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Abstract

The Brin-Thompson group 2V is a simple, finitely presented group of functions with solv-
able word problem and unsolvable torsion problem, which makes it a promising platform
group for the Anshel-Anshel-Goldfeld key agreement protocol. The primary results of this
project are an implementation of 2V and the AAG protocol in Java, which is shown to be
susceptible to the heuristic length based attack.
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Introduction

The Brin-Thompson group 2V is the a higher dimensional Thompson’s group discovered

by Matthew Brin in 2004 [6]. This group is one member of the family of groups {nV }∞n=1

each of which acts on the product of n copies of the Cantor set, where the group 1V is the

group V discovered by Richard Thompson in the 1960s [3]. Elements of 2V are functions

that describe homeomorphisms of the Cantor square, and can be represented with a pair

of pictures. An example of a function in 2V is given in Figure 0.0.1.

Figure 0.0.1: This function maps the rectangle labeled 0 on the left to the rectangle labeled
0 on the right, the rectangle labeled 1 on the left to the rectangle labeled 1 on the right,
and so forth.
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2V is an infinite, simple [8] group with a finite presentation [7]. Furthermore, 2V has

decidable word problem and was proved in 2014 to have undecidable torsion problem [3].

For these reasons, 2V is a promising candidate for group-based public key cryptography.

A cryptographic scheme consists of two users, Alice and Bob, who wish to exchange

private information over a public channel. One way to accomplish this goal is for Alice and

Bob to agree on a secret encryption key beforehand, and use that to encrypt messages sent

over the public channel. If Alice and Bob did not or could not privately share an encryption

key prior to their need to exchange private information, one option is to implement a key

agreement protocol, such as the Diffie-Hellman protocol [11], which relies on the difficulty

of something known as the discrete logarithm problem (DLP).

Early attempts at implementing a group based key agreement protocol focused on

abelian groups for which the DLP is hard [4]. More recent protocols focusing on non-

abelian groups include the Ko-Lee-Cheon-Han-Kang-Park key agreement protocol [12]

and Anshel-Anshel-Goldfeld (AAG) key agreement protocol [1]. Both of these protocols

rely on the difficulty of the conjugacy search problem (CSP), which is an analogue of the

DLP [4].

The difficulty of the CSP is unknown for the group 2V , but the fact that its torsion

problem is undecidable suggests that the group also has undecidable conjugacy problem,

which would make the CSP hard. On the other hand, its decidable word problem makes

it easy for two users to verify that they have the same group element, even if they obtain

the element in different forms, as they often do in a key agreement situation.

The primary goal of this project was to implement the AAG protocol with 2V as a

platform group. The result is a robust Java implementation of 2V , as well as AAG, given

in the appendix. The authors of the protocol suggested braid groups as a promising family

of possible platform groups [1], but these were shown to be susceptible to an heuristic
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cryptographic attack known as the length based attack (LBA) [13], so we also implement

a simple version of the LBA to assess this platform group’s security, also in the appendix.

We use our implementation of 2V to collect data about the number of rectangles in a

product of n generators. This data suggests that any algorithm for multiplying elements of

2V has a quadratic worst case runtime, making it intractably slow for encryption purposes,

unless we create a back door to escape such cases. In general, multiplication runs quickly

enough to feasibly implement AAG, but this fact makes it difficult to test the LBA against

“large” instances of the protocol, which is unfortunate as Myasnikov and Ushakov assert

that the LBA is most successful against long words of group generators [13]. We collect

other data, however, which suggests that 2V fits the criteria to be vulnerable to this kind

of attack.

In the interest of creating a practical encryption key for the two users, we also col-

lected data about the orbit of the origin in keys generated by AAG. What we discover is

that functions of a computationally feasible size have remarkably un-chaotic orbits, which

presents another flaw in the security of this key agreement protocol.

All this considered, 2V is most likely not a secure platform group for AAG, at least

as it is implemented here, but it may still be of use to other key agreement protocols

based on the difficulty of the CSP, like Ko-Lee-Cheon-Han-Kang-Park [12]. It was very

recently proven that group extensions shown by Bogopolski, Martino, and Ventura to have

unsolvable conjugacy problem [5] also have solvable word problem [2], so these may also

be an area for future exploration with AAG.

Chapter 1 discusses Thompson’s group V and the Brin-Thompson group 2V at length,

and Chapter 2 explains in detail the AAG protocol, including the fundamental basis of its

security, as well as the LBA. In Chapter 3, we define a data structure called an augmented

binary tree, which we use to represent dyadic separations of the unit square. We also

present our Java implementation of 2V , and many of the algorithms used by the class’
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methods. Chapter 4 discusses our implementation of the AAG key agreement protocol in

Java, as well as the LBA, proving that AAG with 2V as a platform group is not secure.

We discuss raw runtimes of AAG, and present data collected about the orbit of the origin

in keys generated by our protocol.



1
Group Theory Background

This chapter covers a thorough background of the Brin-Thompson group 2V by first

examining its one-dimensional relative V . The first section defines dyadic separations of

the unit interval, the following section establishes the concept of defining a function in

V using dyadic separations, and the section after that utilizes this notion to present an

algorithm for multiplying elements of V . The following three sections do the same with

the unit square and the group 2V , and the final section gives a finite presentation of 2V .

Each section builds from the previous to arrive at a full understanding of the functions in

the group 2V .

1.1 The Unit Interval

The functions in Thompsons group V are homeomorphisms of something known as the

Cantor set, which itself is related to separations of unit interval [0, 1] into dyadic intervals.

This section defines all of these terms, proves properties of each, and establishes relations

between them, that are helpful for understanding V .
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Dyadic Intervals Non-Dyadic Intervals

[0, 1]
[
1
4 ,

3
4

][
1
2 ,

3
4

] [
1
8 , 1
][

3
16 ,

1
4

] [
1
4 ,

1
3

][
1
2 , 1
] [

1
7 ,

2
3

]
Table 1.1.1: Examples and non-examples of dyadic intervals.

Definition 1.1.1. A dyadic number is a rational number whose denominator is a power

of 2. A dyadic interval is an interval of the form I =
[
k
2m ,

k+1
2m

]
such that 0 ≤ k

2m and

k+1
2m ≤ 1, and where k,m ∈ Z≥0. 4

Some examples of what does and does not constitute a dyadic interval are given in

Table 1.1.1.

Definition 1.1.2. We say that an interval I is a left interval if k is even and a right in-

terval if k is odd. Two adjacent intervals I and J are reducible if I is a left interval,

J is a right interval, I =
[
k
2m ,

k+1
2m

]
, and J =

[
k+1
2m , k+2

2m

]
. 4

Specifically, the pair reduce to H = I ∪J . Since I is a left interval, we know that k = 2l

for some l ∈ Z≥0. We know that the two are adjacent, so taken all together, we can show

algebraically that

H = I ∪ J =

[
k

2m
,
k + 2

2m

]

=

[
2l

2m
,
2l + 2

2m

]

=

[
l

2m−1
,
l + 1

2m−1

]

which is itself a dyadic interval.

Theorem 1.1.3. Given any two dyadic intervals I1 and I2, either I1 is contained in I2,

or I2 is contained in I1, or the two do not intersect except at perhaps an endpoint.
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Proof. Let I1 =
[
k
2m ,

k+1
2m

]
and let I2 =

[
j
2n ,

j+1
2n

]
. For ease of notation, designate

s1 =
k

2m
s2 =

j

2n

e1 =
k + 1

2m
e2 =

j + 1

2n

so that I1 = [s1, e1] and I2 = [s2, e2]. Without loss of generality, let s1 < s2. Suppose I1

and I2 have more than one point in their intersection, but neither is properly contained in

the other. Then we know that s2 < e1, since if s2 > e1, the two intervals do not intersect,

and if s2 = e1, the two only intersect at that point. We also know that e1 < e2, since

anything else would mean that I2 ⊂ I1. So we have the following relation:

s1 < s2 < e1 < e2

k
2m < j

2n <
k+1
2m < j+1

2n

k · 2n−m < j < (k + 1) · 2n−m < j + 1

and

k < j · 2m−n < k + 1 < (j + 1) · 2m−n

This, however, is a contradiction, since j, k,m, n ∈ Z. If m ≤ n, then

j < (k + 1) · 2n−m < j + 1

implies the existence of an integer between j and j + 1, and if m > n, then

k < j · 2m−n < k + 1

implies the existence of an integer between k and k + 1.

Corollary 1.1.4. The intersection of two overlapping dyadic intervals is another dyadic

interval.

Proof. Two dyadic intervals I1 and I2 overlap each other if they share a common interior

point. If they intersect at more than a single point, either I1 ∩ I2 = I1 or I1 ∩ I2 = I2,

both of which are dyadic intervals by hypothesis.
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Definition 1.1.5. In the context of a single dimension, a dyadic separation of an

interval I is a set S of non-overlapping dyadic intervals whose union is I. 4

Dyadic separations have many properties that are crucial for later proofs about V and

2V .

Lemma 1.1.6. Given a dyadic separation S of a dyadic interval [a, b], no interval in S

contains a+b
2 in its interior, unless S is non-trivial.

Another way of stating Lemma 1.1.6 is to say that every non-trivial dyadic separation

of a dyadic interval [a, b] has a cut at its halfway point a+b
2 .

Proof by contradiction. . Let [a, b] be a dyadic interval and let S be a non-trivial

separation of [a, b] into dyadic intervals. Suppose that in S there exists some I =
[
k
2m ,

k+1
2m

]
that contains a+b

2 . Since [a, b] is dyadic, we know that a = j
2m and b = j+1

2m , so a+b
2 = 2j+1

2n+1 .

We also know that m > n, since I ( [a, b], as S is non-trivial. All these facts taken together

give us the following inequality

k
2m < a+b

2 < k+1
2m

k
2m < 2j+1

2n+1 < k+1
2m

k < (2j + 1)2m−n−1 < k + 1

which implies the existence of an integer between k and k + 1. Thus, we arrive at a

contradiction.

Theorem 1.1.7. Every nontrivial separation S of the unit interval into dyadic intervals

contains a pair of adjacent intervals which can be reduced.

This theorem can be proved directly, or by induction. The direct proof is quicker, but

the inductive proof can be generalized to R2, which we will need to do in Section 1.4. Both

proofs are below.

One Proof of Theorem 1.1.7. Let S be a separation of the unit interval into dyadic

intervals. The first interval in S must be a left interval (since k = 0), and the last must
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be a right (since k + 1 must equal 2m for some m). It follows that somewhere in S there

are an adjacent left and right intervals such that I1 =
[
k
2m ,

k+1
2m

]
and I2 =

[
j
2n ,

j+1
2n

]
.

Since I1 and I2 are adjacent, we know that k+1
2m = j

2n , and that k + 1 and j are both

odd. Since 2 - k + 1 and 2 - j, we know that m = n and hence k + 1 = j. Thus I1 and I2

can be reduced.

Another Proof of Theorem 1.1.7. Let our induction hypothesis be as follows: Any

separation of the unit interval into k pieces, where 1 < k < n has two adjacent intervals

that can be reduced.

Let k = 2. Then S =
{[

0, 12
]
,
[
1
2 , 1
]}

, and we can reduce those two intervals.

Let S be a separation of the unit interval into n dyadic intervals. Then n ≥ 3, so S is

nontrivial, so by Lemma 1.1.6 there is a cut in S at 1
2 . Furthermore, we know that at least

one half of the S contains at least 2 intervals.

Let S′ be the dyadic separation of the unit interval created by taking a half of S

containing at least 2 intervals, and then multiplying all of the intervals contained in that

half by a factor of 2. S′ has k intervals, where 1 < k < n, so by our hypothesis, it contains

two intervals I1 and I2, of the form
[
j
2m ,

j+1
2m

]
and

[
j+1
2m , j+2

2m

]
that can be reduced. It

follows that S contains two intervals of the form
[

j
2m+1 ,

j+1
2m+1

]
and

[
j+1
2m+1 ,

j+2
2m+1

]
. Therefore

S contains an adjacent pair of intervals which can be reduced.

Corollary 1.1.8. Every non-trivial dyadic separation S of a dyadic interval I = [ k2m ,
k+1
2m ]

can be reduced to I itself, because every such S has a reducible pair of left and right

intervals.

We can scale every interval in S by 2m and shift it by −k, to obtain a dyadic separation

T of the unit interval, which we have just proven contains a reducible pair of left and right

intervals. It follows that S has a reducible pair of left and right intervals, so reduce them.

We showed after Theorem 1.1.2 that this results in another dyadic interval, so S reduced
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0 1

00 01 10 11

000 001 010 011 100 101 110 111

Figure 1.1.1: The first few iterations of constructing the Cantor set.1

is another dyadic separation S′. If S′ is non-trivial, we can repeat the process until we

arrive at a trivial separation, in which case we have reduced all the way to I.

Dyadic intervals are closely related to the Cantor set, as we will see below.

Definition 1.1.9. The Cantor set C is constructed by taking the unit interval, and

removing the open middle third, (13 ,
2
3), and then recursively removing the middle thirds

of the resultant intervals ad infinitum. Every point that is not removed in this process is an

element of the Cantor set. The first few steps of this process are shown in Figure 1.1.1 4

The nth step of this process yields a set of intervals Cn, each of which are the left or

right part of an interval in Cn−1. Note that C0 = [0, 1]. Each of the intervals in the set

Cn can be given by a finite binary string as in Figure 1.1.1, where a 0 as the final digit

indicates that it is the left part of an interval in Cn−1 and a 1 indicates that it is the right.

Because of this binary choice between left and right, every dyadic interval corresponds

to an interval in some set Cn, and can also be represented with a binary string, as in

Figure 1.1.2.

So we now have two ways of representing dyadic separations of the unit interval, namely

a set of dyadic intervals, and a set of binary strings. We now introduce a third way of

representing dyadic separations that will be useful for a few final proofs: the binary tree.

1Image by Eugen Anitas (Own work) [Public domain], via Wikimedia Commons
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0 10 11

0 1
2

3
4

1

0000 0001 001 010 0110 0111 10 11

0 1
16

1
8

1
4

3
8

7
16

1
2

3
4

1

Figure 1.1.2: Two examples of translating dyadic separations into binary strings.

Lemma 1.1.6 tells us that every dyadic separation has a cut at 1
2 , and that either of those

halves, if cut, is cut at 1
2 that interval’s length, and so forth. So we can use a binary tree

to represent this sequence of cuts, where the root node corresponds the interval [0, 1] and

each left and right child of a node represent the left and right halves of its corresponding

interval, if that interval is cut in half. The leaves of such a tree represent the intervals in

a dyadic separation of the unit interval. An example of this correspondence is given in

Figure 1.1.3.

Theorem 1.1.10. Any two separations of the unit interval into dyadic intervals have a

common refinement, which is also a dyadic separation.

Proof. Let S1 and S2 be two dyadic separations of the unit interval, and let T1 and T2

be their corresponding trees. Let T = T1 ∪ T2, and let S be the corresponding separation.

We claim that S is a common refinement of S1 and S2. Each interval in S corresponds

to a leaf in T , which is a leaf in either T1 or T2, and therefore corresponds to an interval

in S1 or S2. Thus, every interval in S is an interval in S1 or S2, and so it is a common

refinement of the two.
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0 1
16

1
8

1
4

3
8

7
16

1
2

3
4

1

Figure 1.1.3: An example of representing a dyadic separation of the unit interval using a
binary tree.

This tree representation will be used in one final proof about dyadic intervals, namely

the following.

Theorem 1.1.11. Given an interval I ⊆ [0, 1] with dyadic endpoints, there exists a unique

reduced separation S of I into standard dyadic intervals.

Before we prove this theorem, we need to lay some groundwork first. Let I =
[
k
2m ,

j
2n

]
be an interval with dyadic endpoints contained in [0, 1], and let T be the complete binary

tree of height N = max {m,n}. Color all the leaves in T that are contained in I. Next,

iteratively color the parents of the nodes you last colored if both children of that parent are

colored, until there are no new nodes to color. This is guaranteed to be the case eventually,

since T has a finite height, N . An example of this process is given in Figure 1.1.4.

Claim 1.1.12. Every colored node whose parent is uncolored in T represents a maximal

standard dyadic interval contained in I.
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0 17
32

19
32

Figure 1.1.4: Finding the maximal standard dyadic intervals contained in
[
7
32 ,

19
32

]
, namely[

7
32 ,

1
4

]
,
[
1
4 ,

1
2

]
,
[
1
2 ,

9
16

]
, and

[
9
16 ,

19
32

]
.
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Proof. Let S be the proposed set of intervals, and suppose J ∈ S is an interval whose

parent node in T was uncolored, but is not maximal. Then there exists K ∈ S such that

J ⊂ K. Since K ∈ S, we know that K’s node in T is colored, and since J ⊂ K, we

know that K’s node is an ancestor of J ’s node in T . However, the fact that J ’s parent

is uncolored in T implies that all of J ’s ancestors are uncolored. Thus we arrive at a

contradiction.

Proof of Theorem 1.1.11. Let I =
[
j
2m ,

k
2n

]
be such an interval, and let S be the set

of maximal standard dyadic intervals contained in I.

The proof will follow this list of criteria that S must satisfy:

i. S is a separation of I.

ii. S is reduced.

iii. There does not exist another reduced separation of I besides S.

Part i. Let H =
{
H =

[
h
2N
, h+1

2N

]
| N = max {n,m} , j

2m ≤
h
2N
, h+1

2N
≤ k

2n

}
, and let x ∈ I.

It should be fairly obvious that
⋃
H = I, since each H ∈ H corresponds to one of

the nodes we initially colored in T to represent I. Thus x ∈ I implies x ∈ H for some

H ∈ H. Furthermore, each J ∈ S was constructed by reducing left and right pairs

of intervals in H, as modeled by coloring nodes whose children were both colored

in T . So for all H ∈ H, H ⊆ J for some J ∈ S. (This also follows from the fact

that all J ∈ S are maximal, and that H is a dyadic subinterval of I.) Thus we see

simultaneously that
⋃
S =

⋃
H = I and that x ∈ I implies x ∈ H for some H ∈ H,

which implies x ∈ J for some J ∈ S.

Part ii. Suppose S is not reduced. Then there exist a left and right pair of intervals J,K ∈ S

that can be reduced, contradicting the fact that all J,K ∈ S are maximal.
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0
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Figure 1.2.1: A function f(x) in V . This function is not well-defined at 1
2 and 3

4 , but we
are not concerned with what the value of f(x) is at these points.

Part iii. Suppose R is another reduced separation of I into dyadic intervals. Then there is at

least one point, x, at which R differs from S. Let JR and JS be the intervals in R and

S respectively. Since R and S differ at x, JR 6= JS . Since JR and JS are both dyadic

intervals, it follows that either JR ⊂ JS , JS ⊂ JR, or JR ∩ JS = ∅. We know that

the last scenario is not the case, since x ∈ JR ∩ JS . If JS ⊂ JR, this contradicts the

fact that JS is maximal. If JR ⊂ JS , then since JS is maximal, we can conclude that

JR is a left or right subinterval whose mate is also contained in JS . This contradicts

the supposition that R is reduced, and we have exhausted all possibilities.

1.2 Thompson’s Group V

Functions in V are piece-wise, linear bijections of the unit interval that are differentiable

at all but finitely many dyadic points, such that f ′(x) = 2k for some k ∈ Z, for each

maximal interval for which f(x) is differentiable. An example of a function in V is given

in Figure 1.2.1.

Definition 1.2.1. Using the approach taken in Cannon, Floyd, and Parry [9], let f(x) ∈ V

and let

0 = x0 < x1 < x2 < . . . < xn = 1
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be all the points for which f(x) is not differentiable. Then we can define f(x) = aix+Ai

when xi−1 ≤ x ≤ xi, where ai = 2k for some k ∈ Z, and Ai is a dyadic number. 4

We use this definition of the elements of V to prove that V is a group.

Proof. We will show that V taken with function composition has closure, associativity,

inverses, and an identity element.

1. Closure: Letf(x), g(x) ∈ V . Then f(x) = aix + Ai if xi−1 ≤ x ≤ xi, and g(x) =

bjx + Bj if xj−1 ≤ x ≤ xj , where ai and bj are 2k and 2l respectively, and Ai and

Bj are both dyadic numbers. That is, Ai = p
2q and Bj = s

2t . Then

fg = f(g(x)) = f(bix+Bi)

= ai(bjx+Bj) +Ai

= aibjx+ aiBj +Ai

= 2k2lx+
2ks

2t
+

p

2q

= 2k+lx+
2k+qs+ 2tp

2q+t

which is an element of V .

2. Associativity: Function composition is associative.

3. Inverses: Let f(x) ∈ V , and let x ∈ [0, 1]. Then f(x) = aix + Ai if xi−1 ≤ x ≤ xi,

where ai is 2k, and Ai and Bj is a dyadic number. That is, Ai = p
2q . Then

f−1(x) =
x−Ai
ai

= a−1i x− a−1i Ai

= 2−kx+
p

2k+q

which is an element of V .
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4. Identity: The identity function f(x) = x is an element of V .

Thus, V forms a group.

Let f(x) ∈ V , and consider the set S = {[x0, x1], [x1, x2], . . . , [xn−1, xn]}, where

x0, . . . , xn are the breakpoints of f(x). Since x0 = 0 and xn = 1, and each xi is a dyadic

number, S is a dyadic separation of the unit interval. Furthermore, consider f([xi−1, xi]).

For all x ∈ [xi−1, xi], we stated above that f(x) = aix+Ai, where ai = 2k and Ai = p
2q is a

dyadic number. We also know that xi−1 = s
2t and xi = u

2v , since both are dyadic numbers.

All this taken together gives us

f([xi−1, xi]) = [aixi−1 +Ai, aixi +Ai]

= [
2ks

2t
+

p

2q
,
2ku

2v
+

p

2q
]

= [
2k+qs+ 2tp

2q+t
,
2k+qu+ 2vp

2q+v
]

which, unsightly though it may be, is another dyadic interval. Since these functions are

homeomorphisms, the union of the images of all the intervals in S is the entire unit interval.

Furthermore, Theorem 1.1.3 tells us that f(x) ∈ f(I) and f(x) ∈ f(J) implies I = J .

Thus the image of S is another dyadic separation of the unit interval.

Taking all this into consideration, we move to the idea of representing a function f ∈ V

with a tuple (S1, S2, ϕ), where S1 and S2 are dyadic separations of equal size, representing

the domain and range of f , respectively, and ϕ : S1 → S2 is a bijection, such that x ∈ I

where I ∈ S1, implies that f(x) ∈ ϕ(I), where ϕ(I) ∈ S2. This abstract representation

has a number of implementations, given below, and can also be generalized to 2V .



1. GROUP THEORY BACKGROUND 23

One easy way of implementing the tuple of a function in V uses two pictures of unit

intervals cut into S1 and S2, and arrows to indicate ϕ. For example, the function

f(x) =


1
2x+ 1

4 x ∈
[
0, 12
]

x− 1
2 x ∈

[
1
2 ,

3
4

]
2x− 1

4 x ∈
[
3
4 , 1
]

from Figure 1.2.1 can be described with this picture:

Another way of implementing function tuples in V is to use the binary string represen-

tations of the intervals in S1 and S2, and use ϕ to describe prefix replacement of any input

x ∈ [0, 1], translated to an infinite binary string. In the example from Figure 1.2.1,

ϕ(0) = 01 f(0w) = 01w

ϕ(10) = 00 f(10w) = 00w

ϕ(11) = 1 f(11w) = 1w

where w ∈ {0, 1}∞.

The last way of representing elements of V that we will discuss uses the binary tree

representations of S1 and S2, and implements ϕ with a labeling, as in Figure 1.2.2.

Definition 1.2.2. A tuple (S1, S2, ϕ) of a function f ∈ V is reducible if:

1. There exist intervals L1, R1 ∈ S1 that are a reducible pair of left and right intervals.

2. There exist intervals L2, R2 ∈ S2 that are a reducible pair of left and right intervals.
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Figure 1.2.2: f(x) described using binary trees.

3. Both ϕ(L1) = L2 and ϕ(R1) = R2. 4

Remark 1.2.3. Requirement 3 of Definition 1.2.2 can be shown algebraically to be equiv-

alent to the statement that if x ∈ L1 ∪R1, then f(x) = ax+A. ♦

Let I1 = L1 ∪R1 and let I2 = L2 ∪R2. Observe that x ∈ I1 implies

f(x) ∈ ϕ(L1) ∪ ϕ(R1) = L2 ∪R2 = I2.

Create the dyadic separation T1 from S1 by reducing L1 and R1 to I1, and the dyadic

separation T2 from S2 by reducing L2 and R2 to I2. We showed after Corollary 1.1.8 that

T1 and T2 are assured to be dyadic separations. Construct a bijection ψ : T1 → T2 such

that ψ(I) = ϕ(I) for all I ∈ S1 not equal to L1 or R1, and let ψ(I1) = I2. Observe that

for all J ∈ T1, if x ∈ J , the new bijection ψ holds that f(x) ∈ ψ(J). That is, the tuple

(T1, T2, ψ) describes the same function as the tuple (S1, S2, ϕ)

Notice that we can enact this process backwards as well. That is, we can “un-reduce” a

tuple (S1, S2, ϕ) of a function f where ϕ(I1) = I2. We create T1 by cutting I1 ∈ S1, and

T2 by cutting I2 ∈ S2. Cutting I1 yields the pair of left and right intervals L1 and R1, and

cutting I2 yields L2 and R2. We construct a new bijection ψ such that ψ(I) = ϕ(I) for

all I ∈ S1 except I1, and we also let ψ(L1) = L2 and ψ(R1) = R2. One can verify that

(T1, T2, ψ) describes the same function as (S1, S2, ϕ) by reducing L1,2 and R1,2
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Theorem 1.2.4. A function f ∈ V with breakpoints 0 = x0 < x1 < . . . < xn = 1 can be

described with the tuple (S1, S2, ϕ), where m = |S1| = |S2| can be arbitrarily large, provided

that m ≥ n.

Proof. Let f ∈ V be given by the tuple (S1, S2, ϕ), and without loss of generality, let

I ∈ S1, and let T be a non-trivial, dyadic separation of I with which we would like to

replace I. (We could also want to replace some interval J ∈ S2, and a similar proof would

result.) Since T is non-trivial, then by Lemma 1.1.6 we know that there is a cut at the

halfway point of T , so we can make that cut to I and “un-reduce” the tuple of f in the

manner described above. This creates L and R, the left and right halves of I. which we

can now recursively replace with L ∩ T and R ∩ T , respectively, until the separation with

which we’re replacing I becomes trivial.

Theorem 1.2.5. Every element of V has a unique reduced tuple (S1, S2, ϕ).

Proof by Contradiction. Let f, g ∈ V be given by the reduced tuples (S1, S2, ϕ) and

(T1, T2, ψ), respectively. Suppose that f(x) = g(x) for all x ∈ [0, 1], but there exists some

c ∈ [0, 1] such that c is in the interior of two intervals I ∈ S1 and J ∈ T1, and I 6= J .

By Theorem 1.1.3 we know that I ⊂ J or J ⊂ I. Without loss of generality, suppose

J ⊂ I. Intersect I with every interval in T1 to create a set

U =
{
J ′ ∩ I | J ′ ∈ T1, Int(J ′ ∩ I) 6= ∅

}
.

Notice that for each J ′ ∈ T1, the intersection of J ′ and I is J ′ itself. This is again a result

of Theorem 1.1.3, since I and J ′ overlap, so the only other option for J ′ ∩ I would be I.

This would imply that J is contained in some J ′, which would contradict that both are

intervals in a dyadic separation.

So, now we have a set U , which a separation of the interval I into dyadic intervals. By

Theorem 1.1.7, U contains a reducible pair of left and right intervals, L and R. Further-



1. GROUP THEORY BACKGROUND 26

more, we know that f(x) = aIx+AI for all x ∈ I, and that f(x) = g(x) for all x ∈ [0, 1].

That is,

g(x) =

{
aIx+AI x ∈ L
aIx+AI x ∈ R

since L and R are both contained in I. So the tuple (T1, T2, ψ) is reducible, which is a

contradiction.

1.3 Multiplying Elements of V

Suppose we want to compose the following functions f , given by (S1, S2, ϕ), and g, given

by (T1, T2, ψ) by first applying g, and then f to the unit interval:

g f

After we apply g, we are faced with a problem, namely that
[
1
2 ,

3
4

]
∈ T2 but ψ(

[
1
2 ,

3
4

]
)

is undefined. To solve this problem, we must find a common refinement of T2 and S1. The

following algorithm for finding a common refinement is similar to the technique used in

the proof of Theorem 1.1.10, but with some slight changes, to accommodate the fact that

the two dyadic separations are now parts of function tuples.
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Algorithm 1.3.1. Finding a common refinement of S1 and T2, given two functions

f, g ∈ V , with tuples (S1, S2, ϕ) and (T1, T2, ψ), respectively.

1 for J ∈ T2 do
2 for I ∈ S1 do
3 if I ⊂ J then
4 Intersect J with S1 to create a set U , which is a dyadic separation of J .
5 Replace J with U as in the proof of Theorem 1.2.4.

6 else if J ⊂ I then
7 Intersect I with T2 to create a set U , which is a dyadic separation of I.
8 Replace I with U as in the proof of Theorem 1.2.4.

9 end

10 end

When we replace J or I with U , what we are doing is replacing a leaf node in either T2

or S1 with a subtree from the other, to create the union of the two trees as we did before

in the proof of Theorem 1.1.10. Thus, we have created a common refinement of S1 and

T2. Additionally, every interval K ∈ T1 now maps to an interval J ∈ T2 which is equal

to some I ∈ S1, which in turn maps to some interval L ∈ S2. Knowing this, we can now

create a third tuple (T1, S2, σ) to represent fg, where σ(K) = ϕ(ψ(K)) for all K ∈ T1.

Example 1.3.2.

g g

⇒ fg

f f

♦
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Example 1.3.3.

g g

⇒ fg

f f

♦

1.4 The Unit Square

In a few words, 2V is V in two dimensions. Instead of describing transformations of the

unit interval separated into dyadic intervals, 2V describes transformations of the unit

square, separated into dyadic rectangles. As such, we give definitions and theorems about

the unit square in this section that are helpful for understanding 2V .

Definition 1.4.1. A dyadic rectangle is the product of two dyadic intervals. That

is, a dyadic rectangle is a rectangle of the form R =
[
k
2m ,

k+1
2m

]
×
[
j
2n ,

j+1
2n

]
, where

j, k,m, n ∈ Z≥0. In the context of two dimensions, a dyadic separation refers to a

set of non-overlapping dyadic rectangles whose union is the unit square. 4

Each separation of the unit square into dyadic rectangles can be constructed by cutting

the unit square in half, either horizontally or vertically, then cutting any of the resultant

rectangles in half vertically or horizontally, then cutting any of those resultant rectangles,

and so forth. An example of a dyadic separation with cuts made in this manner is given

in Figure 1.4.1.
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Figure 1.4.1: A separation of the unit square into the rectangles
[
0, 14
]
× [0, 1] ,

[
1
4 ,

1
2

]
×

[0, 1] ,
[
1
2 , 1
]
×
[
0, 12
]
, and

[
1
2 , 1
]
×
[
1
2 , 1
]
. This separation was constructed by cutting the

unit square in half vertically, then cutting its left half vertically, and finally, cutting the
right-most of those three rectangles horizontally.

Observe that every time a cut is made, the x- or y-interval of the rectangle is split into

a pair of dyadic intervals. Each rectangle in a separation of the unit square constructed

in this way, then, is the product of two dyadic intervals. That is, it is a dyadic rectangle.

A related statement is Lemma 1.4.2, which will be used for another proof about dyadic

separations of the unit square.

Lemma 1.4.2. Any nontrivial separation of the unit square into dyadic rectangles has

either a horizontal cut or a vertical cut all the way across it. That is, either none of the

rectangles in S contains 1
2 in the interior of its x range, or none of the rectangles in S

contains 1
2 in the interior of its y range.

Proof. Suppose the contrary. Then there exists a nontrivial separation S of the unit

square into dyadic rectangles which has neither a horizontal nor a vertical cut all the way

across it.

No horizontal cut implies there is at least one rectangle, call it Rh, which contains 1
2 in

the interior of its y range. By Lemma 1.1.6, Rh is a rectangle of the form
[
k
2m ,

k+1
2m

]
× [0, 1],

since [0, 1] is the only dyadic interval which contains 1
2 in its interior.
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By the same token, no vertical cut implies there is a rectangle Rv of the form [0, 1] ×[
j
2n ,

j+1
2n

]
.

Consider Rh. We know that
[
k
2m ,

k+1
2m

]
6= [0, 1], otherwise Rh would be the unit square,

and S is non-trivial. Similarly, if we consider Rv, we see that
[
j
2n ,

j+1
2n

]
6= [0, 1].

Let (x, y) be in the interior of
[
k
2m ,

k+1
2m

]
×
[
j
2n ,

j+1
2n

]
. Then (x, y) is contained in both

Rh and Rv, which is a contradiction, since S is a separation of the unit square.

Definition 1.4.3. Two dyadic rectangles, L and R, are left and right rectangles if they

have the form

L = [
k

2m
,
k + 1

2m
]× [x, y] and R = [

k + 1

2m
,
k + 2

2m
]× [x, y]

where k is even and [x, y] is some dyadic interval.

Two dyadic rectangles, B and T , are bottom and top rectangles if they have the form

B = [x, y]× [
k

2m
,
k + 1

2m
] and T = [x, y]× [

k + 1

2m
,
k + 2

2m
].

where k is even and [x, y] is some dyadic interval.

Two rectangles are reducible if they are matching left and right, or bottom and top

rectangles. 4

With some algebra, one can verify that L and R reduce to [ l
2m−1 ,

l+1
2m−1 ]× [x, y], and B

and T reduce to [x, y]× [ l
2m−1 ,

l+1
2m−1 ], where l = k

2 .

Now, as we were able to use Lemma 1.1.6 to show that every dyadic separation of the

unit interval can be reduced to the unit interval itself, we can use Lemma 1.4.2 to prove

the equivalent statement in R2.

Theorem 1.4.4. Every nontrivial separation S of the unit square into dyadic rectangles

can be reduced to the unit square itself, because every such S contains a pair of adjacent

rectangles which can be reduced.
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Proof. As a base case, let k = 2. There are only two ways to separate the unit square

into two dyadic rectangles:

Both of these can be reduced to the unit square.

Next, suppose that any separation of the unit square into k dyadic rectangles, where

1 < k < n, has two adjacent rectangles that can be reduced, and let S be a separation of

the unit square into n dyadic rectangles. By Lemma 1.4.2, we know that S has either full

horizontal cut or a full vertical cut.

Without loss of generality, suppose it is a horizontal cut. Since 1 < k < n, we know

that at least one half of S contains at least two rectangles. Take a half of S containing at

least two rectangles, and scale the y coordinates of all of the rectangles by a factor of 2.

In this way, we have constructed S′, a separation of the unit square into k dyadic

rectangles, where 1 < k < n. By our induction hypothesis, we know that S′ contains a

pair of rectangles

[
k1

2m1
,
k1 + 1

2m1

]
×
[
j1
2n1

,
j1 + 1

2n1

]
,

[
k2

2m2
,
k2 + 1

2m2

]
×
[
j2
2n2

,
j2 + 1

2n2

]
that can be reduced.

It follows that S has a pair of rectangles[
k1

2m1+1
,
k1 + 1

2m1+1

]
×
[

j1
2n1+1

,
j1 + 1

2n1+1

]
,

[
k2

2m2+1
,
k2 + 1

2m2+1

]
×
[

j2
2n2+1

,
j2 + 1

2n2+1

]
that can be reduced. If S had had a horizontal cut, the only difference in this proof

would be that we scale the x coordinates of one half of S.
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Theorem 1.4.5. Any two separations S1 and S2 of the unit square into dyadic rectangles

have a common refinement S3 which is also a dyadic separation of the unit square.

Algorithm 1.4.6. Finding a common refinement, S3, of two dyadic separations, S1 and

S2, of the unit square.

1 Let S1 = {R1, R2, . . . , Rn}, let S2 = {T1, T2, . . . , Tm}, and let S3 = {}.
2 for Ri ∈ S1 do
3 for Tj ∈ S2 do
4 By definition, Ri = I1 × I2, and Tj = J1 × J2, where I1,2 and J1,2 are dyadic

intervals.
5 if I1 ⊂ J1 then
6 if I2 ⊂ J2 then
7 Add I1 × I2 to S3.
8 else if J2 ⊂ I2 then
9 Add I1 × J2 to S3.

10 else if J1 ⊂ I1 then
11 if I2 ⊂ J2 then
12 Add J1 × I2 to S3.
13 else if J2 ⊂ I2 then
14 Add J1 × J2 to S3.

15 end

16 end
17 return S3

Claim 1.4.7. S3 is a dyadic separation of the unit square.

Proof. Every rectangle in S3 is the Cartesian product of the intersection of the x and

y intervals of two dyadic rectangles Ri ∈ S1 and Tj ∈ S2. We know that Ri and Ti are

dyadic rectangles, so their x and y intervals are dyadic intervals. By Theorem 1.1.3, the

intersection of the x intervals will be one of the x intervals of Ri or Tj , and the intersection

of the y intervals will be one of the y intervals of Ri or Tj . Thus, every rectangle in S3 is

a Cartesian product of two dyadic intervals, and is itself dyadic.

Let p = (x, y) ∈ [0, 1] × [0, 1]. Since S1 and S2 are separations of the unit square, we

know there exists R ∈ S1 and T ∈ S2 such that p ∈ R and p ∈ T . Furthermore, we know

that R = I1 × I2 and T = J1 × J2, where I1,2 and J1,2 are dyadic intervals. From this, we

can gather that x ∈ I1 ∩ J1 and y ∈ I2 ∩ J2.
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Figure 1.4.2: The Cantor square.2

Remark 1.4.8. If I1 ∩ J1 = {x} then x is an endpoint of both I1 and J1. If x is a left

endpoint of I1, then S1 must contain some other rectangle R′ = I3 × I4, such that x is

a right endpoint of I3, and I4 contains I2 ∩ J2, otherwise no point (x0, y) where x0 < x

would be contained in any rectangle in S1. Similarly, if x is a right endpoint, then S1 must

contain some other rectangle R′ = I3 × I4, such that x is a left endpoint of I3, and I4

contains I2 ∩ J2. Likewise, if I2 ∩ J2 = {y}, then y is a left or right endpoint of I2, and

we can find R′ = I3 × I4 ∈ S1 such that y is the opposite endpoint of I4 and I3 contains

I1 ∩ J1. In any case, we let R = R′. ♦

Now we have R = I1×I2 and T = J1×J2 such that p ∈ R∩T , and |I1∩J1|, |I2∩J2| > 1.

Thus, the x and y intervals of the two rectangles overlap, and our algorithm adds the Carte-

sian product of their intersections to S3. Therefore, for any point p ∈ [0, 1] × [0, 1],

there exists a rectangle, call it Q, in S3 such that p ∈ Q. Thus, we have proven Theo-

rem 1.4.5.

We saw previously a relationship between the Cantor set, C, and dyadic intervals. There

exists a similar relationship between dyadic rectangles and something called the Cantor

square.

2By Hferee (Own work) [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Com-

mons
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Figure 1.4.3: Figure 1.4.1 represented as ordered pairs of binary strings.

Definition 1.4.9. The Cantor square, C × C, is the Cartesian product of the Cantor

set with itself. A picture of the Cantor square, sometimes called Cantor dust, is given in

Figure 1.4.2. 4

For the same reasons that we could describe dyadic intervals with finite binary strings,

we can describe dyadic rectangles using an ordered pair of finite binary strings, since each

string corresponds to a dyadic interval, and every dyadic rectangle is the cartesian product

of two dyadic intervals. An example is given Figure 1.4.3.

1.5 Brin-Thompson Group 2V

The group 2V is a finitely presented, simple group of functions which describe homeo-

morphisms of the Cantor square [6]. In V , functions were defined by dyadic breakpoints.

Since they act on two dimensions, the functions in 2V can be thought of as having dyadic

break-rectangles. A function f : [0, 1]× [0, 1]→ [0, 1]× [0, 1] in 2V is differentiable except

at the boundaries of finitely many dyadic rectangles R1, . . . , Rn, and f is defined piecewise

so that f(x, y) = (aix+ Ai, biy + Bi) if (x, y) ∈ Ri, where ai, bi are both powers of 2 and

Ai, Bi are dyadic numbers. The rectangles R1, . . . , Rn form a separation of the unit square,

and we can do the same algebra we did in Section 1.2 for both the x and y intervals of an

arbitrary rectangle Ri in the domain of f , to show that f(Ri) is another dyadic rectangle,

and draw the conclusion that f(R1), . . . , f(Rn) is another dyadic separation of the unit
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square. Thus functions in 2V can be given by a tuple (S1, S2, ϕ), where S1 and S2 are two

separations of the unit square into an equal number of dyadic rectangles, and ϕ : S1 → S2

is a bijection, such that (x, y) ∈ R where R ∈ S1, implies that f(x, y) ∈ ϕ(R), where

ϕ(R) ∈ S2.

As before, the most intuitive implementation uses two pictures of the unit square, cut

into the separations S1 and S2. This time ϕ is given as a labeling of S1 and S2 with the

numbers 0, . . . , n− 1, where n = |S1| = |S2|. For example, the function

f(x, y) =



(2x+ 1
2 ,

1
4y + 1

2) x ∈ [0, 14 ], y ∈ [0, 1]

(2x+ 1
4 ,

1
2y) x ∈ [14 ,

1
2 ], y ∈ [0, 1]

(x, 12y + 3
4) x ∈ [12 , 1], y ∈ [0, 12 ]

(x− 1
2 , 2y −

1
2) x ∈ [12 , 1], y ∈ [12 , 1]

can be described with this picture:

We could also use binary strings associated with the x and y intervals of the rectangles

in S1 and S2, translate any input point (x, y) to a pair of infinite binary strings, and

describe ϕ in terms of prefix replacement in both coordinates, like so:

ϕ(00, ) = (1, 10) ϕ(01, ) = (1, 0)

ϕ(1, 0) = (1, 11) ϕ(1, 1) = (0, )

so that

f(00w1, w2) = (1w1, 10w2) f(01w1, w2) = (1w1, 0w2)

f(1w1, 0w2) = (1w1, 11w2) f(1w1, 1w2) = (0w1, w2)
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where w1, w2 ∈ {0, 1}∞.

Definition 1.5.1. A tuple (S1, S2, ϕ) for a function f ∈ 2V is reducible if:

1. There exist rectangles L1, R1 ∈ S1 that are a reducible pair of left and right rectan-

gles.

2. There exist rectangles L2, R2 ∈ S2 that are a reducible pair of left and right rectan-

gles.

3. Both ϕ(L1) = L2 and ϕ(R1) = R2

or if:

1. There exist rectangles B1, T1 ∈ S1 that are a reducible pair of left and right rectan-

gles.

2. There exist rectangles B2, T2 ∈ S2 that are a reducible pair of left and right rectan-

gles.

3. Both ϕ(B1) = B2 and ϕ(T1) = T2 4

Just as before, we can also “un-reduce” a tuple (S1, S2, ϕ) for a function f ∈ 2V by

making identical cuts to corresponding pairs of rectangles in S1 and S2, and mapping the

resultant left and right, or top and bottom, rectangles in the domain to the resultant left

and right, or top and bottom, rectangles in the range.

Theorem 1.5.2. A function f ∈ 2V that is differentiable except at the boundaries of

finitely many dyadic rectangles R1, . . . , Rn can be described with the tuple (S1, S2, ϕ), where

m = |S1| = |S2| can be arbitrarily large, provided that m ≥ n.

Proof. Let f ∈ 2V be given by the tuple (S1, S2, ϕ), and without loss of generality, let

Q ∈ S1, and let U be a non-trivial, dyadic separation of Q with which we would like to
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replace Q. (We could also want to replace some other rectangle Q ∈ S2, and a similar proof

would result.) Since U is non-trivial, then by Lemma 1.4.2 we know that there is vertical

cut or a horizontal cut across U , so we can make the same cut to Q and “un-reduce” the

tuple of f in the manner described above. This creates L and R, the left and right or top

and bottom halves of Q, which we can now recursively replace with L ∩ U and R ∩ U ,

respectively, until the separation with which we’re replacing Q becomes trivial.

We saw in Theorem 1.2.5 that for f, g ∈ V with tuples (S1, S2, ϕ) and (T1, T2, ψ),

respectively, that if f(x) = g(x) for all x ∈ [0, 1], then the two tuples can be reduced to

be identical. This is not the case for 2V .

Theorem 1.5.3. A function f ∈ 2V is not guaranteed to have a unique reduced tuple

(S1, S2, ϕ).

Example 1.5.4. Two functions f, g ∈ 2V with respective tuples (S1, S2, ϕ) and (T1, T2, ψ)

are given by the pictures below.

0 1 2

3
f

0
1

2

3

0

1 2

3
g

0

1

2

3

Both tuples are reduced, and for all (x, y) ∈ [0, 1] × [0, 1], it is the case that

f(x, y) = g(x, y), but (S1, S2, ϕ) 6= (T1, T2, ψ). ♦

In Example 1.5.4 the rectangles labeled 0 and 3 form an L-shaped region that maps as

the identity. This is a problem because an L-shaped region can be reduced two different

ways, as the example shows. Unfortunately, this in not the only such troublesome shape.

A cross-shaped region in the center of the unit square can be reduced any of the sixteen

ways given in Figure 1.5.1. Any function which maps a cross-shaped region in the center

of the unit square as the identity can be fully reduced and have any formation of the cross
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Figure 1.5.1: Sixteen reduced ways to represent a cross shaped area in the center of the
unit square.

in its domain, and any formation of the cross in its range, meaning that any such function

has at least 256 reduced tuples that represent it.

1.6 Multiplying Elements of 2V

To multiply two functions f, g ∈ 2V with respective tuples (S1, S2, ϕ) and (T1, T2, ψ) by

first applying g, then f , we take the same approach we took with V . That is, we find a

common refinement of S1 and T2. We again use a modified version the algorithm we used

to find a common refinement of two dyadic separations of the unit square.
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Algorithm 1.6.1. Finding a common refinement of S1 and T2, given two functions

f, g ∈ 2V , with respective tuples (S1, S2, ϕ) and (T1, T2, ψ).

1 Let S = [{}1 , {}2 , . . . , {}n], where n = |S1| = |S2|.
2 for Qi ∈ T2 do
3 Let T = {}.
4 for Rj ∈ S1 do
5 if Qi and Rj overlap then
6 Add Qi ∩Rj to S[j] and to T .

7 end
8 Replace Qi with T , according to Theorem 1.5.2.

9 end
10 for Rj ∈ S1 do
11 Replace Rj with S[j], according to Theorem 1.5.2.
12 end

Thus we have created a common refinement of S1 and T2, and for all Q ∈ T1, we now

can be assured that ψ(Q) = R, where R ∈ S1. Thus we can construct a tuple (T1, S2, σ)

to represent fg, where σ(Q) = ϕ(ψ(Q)) for all Q ∈ T1.

Some examples of the process are given below.

Example 1.6.2.

0 1 2

0

1 2

0

1

1 0

g f

0

1 2

0 1 2

0

1 2

1 02

g f

1 020 1 2
fg

♦
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Example 1.6.3.

1

0

1 00 1 0 1

g f

13

2 0

1 3 13

2 3

0 2 2 0

0 1

g f

2 30 1

1 3

0 2

fg

♦
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A0 A1

B0 B1

Π0 Π1

Π0 Π1

Figure 1.7.1: These eight functions, together with their inverses, form a generating set
for 2V . Notice that all the Π functions are their own inverses, and are therefore not
included twice.

1.7 Generators of 2V

As mentioned in the previous section, 2V is finitely presented and generated. Any function

in 2V can be written as a word of the eight functions given in Figure 1.7.1 and their

inverses [7].

Example 1.7.1. Let f ∈ 2V be the function given by the drawing below.

3

0

4

1 2

f
3

0

4

2

1

We can write f as a word of generators.
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3 4

0 1 2

B1
3

0

1 2 4
Π1

3

0

4 1 2
A−1

0

3

0

4 1 2

B−1
1

3

0

4

2

1

A0
3

0

4

2

1

Π
−1

1

3

0

2

1

4
B−1

1

3

0
1

2

4

Thus, f = B−11 Π
−1
1 A0B

−1
1 A−10 Π1B1. ♦



2
Computational Problems and Group Based
Cryptography

This chapter covers a small portion of the research already done in the field of group

based cryptography. The first section defines the basis of the security of existing group

based key agreement protocols, and the second details the Anshel-Anshel-Goldfeld key

agreement protocol, as well the length based attack, which has been used to break other

implementations of AAG.

2.1 Decision Problems for Groups

In 1911, Max Dehn formulated three decision problems for groups [10] which are now

fundamental problems to consider for any group.

Definition 2.1.1. Let G be a finitely presented group. Dehn’s problems (also called

decision problems) for G are the following:

1. Word problem: Given a word w in the generators of G, does w = e, where e is the

identity element of G?
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2. Conjugacy problem: Given an arbitrary pair of words u and v in the generators

of G, does there exist a word x in the generators of G such that x−1ux = v?

3. Isomorphism problem: Given a finite presentation of a group H, does H = G?

If a computable algorithm exists to solve a decision problem for G, we say that problem

is decidable. Otherwise, we say that it is undecidable. 4

The word problem for 2V is decidable, since given a tuple (S1, S2, ϕ) for a function f , we

can determine whether f = e in linear time by asking whether ϕ(R) = R for all R ∈ S1.

Definition 2.1.2. Given a finitely presented group G, and an element x ∈ G, the torsion

problem asks, does there exist n ∈ N such that xn = e where e is the identity element

of G? 4

The torsion problem is another decision problem, which was shown to be undecidable for

2V by Belk and Bleak in 2014 [3]. The decidability of the conjugacy problem is unknown

for 2V , but given Belk and Bleak’s results about the torsion problem, it is likely that it

is also undecidable. What this does say for certain, however, is that 2V is not isomorphic

to V , since the torsion problem is decidable for V [6].

These problems are called decision problems because they require only a yes or no

answer. The following are other problems we can ask about groups, but they are not

decison problems, since both ask for an answer of one or more elements in G.

Definition 2.1.3. Given a group G, and two elements g, h ∈ G, the conjugacy search

problem (CSP) tells us that there exists some x ∈ G such that x−1gx = h, and asks us

to find at least one such x. 4

Because the conjugacy problem is most likely undecidable for 2V , the CSP is most likely

infeasible. If some solution c : G × G → G for the CSP has a computable runtime, then

for any g, h ∈ G we know the upper bound on the runtime of c(g, h), and can simply
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wait that long for a result. If we get a result x in that time, then we know that g and h

are conjugate, otherwise we know that they are not. Thus, a computable runtime for a

solution to the CSP implies that the conjugacy problem is decidable for that group.

Definition 2.1.4. The simultaneous conjugacy search problem (SCSP) is the CSP

over multiple g and h. That is, given a group G, and two sets of elements {g1, g2, ..., gn}

and {h1, h2, ..., hn}, the SCSP tells us that there exists x ∈ G such that x−1gix = hi for

all gi, hi, and asks us to find at least one such x. 4

The difficulty of the SCSP is the basis of the security of AAG, as we see in the next

section.

2.2 Anshel-Anshel-Goldfeld and the Length Based Attack

Suppose there exist two users, A and B, that wish to exchange private information despite

having only a public means of communication. The two might like a way to encrypt their

information. They need a way of establishing an encryption key between the two of them

that no observer can calculate, despite being able to observe all the information A and

B exchange to establish said key. In 1999, Anshel, Anshel, and Goldfeld proposed such a

method, using groups [1].

Definition 2.2.1. (Notation follows that in [13]) The Anshel-Anshel-Goldfeld key

exchange protocol requires a finite presentation of a group G, two users Alice and Bob,

and a set of integers {N1,2, L1,2, L} such that N1,2, L ∈ N and 1 ≤ L1 ≤ L2.

1. Alice randomly generates the public set a = {a1, . . . , aN1}, where each ai is a word

in generators of G, of length between L1 and L2, such that each generator of G

appears in a.



2. COMPUTATIONAL PROBLEMS AND GROUP BASED CRYPTOGRAPHY 46

Alice Bob

Public: a b

b
′

a′

Private: A B

KA KB

Table 2.2.1

2. Bob randomly generates the public set b = {b1, . . . , bN2}, where each bi is a word in

generators of G, of length between L1 and L2, such that each generator of G appears

in b.

3. Alice randomly generates the secret element A = aε1s1 · · · a
εL
sL

, where 1 ≤ si ≤ N1 and

εi = ±1, for each 1 ≤ i ≤ L.

4. Bob randomly generates the secret element B = bδ1t1 · · · b
δL
tL

, where 1 ≤ ti ≤ N2 and

δi = ±1, for each 1 ≤ i ≤ L.

5. Alice computes and publicly transmits to Bob the set b
′

=
{
b′1, . . . , b

′
N2

}
, where

b′i = A−1biA for all 1 ≤ i ≤ N2.

6. Bob computes and publicly transmits to Alice the set a′ =
{
a′1, . . . , a

′
N1

}
, where

a′i = B−1aiB for all 1 ≤ i ≤ N1.

7. Alice computes KA = A−1a′ε1s1 · · · a
′εL
sL

= A−1B−1AB = K.

8. Bob computes KB = b′−δLtL
· · · b′−δ1t1

B = A−1B−1AB = K. 4

Once the two users have recovered a common element K = KA = KB, there are

numerous ways to use K to create a shared encryption key. If there exists a feasible

algorithm for putting elements of the group G (which we call the platform group) into

a canonical form, that algorithm can be applied, and K can be used as the encryption

key. Otherwise, there may be a quicker algorithm for solving the group’s word problem,
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in which case Bob can send rewritten forms of K, or other random group elements, to

Alice, who then determines whether the element sent was K (denoting the bit 1), or

another element (denoting 0). This method can be used to establish an encryption key of

an arbitrary length.

The hope is that in order for an adversary to calculate K, they must calculate A and B

by solving the SCSP over the sets a and a′, and b and b
′
. When braid groups were under

consideration as a platform group, the Dehornoy form was proposed by Anshel, Anshel,

and Goldfeld [1] as a standard form in which to rewrite K. Viable platform braid groups,

however, were found by to be insecure for certain values of N1,2, L1,2, and L, due to their

susceptibility to something known as the Length Based Attack [13].

Definition 2.2.2. The Length Based Attack (LBA), keeping notation from Defini-

tion 2.2.1, takes as input the sets a, b, and a′, and outputs a guess for Bob’s secret element

B, if it is successful. The chief requirement of the LBA is that there exists a length function

l : G→ R for elements in the platform group G, such that for most x, y ∈ G it is usually

the case that l(y) < l(x−1yx). 4

The LBA uses the knowledge that for each a′i ∈ a′

a′i = B−1aiB = b−δLtL
· · · b−δ1t1

ai b
δ1
t1
· · · bδLtL

and tries to guess B by figuring out each of its conjugating factors in reverse order, starting

with bδLtL and working down to bδ1t1 . The attack tries every possible bδj where bj ∈ b and

δ = ±1. In general, it is usually the case that l(b−δj a′ib
δ
j) > l(a′i), unless we guess the

inverse of the outermost bδt , in which case bδt and b−δt cancel out at both ends, and the

resultant length is less than the length before conjugation. If this process is unclear, see

Example 2.2.3. The attack is described step-by-step in Algorithm 2.2.4.
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Example 2.2.3. Let G be a group with only 2 generators, a and b. Let x, y ∈ G and

suppose y = a−1bxb−1a. Using the LBA, we can guess what x was conjugated by without

knowing x. We compute:

a−1ya = a−1a−1bxb−1aa b−1yb = b−1a−1bxb−1ab

byb−1 = ba−1bxb−1ab−1 aya−1 = aa−1bxb−1aa−1 = bxb−1

Presumably, since the first three add conjugating factors, their length will be greater

than l(y). The hope of the LBA is that l(aya−1) will be the only one of these four with

length less than l(y), since a and a−1 will cancel out at both ends. If the LBA works as

intended, we now know the outermost generator by which x was conjugated. In AAG, x

will be an element of one of the users’ public sets, so at this point, we can check if aya−1

is an element of one of those sets. Since it’s not, we continue the process and try to guess

the outermost conjugating factor of aya−1 = bxb−1. We compute:

a−1aya−1a = a−1aa−1bxb−1aa−1a b−1aya−1b = b−1bxb−1b = x

baya−1b−1 = baa−1bxb−1aa−1b−1 aaya−1a−1 = baa−1bxb−1aa−1b−1

This time, presumably l(b−1aya−1b) is the only length that decreases. We check if this

product is an element in a user set. Since it is, we know that we have recovered all the

conjugating factors of x, and can calculate the element by which x was conjugated to

arrive at y. ♦
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L1, L2 10, 13 20, 23 30, 33 40, 43

Success rate 00% 51% 97% 96%

Table 2.2.2: LBA success rates from [13].

Algorithm 2.2.4. Algorithm for the LBA.

Input: a, a′, b

1 Let α = {α1, . . . , αN1} = a′, and x = e, the identity element in the platform group G.
while α 6= a do // If this loop terminates, x = B−1.

2 for bδj where bj ∈ b and δ = ±1 do

3 Compute Γ(bδj) =
∑N1

i=1 l(b
−δ
j aib

δ
j).

4 end

5 Let bk be the bδj with the smallest Γ(bδj).

6 x← xb−1k .

7 α←
{
b−1k α1bk, . . . , b

−1
k αN1bk

}
.

8 end
9 return x−1

As mentioned in the introduction, Anshel, Anshel, and Goldfeld proposed braid groups

as a platform group. See the background of Ko et al. for a good introduction to these

groups [12]. Using the group B80 (the group of braids on 80 strands) as a platform group,

with the values N1,2 = 20 and L = 50, Myasnikov and Ushakov found the LBA successful

at the rates given in Table 2.2.2 [13].



3
Implementing 2V : Data Structures and Algorithms

In order to use 2V as a platform group AAG, we needed an implementation with a very

fast multiplication algorithm. Divide-and-conquer algorithms work well to this end, and

by Lemma 1.4.2, we know that any nontrivial dyadic separation of the unit square has

either a horizontal or vertical cut at 1
2 , so we have a very natural way to split the work of

multiplication in half. In the first section of this chapter, we define a structure called an

augmented binary tree (which we call AugTree) to represent dyadic separations of the unit

square. Each subtree of an augmented binary tree also represents a dyadic separation, so

that during multiplication, when we wish to find a common refinement of two trees, we can

find a common refinement of their left and right subtrees recursively. In the second section,

we give our implementation of an element of 2V (which we call V2Function, as Java does

not allow a class name to start with a numerical character), including a description of how

this multiplication algorithm works. We also pseudocode methods used by both of these

classes in their respective sections. All verbatim code is available in the appendix. In the

last section, we present data collected with our implementation, and posit that the worst

case runtime for any multiplication algorithm is inherently quadratic.



3. IMPLEMENTING 2V : DATA STRUCTURES AND ALGORITHMS 51

H

V H

V

H

Figure 3.1.1: A dyadic separation S of the unit square, and a corresponding augmented
binary tree T .

3.1 Augmented Binary Trees

In Section 1.2, we saw three ways of representing dyadic separations of the unit interval

— pictures, binary strings, and trees — but for the unit square we only saw two repre-

sentations — pictures and binary strings. We can also use an augmented version of the

binary trees we used for dyadic separations of the unit interval. The only modification

needed is a specification of whether a cut is horizontal or vertical. Instead of representing

dyadic intervals, the nodes of the tree now represent dyadic rectangles. The left and right

children of vertically cut nodes are, logically, the left and right rectangles that result from

the cut. The left and right children of a horizontally cut node represent, respectively, the

bottom and top rectangles that result from the cut. An example of a dyadic separation of

the unit square and a corresponding augmented binary tree is given in Figure 3.1.1.

Implementing such a data structure is quite simple if one is familiar with the standard

binary tree data structure, which consists of a value and two children which are also binary

trees, and the class invariant that exactly zero or two of the children are non-null at any

given time. An overview of our implementation is given below.
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3.1.1 Class: AugTree

An augmented binary tree is a rooted, binary tree with the following fields:

• An id field holding a unique, random integer.

• Two fields, cutHorz and cutVert, holding boolean values.

• Six fields, left and right, bottom and top, parent, and partner, all of which are

themselves augmented binary trees.

Class invariants:

• Exactly one or zero of the two fields cutHorz and cutVert is true at any given time.

• If cutHorz is true, then both the bottom and top fields are non-null.

• If cutVert is true, then both the left and right fields are non-null.

• If an augmented tree is not the root of the structure that it is in, then its parent

field is non-null.

• The partner field is null until it is assigned by a V2Function, which we will see in

the following section. If partner is non-null, it is always the case that the partner

of the partner of an augmented binary tree T is T itself.

Our default constructor creates an AugTree object with a single node. We also include

the obvious mutator methods setLeft, setRight, setBot, setTop, and setPartner, all

of which maintain the class invariants.

Another, private constructor we include takes an AugTree parameter p, and creates a

single node whose parent is p. This constructor is called by two methods cutHorz() and

cutVert(), which maintain the class invariants. The method cutHorz() sets the field

cutHorz to true and sets the object’s bottom and top fields to new AugTree objects
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created by the private constructor. Likewise, cutVert() sets the field cutVert to true

and sets the object’s left and right fields to new AugTree objects created by the private

constructor. Both methods maintain the class invariants.

A method getRelation() takes as input an augmented binary tree T , and returns a

string indicating whether T is the left, right, bottom, or top child of the tree that called

getRelation(), or not a child. A reduce() method sets both cutHorz and cutVert to

false, and all its children to null. The last quick and easy method is isTrivial() which

returns true if both cutHorz and cutVert are false.

The toString() method returns the binary string representations of the x- and y-

intervals of the dyadic rectangle that a given node corresponds to. The method calculates

a node’s x- and y- binary strings by crawling up the tree to the root node to ascertain its

relative position in the tree. The algorithm is given in Algorithm 3.1.1. Writing toString()

this way eliminates the need to store and constantly update several thousand binary strings

for a function.
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Algorithm 3.1.1. An algorithm for calculating the binary strings corresponding to the

x- and y-intervals of a node u in an augmented binary tree T .

1 Let x =“ ” and let y =“ ”. Let p = uparent.
2 while p is non-null do
3 if p is cut horizontally then
4 if u == pbottom then
5 y ← “0” + y
6 else // Must be the case that u == ptop, since p is

// cut horizontally and u is a child of p.
7 y ← “1” + y

8 else // p must be cut vertically, since p has a non-null child, namely u.
9 if u == pleft then

10 x← “0” + x
11 else // Must be the case that u == pright, since p is

// cut vertically and u is a child of p.
12 x← “1” + x

13 p← pparent
14 end
15 return [x, y]

This more abstract representation is actually quite helpful when devising a more efficient

algorithm for finding a common refinement of two dyadic separations of the unit square,

but presents some limitations as well. For example, consider the dyadic separation in

Figure 3.1.2. This separation could be represented with either of the trees below it, and

both would be valid.

As such, our implementation needs to recognize that these distinct structures as equal,

and report that the parent node appears to be cut both horizontally and vertically, despite

the class invariants. We include two methods, looksCutVert and looksCutHorz, to aid

us in this effort. The algorithm used by looksCutVert is given in Algorithm 3.1.2, and

the algorithm used by looksCutHorz is identical, except for superficial changes to variable

names. Notice that this method is also highly recursive. The structure that we engineered

for recursive multiplication turns out to lend itself to recursion in most situations, since

we can usually split a problem for a binary tree into the two subproblems of the subtrees

that are its children.
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Figure 3.1.2: A troublesome dyadic separation of the unit square and its two valid tree
representations.

Algorithm 3.1.2. An algorithm for determining whether an augmented binary tree T

represents a dyadic separation of the unit square that looks like it was cut vertically, which

returns its left and right halves if so.

1 Let u be the root node of T .
2 if u is cut vertically then // Easy case. It looks cut vertically because it is.
3 return [uleft, uright]
4 else if u is cut horizontally and both its children are non-trivial then
5 Let b = ubottom.looksCutVert() // Recursive call to this algorithm. Returns

// left and right halves of ubottom if so.
6 Let t = utop.looksCutVert() // Recursive call to this algorithm. Returns

// left and right halves of utop if so.
7 if both b and t are non-empty then
8 Let L and R be trivial augmented binary trees.
9 Cut both L and R horizontally.

10 L.setBot(b[0])
11 L.setTop(t[0])
12 R.setBot(b[1])
13 R.setTop(t[1])
14 return [L,R]

15 return [ ]

Now that we have a way to deal with the issue in Figure 3.1.2, we can use it to check the

equality of two augmented binary trees S and T . The recursive equality algorithm given
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in Algorithm 3.1.3 begins at the root nodes of both S and T , and crawls down both trees

simultaneously, asking at each step if the two current nodes are cut in the same way (or at

least appear to be, even if their labels H/V don’t match), and if so, if both their children

are equal. The algorithm returns true if we arrive at a leaf node at the same place in both

trees for all leaves in both S and T .

Algorithm 3.1.3. An algorithm for checking the equality of two augmented binary

trees S and T .

1 Let u be the root node of S and let v be the root node of T .
2 if u and v are both cut horizontally then // Easy case.
3 return utop == vtop and ubottom == vbottom // Recursive call to this algorithm.
4 else if u and v are both cut vertically then // Easy case.
5 return uleft == vleft and uright == vright // Recursive call to this algorithm.
6 else if u is cut vertically and v is cut horizontally then
7 Let h = v.looksCutVert() // Returns empty set if false,

// else returns left and right halves of v.
8 if h is empty then
9 return false

10 else
11 return uleft == h[0] and uright == h[1] // Recursive call to this algorithm.

12 else if u is cut horizontally and v is cut vertically then
13 Let h = v.looksCutHorz() // Returns empty set if false,

// else returns bottom and top halves of v.
14 if h is empty then
15 return false
16 else
17 return ubottom == h[0] and utop == h[1] // Recursive call to this algorithm.

18 else if u and v are both trivial then // We have crawled down both trees in the
// same way and arrived at a leaf in both.

19 return true

20 else // u is a leaf and v is not, or vice versa
21 return false

3.1.2 Class: V2Function

Since we can represent a dyadic separation of the unit square with these augmented binary

trees, any function in 2V can be described using two trees and a labeling, as we did for V in

Section 1.2. An example of a tuple (S1, S2, ϕ) for a function f ∈ 2V using augmented binary
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Figure 3.1.3: f(x, y) represented as a pair of binary trees.

trees and a labeling is shown in Figure 3.1.3. As such, our implementation V2Function

has the following:

• A domain and range field, which are the augmented binary tree representations of

S1 and S2, respectively.

• A domLeaves and ranLeaves field, each of which are ArrayList data structures

holding the leaves of domain and range, respectively.

• A numLeaves field, holding an integer indicating the size of this function’s tuple.

Class invariant:

• At any given time, numLeaves = |domLeaves| = |ranLeaves| = the number of leaves

in domain = the number of leaves in range.

Maintaining a carefully indexed list of the leaves of domain and range eliminates the

need to crawl down the entire tree structure every time we need to access a leaf node.
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The reader may notice that a ϕ function is conspicuously absent. The primary con-

structor for this class takes a parameter phi which is an ArrayList of integers used to

initialize the partner relationships between the leaves of domain and the leaves of range,

where phi.get(i) = j means that ϕ maps the jth leaf of S1 to the ith leaf of S2. This

eliminates the need for any sort of costly look up — for any leaf u ∈ S1, we can know ϕ(u)

in constant time, since it will be upartner. Should we ever need to recover ϕ, the AugTree

class has a method phi() which constructs the proper ArrayList of integers by iterating

over the leaves of S2 and for each leaf node u, adding the index of the leaf upartner in S1.

We also include a default, zero-parameter constructor which creates the identity element

of 2V , and a private constructor with only domain and range parameters, which assumes

that the partner relationships between the two are already initialized. This constructor

is only called by the class’ multiply() method, which we will arrive at after presenting

some of the more obvious methods the V2Function class ought to have, as well as methods

prerequisite for understanding the multiplication algorithm.

The V2Function class has a method isIdentity(), which solves the word problem for

2V using the short algorithm given after Definition 2.1.1.

Reducibility of function tuples is implemented with two methods reduce() and

reduceHelper(). The reduceHelper() method uses Algorithm 3.1.4, and returns true

if any reductions are made. The reduce() method calls reduceHelper() in a loop, until

it returns false. This algorithm is extremely rudimentary in that it will only recognize a

reducible pair of rectangles L1, R1 ∈ S1 and L2, R2 ∈ S2 if they are literally the same sort

of child nodes in the domain and range trees, which may not always be the case due to the

limitation illustrated in Figure 3.1.2. A possible solution could be a recursive algorithm

down the domain and range trees with backtracking that figures out the most reducible

structures for both.
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Algorithm 3.1.4. An algorithm for completing one pass of reductions over a tuple

(S1, S2, ϕ) of a function f ∈ 2V , where S1 and S2 are given by augmented binary trees.

1 Let b = false.
2 for u ∈ domLeaves do
3 if uparent is null then // Root is a leaf and f is the identity. Nothing to reduce.
4 return false
5 Let v = upartner.
6 Let r1 = uparent.getRelation(u), and let r2 = vparent.getRelation(v).

// If u is not the root of S1 then v cannot be the root of S2,
// since that would imply |S2| = 1 < |S1|.

7 if r1 == r2 then // u and v are the same kind of child, go get their siblings.
8 Let p1 = uparent and let p2 = vparent.
9 Let x be the child of p1 that is not u, and let y be the child of p2 that is not v.

if xpartner == y then // u & x reducible, v & y reducible,
// ϕ(u) = v, ϕ(x) = y.

10 Replace u in domLeaves with p1 and replace v in ranLeaves with p2.
11 Remove x from ranLeaves and remove y form domLeaves.
12 p1.reduce()
13 p2.reduce()
14 p1.setParter(p2)
15 numLeaves← numLeaves− 1
16 b←true

17 end
18 return b

Un-reducing is much easier to implement. In order for Theorem 1.5.2 to hold for our

implementation, we create cutHorz() and cutVert() methods for the V2Function class.

Algorithm 3.1.5 outlines the cutVert() method, and the cutHorz() functions analogously.

Both take as parameters a leaf node u and a string where indicating whether u is in S1

or S2. The default value of where is “r” for “range,” indicating S2.
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Algorithm 3.1.5. An algorithm for cutting a leaf node u which, given a tuple (S1, S2, ϕ)

for a function f ∈ 2V , may be in either S1 or S2.

Input: where ∈ {“d”, “r”}
1 if where == “r” then // u ∈ S2
2 if u ∈ ranLeaves then // Double-check it’s really there.
3 Let v = upartner.
4 u.cutVert()
5 v.cutVert()
6 uleft.setPartner(vleft)
7 uright.setPartner(vright)
8 Replace u in ranLeaves with uleft, and add uright at the following index.
9 Replace v in domLeaves with vleft, and add vright at the following index.

10 numLeaves← numLeaves + 1

11 else if where == “d” then // u ∈ S1
12 if u ∈ domLeaves then // Double-check it’s really there.
13 Let v = upartner.
14 u.cutVert()
15 v.cutVert()
16 uleft.setPartner(vleft)
17 uright.setPartner(vright)
18 Replace u in domLeaves with uleft, and add uright at the following index.
19 Replace v in ranLeaves with vleft, and add vright at the following index.
20 numLeaves← numLeaves + 1

Before we can turn our attention to a multiplication algorithm, we define two more

methods, cutFullHorz() and cutFullVert(), which again function analogously to each

other. Both take as parameters a node u (in this case not usually a leaf) and a string

where indicating if u is a node in domain or in range. The parameter where is unused

until the base case, which cuts a leaf node with cutVert() or cutHorz(), and so requires

that we know which tree u is located in. The method cutFullVert(), regardless of how

u is currently cut, cuts u vertically, sets its left and right children to be the left and right

halves of whatever dyadic rectangle u represented initially, and returns those halves as

well. If this process seems unclear, see Figure 3.1.4 for an example.
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Figure 3.1.4: An augmented binary tree T and its corresponding dyadic separation S before
and after cutFullVert() has been called on it.

Algorithm 3.1.6. An algorithm for fully cutting a node u vertically, regardless of whether

or not u is a leaf.

Input: where ∈ {“d”, “r”}
1 if u is cut vertically then // Easy case
2 return [uleft, uright]
3 else if u is cut horizontally then
4 Let b = cutFullVert(ubottom, where) // Recursive call to this algorithm

// returns left and right halves of ubottom.
5 Let t = cutFullVert(utop, where) // Recursive call to this algorithm,

// returns left and right halves of utop.
6 Let L and R be trivial augmented binary trees. Cut both L and R horizontally.
7 L.setBot(b[0])
8 L.setTop(t[0])
9 R.setBot(b[1])

10 R.setTop(t[1])
11 return [L,R]

12 else // u is a leaf node.
13 cutVert(u, where)
14 return [uleft, uright]
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f Π0

Figure 3.2.1: Some complex element f ∈ 2V and a generator we would like to multiply it
by.

3.2 An Algorithm for Multiplying Elements of 2V

Given the tuple (S1, S2, ϕ) of a function f with m rectangles, and the tuple (T1, T2, ψ) of

a function g with n rectangles, Algorithm 1.6.1 has a runtime of O(m ·n), i.e. quadratic if

m = n. Algorithm 3.2.2 is a recursive multiplication algorithm that makes use of the tree

structure. Its runtime is logarithmic in principle, and should be faster than quadratic in

the average case.

One consideration that went into the design of this algorithm is that much of the

multiplication that needs to take place to implement the Anshel-Anshel-Goldfeld protocol

is multiplication by generators, which have very few rectangles. This algorithm is tailored

for multiplying complex functions with many rectangles by a 2- to 4-rectangle generator.

When faced with two functions as in Figure 3.2.1, rather than spend a lot of time cutting

up Π0, we can make use of the tree representation of 2V . What we’d like to be able to do

in this example is pick up each half of the range of f by its root, and map those according

to Π0, as in Figure 3.2.2.

Given two functions f, g ∈ 2V , with tuples (S1, S2, ϕ) and (T1, T2, ψ), respectively, to

obtain the result fg, the multiply() method itself simply calls a method intersect(),

and returns a new V2Function using the private constructor. The intersect() method

recursively crawls down both trees S1 and T2 simultaneously, ensuring that for each pair

u, v of nodes, where u ∈ S1 and v ∈ T2, that v is cut in the same way as u, until we reach a

leaf in S1, at which point intersect() calls a third method, assign(). The intersect()
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f Π0

��

fΠ0

Figure 3.2.2

method is described in greater detail in Algorithm 3.2.2, and a description of assign() is

given in Algorithm 3.2.1.

Algorithm 3.2.1. The algorithm of the assign() method used by Algorithm 3.2.2 to

calculate the composition of functions fg, where f has the tuple (S1, S2, ϕ) and g has the

tuple T1, T2, ψ.

Input: v is a node in T2 and u is a leaf in S1

1 Let p = upartner, and let P = pparent.
2 Let r = P.getRelation(p).
3 if r==“bot” then
4 P.setBot(v)
5 else if r==“top” then
6 P.setTop(v)
7 else if r==“left” then
8 P.setLeft(v)
9 else if r==“right” then

10 P.setRight(v)
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Algorithm 3.2.2. A recursive algorithm for finding a common refinement of S1 and T2,

given f, g ∈ 2V , with tuples (S1, S2, ϕ) and (T1, T2, ψ), and asked to calculate fg.

1 Let u be the root node of S1, let v be the root node of T2.
2 if u is a leaf then
3 assign(v, u)
4 else if both u and v are cut horizontally then
5 intersect(vtop, utop) // Recursive call to this algorithm.
6 intersect(vbottom, ubottom) // Recursive call to this algorithm.

7 else if both u and v are cut vertically then
8 intersect(vleft, uleft) // Recursive call to this algorithm.
9 intersect(vright, uright) // Recursive call to this algorithm.

10 else if u is cut horizontally and v is a leaf then
11 cutHorz(v)
12 intersect(vtop, utop) // Recursive call to this algorithm.
13 intersect(vbottom, ubottom) // Recursive call to this algorithm.

14 else if u is cut vertically and v is a leaf then
15 cutVert(v)
16 intersect(vleft, uleft) // Recursive call to this algorithm.
17 intersect(vright, uright) // Recursive call to this algorithm.

18 else if u is cut horizontally and v is cut vertically then
19 cutFullHorz(v)
20 intersect(vtop, utop) // Recursive call to this algorithm.
21 intersect(vbottom, ubottom) // Recursive call to this algorithm.

22 else if u is cut vertically and v is cut horizontally then
23 cutFullVert(v)
24 intersect(vleft, uleft) // Recursive call to this algorithm.
25 intersect(vright, uright) // Recursive call to this algorithm.

The assign method makes leaf nodes of S2 into subtrees whose leaves are already

partnered up with the leaf nodes of T1, so we don’t need a phi parameter to assign partners,

we can just call the private constructor with T1 and S2. Note that unless everything is

copied beforehand, this destroys the original V2Function objects.

3.3 Resultant Rectangles when Multiplying n Generators

The resultant number of rectangles in a function tuple created by multiplying n generators

of 2V is presented in Figure 3.3.1
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g f

Figure 3.3.3: When composing g, given by the tuple (T1, T2, ψ), with f , given by the tuple
(S1, S2, ϕ), this is the worst case scenario for the orientations of the cuts in S1 and T2.

Purely from a visual assessment, we can see that the average case does not increase

especially quickly, though it’s hard to tell due to some egregious outliers. Figure 3.3.2 is

contains the same data with the most significant offender removed. This allows us to see

the curvature of the growth more easily.

In order to analyze what is happening here, consider composing two arbitrary functions

f, g ∈ 2V , given by tuples (S1, S2, ϕ) and (T1, T2, ψ), where |S1| = |S2| = |T1| = |T2| = n.

The worst case scenario looks something like Figure 3.3.3, where the T2 has only one sort

of cut, and S1 has only the other kind of cut. A common refinement of S1 and T2 has

n2 rectangles. Note that this means that if a subquadratic multiplication algorithm for

elements of 2V exists, it’s worst case runtime will still grow quadratically due to this fact.

The average generator of 2V has three rectangles. On average, then, each time we

multiply a function f whose tuple has k rectangles by a generator, we potentially have up

to 3k resultant rectangles. So, when we multiply together n generators, if the worst case

orientation of S1 and T2 occurs every time, we would end up with around 3n rectangles

in our final product. This hypothesis has not been explored extensively, though I believe

doing so would reveal that the worst case number of rectangles in a product of generators

is exponential in the number of generators.



4
Implementation and Cryptanalysis of
Anshel-Anshel-Goldfeld

The first section of this chapter discusses how we implement two distinct users, and the key

agreement protocol between them. The second section outlines how we come up with an

actual encryption key that is identical between the two users. The third section analyzes

the runtime of AAG. Lastly, Section 4.4 discusses our implementation of the LBA and

and our results, which show conclusively that AAG is not secure with 2V as a platform

group.

4.1 Implementing the Anshel-Anshel-Goldfeld Key Agreement
Protocol

To implement AAG, we create the User class. The fields a User needs, as well as the

algorithms of the methods the class should have, are for the most part given in Defini-

tion 2.2.1. This section, as a result, only focuses on those things that are unique to our

implementation.

Recall that AAG requires a set of integers, {N1,2, L1,2, L} and a finite presentation of

a group G. As such, our User constructor takes five parameters: four integers n, L1, L2,
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and L, and a set of generators. For Alice, we pass N1 as the n parameter, and for Bob,

we pass N2.

The createUserSet() method, which creates a for Alice, and b for Bob, generates a

random number between L1 and L2, and then multiplies together that many randomly

selected generators to create each element in the users’ public sets, and returns a boolean

value representing whether all the generators were used in this process. To ensure that all

generators appear in a user’s public set, the User constructor calls createUserSet() until

it returns true. Even with relatively small choices for N1,2, L1,2, and L we can drive down

the number of times the constructor will have to call createUserSet(). For example, if we

use N1,2 = 5, L1 = 8, L2 = 10, and L = 5, each user’s public set is a 5-tuple of words of 8

to 10 generators, meaning that at least 40 generators are used to create a user’s public set.

The probability that a generator does not get used during this process is at most (1112)40

or a little over 3%. With these parameters, users occasionally had to try twice to create a

valid public set, but never more than twice during our trials.

The next step in the constructor is to create each user’s secret element. As we randomly

select elements from a user’s public set to create the secret element, we store their indices

in a private ArrayList of integers called eltsUsed, so that we can remember their order

later when we want to create K. For example, Alice’s secret element A = as1 · · · asL , where

each si is the ith entry in eltsUsed (In our implementation, inverses are given as distinct

elements of the user’s public set). Therefore, when Alice receives the set a′, she can recover

B−1AB = B−1as1 · · · asLB = B−1as1B · · ·B−1asLB = a′s1 · · · a
′
sL
.

Creating K is a two step process. The first step each user takes is identical. Alice

calculates CA = B−1AB, and Bob computes CB = A−1BA. After this, Alice calculates

A−1CA, and Bob calculates C−1B B. To accomplish this, the User class has two methods



4. IMPLEMENTATION AND CRYPTANALYSIS OF ANSHEL-ANSHEL-GOLDFELD69

keyA() and keyB(), each of which call a method step1(), and then call step2A() or

step2B(), respectively.

I attempted to implement UserA and UserB as subclasses of a User superclass, but Java’s

variable protection made this difficult. If userElt, the field where we store a User object’s

secret element is declared private, then it is not accessible by subclasses, meaning each of

UserA and UserB need their own private variables, which is unnecessarily specific. If class

variables are declared protected in the User superclass, then they’re public thoughout all

subclasses, meaning that A is public to Bob, and B is public to Alice, which defeats the

purpose of a key agreement protocol. As a result, writing the User class in this way, and

then using the KeyAgreement class to designate each User as Alice or Bob, and instructing

them to call keyA() or keyB() accordingly, seems to be the most faithful implementation

at the present moment.

4.2 Establishing a Practical Encryption Key

Theorem 1.5.3 stated that a function f ∈ 2V is not guaranteed to have a unique reduced

tuple (S1, S2, ϕ). Since we are not guaranteed a standard form of the element K that

Alice and Bob agree upon, they must carry out some other process to create an identical

key that both can use for encryption. Since multiplication can still be computationally

expensive, even with our revised algorithm, rather than send random group elements to

establish a key, as proposed in Section 2.2, we use the orbit of the point (0, 0) in K.

Definition 4.2.1. Given a set X and a function f : X → X, the orbit of an input x ∈ X

is given by

x, f(x), f(f(x)), f(f(f(x))), . . .

4
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Since KA = KB = K, we know that KA(x, y) = KB(x, y) for all (x, y) ∈ [0, 1] × [0, 1].

In other words, the orbit of (0, 0) in both keys will be identical.

In order for a function f ∈ 2V , given by the tuple (S1, S2, ϕ) to map a point (x, y) we

first need to know which leaf node u ∈ S1 corresponds to the interval containing (x, y), so

that we can find ϕ(u) = upartner which is a leaf in S2. This is accomplished by a method

containsPoint() in the AugTree class, which uses Algorithm 4.2.2.

In theory, x, y ∈ {0, 1}∞. In practice, since it would be impossible to pass an infinite

string to a method, x and y are both finite binary strings which are implied to be followed

by an infinite string of zeros. Hopefully x and y are longer than the maximum length of the

strings describing x- and y-intervals of the leaves of T , because in this case we can simply

find the node that corresponds to the prefixes of both x and y, and effectively ignore the

fact that x and y are finite. If we reach the end of either x or y as we read it before we

reach a leaf node, we still need to get to a leaf node, so we cheat by padding the ends of

x and y with zeros as necessary.
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Algorithm 4.2.2. An algorithm for finding which leaf node of an augmented binary tree

T contains the point (x, y).

1 Let u be the root node of T .
2 if u is cut horizontally then
3 if the first digit of y is a 0 then
4 return ubottom.containsPoint(x, y[1 :]) // Recursive call to this algorithm.
5 else if the first digit of y is a 1 then
6 return utop.containsPoint(x, y[1 :]) // Recursive call to this algorithm.
7 else // y must be empty
8 return ubottom.containsPoint(x, 0) // Recursive call to this algorithm.

9 else if u is cut vertically then
10 if the first digit of x is a 0 then
11 return uleft.containsPoint(x[1 :], y) // Recursive call to this algorithm.
12 else if the first digit of x is a 1 then
13 return uright.containsPoint(x[1 :], y) // Recursive call to this algorithm.
14 else // x must be empty
15 return uleft.containsPoint(0, y) // Recursive call to this algorithm.

16 else // u is a leaf
17 return u

Now, we can figure out what interval v corresponds to, and figure out the values of a,

A, b, and B such that f(x, y) = (ax + A, bx + B). This can be done algebraically, which

requires lots of mathematical computations, or it can be done by means of binary string

prefix replacement, thanks to the correspondence established between dyadic intervals in

Section 1.5. This is the approach we take.

We provide a mapPoint() method in the V2Function class, which calls S1.containsPoint(x, y)

to get u, then replaces the prefixes given by u with the prefixes given by upartner to deter-

mine f(x, y) for a particular function. We also provide methods bsToDbl() and dblToBS()

which allow the user to roughly convert from binary strings to floating point numbers, and

back. The method bsToDbl() only reads to a certain number of digits, which the user can

specify by editing the local method variable maxStrLen. Excessively long binary strings

give an unnecessary level of specificity to floating point numbers, while significantly slow-

ing computation time.
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Orbit 1 Orbit 2

Orbit 3 Orbit 4

Figure 4.2.1: Orbit of the point (0, 0) in the keys produced by our implementation of AAG
with the parameters N1,2 = 5, L1 = 8, L2 = 10, and L = 5. Notice that in Orbit 4, the
point (0, 0) has period 1.

We calculate the orbit for a certain number of iterations (which can changed by editing

the local method variable keyLen in the User class method createBinStr()), and con-

catenate the binary strings of each of the x- and y-coordinates to create a string called

encryptKey which is identical for Alice and Bob.

Now, if we want to encrypt a message, we convert all its characters to their binary

values, concatenate them, XOR the concatenated binary string with encryptKey, and send

it. The other user then XORs the encrypted message with their identical encryptKey to get



4. IMPLEMENTATION AND CRYPTANALYSIS OF ANSHEL-ANSHEL-GOLDFELD73

Parameters 5, 5, 8, 10, 5 5, 5, 8, 10, 10 10, 10, 8, 10, 10 10, 10, 5, 8, 20

Trial

1 2.670 s 40.199 s 1.928 s OME

2 1.008 s OME OME 5+ min

3 21.144 s 13.619 s 5+ min 5+ min

4 1.226 s OME 5+ min OME

5 206.049 s 5+ min OME 5+ min

6 0.264 s 7.327 s 8.225 s 5+ min

7 10.873 s 409.652 s OME 5+ min

8 0.642 s OME 31.830 s

9 0.116 s OME 5+ min

10 0.160 s 158.296 s OME

Table 4.3.1: The runtimes for various values of N1,2, L1,2, and L over ten trials. The label
OME, for “out of memory error,” indicates that the JVM ran out of heap space before
establishing a key.

the message in binary back out, and then just converts each byte of the resultant message

back to its corresponding character.

This would be a great method for establishing a random encryption key if these functions

had chaotic orbits. Unfortunately, the orbits of the functions produced by a KeyAgreement

object initialized with feasible parameters are remarkably unchaotic, as seen in the exam-

ples in Figure 4.2.1. Unchaotic orbits mean that an adversary wishing to intercept en-

crypted information can potentially guess the location of f(x, y) and hence encryptKey.

4.3 AAG Runtime

The different parameters we tried with our implementation, and their runtimes are given

in Table 4.3.1. Size, clearly, is an issue. We allocated 1.4GB of heap space for these trials,

and still frequently ran out of memory before the users were able to agree upon a key, most

likely due to the problem illustrated by Figures 3.3.1 and 3.3.2. One solution might be to
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put in a check to catch instances of the worst case multiplication scenario we described

(see Figure 3.3.3) in order to avoid them.

Using the parameters N1,2 = 5, L1 = 8, L2 = 10, and L = 5 had an average runtime

of 24.415 seconds, which is far too slow for encryption purposes. Running the protocol

with a profiler revealed that roughly 65% of calls are to ArrayList.indexOf(), so any

improvements to our code should also aim to work around using this built-in Java data

structure. The fact that the median runtime among these trials is only 1.117 s, however,

is promising if we can find some way to avoid the worst case multiplication scenario.

4.4 The Length Based Attack

Our implementation of the LBA follows Algorithm 2.2.2. As a length function l, we use the

numLeaves field of the V2Function class, which gives the number of leaves in S1 (equal

to the number of leaves in S2) for the function it represents. We always call reduce()

before checking the number of leaves, in order to get the most faithful representation of

how much it has increased or decreased.

As one might guess from Table 4.3.1, we did not get to test the our LBA on especially

large elements of 2V , that is elements with tuples where |S1| and |S2| are on the order

of 100, 000. Of the successfully completed trials where L ≥ 10, none were broken by the

LBA. In over 50 trials with the parameters N1,2 = 5, L1 = 8, L2 = 10, and L = 5, only

one instance was broken by the LBA. The LBA is primarily successful against instances

with very large parameters, so this information may not be of much use.

In twenty trials, we picked a random generator, and conjugated it by thirty more ran-

domly selected generators. Over these trials, the length of the conjugated element de-

creased eight times, and of those eight, six were because we had conjugated by the inverse

of the element by which we had just previously conjugated. What we can determine from

this is that using the number of leaves in S1 as our length function l fits the citeria listed
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in Definition 2.2.2 that the LBA needs to be successful. Given the chance to test the LBA

on instances of AAG with larger parameters, we will most likely see greater success rates.



Appendix: Code

pub l i c c l a s s AugTree{
AugTree parent ; // n u l l i f t h i s i s root
AugTree l e f t , r i g h t ;
AugTree bottom , top ;
AugTree partner ; // partner i s the augtree that t h i s one maps . non−n u l l i f

// t h i s i s a l e a f in an AugTree used in a f u c t i o n .
Boolean cutHorz , cutVert ; // only 0 or 1 o f the se i s t rue
i n t id ;
Random r = new Random ( ) ;

pub l i c AugTree ( ){
t h i s . parent = t h i s . l e f t = t h i s . r i g h t = t h i s . bottom

= t h i s . top = t h i s . partner = n u l l ;
t h i s . cutHorz = t h i s . cutVert = f a l s e ;
t h i s . id = t h i s . r . next Int (1000000) ;

}

p r i v a t e AugTree ( AugTree p){
t h i s . parent = p ;
t h i s . l e f t = t h i s . r i g h t = t h i s . bottom = t h i s . top = t h i s . partner = n u l l ;
t h i s . cutHorz = t h i s . cutVert = f a l s e ;
t h i s . id = t h i s . r . next Int (1000000) ;

}

pub l i c void se tPar tne r ( AugTree o ){
t h i s . partner = o ;
o . partner = t h i s ;
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}

pub l i c void s e t L e f t ( AugTree t ){
t h i s . l e f t = t ;
i f ( ! t h i s . cutVert ){ t h i s . cutHorz = f a l s e ; t h i s . cutVert = true ; }
t . parent = t h i s ;

}

pub l i c void se tRight ( AugTree t ){
t h i s . r i g h t = t ;
i f ( ! t h i s . cutVert ){ t h i s . cutHorz = f a l s e ; t h i s . cutVert = true ; }
t . parent = t h i s ;

}

pub l i c void setBot ( AugTree t ){
t h i s . bottom = t ;
i f ( ! t h i s . cutHorz ) { t h i s . cutVert = f a l s e ; t h i s . cutHorz = true ; }
t . parent = t h i s ;

}

pub l i c void setTop ( AugTree t ){
t h i s . top = t ;
i f ( ! t h i s . cutHorz ) { t h i s . cutVert = f a l s e ; t h i s . cutHorz = true ; }
t . parent = t h i s ;

}

pub l i c void cutHorz ( ){
t h i s . bottom = new AugTree ( t h i s ) ;
t h i s . top = new AugTree ( t h i s ) ;
i f ( t h i s . cutVert ) { t h i s . cutVert = f a l s e ; t h i s . l e f t = t h i s . r i g h t =n u l l ;}
t h i s . cutHorz = true ;

}

pub l i c void cutVert ( ){
t h i s . l e f t = new AugTree ( t h i s ) ;
t h i s . r i g h t = new AugTree ( t h i s ) ;
i f ( t h i s . cutHorz ) { t h i s . cutHorz = f a l s e ; t h i s . bottom = t h i s . top =n u l l ;}
t h i s . cutVert = true ;

}

pub l i c boolean i s T r i v i a l ( ){
re turn ( ! t h i s . cutHorz )&&(! t h i s . cutVert ) ;

}

pub l i c S t r ing ge tRe la t i on ( AugTree c ){ // takes in a supposed c h i l d
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i f ( t h i s . l e f t==c ){ re turn ” l e f t ” ;}
e l s e i f ( t h i s . r i g h t==c ){ re turn ” r i g h t ” ;}
e l s e i f ( t h i s . top==c ){ re turn ” top ” ;}
e l s e i f ( t h i s . bottom==c ){ re turn ”bot ” ;}
e l s e { re turn ”none ” ;}

}

pub l i c ArrayList<AugTree> looksCutVert ( ){ // r e tu rn s array conta in ing l e f t
//and r i g h t ha lve s i f so

ArrayList<AugTree> r e s = new ArrayList<AugTree>() ;
i f ( t h i s . cutVert ){

r e s . add ( t h i s . l e f t ) ; r e s . add ( t h i s . r i g h t ) ;
}
e l s e i f ( t h i s . cutHorz

&&(! t h i s . bottom . i s T r i v i a l ())&&(! t h i s . top . i s T r i v i a l ( ) ) ) {
ArrayList<AugTree> tops = t h i s . top . looksCutVert ( ) ;
ArrayList<AugTree> bots = t h i s . bottom . looksCutVert ( ) ;
i f ( ( tops . s i z e ()>1)&&( bots . s i z e ()>1)){

AugTree l = new AugTree ( ) ; AugTree r = new AugTree ( ) ;
l . cutHorz ( ) ; r . cutHorz ( ) ;
l . setTop ( tops . get ( 0 ) ) ; l . setBot ( bots . get ( 0 ) ) ;
r . setTop ( tops . get ( 1 ) ) ; r . setBot ( bots . get ( 1 ) ) ;
r e s . add ( l ) ; r e s . add ( r ) ;

}
}
re turn r e s ;

}

pub l i c ArrayList<AugTree> looksCutHorz ( ){ // r e tu rn s array conta in ing top
//and bottom ha lve s i f so

ArrayList<AugTree> r e s = new ArrayList<AugTree>() ;
i f ( t h i s . cutHorz ){

r e s . add ( t h i s . top ) ; r e s . add ( t h i s . bottom ) ;
}
e l s e i f ( t h i s . cutVert

&&(! t h i s . l e f t . i s T r i v i a l ())&&(! t h i s . r i g h t . i s T r i v i a l ( ) ) ) {
ArrayList<AugTree> l e f t s = t h i s . l e f t . looksCutHorz ( ) ;
ArrayList<AugTree> r i t e s = t h i s . r i g h t . looksCutHorz ( ) ;
i f ( ( l e f t s . s i z e ()>1)&&( r i t e s . s i z e ()>1)){

AugTree t = new AugTree ( ) ; AugTree b = new AugTree ( ) ;
t . cutVert ( ) ; b . cutVert ( ) ;
t . s e t L e f t ( l e f t s . get ( 0 ) ) ; t . s e tRight ( r i t e s . get ( 0 ) ) ;
b . s e t L e f t ( l e f t s . get ( 1 ) ) ; b . s e tRight ( r i t e s . get ( 1 ) ) ;
r e s . add (b ) ; r e s . add ( t ) ;
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}
}
re turn r e s ;

}

pub l i c void reduce ( ){
t h i s . l e f t = t h i s . r i g h t = t h i s . bottom = t h i s . top = n u l l ;
t h i s . cutVert = t h i s . cutHorz = f a l s e ;

}

pub l i c ArrayList<AugTree> l i s t L e a v e s ( ){
i f ( t h i s . cutHorz ){

ArrayList<AugTree> l 1 = t h i s . bottom . l i s t L e a v e s ( ) ;
ArrayList<AugTree> l 2 = t h i s . top . l i s t L e a v e s ( ) ;
l 1 . addAll ( l 2 ) ;
r e turn l 1 ;

}
e l s e i f ( t h i s . cutVert ){

ArrayList<AugTree> l 1 = t h i s . l e f t . l i s t L e a v e s ( ) ;
ArrayList<AugTree> l 2 = t h i s . r i g h t . l i s t L e a v e s ( ) ;
l 1 . addAll ( l 2 ) ;
r e turn l 1 ;

}
e l s e {

ArrayList<AugTree> l = new ArrayList<AugTree>() ;
l . add ( t h i s ) ;
r e turn l ;

}
}

pub l i c ArrayList<St r ing []> l i s t L e a v e s S t r ( ){
i f ( t h i s . cutHorz ){

ArrayList<St r ing []> l 1 = t h i s . bottom . l i s t L e a v e s S t r ( ) ;
ArrayList<St r ing []> l 2 = t h i s . top . l i s t L e a v e s S t r ( ) ;
l 1 . addAll ( l 2 ) ;
r e turn l 1 ;

}
e l s e i f ( t h i s . cutVert ){

ArrayList<St r ing []> l 1 = t h i s . l e f t . l i s t L e a v e s S t r ( ) ;
ArrayList<St r ing []> l 2 = t h i s . r i g h t . l i s t L e a v e s S t r ( ) ;
l 1 . addAll ( l 2 ) ;
r e turn l 1 ;

}
e l s e {

St r ing s = t h i s . t oS t r i ng ( ) ;



4. IMPLEMENTATION AND CRYPTANALYSIS OF ANSHEL-ANSHEL-GOLDFELD80

St r ing s s = s . s u b s t r i ng (1 , s . l ength ()−1) ;
S t r ing [ ] xy = s s . s p l i t (” , ” ) ;
ArrayList<St r ing []> l = new ArrayList<St r ing [ ] > ( ) ; l . add ( xy ) ;
r e turn l ;

}
}

pub l i c i n t s i z e ( ){
re turn t h i s . l i s t L e a v e s ( ) . s i z e ( ) ;

}

pub l i c ArrayList<Str ing> toSt r ingHe lpe r ( ArrayList<Str ing> bS){
St r ing xBS = bS . get ( 0 ) ;
S t r ing yBS = bS . get ( 1 ) ;
S t r ing newX, newY ;
ArrayList<Str ing> newBS = new ArrayList<Str ing >() ;
AugTree p = t h i s . parent ;
i f (p != n u l l ) {

i f (p . cutHorz ){
i f ( t h i s == p . bottom ) { newY = yBS . r e p l a c e F i r s t ( ” ” , ” 0 ” ) ; }
e l s e { newY = yBS . r e p l a c e F i r s t ( ” ” , ” 1 ” ) ; }
newX = xBS ;

}
e l s e {

i f ( t h i s == p . l e f t ) { newX = xBS . r e p l a c e F i r s t ( ” ” , ” 0 ” ) ; }
e l s e { newX = xBS . r e p l a c e F i r s t ( ” ” , ” 1 ” ) ; }
newY = yBS ;

}
bS . s e t (0 ,newX ) ; bS . s e t (1 ,newY ) ;
newBS = p . toSt r ingHe lpe r (bS ) ;
r e turn newBS ;

}
e l s e { re turn bS ;}

}

pub l i c S t r ing toS t r i ng ( ){
ArrayList<Str ing> s = new ArrayList<Str ing >() ; s . add ( ” ” ) ; s . add ( ” ” ) ;
ArrayList<Str ing> bS = t h i s . t oSt r ingHe lpe r ( s ) ;
S t r ing r e s = ” [ ” ;
r e s+=bS . get ( 0 ) ;
r e s +=”, ” ;
r e s+=bS . get ( 1 ) ;
r e s +=”]”;
r e turn r e s ;

}
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pub l i c void showData ( ){
System . out . p r i n t (” ( AugTree : ”+t h i s . id+” Parent : ” ) ;
i f ( t h i s . parent==n u l l ){ System . out . p r i n t (” n u l l ” ) ; }
e l s e {System . out . p r i n t ( t h i s . parent . id ) ; }
System . out . p r i n t (” cutHorz : ”+t h i s . cutHorz+” cutVert : ”+t h i s . cutVert ) ;
System . out . p r i n t (” Partner : ” ) ;
i f ( t h i s . partner==n u l l ){ System . out . p r i n t (” n u l l ” ) ; }
e l s e {System . out . p r i n t ( t h i s . partner . id ) ; }
System . out . p r i n t (” Le f t : ” ) ;
i f ( t h i s . l e f t==n u l l ){ System . out . p r i n t (” n u l l ” ) ; }
e l s e { t h i s . l e f t . showData ( ) ; }
System . out . p r i n t (” Right : ” ) ;
i f ( t h i s . r i g h t==n u l l ){ System . out . p r i n t (” n u l l ” ) ; }
e l s e { t h i s . r i g h t . showData ( ) ; }
System . out . p r i n t (” Top : ” ) ;
i f ( t h i s . top==n u l l ){ System . out . p r i n t (” n u l l ” ) ; }
e l s e { t h i s . top . showData ( ) ; }
System . out . p r i n t (” Bottom : ” ) ;
i f ( t h i s . bottom==n u l l ){ System . out . p r i n t (” n u l l ” ) ; }
e l s e { t h i s . bottom . showData ( ) ; }
System . out . p r i n t ( ” ) ” ) ;

}

pub l i c boolean equa l s ( AugTree o ){
i f ( t h i s . cutHorz&&o . cutHorz ){

re turn ( t h i s . top . equa l s ( o . top)&&t h i s . bottom . equa l s ( o . bottom ) ) ;
}
e l s e i f ( t h i s . cutVert&&o . cutVert ){

re turn ( t h i s . l e f t . equa l s ( o . l e f t )&&t h i s . r i g h t . equa l s ( o . r i g h t ) ) ;
}
e l s e i f ( t h i s . cutVert&&o . cutHorz ){

ArrayList<AugTree> oha lves = o . looksCutVert ( ) ;
i f ( oha lves . s i z e ()<2){

re turn f a l s e ;
}
e l s e {

re turn ( t h i s . l e f t . equa l s ( oha lves . get ( 0 ) )
&&t h i s . r i g h t . equa l s ( oha lves . get ( 1 ) ) ) ;

}
}
e l s e i f ( t h i s . cutHorz&&o . cutVert ){

ArrayList<AugTree> oha lves = o . looksCutHorz ( ) ;
i f ( oha lves . s i z e ()<2){

re turn f a l s e ;
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}
e l s e {

re turn ( t h i s . bottom . equa l s ( oha lves . get ( 0 ) )
&&t h i s . top . equa l s ( oha lves . get ( 1 ) ) ) ;

}
}
e l s e i f ( t h i s . i s T r i v i a l ()&&o . i s T r i v i a l ( ) ){

re turn true ;
}
e l s e {

re turn f a l s e ;
}

}

pub l i c AugTree copy ( ){
AugTree r = new AugTree ( ) ;
i f ( t h i s . cutHorz ){

r . cutHorz ( ) ;
r . setTop ( t h i s . top . copy ( ) ) ;
r . setBot ( t h i s . bottom . copy ( ) ) ;

}
e l s e i f ( t h i s . cutVert ){

r . cutVert ( ) ;
r . s e t L e f t ( t h i s . l e f t . copy ( ) ) ;
r . s e tRight ( t h i s . r i g h t . copy ( ) ) ;

}
re turn r ;

}

pub l i c AugTree conta insPo int ( S t r ing xBS , S t r ing yBS){// r e tu rn s which one
// o f i t s l e a f nodes conta in s po int (xBS , yBS)

i f ( cutHorz ){
i f (yBS . startsWith (”0”) ){

re turn bottom . conta insPo int (xBS , yBS . s u b s t r i ng ( 1 ) ) ;
}
e l s e i f (yBS . startsWith (”1”) ){

re turn top . conta insPo int (xBS , yBS . s u b s t r i ng ( 1 ) ) ;
}
e l s e {

re turn bottom . conta insPo int (xBS , ” 0 ” ) ;
}

}
e l s e i f ( cutVert ){

i f (xBS . startsWith (”0”) ){
re turn l e f t . conta insPo int (xBS . su b s t r i n g ( 1 ) , yBS ) ;
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}
e l s e i f (xBS . startsWith (”1”) ){

re turn r i g h t . conta insPo int (xBS . su b s t r i ng ( 1 ) , yBS ) ;
}
e l s e {

re turn l e f t . conta insPo int (”0” ,yBS ) ;
}

}
re turn t h i s ;

}
}

pub l i c c l a s s V2Function{
AugTree domain , range ;
ArrayList<AugTree> domLeaves , ranLeaves ;
i n t numLeaves ;

pub l i c V2Function ( ){
t h i s . domain = new AugTree ( ) ;
t h i s . range = new AugTree ( ) ;
t h i s . domLeaves = domain . l i s t L e a v e s ( ) ;
t h i s . ranLeaves = range . l i s t L e a v e s ( ) ;
t h i s . numLeaves = 1 ;
t h i s . domain . s e tPar tne r ( t h i s . range ) ;

}

pub l i c V2Function ( AugTree d , AugTree r , ArrayList<Integer> phi ){
// phi only used to i n i t a l i z e partner r e l a t i o n s h i p s
i f (d . s i z e ( ) == r . s i z e ( ) ){

t h i s . numLeaves = d . s i z e ( ) ;
t h i s . domain = d ;
t h i s . range = r ;
t h i s . domLeaves = d . l i s t L e a v e s ( ) ;
t h i s . ranLeaves = r . l i s t L e a v e s ( ) ;
f o r ( i n t i = 0 ; i<numLeaves ; i ++){

t h i s . domLeaves . get ( i ) . s e tPar tne r (
t h i s . ranLeaves . get ( phi . indexOf ( i ) ) ) ;

}
}

}

p r i v a t e V2Function ( AugTree d , AugTree r ){
// assumes partner r e l a t i o n s h i p s between d & r a l ready i n i t i a l i z e d
// only c a l l e d by mult ip ly ( ) .
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i f (d . s i z e ( ) == r . s i z e ( ) ){
t h i s . numLeaves = d . s i z e ( ) ;
t h i s . domain = d ;
t h i s . range = r ;
t h i s . domLeaves = d . l i s t L e a v e s ( ) ;
t h i s . ranLeaves = r . l i s t L e a v e s ( ) ;

}
}

pub l i c boolean i s I d e n t i t y ( ){
f o r ( i n t i =0; i<numLeaves ; i ++){

i f ( ! t h i s . ranLeaves . get ( i ) . t oS t r i ng ( ) . equa l s (
t h i s . ranLeaves . get ( i ) . partner . t oS t r i ng ( ) ) ) {

re turn f a l s e ;
}

}
// might as we l l s i m p l i f y
t h i s . domain . reduce ( ) ;
t h i s . domLeaves . c l e a r ( ) ; t h i s . domLeaves . add ( t h i s . domain ) ;
t h i s . range . reduce ( ) ;
t h i s . ranLeaves . c l e a r ( ) ; t h i s . ranLeaves . add ( t h i s . range ) ;
t h i s . numLeaves = 1 ;
re turn true ;

}

pub l i c V2Function copy ( ){
ArrayList<Integer> phi = t h i s . phi ( ) ;
r e turn new V2Function ( t h i s . domain . copy ( ) , t h i s . range . copy ( ) , phi ) ;

}

pub l i c V2Function i n v e r s e ( ){
ArrayList<Integer> phi = new ArrayList<Integer >() ;
f o r ( i n t i =0; i<numLeaves ; i ++){

phi . add ( t h i s . ranLeaves . indexOf ( t h i s . domLeaves . get ( i ) . partner ) ) ;
}
re turn new V2Function ( range . copy ( ) , domain . copy ( ) , phi ) ;

}

pub l i c S t r ing toS t r i ng ( ){
St r ing s t r = ” [ ” ;
f o r ( i n t i =0; i<t h i s . numLeaves ; i ++){

s t r = s t r . concat ( ” ( ” ) ;
s t r = s t r . concat ( t h i s . domLeaves . get ( i ) . t oS t r i ng ( ) ) ;
s t r = s t r . concat ( ” : ” ) ;
s t r = s t r . concat ( t h i s . domLeaves . get ( i ) . partner . t oS t r i ng ( ) ) ;
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s t r = s t r . concat (” ) ” ) ;
}
s t r = s t r . concat ( ” ] ” ) ;
r e turn s t r ;

}

pub l i c void showData ( ){
System . out . p r i n t l n (” domain : ” ) ;
t h i s . domain . showData ( ) ;
System . out . p r i n t l n ( ) ;
System . out . p r i n t l n (” range : ” ) ;
t h i s . range . showData ( ) ;
System . out . p r i n t l n ( ) ;

}

pub l i c void reduce ( ){ // i t e r a t i v e p roce s s over l e a f nodes ,
// l e a f nodes a f t e r reducing , l e a f nodes a f t e r that reduct ion ,
// e tc t i l l no more r educ t i on s to make

boolean change = true ;
whi l e ( change ){

change = t h i s . reduceHelper ( ) ;
}

}

pub l i c boolean reduceHelper ( ){
boolean change = f a l s e ;
f o r ( i n t i =0; i<t h i s . numLeaves ; i ++){

AugTree domLeaf = t h i s . domLeaves . get ( i ) ; // get domain l e a f we ’ re on
AugTree ranLeaf = domLeaf . partner ; //and the one i t maps to
AugTree domSib , ranSib ;
i f ( domLeaf . parent==n u l l ){ re turn f a l s e ; } // i f we ’ re a l l the way at
// the root node , we cant reduce anymore , so re turn change=f a l s e

S t r ing r e l = domLeaf . parent . g e tRe la t i on ( domLeaf ) ;
// f i g u r e out what kind o f l e a f i t i s ( l e f t , r i ght , bottom , top )

St r ing r e l 2 = ranLeaf . parent . g e tRe la t i on ( ranLeaf ) ;
//and what kind o f l e a f i t maps to

i f ( r e l . equa l s ( r e l 2 ) ){ // i f those aren ’ t the same , then we a l ready
//know we can ’ t reduce , so don ’ t bother

// i f they are the same , get t h e i r ” s i b l i n g s ”
i f ( r e l . equa l s (” bot ”) ){

domSib = domLeaf . parent . top ;
ranSib = ranLeaf . parent . top ;

}
e l s e i f ( r e l . equa l s (” top ”)){

domSib = domLeaf . parent . bottom ;
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ranSib = ranLeaf . parent . bottom ;
}
e l s e i f ( r e l . equa l s (” l e f t ” ) ){

domSib = domLeaf . parent . r i g h t ;
ranSib = ranLeaf . parent . r i g h t ;

}
e l s e i f ( r e l . equa l s (” r i g h t ”) ){

domSib = domLeaf . parent . l e f t ;
ranSib = ranLeaf . parent . l e f t ;

}
e l s e { domSib = ranSib = n u l l ; } // j u s t in case something weird

//happens , we need to do t h i s so the compi ler doesn ’ t y e l l
i f ( domSib . partner==ranSib ){ // i f t h e i r s i b l i n g s map to eachother ,

// then we can reduce
// r e p l a c e ranLeaf with i t s parent , and remove i t s s i b l i n g from
// the l i s t o f l e a f nodes
//and do the same with the l e a v e s they map to

i n t d2 = domLeaves . indexOf ( domSib ) ;
i n t r1 = ranLeaves . indexOf ( ranLeaf ) ;
i n t r2 = ranLeaves . indexOf ( ranSib ) ;
t h i s . domLeaves . s e t ( i , domLeaf . parent ) ;
t h i s . domLeaves . remove ( d2 ) ;
t h i s . ranLeaves . s e t ( r1 , ranLeaf . parent ) ;
t h i s . ranLeaves . remove ( r2 ) ;
ranLeaf . parent . s e tPar tne r ( domLeaf . parent ) ;
// l a s t l y s e t t h e i r parents to map to each other
ranLeaf . parent . reduce ( ) ;
domLeaf . parent . reduce ( ) ;
change = true ;
numLeaves−−;

}
}

}
re turn change ;

}

pub l i c void cutHorz ( AugTree l e a f ){
t h i s . cutHorz ( l e a f , ” r ” ) ;

}

pub l i c void cutVert ( AugTree l e a f ){
t h i s . cutVert ( l e a f , ” r ” ) ;

}

pub l i c void cutHorz ( AugTree l e a f , S t r ing where ){
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// where s p e c i f i e s i f l e a f to cut i s in domain or range
i f ( where==”r ”){

i f ( t h i s . ranLeaves . conta in s ( l e a f ) ){
AugTree domLeaf = l e a f . partner ;
domLeaf . cutHorz ( ) ;
l e a f . cutHorz ( ) ;
l e a f . bottom . se tPar tne r ( domLeaf . bottom ) ;
l e a f . top . s e tPar tne r ( domLeaf . top ) ;
i n t r I = ranLeaves . indexOf ( l e a f ) ;
i n t dI = domLeaves . indexOf ( domLeaf ) ;
domLeaves . s e t ( dI , domLeaf . bottom ) ;
domLeaves . add ( dI +1,domLeaf . top ) ;
ranLeaves . s e t ( rI , l e a f . bottom ) ;
ranLeaves . add ( r I +1, l e a f . top ) ;
numLeaves++;

}
}
e l s e i f ( where==”d”){

i f ( domLeaves . conta in s ( l e a f ) ){
AugTree ranLeaf = l e a f . partner ;
l e a f . cutHorz ( ) ;
ranLeaf . cutHorz ( ) ;
l e a f . bottom . se tPar tne r ( ranLeaf . bottom ) ;
l e a f . top . s e tPar tne r ( ranLeaf . top ) ;
i n t r I = ranLeaves . indexOf ( ranLeaf ) ;
i n t dI = domLeaves . indexOf ( l e a f ) ;
domLeaves . s e t ( dI , l e a f . bottom ) ;
domLeaves . add ( dI +1, l e a f . top ) ;
ranLeaves . s e t ( rI , ranLeaf . bottom ) ;
ranLeaves . add ( r I +1, ranLeaf . top ) ;
numLeaves++;

}
}

}

pub l i c void cutVert ( AugTree l e a f , S t r ing where ){
i f ( where==”r ”){

i f ( ranLeaves . conta in s ( l e a f ) ){
AugTree domLeaf = l e a f . partner ;
domLeaf . cutVert ( ) ;
l e a f . cutVert ( ) ;
l e a f . l e f t . s e tPar tne r ( domLeaf . l e f t ) ;
l e a f . r i g h t . s e tPar tne r ( domLeaf . r i g h t ) ;
i n t r I = ranLeaves . indexOf ( l e a f ) ;
i n t dI = domLeaves . indexOf ( domLeaf ) ;
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domLeaves . s e t ( dI , domLeaf . l e f t ) ;
domLeaves . add ( dI +1,domLeaf . r i g h t ) ;
ranLeaves . s e t ( rI , l e a f . l e f t ) ;
ranLeaves . add ( r I +1, l e a f . r i g h t ) ;
numLeaves++;

}
}
e l s e i f ( where==”d”){

i f ( domLeaves . conta in s ( l e a f ) ){
AugTree ranLeaf = l e a f . partner ;
l e a f . cutVert ( ) ;
ranLeaf . cutVert ( ) ;
l e a f . l e f t . s e tPar tne r ( ranLeaf . l e f t ) ;
l e a f . r i g h t . s e tPar tne r ( ranLeaf . r i g h t ) ;
i n t r I = ranLeaves . indexOf ( ranLeaf ) ;
i n t dI = domLeaves . indexOf ( l e a f ) ;
domLeaves . s e t ( dI , l e a f . l e f t ) ;
domLeaves . add ( dI +1, l e a f . r i g h t ) ;
ranLeaves . s e t ( rI , ranLeaf . l e f t ) ;
ranLeaves . add ( r I +1, ranLeaf . r i g h t ) ;
numLeaves++;

}
}

}

pub l i c ArrayList<AugTree> cutFul lHorz ( AugTree t r e e ){
re turn t h i s . cutFul lHorz ( t ree , ” r ” ) ;

}

pub l i c ArrayList<AugTree> cutFul lVert ( AugTree t r e e ){
re turn t h i s . cutFul lVert ( t ree , ” r ” ) ;

}

pub l i c ArrayList<AugTree> cutFul lHorz ( AugTree tree , S t r ing where ){
ArrayList<AugTree> r e s = new ArrayList<AugTree>(2) ;
i f ( t r e e . cutHorz ){

r e s . add ( t r e e . bottom ) ; r e s . add ( t r e e . top ) ;
}
e l s e i f ( t r e e . cutVert ){

AugTree rBot = new AugTree ( ) ;
AugTree rTop = new AugTree ( ) ;
rBot . cutVert ( ) ;
rTop . cutVert ( ) ;
ArrayList<AugTree> l e f t s = cutFul lHorz ( t r e e . l e f t , where ) ;
ArrayList<AugTree> r i g h t s = cutFul lHorz ( t r e e . r i ght , where ) ;
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rBot . s e t L e f t ( l e f t s . get ( 0 ) ) ;
rBot . s e tRight ( r i g h t s . get ( 0 ) ) ;
rTop . s e t L e f t ( l e f t s . get ( 1 ) ) ;
rTop . se tRight ( r i g h t s . get ( 1 ) ) ;
t r e e . setBot ( rBot ) ; t r e e . setTop ( rTop ) ;
r e s . add ( rBot ) ; r e s . add ( rTop ) ;

}
e l s e {

t h i s . cutHorz ( t ree , where ) ;
r e s . add ( t r e e . bottom ) ; r e s . add ( t r e e . top ) ;

}
re turn r e s ;

}

pub l i c ArrayList<AugTree> cutFul lVert ( AugTree tree , S t r ing where ){
ArrayList<AugTree> r e s = new ArrayList<AugTree>(2) ;
i f ( t r e e . cutVert ){

r e s . add ( t r e e . l e f t ) ; r e s . add ( t r e e . r i g h t ) ;
}
e l s e i f ( t r e e . cutHorz ){

AugTree r L e f t = new AugTree ( ) ;
AugTree rRight = new AugTree ( ) ;
r L e f t . cutHorz ( ) ;
rRight . cutHorz ( ) ;
ArrayList<AugTree> tops = cutFul lVert ( t r e e . top , where ) ;
ArrayList<AugTree> bots = cutFul lVert ( t r e e . bottom , where ) ;
r L e f t . setTop ( tops . get ( 0 ) ) ;
r L e f t . setBot ( bots . get ( 0 ) ) ;
rRight . setTop ( tops . get ( 1 ) ) ;
rRight . setBot ( bots . get ( 1 ) ) ;
t r e e . s e t L e f t ( r L e f t ) ; t r e e . s e tRight ( rRight ) ;
r e s . add ( r L e f t ) ; r e s . add ( rRight ) ;

}
e l s e {

t h i s . cutVert ( t ree , where ) ;
r e s . add ( t r e e . l e f t ) ; r e s . add ( t r e e . r i g h t ) ;

}
re turn r e s ;

}

pub l i c void i n t e r s e c t ( AugTree ranTree , AugTree odomTree ){
boolean a = ranTree . cutHorz ;
boolean b = odomTree . cutHorz ;
boolean c = ranTree . cutVert ;
boolean d = odomTree . cutVert ;
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i f ( ! ( a | | b | | c | | d ) ){
t h i s . a s s i g n ( ranTree , odomTree ) ;

}
e l s e i f ( a&&!(b | | c | | d ) ){

t h i s . a s s i g n ( ranTree , odomTree ) ;
}
e l s e i f ( c&&!(a | | b | | d ) ){

t h i s . a s s i g n ( ranTree , odomTree ) ;
}
e l s e i f (b&&!(a | | c | | d ) ){

t h i s . cutHorz ( ranTree ) ;
t h i s . i n t e r s e c t ( ranTree . top , odomTree . top ) ;
t h i s . i n t e r s e c t ( ranTree . bottom , odomTree . bottom ) ;

}
e l s e i f (d&&!(a | | b | | c ) ){

t h i s . cutVert ( ranTree ) ;
t h i s . i n t e r s e c t ( ranTree . l e f t , odomTree . l e f t ) ;
t h i s . i n t e r s e c t ( ranTree . r i ght , odomTree . r i g h t ) ;

}
e l s e i f ( a&&b&&!(c | | d ) ){

t h i s . i n t e r s e c t ( ranTree . top , odomTree . top ) ;
t h i s . i n t e r s e c t ( ranTree . bottom , odomTree . bottom ) ;

}
e l s e i f ( c&&d&&!(a | | b ) ){

t h i s . i n t e r s e c t ( ranTree . l e f t , odomTree . l e f t ) ;
t h i s . i n t e r s e c t ( ranTree . r i ght , odomTree . r i g h t ) ;

}
e l s e i f ( a&&d&&!(b | | c ) ){

t h i s . cutFul lVert ( ranTree ) ;
t h i s . i n t e r s e c t ( ranTree . l e f t , odomTree . l e f t ) ;
t h i s . i n t e r s e c t ( ranTree . r i ght , odomTree . r i g h t ) ;

}
e l s e i f (b&&c&&!(a | | d ) ){

t h i s . cutFul lHorz ( ranTree ) ;
t h i s . i n t e r s e c t ( ranTree . top , odomTree . top ) ;
t h i s . i n t e r s e c t ( ranTree . bottom , odomTree . bottom ) ;

}
}

pub l i c void a s s i g n ( AugTree ranTree , AugTree odomTree ){
AugTree p = odomTree . partner ;
AugTree pparent = p . parent ;
S t r ing r e l = pparent . g e tRe la t i on (p ) ;
i f ( r e l==”bot ”){
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pparent . setBot ( ranTree ) ;
}
e l s e i f ( r e l==”top ”){

pparent . setTop ( ranTree ) ;
}
e l s e i f ( r e l==” l e f t ”){

pparent . s e t L e f t ( ranTree ) ;
}
e l s e i f ( r e l==”r i g h t ”){

pparent . s e tRight ( ranTree ) ;
}
e l s e {

System . out . p r i n t l n (”p i s not a c h i l d o f i t s parent ! ” ) ;
System . out . p r i n t l n (”\ tp : ” ) ; p . showData ( ) ;
System . out . p r i n t l n (”\n\ tpparent : ” ) ; pparent . showData ( ) ;
System . out . p r i n t l n ( ” ” ) ;

}
}

pub l i c V2Function mult ip ly ( V2Function o ){
i n t e r s e c t ( t h i s . range , o . domain ) ;
V2Function r e s = new V2Function ( t h i s . domain , o . range ) ;
r e turn r e s ;

}

pub l i c Boolean equa l s ( V2Function o ){
re turn t h i s . copy ( ) . mul t ip ly ( o . i n v e r s e ( ) ) . i s I d e n t i t y ( ) ;

}

pub l i c ArrayList<Integer> phi ( ){
ArrayList<Integer> phi = new ArrayList<Integer >() ;
f o r ( i n t i =0; i<numLeaves ; i ++){

i n t n = domLeaves . indexOf ( ranLeaves . get ( i ) . partner ) ;
phi . add (n ) ;

}
re turn phi ;

}

pub l i c S t r ing [ ] mapPoint ( S t r ing xBS , S t r ing yBS){
St r ing dX, dY, rX , rY ;
AugTree d = domain . conta insPo int (xBS , yBS ) ;
AugTree r = d . partner ;
S t r ing sD = d . t oS t r i ng ( ) ;
S t r ing ssD = sD . su b s t r i ng (1 , sD . l ength ()−1) ;
i f ( ssD . startsWith ( ” , ” ) ){
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dX = ”” ;
S t r ing [ ] xyD = ssD . s p l i t (” , ” ) ;
i f (xyD . length <1){

dY = ”” ;
}
e l s e {

dY = xyD [ 0 ] ;
}

}
e l s e {

St r ing [ ] xyD = ssD . s p l i t (” , ” ) ;
dX = xyD [ 0 ] ;
i f (xyD . length <2){

dY = ”” ;
}
e l s e {

dY = xyD [ 1 ] ;
}

}
St r ing sR = r . t oS t r i ng ( ) ;
S t r ing ssR = sR . s ub s t r i n g (1 , sR . l ength ()−1) ;
i f ( ssR . startsWith ( ” , ” ) ){

rX = ”” ;
S t r ing [ ] xyR = ssR . s p l i t (” , ” ) ;
i f (xyR . length <1){

rY = ”” ;
}
e l s e {

rY = xyR [ 0 ] ;
}

}
e l s e {

St r ing [ ] xyR = ssR . s p l i t (” , ” ) ;
rX = xyR [ 0 ] ;
i f (xyR . length <2){

rY = ”” ;
}
e l s e {

rY = xyR [ 1 ] ;
}

}
i n t d i f fX = dX. l ength ()−xBS . l ength ( ) ;
i f ( d i f fX >0){

f o r ( i n t i =0; i<d i f fX ; i ++){
xBS = xBS . concat ( ” 0 ” ) ;
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}
}
i n t d i f fY = dY. l ength ()−yBS . l ength ( ) ;
i f ( d i f fY >0){

f o r ( i n t i =0; i<d i f fY ; i ++){
yBS = yBS . concat ( ” 0 ” ) ;

}
}
St r ing x = xBS . s ub s t r i n g (dX. l ength ( ) ) ;
S t r ing y = yBS . s ub s t r i n g (dY. l ength ( ) ) ;
r e turn new St r ing [ ] { rX . concat ( x ) , rY . concat ( y ) } ;

}

pub l i c double bsToDbl ( S t r ing s ){
double s t a r t = 0 . 0 ;
double end = 1 . 0 ;
i n t maxStrLen = 20 ;
i n t l en = Math . max( maxStrLen , s . l ength ( ) ) ;
f o r ( i n t i =0; i<s . l ength ( ) ; i ++){

i f ( s . charAt ( i )== ’0 ’){
end −= ( end−s t a r t ) / 2 . 0 ;

}
e l s e i f ( s . charAt ( i )== ’1 ’){

s t a r t += ( end−s t a r t ) / 2 . 0 ;
}

}
re turn s t a r t ;

}

pub l i c S t r ing dblToBS ( double d){
St r ing s = St r ing . valueOf (d ) ;
s = s . r e p l a c e F i r s t ( ” 0 . ” , ” ” ) ;
S t r ing r e s = ”” ;
double s t a r t = 0 . 0 ;
double end = 1 . 0 ;
f o r ( i n t i =0; i<s . l ength ( ) ; i ++){

i f (d<( s t a r t +((end−s t a r t ) / 2 . 0 ) ) ) {
r e s = r e s . concat ( ” 0 ” ) ;
end −= ( end−s t a r t ) / 2 . 0 ;

}
e l s e i f (d>=(s t a r t +((end−s t a r t ) / 2 . 0 ) ) ) {

r e s = r e s . concat ( ” 1 ” ) ;
s t a r t += ( end−s t a r t ) / 2 . 0 ;

}
}
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return r e s ;
}

pub l i c ArrayList<St r ing []> o r b i t S t r ( i n t n){//n = # times to apply func t i on to (0 , 0 )
ArrayList<St r ing []> r e s = new ArrayList<St r ing [ ] > ( ) ;
S t r ing xBS = ”0” ;
S t r ing yBS = ”0” ;
f o r ( i n t i =0; i<n ; i ++){

St r ing [ ] xy = mapPoint (xBS , yBS ) ;
r e s . add ( xy ) ;
xBS = xy [ 0 ] ;
yBS = xy [ 1 ] ;

}
re turn r e s ;

}

pub l i c ArrayList<double []> orb i tDbl ( i n t n){//n = # times to apply func t i on to (0 , 0 )
ArrayList<double []> r e s = new ArrayList<double [ ] > ( ) ;
S t r ing xBS = ”0” ;
S t r ing yBS = ”0” ;
f o r ( i n t i =0; i<n ; i ++){

St r ing [ ] xy = mapPoint (xBS , yBS ) ;
double [ ] xyDbl = new double [ ] { bsToDbl ( xy [ 0 ] ) , bsToDbl ( xy [ 1 ] ) } ;
r e s . add ( xyDbl ) ;
xBS = xy [ 0 ] ;
yBS = xy [ 1 ] ;

}
re turn r e s ;

}
}

pub l i c c l a s s User{
p r i v a t e V2Function use rE l t ; //word o f l e l t s from userSet
p r i v a t e V2Function key ;
p r i v a t e St r ing encryptKey ;
Random r = new Random ( ) ;
ArrayList<V2Function> oSet , oConjSet , userSet , gens , con jSet ;
p r i v a t e ArrayList<Integer> e l t sUsed ;
boolean sent ;

pub l i c User ( i n t n , i n t l1 , i n t l2 ,
i n t l , ArrayList<V2Function> gene ra to r s ){

//n i s s i z e o f user s e t
// each e l t o f u s e r s e t i s a word b/ t l ength l 1 and l 2
// user e l t i s word o f e l t s from user set , o f l ength 0< l ength<=l
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t h i s . gens = gene ra to r s ;
// oSet = n u l l ; // other user ’ s s e t
// i n i t i a l i z e d upon r e c e i v a l from other user
// con jSet = n u l l ; // i n i t i a l i z e d f i r s t time send ( ) i s c a l l e d .
// oConjSet = n u l l ; // other u s e r s element conjugated with t h i s . u se rSe t
// i n i t i a l i z e d u p o n r e c e i v a l from other user .
t h i s . s ent = f a l s e ; // s e t to t rue f i r s t time send ( ) i s c a l l e d .
t h i s . u se rSe t = new ArrayList<V2Function >() ;
//n−tup l e o f words o f g ene ra to r s
t h i s . e l t sUsed = new ArrayList<Integer >() ; // keeps t rack o f e l t s from

// use rSet in order they were used to c r e a t e us e rE l t
boolean usedAl l = f a l s e ; // keeps t rack o f whether a l l g ene ra to r s

// have been used in use rSet
whi l e ( ! usedAl l ) {

usedAl l = t h i s . c r ea teUse rSe t (n , l1 , l 2 ) ;
}
t h i s . c r ea t eUse rE l t (n , l ) ;

}

p r i v a t e boolean crea teUse rSe t ( i n t n , i n t l1 , i n t l 2 ){
ArrayList<V2Function> gensLe f t = new ArrayList<V2Function >() ;
gensLe f t . addAll ( t h i s . gens ) ;
f o r ( i n t i = 0 ; i<n ; i ++){

V2Function thisGen = gens . get ( r . next Int ( gens . s i z e ( ) ) ) ;
i f ( gensLe f t . s i z e ()>0){ i f ( gensLe f t . conta in s ( thisGen ) ) {

gensLe f t . remove ( thisGen ) ; }
}
V2Function t h i s E l t = thisGen . copy ( ) ;
i n t th i sLength = l 1+r . next Int ( l 2 − l 1 ) ;
f o r ( i n t j = 1 ; j<th i sLength ; j++){

i n t x = r . next Int ( t h i s . gens . s i z e ( ) ) ;
thisGen = t h i s . gens . get ( x ) ;
i f ( gensLe f t . s i z e ()>0){

i f ( gensLe f t . conta in s ( thisGen ) ) {
gensLe f t . remove ( thisGen ) ;

}
}
t h i s E l t = t h i s E l t . mul t ip ly ( thisGen . copy ( ) ) ;
t h i s E l t . reduce ( ) ;

}
t h i s . u se rSe t . add ( t h i s E l t ) ;
i f ( ! ( t h i s E l t . i n v e r s e ( ) . equa l s ( t h i s E l t ) ) ) {
t h i s . u se rSe t . add ( t h i s E l t . i n v e r s e ( ) ) ;
//add i t s i n v e r s e i f i t s not i t s own i n v e r s e
}
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}
}

p r i v a t e void c r ea t eUse rE l t ( i n t n , i n t l ){
i n t x = r . next Int (n ) ;
t h i s . u s e rE l t = userSe t . get ( x ) . copy ( ) ;
t h i s . e l t sUsed . add ( x ) ;
f o r ( i n t i =1; i<l ; i ++){

x = r . next Int (n ) ;
t h i s . u s e rE l t = use rE l t . mul t ip ly ( use rSet . get ( x ) . copy ( ) ) ;
t h i s . e l t sUsed . add ( x ) ;
t h i s . u s e rE l t . reduce ( ) ;

}
}

pub l i c ArrayList<V2Function> sendSet ( ){
re turn t h i s . u se rSe t ;

}

pub l i c ArrayList<V2Function> sendConjSet ( ){
i f ( ! t h i s . s ent ){

ArrayList<V2Function> conj = new ArrayList<V2Function >() ;
f o r ( i n t i =0; i<t h i s . oSet . s i z e ( ) ; i ++){

V2Function t h i s E l t = ( ( t h i s . u s e rE l t . i n v e r s e ( ) ) . mul t ip ly (
oSet . get ( i ) . copy ( ) ) ) . mul t ip ly ( t h i s . u s e rE l t . copy ( ) ) ;

conj . add ( t h i s E l t ) ;
}
t h i s . s ent = true ;
t h i s . con jSet = conj ;
r e turn conj ;

}
e l s e { re turn t h i s . con jSet ;}

}

pub l i c void rece iveOSet ( ArrayList<V2Function> o ){
t h i s . oSet = o ;

}

pub l i c void rece iveCon jSe t ( ArrayList<V2Function> o ){
t h i s . oConjSet = o ;

}

pub l i c V2Function step1 ( ){
V2Function r e s = new V2Function ( ) ;
f o r ( i n t i =0; i<t h i s . e l t sUsed . s i z e ( ) ; i ++){
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V2Function oElt = t h i s . oConjSet . get ( t h i s . e l t sUsed . get ( i ) ) . copy ( ) ;
r e s = r e s . mult ip ly ( oElt ) ;

}
re turn r e s ;

}

pub l i c V2Function step2A ( V2Function conj ){
re turn t h i s . u s e rE l t . i n v e r s e ( ) . mul t ip ly ( conj . copy ( ) ) ;

}

pub l i c void keyA (){
V2Function conj = t h i s . s tep1 ( ) ;
t h i s . key = t h i s . step2A ( conj ) ;

}

pub l i c V2Function step2B ( V2Function conj ){
re turn conj . i n v e r s e ( ) . mul t ip ly ( t h i s . u s e rE l t . copy ( ) ) ;

}

pub l i c void keyB (){
V2Function conj = t h i s . s tep1 ( ) ;
t h i s . key = t h i s . step2B ( conj ) ;

}

pub l i c void c r ea t eB inSt r ( ){
i n t keyLen = 50 ;
S t r ing r e s = ”” ;
ArrayList<St r ing []> o r b i t = key . o r b i t S t r ( keyLen ) ;
f o r ( i n t i =0; i<keyLen ; i ++){

St r ing [ ] pt = o r b i t . get ( i ) ;
S t r ing ptX = pt [ 0 ] ;
S t r ing ptY = pt [ 1 ] ;
S t r ing x , y ;
i n t xIdx = ptX . la s t IndexOf ( ” 1 ” ) ;
i n t yIdx = ptY . la s t IndexOf ( ” 1 ” ) ;
i f ( xIdx>0) x = ptX . s u b s t r i ng (0 , xIdx ) ;
e l s e x = ”” ;
i f ( yIdx>0) y = ptY . s u b s t r i ng (0 , yIdx ) ;
e l s e y = ”” ;
r e s = r e s . concat ( x ) ;
r e s = r e s . concat ( y ) ;

}
encryptKey = r e s ;

}
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pub l i c S t r ing encryptMsg ( St r ing msg){
/∗ convert message to binary s t r i n g ∗/
St r ing binMsg = ”” ;
byte [ ] x = msg . getBytes ( ) ;
f o r ( i n t i =0; i<x . l ength ; i ++){

binMsg+=(I n t e g e r . toBinaryStr ing (0 x100 + x [ i ] ) . s ub s t r i n g ( 1 ) ) ;
}

/∗make sure the l eng th s l i n e up∗/
St r ing thisKey = t h i s . encryptKey ;
whi l e ( binMsg . l ength ()> t h i s . encryptKey . l ength ( ) ){

thisKey+=t h i s . encryptKey ;
}
thisKey = thisKey . su b s t r i ng (0 , binMsg . l ength ( ) ) ;

/∗XOR binMsg with thisKey ∗/
St r ing msgNcrptd = ”” ;
f o r ( i n t i =0; i<binMsg . l ength ( ) ; i ++){

char b = binMsg . charAt ( i ) ;
char k = thisKey . charAt ( i ) ;
i f (b==k ) msgNcrptd+= ’0 ’;
e l s e msgNcrptd+= ’1 ’;

}
re turn msgNcrptd ;

}

pub l i c S t r ing decryptMsg ( St r ing msg){
/∗make sure the l eng th s l i n e up∗/
St r ing thisKey = t h i s . encryptKey ;
whi l e (msg . l ength ()> t h i s . encryptKey . l ength ( ) ){

thisKey+=t h i s . encryptKey ;
}
thisKey = thisKey . su b s t r i ng (0 , msg . l ength ( ) ) ;

/∗XOR binMsg with thisKey ∗/
St r ing msgDcrptd = ”” ;
f o r ( i n t i =0; i<msg . l ength ( ) ; i ++){

char m = msg . charAt ( i ) ;
char k = thisKey . charAt ( i ) ;
i f (m==k ) msgDcrptd+= ’0 ’;
e l s e msgDcrptd+= ’1 ’;

}

/∗ convert binary s t r i n g to chars ∗/
St r ing solvedMsg = ”” ;
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f o r ( i n t i =0; i<msgDcrptd . l ength ( ) ; i +=8){
St r ing s = msgDcrptd . s u b s t r i ng ( i , i +8);
char c = ( char ) I n t e g e r . pa r s e In t ( s , 2 ) ;
solvedMsg = solvedMsg+c ;

}
re turn solvedMsg ;

}
}

pub l i c c l a s s KeyAgreement{
User a l i c e , bob ;
ArrayList<V2Function> gens ;
i n t n1 , n2 , l1 , l2 , l ;

pub l i c KeyAgreement ( i n t n1 , i n t n2 , i n t l1 , i n t l2 , i n t l ){

AugTree domA0 = new AugTree ( ) ;
AugTree ranA0 = new AugTree ( ) ;
domA0 . cutVert ( ) ; domA0 . l e f t . cutVert ( ) ;
ranA0 . cutVert ( ) ; ranA0 . r i g h t . cutVert ( ) ;
ArrayList<Integer> indA0 = new ArrayList<Integer >() ;
indA0 . add ( 0 ) ; indA0 . add ( 1 ) ; indA0 . add ( 2 ) ;
V2Function A0 = new V2Function (domA0, ranA0 , indA0 ) ;

AugTree domA1 = new AugTree ( ) ;
AugTree ranA1 = new AugTree ( ) ;
domA1 . cutVert ( ) ; domA1 . r i g h t . cutVert ( ) ; domA1 . r i g h t . l e f t . cutVert ( ) ;
ranA1 . cutVert ( ) ; ranA1 . r i g h t . cutVert ( ) ; ranA1 . r i g h t . r i g h t . cutVert ( ) ;
ArrayList<Integer> indA1 = new ArrayList<Integer >() ;
indA1 . add ( 0 ) ; indA1 . add ( 1 ) ; indA1 . add ( 2 ) ; indA1 . add ( 3 ) ;
V2Function A1 = new V2Function (domA1, ranA1 , indA1 ) ;

AugTree domB0 = new AugTree ( ) ;
AugTree ranB0 = new AugTree ( ) ;
domB0 . cutHorz ( ) ;
ranB0 . cutVert ( ) ;
ArrayList<Integer> indB0 = new ArrayList<Integer >() ;
indB0 . add ( 0 ) ; indB0 . add ( 1 ) ;
V2Function B0 = new V2Function (domB0 , ranB0 , indB0 ) ;

AugTree domB1 = new AugTree ( ) ;
AugTree ranB1 = new AugTree ( ) ;
domB1 . cutVert ( ) ; domB1 . r i g h t . cutHorz ( ) ;
ranB1 . cutVert ( ) ; ranB1 . r i g h t . cutVert ( ) ;
ArrayList<Integer> indB1 = new ArrayList<Integer >() ;
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indB1 . add ( 0 ) ; indB1 . add ( 1 ) ; indB1 . add ( 2 ) ;
V2Function B1 = new V2Function (domB1 , ranB1 , indB1 ) ;

AugTree domPi 0 = new AugTree ( ) ;
AugTree ranPi 0 = new AugTree ( ) ;
domPi 0 . cutVert ( ) ;
ranPi 0 . cutVert ( ) ;
ArrayList<Integer> indPi 0 = new ArrayList<Integer >() ;
indPi 0 . add ( 1 ) ; indPi 0 . add ( 0 ) ;
V2Function Pi 0 = new V2Function ( domPi 0 , ranPi 0 , indPi 0 ) ;

AugTree domPi 1 = new AugTree ( ) ;
AugTree ranPi 1 = new AugTree ( ) ;
domPi 1 . cutVert ( ) ; domPi 1 . r i g h t . cutVert ( ) ;
ranPi 1 . cutVert ( ) ; ranPi 1 . r i g h t . cutVert ( ) ;
ArrayList<Integer> indPi 1 = new ArrayList<Integer >() ;
indPi 1 . add ( 0 ) ; indPi 1 . add ( 2 ) ; indPi 1 . add ( 1 ) ;
V2Function Pi 1 = new V2Function ( domPi 1 , ranPi 1 , indPi 1 ) ;

AugTree domPi0 = new AugTree ( ) ;
AugTree ranPi0 = new AugTree ( ) ;
domPi0 . cutVert ( ) ; domPi0 . r i g h t . cutVert ( ) ;
ranPi0 . cutVert ( ) ; ranPi0 . r i g h t . cutVert ( ) ;
ArrayList<Integer> indPi0 = new ArrayList<Integer >() ;
indPi0 . add ( 1 ) ; indPi0 . add ( 0 ) ; indPi0 . add ( 2 ) ;
V2Function Pi0 = new V2Function (domPi0 , ranPi0 , indPi0 ) ;

AugTree domPi1 = new AugTree ( ) ;
AugTree ranPi1 = new AugTree ( ) ;
domPi1 . cutVert ( ) ; domPi1 . r i g h t . cutVert ( ) ; domPi1 . r i g h t . r i g h t . cutVert ( ) ;
ranPi1 . cutVert ( ) ; ranPi1 . r i g h t . cutVert ( ) ; ranPi1 . r i g h t . r i g h t . cutVert ( ) ;
ArrayList<Integer> indPi1 = new ArrayList<Integer >() ;
indPi1 . add ( 0 ) ; indPi1 . add ( 2 ) ; indPi1 . add ( 1 ) ; indPi1 . add ( 3 ) ;
V2Function Pi1 = new V2Function (domPi1 , ranPi1 , indPi1 ) ;

gens = new ArrayList<V2Function >() ;
gens . add (A0 ) ; gens . add (A1 ) ; gens . add (B0 ) ; gens . add (B1 ) ; gens . add ( Pi 0 ) ;
gens . add ( Pi 1 ) ; gens . add ( Pi0 ) ; gens . add ( Pi1 ) ;
gens . add (A0 . i n v e r s e ( ) ) ; gens . add (A1 . i n v e r s e ( ) ) ; gens . add (B0 . i n v e r s e ( ) ) ;
gens . add (B1 . i n v e r s e ( ) ) ;

a l i c e = new User ( n1 , l1 , l2 , l , gens ) ;
bob = new User ( n2 , l1 , l2 , l , gens ) ;
}
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pub l i c void createKey ( ){
a l i c e . rece iveOSet ( bob . sendSet ( ) ) ;
bob . rece iveOSet ( a l i c e . sendSet ( ) ) ;

a l i c e . r e ce iveCon jSe t ( bob . sendConjSet ( ) ) ;
bob . r e ce iveCon jSe t ( a l i c e . sendConjSet ( ) ) ;

a l i c e . keyA ( ) ;
bob . keyB ( ) ;

a l i c e . c r ea t eB inSt r ( ) ;
bob . c r ea t eB inSt r ( ) ;

}

pub l i c ArrayList<V2Function> aSet ( ){
re turn a l i c e . sendSet ( ) ;

}

pub l i c ArrayList<V2Function> bSet ( ){
re turn bob . sendSet ( ) ;

}

pub l i c ArrayList<V2Function> aConjSet ( ){
re turn a l i c e . sendConjSet ( ) ;

}

pub l i c ArrayList<V2Function> bConjSet ( ){
re turn bob . sendConjSet ( ) ;

}

pub l i c S t r ing aEncryptMsg ( St r ing msg){
re turn a l i c e . encryptMsg (msg ) ;

}

pub l i c S t r ing bEncryptMsg ( St r ing msg){
re turn bob . encryptMsg (msg ) ;

}

pub l i c S t r ing aDecryptMsg ( St r ing msg){
re turn a l i c e . decryptMsg (msg ) ;

}

pub l i c S t r ing bDecryptMsg ( St r ing msg){
re turn bob . decryptMsg (msg ) ;

}
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}

pub l i c c l a s s LBA{

pub l i c KeyAgreement k ;
pub l i c ArrayList<V2Function> aSet , bSet , bConjSet ;

pub l i c LBA( KeyAgreement keyAg ){
k = keyAg ;
aSet = k . aSet ( ) ;
bSet = k . bSet ( ) ;
bConjSet = k . bConjSet ( ) ; // = {bˆ(−1)( a i )b} f o r a l l a i in aSet .

}

pub l i c V2Function attack ( ){
ArrayList<V2Function> alpha = bConjSet ;
V2Function x = new V2Function ( ) ;
i n t t r i e s = 0 ;
i n t maxTries = k . n1∗k . l ;
whi l e ( t r i e s<maxTries ){

i n t minIdx = 0 ;
i n t g=0;
f o r ( i n t j =0; j<alpha . s i z e ( ) ; j++){ // i n i t i a l i z e minG

V2Function temp = ( bSet . get ( 0 ) . copy ( ) . mul t ip ly (
alpha . get ( j ) . copy ( ) ) ) . mul t ip ly ( bSet . get ( 0 ) . i n v e r s e ( ) ) ;

temp . reduce ( ) ;
g+= temp . numLeaves ;

}
t r i e s ++;
i n t minG = g ;
f o r ( i n t i =1; i<bSet . s i z e ( ) ; i ++){

System . out . p r i n t l n ( minIdx ) ;
g=0;
f o r ( i n t j =0; j<alpha . s i z e ( ) ; j++){

V2Function temp = ( bSet . get ( i ) . copy ( ) . mul t ip ly (
alpha . get ( j ) . copy ( ) ) ) . mul t ip ly ( bSet . get ( i ) . i n v e r s e ( ) ) ;

temp . reduce ( ) ;
g+= temp . numLeaves ;
}
i f ( g<minG){

minG = g ;
minIdx = i ;

}
t r i e s ++;

}
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x = x . mult ip ly ( bSet . get ( minIdx ) . i n v e r s e ( ) ) ;
f o r ( i n t k=0; k<alpha . s i z e ( ) ; k++){

alpha . s e t (k , ( bSet . get ( minIdx ) . copy ( ) . mul t ip ly (
alpha . get ( k ) ) ) . mul t ip ly ( bSet . get ( minIdx ) . i n v e r s e ( ) ) ) ;

}
f o r ( i n t i =0; i<alpha . s i z e ( ) ; i ++){

i f ( ! ( alpha . get ( i ) . equa l s ( aSet . get ( i ) ) ) ) {
break ;

}
i f ( i==(alpha . s i z e ()−1)) {

re turn x . i n v e r s e ( ) ;
}

}
}
re turn n u l l ;

}
}
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