
Game Engine
Reverb Effect
Digital Filter
Audio Envelope

8



Fields Library

Most of the code written for this project has been organized into a library for the ability for

end-users to build custom audio effects for the Fields platform. The library will also allow

anyone to take advantage of Unity’s experimental audio package DSPGraph, in a simplified

interface that lends itself towards building real-time audio editing applications. Using the

API documentation found here: https://zggof1999.github.io/Fields-VR-Audio/, you can find

instructions, examples, and a download link for the library itself.

The documentation will be referenced throughout the rest of this paper.

9

https://zggof1999.github.io/Fields-VR-Audio/


Materials

VR Headset

The headset used for development is the Oculus Quest 2 from the company now known as

Meta. It was chosen for a variety of reasons, from the low cost to the ability to act as both a

standalone android device as well as a tethered input and output device for a personal

computer. For visuals, it has two 120Hz LCD screens at 1832 x 1920 per eye, and for audio,

well, it has an audio jack to make up for the loud but crunchy speakers.

GameEngine

The environment is made in Unity, a cross-platform game engine developed by Unity

Technologies. Because VR is in an early state with few standards, a game engine with a

history of VR support for multiple platforms, such as Android and Windows in this case, is

extremely useful for focusing on the audio technology itself rather than the hardware

compatibility . Unity uses C# as its primary programming language, and even offers its own

system to write multithreaded code that is significantly faster than C#’s own way of doing

so (for most use cases).

➔ DSPGraph

DSPGraph is a node based system provided by Unity that provides a

backbone for scheduling audio processing automatically in both serial and

parallel circuits. When provided processing nodes and their connections,

executing the graph sends each node's output into the next node's input, in

the form of an multi-channel array of audio samples. DSPGraph was first

available to the public in early 2019, but has since been abandoned and stuck

in Unity’s experimental development stage, with little to no documentation.

10



➔ OpenXR

The system that handles communication between the VR headset and the

game engine is OpenXR. It is an open source standard that allows for

universal programming for many vr headsets. With OpenXR, Unity can

communicate indirectly to all vr controllers and headsets instead of directly

with each in a different standard of their own.

3D Modeling Software

Cinema 4D is a professional 3D modeling, animation, simulation and rendering software

solution from Maxon. It was used to build all the models used, and exported .fbx models for

Unity to render in real time.

Code Editor

All of the code was written in Visual Studio 2019 from Microsoft, which integrates

seamlessly into Unity.

The project was developed and compiled on a x86 machine running Windows

11



User Guide

12



Using Fields

Figure 3: The welcome menu of Fields

When you first enter the application, you will be in a welcome area with

a sign and menu straight ahead. Following common virtual reality conventions,

you will see representations of your game controllers. The controllers’ buttons

are color coordinated to make remembering what each button does easier. To

interact with the main menu, you can point the controllers towards the menu

like you would use a laser pointer. A beam will shine onto the menu, and the

menu icon pointed at will shine blue. To select that menu item, press the pink

trigger button. The laser beam user interface was made to provide interactive

menus out of reach from the user. If something looks like a button that

can be ‘clicked’ try pointing at it and a beam will most likely appear.

13



Figure 5: A disconnected synthesizer inside Fields. 4.1: Input/output orbs,
4.2: Parameter knob, 4.3: Envelope curve, 4.4: Virtual Midi Keyboard, 4.5:
X Button (delete/remove processor)

14



Selecting ‘Create Field’ from the title menu will transport you into a new room. This

room is called a Field. The Field will initialize with a synthesizer in front. To the right of the

synthesizer, is the output node of the graph. The graph starts off disconnected. To make

sound from the synthesizer come out of the speakers, it must first be connected to the

output. Connecting Audio Processors in Fields is easy. Similar to other node based creative

programs, such as material design in rendering software, an output port exists on the right

hand side of every AudioProcessor (Figure 1.1). Touching the output port with the cursor

(the round ball at the end of the controller) will initiate a connection. The cursor will

highlight, and simply touching the input port of another Audio Processor (port on the left

hand side, Figure 1.1) will connect the two processors. Creating a cycle (a circular path that

begins and ends on the same node) on the graph is not allowed, and will do nothing,

including connecting a processor to itself. To disconnect two processors, simply repeat the

process: touch the output port of one, and then the input port of another (or vice versa). If

the processors are connected they will disconnect, and if they aren’t connected they will

connect. To keep track of connections, the connected ports will glow in a coordinated color.

If an Audio Processor is connected to multiple others, multiple highlighted color

coordinated orbs will show.

Once the synthesizer is connected to the output, simply touching the keys on the

keyboard with the cursor will play a note (Figure 1.4). The key will also highlight bright

blue to signify its activation. Besides the keyboard and activating notes, the synthesizer has

a few other ways of changing the parameters of the sound processing. The most common

controller in Fields is the knob (Figure 1.2). The synthesizer has many knobs on its face,

each labeled with their value and parameter name. For example, the pitch knob on the

15



synthesizer transposes the notes played by the amount shown under the knob. To interact

with the knob, simply insert the cursor into the knob and rotate your wrist. The knob reacts

to the relative z-axis rotation of the controller, so rotating your forearm as you would a key

in a door works great. Just insert, rotate, remove, and repeat. The last thing on the

synthesizer control panel is the envelope curve (Figure 1.3).

https://en.wikipedia.org/wiki/Envelope_(music)

Figure 6: Amplitude Time curve visualizing an Envelope and its
Attack, Decay, Sustain, and Release parameters

Above is an example of an envelope curve. On the synthesizer, there are three white

control points on the envelope. To move them around, place the cursor onto the point, and

grab with the controller's purple grab button. The first control point is locked to the top of

the curve (amplitude = 1). This is the attack point, and controls how long it takes for the

audio signal to reach full amplitude from zero. The second point is the decay and sustain

point. Its y-position controls the amplitude level the sound will end up at while holding

down a note, while its x-position controls how long it takes for the amplitude to descend

from the maximum to the sustained amplitude level. As long as a note is held down, the

note will remain playing at this sustained amplitude, and only once released will the sound

16

https://en.wikipedia.org/wiki/Envelope_(music)


slope down to zero amplitude. The final control point is pinned to the bottom of the curve

(amplitude = 0), and controls how long it takes for a note to go quiet after letting go.

By changing the parameters of the synthesizer, fairly different sounds can be

generated. For example, a common synthesizer sound is the ‘supersaw’. To make a

supersaw with the Fields synthesizer, the user can change the waveform to ‘saw’ (left

waveform knob, 3rd position)1, and increase the number of voices (right waveform knob).

This will cause multiple sawtooth voices to be played at the same time. Then, the user can

change the detune and width parameters. Detune controls slight pitch deviation for each

voice, where more detune will cause the superaw to be bigger and rougher, while less

detune will give the sound a more metallic color. The width parameter adjusts stereo

deviations of each voice, making the sound more stereo or more mono. A common thing to

do to a supersaw sound is to filter out the higher frequencies making it less harsh on the

ears.

In Fields, adding effects to sounds is easy and limitless. In the room is a wall of effect

icons. Just like any UI menu in Fields, pointing at an icon will cause the selection beam to

appear, and pulling the trigger button on the controller while an icon is selected will cause

the effect to appear in front of the user. Simply clicking the filter icon will cause a filter to

appear. Then, like hooking up guitar pedals, the filter must be integrated into the signal. To

filter out sound from the synth, the synthesizer needs to be plugged into the filter as shown

in Figure 6. Then, to hear the sound, the filter needs to be plugged into the output.

1 The waveform knobs will be replaced with a visual window that displays the waveform, as of now they are
unlabeled and unintuitive.

17



Figure 7: To filter a signal, the signal must feed into the filter, then to hear the
filtered signal and not the original signal, the filtered signal must feed into the
output.

When you are done with an AudioProcessor, inserting the cursor into the red ‘x’ on

the top right corner and pressing the blue button will automatically disconnect the

processor from the graph and delete it from the game world (Figure 1.5). Don’t forget to

save your project using the save wall and nifty custom built virtual QWERTY keyboard!

Figure 8: Virtual typing keyboard. The keyboard was entirely built from
scratch for use in this project. This includes the modeling, interaction
behaviors (haptics, lighting response, and key travel), and text input/display
console. While not as effective as a physical keyboard, the virtual keyboard is
a necessity for text input (without integrating speech processing), and turned
out feeling responsive and fluid.

On the opposite side of the effects browser, there is a save file browser. On the top of the

browser is a console that is permanently linked to the keyboard. To save a project, simply

type in a name, and hit save. You will see it automatically appear in the browser. To load a

file, simply type in the name of the file you want to load (it will be displayed in the browser

but currently there is no UI beam selection support for the file system) and click load on the

18

https://zggof1999.github.io/Fields-VR-Audio/api/Fields.Utility.QWERTY_Keyboard.html


keyboard. Stored locally on your device is a .field file, which you can transfer to other

machines. It is planned to implement multiplayer functionality to Fields, where not only

multiple people can join the same studio space at the same time, but where people can

share save files with each other within the fields app. For now however, as long as the two

versions of Fields you are transferring a save file between are the same, then the file will

load with no issues.

Save Warning: There is no overwrite protection, so do not actually save over your favorite

project by accident (maybe the save and load button are too close together, but a better

solution for a file system is in the works)

19



Mechanics

20



DSPGraph
What is it?

DSPGraph is a package offered by Unity to schedule audio processing. DSPGraph is at the

heart of the audio processing of this software. DSPGraph precisely provides a method of

driving audio buffers between different processing nodes, automatically scheduling the

computations in parallel when available. When acting on the graph, the AudioDriver starts

at sink nodes, and works its way backwards to determine the schedule of the audio

processing. It does so to ensure that the only audio processed is audio that will make its

way to the sink. You can however flag the driver to compute all nodes of the graph, despite

their output connection, and if so the graph will schedule as shown by Figure 8.

Figure 9: Graph depicting the scheduling process. A scheduling algorithm
runs through the audio graph and determines the order the nodes process
audio. Black: order seen by scheduler. Red: order scheduled

In the example instance of a graph shown in Figure 8, 3 audio buffers are allocated memory,

and sent by reference to each of the audio processors marked with a red ‘1’. The nodes then

execute their processing function on the audio buffers, and the audio driver combines the

necessary buffers together if required, to be sent to the processors marked with red ‘2’s.

Here, processors marked with black ‘4’ and ‘5’ merge their buffers together when sent to

the multiply function.

21



DSPNode, IAudioKernel, IAudioKernelUpdate

The DSPNode, IAudioKernel, and IAudioKernelUpdate, are the three objects that construct

an interactable audio processing node on DSPGraph. The DSPNode is what sits on the

graph, and is constructed using an IAudioKernel. IAudioKernels contain the method that

does the actual audio processing. This ‘Execute’ function takes in pointers to input and

output buffers, and sample accurate parameters, which are arrays of floats that use a

sample offset as an index value. Using the parameter data, as well as any other data stored

in the IAudioKernel, a processing algorithm on the input data will create output data that

can be written into the output buffers. There are two ways of feeding data into an

IAudioKernel, by parameter float buffers, and by IAudioKernelUpdates. The former are fed

into the IAudioKernel in a similar way to the audio buffers themselves, but are limited to

floating point number values. The ladder provides a way of sending any data type into the

kernel, but can only send one value per block, due to the lock-free2 nature of scheduling an

update method to inject data into the kernel precisely before/after the kernel runs its own

processing function on an audio block.

These objects provided from DSPGraph offer a seamless audio processing and

scheduling system, when it comes to executing processing jobs. However, unless your audio

system is static and hardcoded into the environment, like many video games would

implement an audio system, there is no abstracted way of interfacing with DSPGraph from

2 Serious issues arise when data gets simultaneously overwritten while another part of the
program is reading that same data. In a multithreaded audio workload, any samples written
using data read while being written to will be chaotic and result in terrible audio artifacts in
the best case scenario, and the program will crash in the worst. Because of this
multithreaded consideration, IAudioKernelUpdates are the best way to send data updates
into the IAudioKernel.

22

https://docs.unity3d.com/Packages/com.unity.audio.dspgraph@0.1/api/Unity.Audio.DSPNode.html
https://docs.unity3d.com/Packages/com.unity.audio.dspgraph@0.1/api/Unity.Audio.IAudioKernel-2.html
https://docs.unity3d.com/Packages/com.unity.audio.dspgraph@0.1/api/Unity.Audio.IAudioKernelUpdate-3.html


the 3D virtual game environment. A game designer might program unique game objects

that add sound processing to the graph, like a body of water that filters out high frequencies

when the player is swimming, but the player has no way to interact with the sound of the

water. DSPGraph does not provide a framework to edit the graph outside of code. With very

limited interface capabilities, this is where DSPGraph hit its limits for providing an effective

way to build an audio processing graph in real time. The only true innovation of this project

is building a system that allows a user to interact with DSPGraph on a fundamental real

time level, where the entire audio processing graph is continuously sculpted during

runtime using intuitive 3D objects.

IAudioKernels are meant to be implemented by a developer. Their execute function

is customized for the specific type of processing that effect does. This is the window into

Unity’s Audio System that allows the manipulation of sound. When making an audio effect

for Fields, IAudioKernels hold the processing, and pair together with AudioProcessors and

IAudioKernelUpdates to make a complete running effect that can be used in the Fields

Virtual Environment.

23



Touching The Execute Function
User Input

Considering the solution of continuous manipulation of the audio processing graph,

the problem can be narrowed down to finding a path between user input and the

IAudioKernel’s Execute Function.

User Input is handled by OpenXR, an open standard for communicating with a

multitude of VR headsets. Once integrated into Unity, OpenXR offers scripts that can pull

tracking data from a headset, such as Δx, Δy, and Δz coordinates of a controller, from a base

point in the space the headset is in (the center of the floor in a room). Using rotation and

position data from components of the headset, a virtual object can be simulated in place of

the headset (head) and controllers (hands). With this type of user input data, all other

traditional forms of user input can be simulated.

For example, to a computer, a button is a simple switch. The computer measures

some voltage differential from the cable, and software translates that voltage differential

over time into commands that tell the computer when an action was performed by the

person pressing the button. In a virtual 3D environment, the physical switch that altered

the circuit read from the computer does not exist, and the entire circuit can be bypassed.

Instead, position values of a virtual finger can intersect with the bounding coordinates of a

virtual button. When this occurs, a virtual collision can be measured, and any command can

be executed from there on.

An interesting example of simulating input in Fields, is the knob. The knob requires

a virtual collision with the cursor to activate, and then reads the relative z-axis rotation

value between the cursor and the knob. While the collision has not been broken, the initial

24



rotation is used to measure further deviations from this rotation, ΔΘ, by the cursor. The

knob then translates by ΔΘ, and rests at a final angle Θ, which is linearly mapped to a value

v where vmin and vmax correlate to some Θmin and Θmax. User Input has just been successfully

translated into some useful value that an audio effect could take advantage of, such as

volume, filter frequency, or delay time.

The Fields Library offers an abstract ParameterController object that facilitates the

communication of the parameter value into an object on the audio processing graph. A

custom implementation of this object, such as the Knob, must then create its own collision

system with the cursor, and its own mapping function to arrive at a value from user input.

Then it sends its value through the ParameterController’s ApplyValue function and the

parameter is sent off. To work with the loading system of Fields, the controller must work

in reverse, and map a given value to a specific configuration of the controller, and can use

the OnValueUpdate() function to trigger that process.

25

https://zggof1999.github.io/Fields-VR-Audio/api/Fields.Interaction.ParameterController.html


AudioProcessor and ProcessorBundle

Following the story of our data, after measured from the user, and translated into a

value the audio processing algorithm can use, the data must get into the graph, and into a

specific IAudioKernel. This is where most of the work of this project comes into the picture,

and is the core technology created for Fields. The AudioProcessor manages an

IAudioKernel. It turns the kernel into a DSPNode, adds it to the DSPGraph, and handles all

of the node’s connections, parameters, and data. DSPGraph is extremely particular about

how the graph is constructed. The particularities are a non-issue when building a static

graph, and for Unity’s mission, video game levels can always run a baked-in graph that only

worries about turning nodes on and off dynamically. However, when the product is the

graph, and it needs to be malleable and constructable in real time, their particularities

become problematic and require a proper management system.

A big reason DSPGraph can be problematic when editing the graph in real time, is

that the edges of the graph are stored in indexed adjacency lists from the node, and if a

node has multiple output edges, but an edge with a small index is removed, the edges with

higher indexes do not get scheduled.

Figure 10: Showing a particular aspect of DSPGraph, where if any of the blue
edges in the graph are removed, the audio processing of the entire graph
halts despite other nodes still being connected to the output.

26

https://zggof1999.github.io/Fields-VR-Audio/api/Fields.Audio.AudioProcessor-3.html


As shown in Figure 10A, if Node 1 is disconnected from the output, the graph

freezes. When the output node is taking in inputs, it loops through its input edges in order

of index, and if an edge is missing, the processing halts. This could be an issue the

developers are still working on, or maybe it is low priority since it does not impact

statically built graphs. DSPGraph is still an experimental package after all and is considered

to be abandoned by many users on the Unity forums. This odd effect is also seen in Figure

10B, where Node 1 stops sending any audio to Node2 if disconnected from the oscilloscope,

even though logically the audio should still be processed.

To fix this, it seems important to keep track of a Node's number of inputs and

outputs, and get the index value of each edge. However, DSPGraph provides no method of

getting any information about a DSPNode. Because of this, keeping a separate copy of the

entire graph is necessary for keeping track of the graph's information. Therefore, each

AudioProcessor contains lists of both its inputs and outputs, providing an adjacency list

representation of the graph. There are also special methods of handling connections

between the nodes, that sort connections by index and keep track of filling gap indexes as

they are created. Solutions for managing DSPGraphs odd requirements have essentially

recreated the graph part of DSPGraph, and could nearly be a complete standalone system if

a multithreaded scheduling algorithm was implemented as well.

Another aspect of DSPGraph is to deallocate the memory of any IAudioKernel when

it is removed from the graph. This makes sense for efficiently allocating memory in a game

environment. However this causes some issues in a modular music production

environment. Therefore, for Fields, the data stored in an IAudioKernel is ultimately just a

reference to manually allocated and managed memory kept in the AudioProcessor. This is

27



to protect data from the behavior of DSPGraph, where data is deallocated if a node is not

affecting the output signal of the graph. This would require data stored in the IAudioKernel

to be reallocated and initialized every time its node is disconnected and reconnected from

the graph. A good example of why this behavior is unwanted is a delay effect with some

feedback. A very common audio effect, a delay with a high feedback, relies on an internal

buffer of audio samples that it stores, and recalls many processed samples later. If this

effect were disconnected from the graph to be reconnected somewhere else, it would be

expected to run while disconnected, and maintain the sample data in its buffer.

Reconnecting the delay to hear corrupt samples would surely surprise any user.

Figure 11: The AudioProcessor class holds a reference to the AudioManager,
which it uses to access the DSPGraph. It also holds references to a unique
DSPNode, IAudioKernel, and multiple IAudioKernelUpdates. The
AudioProcessor also holds and manages any necessary memory used by the
IAudioKernel. The green arrow represents functions of the AudioProcessor
class which manipulate the graph, such as connecting and disconnecting the
node to and from other nodes. The red arrow represents publicly accessible
functions of the AudioProcessor class which utilize IAudioKernelUpdate
structs to send or receive data to and from the IAudioKernel. Finally, the blue
arrow represents a link via reference of the memory that the IAudioKernel
holds, which is initialized via one of the IAudioKernelUpdates.

Besides working around DSPGraph to make the graph editable in real time, the

AudioProcessor also provides an abstract framework for any ParameterController to send

its value to the IAudioKernel. Sending sample accurate parameter floats that run directly

through the execute function of an IAudioKernel must be done using the DSPGraph itself.

28



So, each AudioProcessor holds a reference to the DSPGraph, and any ParameterController

connected to the AudioProcessor can use the AudioProcessor’s UpdateParameter method

to send data directly into the IAudioKernel. The AudioProcessor can also contain

implementations of IAudioKernelUpdates to send any data type into the IAudioKernel.

Since each IAudioKernel has a unique processing algorithm, and unique parameters and

data, each AudioProcessor can contain unique methods to use IAudioKernelUpdates for

specific cases. For example, the MultiVoiceSynth, part of the default processors in Fields,

contains special update functions that activate and deactivate different notes for the synth.

That is why when the user hits a note on the keyboard, where each key is a data type that

implements ParameterController, the synth is able to understand a note is being played

when it goes to generate a waveform inside its execute function.

So the story goes, from a musicians mind to a sound coming out of the speaker, the

data flows through the headset, OpenXR, Unity’s environment coordinates, the

ParameterController, the AudioProcessor, DSPGraph, the IAudioKernel, then finally, the

output device, the air, and the musician’s ears. However, this is a bit simplified, in nearly all

areas of the system. It is useful however, to better understand Fields, to understand the role

of the ProcessorBundle in all this.

29

https://zggof1999.github.io/Fields-VR-Audio/api/Fields.Audio.AudioProcessor-3.html#Fields_Audio_AudioProcessor_3_UpdateParameter_System_Int32_System_Single_System_Int32_
https://zggof1999.github.io/Fields-VR-Audio/api/Fields.Packages.Default.Processors.MultiVoiceSynth_Object.html


Figure 12: The ProcessorBundle is a packaged audio effect that is interactable
in the virtual environment. It is also fully serializable and able to be loaded
from binary files or online servers (online functionality not implemented as
of yet) via the appropriate ID. In red, the ProcessorBundle contains an
arbitrary number of AudioProcessor which represent a subset of the
processing graph. The ProcessorBundle contains its own connection matrix
configurable by a developer to build signal processing architecture for the
overall audio effect. In blue, are devices represented in the virtual
environment, where the ParameterControllers also have a configurable
connection matrix for which processors they update. The IO ports are the
same from Figure 5.1.

The ProcessorBundle encapsulates a subgraph of audio processing for the end user

to interact with as a single virtual object with a unique set of custom controls. In digestion,

Figure 12 shows a ProcessorBundle and its internal components. The bundle packages

together an arrangement of AudioProcessors and ParameterControllers into one object, a

condensed set of processing nodes with one input and one output. The user is then able to

see this object in the virtual environment with a name, 3D body, IO, and controls (ex. Filter

30



in Figure 13, Synthesizer in Figure 5). The ProcessorBundle is the object that gets loaded

into the world when the player selects an effect from the wall, and this is the object that

gets serialized into a save file, to be respawned and reconfigured when loading a save file. It

is also the object that can be packaged and sent to other people to use in their world when a

developer creates a custom audio effect, although a system to import custom effects into

Fields is not yet complete, and is one of the things planned for a future version of Fields.

Figure 13: The Default Package Filter. This is an effect inside Fields, the result
of a completed ProcessorBundle applied to a 3D model inside Unity. There
are 4 Knobs from the Default Package, implementations of
ParameterControllers, placed onto the 3D model, as well as two IO objects
behaving as Input and Output ports, left and right respectively. Once a
developer has created an AudioProcessor along with its respective
IAudioKernel, one which filters frequencies for example, the developer can
apply their AudioProcessor script to the AudioBundle inside Unity, and fill
out the connection matrices for the AudioProcessors and
ParameterControllers such that the Knobs, in this case, point to the
appropriate AudioProcessor.

31



Developer Guide

32



Building a ProcessorBundle

Fields is an open and expandable system that is intended for users/developers to

build their own effects. Not only is the software a place for musicians to experiment with

sound, but a place for developers to use as a sandbox for creating their own musical tools.

To package together a unique audio effect for Fields, a developer must construct a

ProcessorBundle. Figure 14 shows how a ProcessorBundle is configured on a 3D object

within Unity. To convert a 3D model of an audio effect into a ProcessorBundle, just add

“ProcessorBundle.cs” from the library onto the object in Unity. This will show an

AudioBundle component on the object in the Unity Inspector shown in Figure 14.

Figure 14: The implementation of the Filter ProcessorBundle of Figure 13
inside Unity’s Inspector. The AudioProcessor scripts are ‘drag and dropped’
into the “Processors” list once fully implemented. Similarly are the
ParameterController scripts placed into the “Controllers” List. Finally, the

33

https://zggof1999.github.io/Fields-VR-Audio/api/Fields.Environment.ProcessorBundle.html


“Connection Matrix” is filled out according to the desired internal
connections. Element 0 is the IO port, where IO -> A treats IO as the input,
and A -> IO treats IO as the output. In this example, the simplest example, the
ProcessorBundle only contains one AudioProcessor, which takes in audio via
the input, and sends audio out via the output.

To start, each ProcessorBundle needs a name, which will be used as a unique

identifier for Fields to recognize the final object. This name will be entered into the top text

field in Figure 14. As of now, conflicts will arise if the name is the same as any other

ProcessorBundle in Fields, but adapting the system to combine the individual name with

the name of the package can fix this issue in the future:

ex. “Fields.Default.Filter” != “DeveloperName.PackageName.Filter”

The next thing each ProcessorBundle needs is IO. IO orbs from Figure 5.1 are

available from the Fields Library as a Unity Prefab that can be dragged into the scene and

placed appropriately aside the 3D model of the ProcessorBundle. Then, they can be dragged

into the ProcessorBundle’s inspector as in Figure 14.

To get the ProcessorBundle to actually process audio, custom implementations of

AudioProcessors must be added onto the ProcessorBundle object. For example, the

“Fields.Default.Filter” AudioBundle in the Default Package that comes with the Fields

Library, there is a “Filter_Object.cs” script which implements AudioProcessor and

IAudioKernel specifically for a filter effect. This script is added to the same object the

AudioBundle is on, or a child object for more organization, and then added to the Audio

Bundles “Processors” list in the Unity Inspector seen in Figure 14. Once the

AudioProcessors are added into the ProcessorBundle, the “Connection Matrix” must be

filled out according to the desired internal signal flow of the audio effect. Figure 14 explains

34



the formatting of the connection matrix, and shows a 2D reconstruction of the 1D list of

boxes shown in the Unity Inspector.

Finally, the ProcessorBundle needs a way of interacting with the processors, unless

of course the desired custom effect takes in no parameters and is a mysterious black box of

static processing. To add ParameterControllers to the ProcessorBundle, place the specific

controllers, such as the “Fields.Default.Knob” implementation of ParameterController, onto

the 3D model of the audio effect wherever seems fit, then add them to the “Controllers” list

in the Unity Inspector shown in Figure 14. Then, simply configure the connection matrix to

send each ParameterControllers value to their respective AudioProcessor.

Once the entire ProcessorBundle script is filled out accordingly in the Inspector, it

will be able to process audio running on DSPGraph, and show up as an interactable game

object inside Fields. Currently unless a custom version of the Fields Application is built

including the new ProcessorBundle, there is no way to use it. This is an important next step

for the project, and the goal is to provide an online server to store and load Unity’s Asset

Bundles, which are specifically designed by Unity to load dynamic assets into a game during

runtime.

35

https://docs.unity3d.com/Manual/AssetBundlesIntro.html
https://docs.unity3d.com/Manual/AssetBundlesIntro.html


Building an IAudioKernel

To fully develop an AudioProcessor to integrate into a ProcessorBundle’s signal

architecture, all a developer needs to do is construct the three main components of a Fields

Audio Effect: AudioProcessor, IAudioKernel, IAudioKernelUpdate, and then link their

AudioProcessor to their ProcessorBundle. An example of how to do so exists in the library

here: Fields.Examples.AudioEffect. The code was written as an instructional template,

intended to be used as a skeleton needing to be filled out, so diving into the file might be

more useful to a more hands-on developer than reading this section. Nevertheless, the first

thing a developer must do to start writing software objects for Fields is to import the

proper dependencies (shown in Figure 15).

Figure 15: Other than the default imports that initialize when creating a new
C# Unity script, these are the extra packages required to build an
AudioProcessor and IAudioKernel.

After importing, it can be easiest to build the IAudioKernel first, since the AudioProcessor

will rely on that struct. It is also probably best to build the actually signal processing

algorithm first, so it is understood what data storage and update functions

are needed to be implemented in the AudioProcessor. To start building an IAudioKernel,

create a new struct, and inherit from the IAudioKernel generic as shown in Figure 16.

36

https://zggof1999.github.io/Fields-VR-Audio/api/Fields.Examples.AudioEffect.html


Figure 16: The construction of an IAudioKernel class, flagged with a
BurstCompile tag to tell Unity that this struct executes on the multithreaded
Unity Jobs system.

As shown in Figure 16, the IAudioKernel generic takes in TypeNames of Parameters, and

Providers. These are just enum data types which DSPGraph uses to organize floating point

arrays of either sample or parameter data. They can be initialized externally and referenced

here, or for simplicity, can be constructed inside the IAudioKernel struct itself as shown in

Figure 17.

Figure 17: ExampleAudioProcessor_Kernel.Parameters

The Parameters enum contains meta-data about the different floating point parameters you

will use for the audio processing inside the IAudioKernel. For example, to adjust the gain, or

volume, of sound, a gain parameter can be set up here, and will automatically be readable

inside the IAudioKernal, and automatically be writable from a ParameterController on the

ProcessorBundle if its connection matrix points to the index of this parameter on the

AudioProcessor this IAudioKernel is attached to.

As well as parameters, the IAudioKernel inheritance also requires the use of several

public void methods within the struct: Initialize(), Dispose(), and

Execute(ExecuteContext<Parameters, Providers> context). In a traditional use of

37



DSPGraph, the Initialize() and Dispose() functions would be used for memory

management, such as allocating and releasing arrays, but for persistence that will be done

in the AudioProcessor. References of any data that needs persistent allocation must be

created inside the IAudioKernel however, and would look like Figure 18.

Figure 18: Array in IAudioKernel that is never initialized, but rather set to
reference an external array from the AudioProcessor.

This will become more clear in the sections about using IAudioKernelUpdates inside the

AudioProcessor.

The Execute function is where the actual processing will take place, and where the

IAudioKernel will have access to the audio buffers that are sent in from inputs, as well as to

the empty audio buffers that will be sent to the outputs. Shown in Figure 19, the Execute

function takes in an ExecuteContext reference. This ExecuteContext is passed through each

IAudioKernel as scheduled in Figure 9, by a Fields.Audio.AudioDriver which implements

DSPGraphs IAudioOutput. This AudioDriver is managed with the DSPGraph itself in the

AudioManager shown in Figure 1.

38



Figure 19: The execute function inside an IAudioKernel, along with a
demonstration of pulling important information from the ExecuteContext
parameter.

When writing an algorithm inside the Execute function, the ExecuteContext object

provides everything, from the incoming audio signal and the output buffers, to important

system information about the audio settings of the machine running the algorithm, such as

the sample rate and block size. The number of samples will most likely range from 128 to

1024, but can also be as low as 16 samples per block. This is important when considering

algorithms that operate in the time domain, and holding a larger buffer in memory such as

the persistentBuffer in Figure 18, can allow access to samples that were in previous blocks,

a history with variable length. As for the number of channels, Fields currently runs in

stereo, so the number of audio channels per buffer will always be two, however there are

plans to offer a multi-channel spatial audio experience that accounts for the 3D positions of

virtual sound sources. Most likely, this spatial audio will be simulated from tracking the

head position relative to a set of mono audio sources placed around the 3D environment, so

the algorithms themselves could be written in mono, via duplication to the second channel.

Then, custom ParameterControllers could provide sophisticated ways of passing

parameters to the individual mono AudioProcessors that provide a spatial audio

experience. So, the point is, writing sophisticated multi-channel algorithms within a single

Execute function will most likely be unsupported for a while, and sticking to two channels,

for either a mono or stereo experience, is best practice.

After all the meta-data of the sound is pulled from the ExecuteContext, you are ready

to start peeking at samples from the inputs. The most common thing to do with the input

samples, is to sum them all together so that the algorithm operates on everything fed into

39



the AudioProcessor. Figure 20 shows an example of mixing the audio inputs into a single

buffer, while also showing the use of a parameter read from the ExecuteContext, written to

by a ParameterController through the AudioProcessor. Parameters in this context are float

arrays that take a sample offset as an input, which can be configured with a sample delta for

linearly interpolating between an old value and a new value being written. This is useful for

changing a parameter such as the volume of a signal, because any change in amplitude

quicker than roughly fifty milliseconds will result in a burst of an audible frequency. For

example, a common sample rate of audio is 44100 Hz, which can represent frequencies up

to 22050 Hz, just above the accepted high frequency range of human hearing. This means a

20 Hz wave, the slowest wave audible by humans, makes one revolution in 2205 samples.

Any drastic change in volume in less samples will produce sound in the audible range of

human hearing, so it is important to interpolate between written volume values with a

distance of at least 2205 samples.

Figure 20: An example of reading input buffers in the Execute function of an
IAudioKernel. The first output buffer is being used as a placeholder for the
samples before they are processed.

40



Finally we now have all our audio in a single buffer, ready to be processed. This is

where creative bounds dissolve, and sonic ideas are converted into code. There are many

traditional digital signal processing algorithms that are inherently musical, such as filtering

or frequency shifting, while there are also algorithms that only make sense in a musical

context, such as reverb or randomized granular modulation. Figure 21 shows a block of

code that loops through all the audio samples in a buffer, but does nothing to the sound.

One of the simplest algorithms that can be implemented here is a saturation effect. This

effect is static, and can be implemented in one line of code. Running the samples through a

sigmoid function such as tanh(), will add harmonics in the frequency domain of the sound,

by applying a non-linear transformation on the amplitude domain, shown in Figure 22.

Since sigmoid functions have a limited range, a scalar can be combined inside the function

to increase the amount of non-linear distortion, without causing the output to be greater

than one, which is the maximum value for digital audio signals. This would look like:

outputChannel[sample] = tanh(drive * outputChannel[sample]); .

Figure 21: Block of code looping through every audio sample of the first
output buffer, which now holds the combined signal from all of the input
buffers combined, from the loop in Figure 20. This provides processing
access to that combined signal.

41



Figure 22: X-axis is frequency from 100 Hz to 3000Hz logarithmic scale, while
the Y-axis is from -12 dB to +6 dB linear. A sine wave of 194 Hz was
processed through a tanh() function, and the waveform was squashed. This
produced a harmonic frequency at 594 Hz, roughly 3 times the frequency and
6 db lower amplitude of the initial sine wave. A harmonic 5 times higher
frequency was also introduced, and theoretically, an infinite series of odd
multiple harmonics were generated.

Once satisfied with the sound of an algorithm, the final step is to ensure the new

signal is sent to all of the AudioProcessor’s outputs. Similar to merging all the input buffers

into a single buffer for processing, the goal now is to do the inverse, where what is in the

first output buffer must be copied into the rest, shown in Figure 23. Sending the processed

signal to all of the outputs of the processing node is the final step of any processing

algorithm for Fields, and the end of the Execute function.

42



Figure 23: An example of copying the processed output buffer the the rest of
the output buffers. Note that the output loop starts at 1 instead of 0, since the
first buffer is the one copied from, and not a destination.

43



Building an AudioProcessor

Now that the algorithm is implemented, and the IAudioKernel is complete, the

developer can build a custom AudioProcessor class (construction pictured in Figure 24).

This class represents a modular audio processing unit that can be added into any

configuration inside a ProcessorBundle. It also declares which IAudioKernel, processing

algorithm on the graph, is being used for this particular effect. To link an IAudioKernel to

the AudioProcessor, simply use the TypeName of the IAudioKernel in the implementation of

the AudioProcessor (shown in Figure 24).

Figure 24: This is the construction of an AudioProcessor class, which takes 3
TypeNames as arguments. The types must be of the parameter enum,
provider enum, and the IAudioKernel itself.

The typing of the AudioProcessor itself, provides types for some of its vital methods. The

initialization method uses the type of the IAudioKernel to instantiate a DSPNode object on

the DSPGraph. The method that writes parameters to the IAudioKernel uses the type of the

parameters enum to convert indices from a connection matrix into parameter types that

feed directly into DSPGraph, along with a value, and DSPNode. This generic abstract

AudioProcessor class that is inherited to make a custom AudioProcessor, itself inherits an

abstract AudioProcessor without a custom typing, so all AudioProcessors can be of the

same type, and relate to other objects in Fields, all in the same ways. This is how the custom

implementation of an AudioProcessor that a developer creates, can easily integrate into the

44



rest of Fields, because on a lower level, it is the same object as every other AudioProcessor,

and is packaged into a ProcessorBundle all the same. This style of a generic abstract class

inheriting a sublevel abstract class is the core principle driving the modularity of Fields

development. This is also how ParametersControllers work, and provides the foundation

for any custom controller device to be easily implemented into the rest of the system

architecture of Fields.

Once an AudioProcessor is constructed with specific types, and therefore bound

together with the processing algorithm built inside the IAudioKernel type, a developers

next step is to construct any persistent memory the IAudioKernel needs to access, then feed

it into the kernel itself through reference. Shown in Figure 25, a NativeArray of floats is

constructed. The NativeArray is the data type used in Unity’s Job System for allocating and

accessing unmanaged memory in C#, with a simple protocol to track memory leaks. The

NativeArray can be constructed with an Allocator, which is a flag to specify a minimum

period for how long the memory needs to stay allocated. For an AudioProcessor, if the data

needing to be stored should remain throughout multiple connections and disconnections

from the graph, or even just for multiple audio blocks, then it is important to use the

Allocator.Persistent flag.

Once allocated, any memory needs to be sent into the IAudioKernel, so it can be used

by the audio processing algorithm. Besides sending a Parameter float into the

ExecuteContext, there is only one other way to communicate with an IAudioKernel, by using

an IAudioKernelUpdate. An IAudioKernelUpdate is a struct with an Update function, that

similarly to the IAudioKernel’s Execute function, gets scheduled by the same AudioDriver

that schedules the audio processing jobs for DSPGraph. To prevent any read tears, the

45



AudioDriver schedules the IAudioKernelUpdate to interact with a specific IAudioKernel,

precisely when the IAudioKernel is not running its Execute job. Figure 25 shows the use of

an IAudioKernelUpdate, the ExampleAudioProcessor_MemoryAllocator which inherits from

IAudioKernelUpdate, constructed with a reference to the persistentBuffer, and scheduled

using a Command Block generated from the DPSGraph. All IAudioKernelUpdates are

executed the same way, using a command block generated as such (Figure 25). A

‘MemoryAllocator’ is not native to DSPGraph or Fields, and is not a requirement for an

AudioProcessor, but is a recommended use of an IAudioKernelUpdate. If a persistent array

of data is vital to a processing algorithm, then an implementation of an IAudioKernelUpdate

must exist that sends references of the data into an IAudioKernel.

Finally, once the reference is sent, and the IAudioKernel is accessing externally

managed memory, it is important to dispose of the memory after its allocation is no longer

needed. Figure 25 shows the use of the Dispose function to dispose of any unmanaged

memory that has been allocated. If this step is not completed, then memory will be leaked

every time an instance of the AudioProcessor is deleted from the virtual environment

within Fields.

46



Figure 25: Example of constructing persistent memory inside an
AudioProcessor class. The Initialize() and Dispose() functions are also
present, showing how to initialize Unity’s NativeArray with a persistent
memory allocation flag, send the reference of the array to the IAudioKernel
via an IAudioKernelUpdate, and finally deallocate the array when the
AudioProcessor is destroyed.

47



Building an IAudioKernelUpdate

Once the IAudioKernel and AudioProcessor are inherited into custom classes and

constructed, At least one IAudioKernelUpdate is required if managed memory is needed,

and additional IAudioKernelUpdates are needed for data communication other than the

floating point parameter buffers in the ExecuteContext. One common use of an

IAudioKernelUpdate, other than a memory allocator, is to pass trigger events to an

IAudioKernel. Such an event might be a virtual midi key being pressed, where an event

containing a variety of information must be passed into the IAudioKernel, and sub-block

sample accuracy is not important. Figure 26 shows an example of an IAudioKernelUpdate

being used to set a NativeArray inside an IAudioKernel, to reference a NativeArray managed

from the AudioProcessor. Figure 27, shows an example of sending a trigger event to the

IAudioKernel, which can contain any number of parameters of any unmanaged data type3.

Once constructed, to use the IAudioKernelUpdate, a public function, accessible by a

ParameterController, can be made inside the AudioProcessor, which utilizes a command

block UpdateAudioKernel function. Figure 28 shows a function inside an AudioProcessor

which can be called from a ParameterController, such as a virtual midi note, which sends its

trigger state, note value, and velocity information into the IAudioKernel.

3 According to Microsoft's C# Documentation, a type is an unmanaged type if it's any of the following types:

- sbyte, byte, short, ushort, int, uint, long, ulong, char, float, double, decimal, or bool
- Any enum type
- Any pointer type
- Any user-defined struct type that contains fields of unmanaged types only and, in C# 7.3 and earlier, is not

a constructed type (a type that includes at least one type argument)

48

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/unmanaged-types#:~:text=A%20type%20is%20an%20unmanaged,Any%20pointer%20type


Figure 26: An IAudioKernelUpdate struct used to send a reference of
persistent memory managed in an AudioProcessor, to an IAudioKernel

Figure 27: An IAudioKernelUpdate struct used to send information into an
IAudioKernel in between process blocks.

49



Figure 28: A public function inside an AudioProcessor that schedules an
IAudioKernelUpdate to inject data into an IAudioKernel. This function is
accessible to a custom implementation of a ParameterController, to allow a
custom interactable object in the virtual environment to interact with the
processing algorithm of an IAudioKernel.

50



Building a ParameterController (in development)

The default package of Fields includes a set of ParameterControllers such as knobs,

collision pads, and a virtual midi controller, so any traditional effect or synthesizer can be

created without creating new ParameterControllers. Although a ParameterController is

intended to be as easily customizable as an AudioProcessor, the ParameterController was

not able to be fully abstracted in the work of this project. Right now, the

ParameterController class can be inherited to create a single value parameter setter, such as

a knob or slider, and only supports sending a parameter update containing a single float

value. However, trigger based colliders such as a drum pad, inherent from CollisionPad,

which contains trigger on and off functions that can be set with lambdas, to execute any

custom functionality when colliding with the object. Figure 29 shows a MidiKey

CollisionPad, which sends a note value to an AudioProcessor when collided with.

Figure 29: A CollisionPad implementation which takes advantage of
SetFunctions, which can call public AudioProcessorFunctions such as the one
in Figure 28. This allows an action in the virtual environment to interact with
an AudioProcessor in a complex way.

51



This lambda functionality is intended to be accessible in ParameterController, but it

and many other specific controller functionalities are scattered throughout several different

classes. The envelope in Figure 5.3 for example, runs on an Envelope script, which reads

single values, such as attack or decay, from VolumePoint scripts which construct movable

objects on specific axes of a volume, and map value ranges according to the size of the

volume's lengths. Because the ParameterController lacks functionality crucial to some types

of interaction in the virtual environment, custom controllers are not yet supported in

Fields, and the knobs and collision pads in the default package are the only virtual

controllers available for a ProcessorBundle at this time. It is of course possible to inherit

from CollisionPad directly and make use of the custom functions, but this will be

deprecated and integrated into ParameterController soon.

52



Making Music

53



Synthesizer

The culmination of Fields is using the entire system to make music. From the low

level signal processing happening inside the IAudioKernel’s Execute function, to the higher

level network of virtual objects sending information into a ProcessorBundle’s

AudioProcessors, all of the elements made for this expedition into virtual reality and

musical interaction come together to provide an experience unlike any musical instrument.

To conclude the discussion of this work, the inner workings of a polyphonic digital

synthesizer will be explored.

Like any ProcessorBundle, the Fields.Default.MultiVoiceSynth is a collection of

AudioProcessors, ParameterControllers, IO, and a 3D body. During the course of this

project, there have been two major iterations of the synthesizer. The first version was a

bundle of 50 AudioProcessors, and had 24 voice polyphony (able to play 24 notes at once).

Figure 30 shows the signal flow of that first synthesizer.

Figure 30: Subgraph inside first iteration synthesizer ProcessorBundle. There
were 50 AudioProcessors, a blank input, a blank output, 24 oscillators, and
24 envelopes. Each oscillator envelope pair represented one of the 24
synthesizer voices.

One really big advantage that this architecture had was its largely parallel nature. Since the

scheduling of IAudioKernels is a multithreaded workload handled by DSPGraph and Unity’s

Job System, parallel substructures in the graph were automatically optimized to run on

multiple threads. This was the initial motivation for constructing such a synth, but in the

54

https://zggof1999.github.io/Fields-VR-Audio/api/Fields.Packages.Default.Processors.MultiVoiceSynth_Object.html


end, the parallel branches needed too much intercommunication, that the parameter

passing became much too complex to further optimize the system. Heavily parallel, each

oscillator envelope pair had very little knowledge about the state of the entire synthesizer,

and this made it difficult to manage the state of each pair. For example, each branch was

running all the time, and was waiting for its respective note to trigger the envelope to allow

a note to play. So even though the system was optimized at full load, while not playing the

synth, it was still using valuable time. On top of this, each ParameterController, such as the

knobs for pitch and volume, had to update 24 different AudioProcessors at once, and

expanding the capabilities of the synthesizer became taxing during development to manage

the connection matrices of all the different components.

The solution, although giving up the automatic multithreading support by Unity, was

to make a single AudioProcessor unit that managed all of the voices. This unified serial

processing system would become slow as many notes were played at once, but when small

numbers of notes were being played, the gains of a multithreaded workload diminished.

Since in Fields, each arm is a single digit of control, like a big thumb with no fingers, it was

difficult to play a bunch of notes at once anyway. When no notes were being played, the

entire system was aware of each note's state, and processing was shut down completely.

The only time this system is truly slower, is when the release value of the synthesizer is

long, making notes continue long after being pressed, and more and more notes begin to

play on top of each other over time. Standalone on the Oculus Quest 2, if more than 12

notes are played simultaneously with more than one voice per note, the buffer is not

finished being written to before the clock times out, and clicking occurs. However, sub job

scheduling is supported in Unity, and a system can be implemented to generate the waves

55



of each note in parallel threads within a single AudioProcessor, although this has not been

implemented at this point in time.

The final synthesizer holds a reference to a list of Note structs and Envelope structs.

It then loops through the notes which are active, samples their waveform with their current

phase, and multiplies the amplitude by an envelope value calculated from a sample delta

representing the lifetime of the note. Figure 31 shows how a sine wave is generated in the

synthesizer.

Figure 31: The generation of a sine wave written into the output buffer. This
single note generates multiple sine waves, each known as a voice, with slight
pitch and stereo field deviations to make the sound more complex. Each sine
wave is multiplied by the envelope and panning values. The panning function
evenly distributes each voice around the center with a given width. The
GetValue function returns an interpolated gain value between each stage of
the envelope, using a sample clock to keep track of envelope position.

56

https://zggof1999.github.io/Fields-VR-Audio/api/Fields.Audio.MusicalStructs.Note.html?q=Note
https://zggof1999.github.io/Fields-VR-Audio/api/Fields.Audio.MusicalStructs.Envelope.html?q=Envelope


In action, the synthesizer appears in the world as in Figure 32. Figure 32 shows the

synthesizer not only connected to the output of the graph, with matching yellow orbs (like a

traditional patch cable but yellow and wireless), but also shows the controllers of a player

interacting with the synthesizer. The left handed controller is in the middle of turning the

pitch knob on the synth, while the right handed controller is in the middle of playing a note.

Figure 33 shows a closer look at how a controller turns a knob.

On the left hand, the Knob implementation of ParameterController is signaling the

synthesizing AudioProcessor inside the ProcessorBundle to update the wave generating

IAudioKernel to use a value of -2400 as its transposition.

Figure 32: A look into Fields while a user is actively playing the synthesizer.
The left controller is transposing the synthesizer down two octaves by
turning the ‘Pitch’ knob down to ‘-2400 cents’. The right controller is
inserting its cursor into a note on the virtual keyboard, playing an F note on
the synthesizer. Note that the synthesizer is playing sound since its output
orb is connected to the input orb of the output, highlighted by a wireless
yellow connection.

57



Figure 33: The left controller turns the ‘Pitch’ knob counterclockwise to
‘-2400 cents’ with a rotation of the wrist while the cursor is semi or fully
inserted into the knob.

When the pitch knob sends the value of -2400 into the synthesizer’s IAudioKernel,

the frequency of each note is calculated using the transposition value as shown by Figure

34. The frequency of each note is calculated from a base frequency value of 440 Hz, an A

note, and a transposition value with some detune for added complexity. Note intervals are

measured in ‘cents’ where 100 cents is one semitone (distance from A to A#). Since the

relationship between frequencies is a doubling of frequency for every twelve notes, an

octave, there is a logarithmic relationship of base 2 between the two scales. Since notes on a

keyboard are measured in intervals of semitones, a conversion between semitones and

frequency is vital to synthesize musically relevant frequencies. Starting from the base

frequency of 440 Hz, the frequency of an octave higher would be 880 Hz, or double the

frequency. This is also an interval of twelve semitones. To convert from the semitone

distance, ST, to the scalar factor between the two frequencies, FS, we can take an

exponential of two to the power of some semitone interval over twelve: FS = 2^(ST/12).

58



Plugin in an octave up, twelve, gives two , and plugging in an octave down, negative twelve,

gives one half.

Figure 34: Each sample is calculated with a given phase, and each sample the
phase is increased by a deltaphase, measured in oscillations per sample. This
delta is calculated from converting the frequency, measured in oscillations
per second, to oscillations per sample by dividing by the sample rate,
measured in samples per second. This ensures frequency can change at the
sample level. Note the detune is calculated using the same distribution
function as the stereo deviations. As detune and width increase, the lower
pitched notes end up on the left of the stereo field, and the higher pitched
notes end up on the right.

Since the audio is multichannel, the phase increase by each sample calculation must

be reset every channel but the last channel calculated. This ensures the phase

evolves naturally through time, and doesn't snap to different values every block.

Finally, after a buffer is filled with oscillations, the phases stay put for the next block

to process, and the whole cycle repeats itself, generating waveforms on the fly with

manipulatable characteristics, at a sample rate of 44100 samples per second.

59



Creative Environment

In the end, the synthesizer converts packages of note information received

from an IAudioKernelUpdate into phase information for the wave generators to

calculate amplitudes from. Then, to make the sound seem more interesting, multiple

voices are stacked together with stereo and pitch deviations, and all fed through an

envelope curve designed by the player. Notes are automatically managed through on

and off trigger functions set up by the CollisionPads in the virtual keyboard, and

then sent into the output of the synthesizer. The best part about all of this synthesis,

is that it doesn't stop after leaving the synthesizer. The synthesizer is just one node

in the graph, and only generates a seed waiting to be branched out and blossomed

into different sonic configurations. After the waveforms leave the synthesizer, it is up

to the user to use any of the default sound effects to make the sound of their dreams,

or to even dive into the Fields Library to develop their own effects that bring more

complexity to the entire sound environment.

The synthesizer is not the culmination of this project, and although it takes

advantage of the entire system, the true culmination of this project has not been

developed yet, because the system it will run on hasn’t been developed yet. This

project is an exploration into sound editing in virtual reality, but is really the

synthesis of an environment built for synthesizing synthesizers, that can be

interacted with inside of a digitally synthesized environment. The synthesizer built

in Fields represents the blank canvas that digital virtual environments represent,

and the synthesizer is to its unlimited modules of effects as Fields is to its unlimited

possibility of expanding the digital environments we are creative in. From

60



traditional digital audio workstations, to photo and video editing programs, the

space in which creative expression is taking place is expanding into worlds of more

capabilities and freedom of expression. Fields is a world to be expressive, as a

developer, musician, or someone who wants to play around with a new toy.

61



62



Bibliography

aksyr, Unity-DSP-Graph-Modular-Synth, Github Repository, most recent access 5/2/2022,
<https://github.com/aksyr/Unity-DSP-Graph-Modular-Synth>

Brackeys, Basics of Shader Graph, Youtube, most recent access 5/2/2022,
<https://www.youtube.com/watch?v=Ar9eIn4z6XE&ab_channel=Brackeys>

DocFX, DocFX Documentation Generator Tutorial, most recent access 5/2/2022,
<https://dotnet.github.io/docfx/tutorial/docfx_getting_started.html>

Justin P Barnett, How To MAKE A VR GAME: Beginner's guide to Virtual Reality & Unity XR Plugin,
Youtube, most recent access 5/2/2022,

<https://www.youtube.com/watch?v=1VC3ZOxn2Lo&ab_channel=JustinPBarnett>

Microsoft, C# Documentation, most recent access 5/2/2022,
<https://docs.microsoft.com/en-us/dotnet/csharp/>

Public Forum, DOTS Audio Discussion, Unity Forums, most recent access 5/2/2022,
<https://forum.unity.com/threads/dots-audio-discussion.651982/>

Steven W. Smith, Ph.D., The Scientist and Engineer's Guide to Digital Signal Processing, Online
Textbook, most recent access 5/2/2022,

<https://www.dspguide.com/ch1.htm>

Unity Technologies, ECS Track: Graph Driven Audio in an ECS World - Unite LA, Youtube, most recent
access 5/2/2022,

<https://www.youtube.com/watch?v=kDE-KxQBiYQ&t=440s&ab_channel=Unity>

Unity Technologies, Unity Documentation, most recent access 5/2/2022,
<https://docs.unity3d.com/Manual/index.html>

Valem, How To Make a VR Game in 2021 - New Input System and OpenXR Support, Youtube, most
recent access 5/2/2022,

<https://www.youtube.com/watch?v=u6Rlr2021vw&ab_channel=Valem>

63

https://github.com/aksyr/Unity-DSP-Graph-Modular-Synth
https://www.youtube.com/watch?v=Ar9eIn4z6XE&ab_channel=Brackeys
https://dotnet.github.io/docfx/tutorial/docfx_getting_started.html
https://www.youtube.com/watch?v=1VC3ZOxn2Lo&ab_channel=JustinPBarnett
https://docs.microsoft.com/en-us/dotnet/csharp/
https://forum.unity.com/threads/dots-audio-discussion.651982/
https://www.dspguide.com/ch1.htm
https://www.youtube.com/watch?v=kDE-KxQBiYQ&t=440s&ab_channel=Unity
https://docs.unity3d.com/Manual/index.html
https://www.youtube.com/watch?v=u6Rlr2021vw&ab_channel=Valem

	A New Way to Make Music: Processing Digital Audio in Virtual Reality
	Recommended Citation

	GavinPayneSeniorProjectDRAFT

