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Abstract

A Voronoi tessellation with n generator points is the partitioning of a bounded region
in R2 into polygons such that every point in a given polygon is closer to its generator
point than to any other generator point. A centroidal Voronoi tessellation (CVT) is a
Voronoi tessellation where each polygons generator point is also its center of mass. In this
project I will demonstrate what kinds of CVTs can exists within specific parameters, such
as a square or rectangular region, and a set number generator points. I will also prove
that the examples I present are the only CVTs that can possibly exist within their given
parameters.



iv



Contents

Abstract iii

Acknowledgments vii

1 Background 1

1.1 Voronoi Tessellations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Centroids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Centroidal Voronoi Tessellations . . . . . . . . . . . . . . . . . . . . . . . . 3

2 CVTs with 2 Generator Points 5

2.1 Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Two Generator Points in a Square . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Two Generator Points in a Rectangle . . . . . . . . . . . . . . . . . . . . . 9

2.4 Two Generator Points in a Trapezoid . . . . . . . . . . . . . . . . . . . . . 11

3 CVTs with 3 Generator Points 15

3.1 Three Generator Points in a Square - Group 1 . . . . . . . . . . . . . . . . 16

3.2 Three Generator Points in a Square - Group 2 . . . . . . . . . . . . . . . . 18

Appendices 27

A Sage Code 27

A.1 Two Generator Points in a Square . . . . . . . . . . . . . . . . . . . . . . . 27

A.2 Two Generator Points in a Rectangle . . . . . . . . . . . . . . . . . . . . . 28

A.3 Two Generator Points in a Trapezoid . . . . . . . . . . . . . . . . . . . . . 30

A.4 Three Generator Points in a Square - 1 . . . . . . . . . . . . . . . . . . . . 31

A.5 Three Generator Points in a Square - 2 . . . . . . . . . . . . . . . . . . . . 33



vi

Bibliography 35



Acknowledgments

I would like to acknowledge the help I received from Ethan Bloch during this project,
without whom I wouldn’t have gotten nearly as far in exploring this topic.



viii



1
Background

1.1 Voronoi Tessellations

A Voronoi tessellation with n generator points is the partitioning of a bounded region in

R2 into convex polygons such that every point in a given polygon is closer to its generator

point than to any other.

Figure 1.1.1, taken from [1], is an example of a Vornoi tessellation where n = 20.

Figure 1.1.1.
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For more details on how Voronoi tessellations are formed, please refer to chapter 2 in

[2].

Definition 1.1.1. Let A = (a1, a2) and B = (b1, b2) be points in R2. The distance between

A and B is given by

D(A,B) =
√

(a1 − b1)2 + (a2 − b2)2.

4

Proof of the following Lemma can be found in [3].

Lemma 1.1.2. Let P1, P2, A, B be points in R2, as can be seen in Figure 1.1.2. The line

AB is a perpendicular bisector of the line P1P2 if and only if D(A,P1) = D(A,P2) and

D(B,P1) = D(B,P2).

Figure 1.1.2.

1.2 Centroids

Definition 1.2.1. The centroid of a polygon is the mean position of all the points in the

polygon.

4

Proof of the following Lemma can be found in [4].
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Lemma 1.2.2. Let (x0, y0), (x1, y1), ..., (xn−1, yn−1) be the vertices of a polygon in R2. Let

A =
1

2

n−1∑
i=0

(xiyi+1 − xi+1yi).

Then the centroid of the polygon is the point (Cx, Cy), where

Cx =
1

6A

n−1∑
i=0

(xi + xi+1)(xiyi+1 − xi+1yi)

Cy =
1

6A

n−1∑
i=0

(yi + yi+1)(xiyi+1 − xi+1yi).

In Lemma 1.2.2, the number A is the area of the polygon and the vertices are assumed

to be numbered in order of their occurrence along the polygon’s perimeter.

1.3 Centroidal Voronoi Tessellations

A centroidal Voronoi tessellation (CVT) of a bounded region in R2 is a Voronoi tessellation

where each polygon’s generator point is also its’ centroid. Figure 1.3.1 demonstrates 3

different centroidal Voronoi tessellation for 5 generator points in a square region in R2.

While Voronoi tessellation can be formed with any given points, CVTs are much more

rare as will be shown in the next chapter.

Figure 1.3.1.

The most commonly used method for building centroidal Voronoi tessellations is Lloyd’s

algorithm.

Using randomly distributed generator points, the algorithm works as follows
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1. Create a Voronoi diagram with the current generator points.

2. Find the centroids of each region.

3. Move the generator points to the centroids of their respective regions.

4. Repeat steps 1-3 until the centroid of each region has the same coordinates as

its respective generator point.

A demonstration of Lloyd’s algorithm can be found at [5].

However, this method involves constant relocation of the generator points, while we are

more interested in a fixed set of generator points.

Lastly, for the purposes of some of the proofs, We will be assuming that CVTs are

equivalent if one CVT can be transformed into other CVT via a symmetry of the region.

Since we will be mostly dealing with square shaped regions, this means that, for example,

a CVT is equivalent to its’ reflection about a horizontal line through the center of the

square. Additional information on symmetry groups can be found at [6].



2
CVTs with 2 Generator Points

2.1 Lemmas

First we need to prove some of the properties of a centroid.

Lemma 2.1.1. Let R be the interior of a bounded rectangle in R2. Let the point G be the

centroid of R. Then any line that passes through G divides the area of R into two parts

with equal area.

Proof. Suppose the rectangle has height h and length s, as can be seen in Figure 2.1.1.

h h

s

b1

b2

b3

b4

s

Figure 2.1.1.
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A line through G divides the rectangle into trapezoid 1 with hight h and lengths b1,

b2, and trapezoid 2 with hight h and lengths b3, b4, where b1 + b3 = s and b2 + b4 = s.

The area of trapezoid 1 is given by A1 = b1+b2
2

h, and the area of trapezoid 2 is given by

A2 = b3+b4
2

h. Assuming that the lower left hand corner has coordinates (0, 0), we know

that the coordinates of G are ( s
2
, h
2
), we can therefore say that b1 = b4 and b2 = b3.

It follows from there that b1 + b2 = b3 + b4, and therefore b1+b2
2

h = b3+b4
2

h, and finally

A1 = A2.

Lemma 2.1.2. Let R be the interior of a bounded rectangle in R2. Let the point G be the

centroid of R. If a line divides R into two regions with equal areas, then the line passes

through G.

Proof. Suppose the rectangle has height h and length s, as can be seen in Figure 2.1.1.

Let that the line that divides the rectangle into two regions with equal areas intersects

the rectangle at points B1 and B2.

Suppose the line B1B2 is parallel to the line through G. Since we know from Lemma 2.1.1

that a line through G divides the area of R into two parts with equal area, we can say that

a parallel line would divide the area of R into two parts with different areas. Therefore,

the line P1P2 has to go through G.

Lemma 2.1.3. Let R be the interior of a bounded polygon in R2. Suppose R = N1 ∪N2,

where N1 and N2 are polygons whose interiors do not intersect. Let P1 and P2 be the

centroids of N1 and N2 respectively. Then the line P1P2 contains the centroid of R.

Proof. In Figure 2.1.2 let P1 be the centroid of N1, and let A1 and A2 be the areas of

the 2 regions of N1 created by a line through P1 and P2. Also, let P2 be the centroid of

N2, and let A3 and A4 be the areas of the 2 regions of N2 created by a line through P1

and P2.
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We can see by Lemma 2.1.1 that A1 = A2 and A3 = A4. It follows that A1 + A3 =

A2 + A4. Hence the line P1P2 divides R into two pieces with equal area. Therefore, by

Lemma2.1.2 , the line P1P2 passes through the centroid of R.

A3

A2

A4

A1

Figure 2.1.2.

2.2 Two Generator Points in a Square

Theorem 2.2.1. For 2 generator points in a square region, there exist precisely two

centroidal Voronoi tessellations.

Proof. Let P1 and P2 be generator points in a square region. Let B = (b, 0) and A = (a, 1)

be the points at which the perpendicular bisector of the line P1P2 intersect with the edge

of the region, as can be seen in Figure 2.2.1.

We know by Lemma 2.1.3 that the line AB passes through G, and therefore we can say

that a = 1− b.

Using Lemma 1.2.2 we can find the coordinates of P1 and P2, which are

P1 = (
b2 − b + 1

3
,
2− b

3
)

P2 = (
−b2 + b + 2

3
,
b + 1

3
).
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(0,1)

(0,0) (1,0)

(1,1)A (1-b,1)

B (b,0)

Figure 2.2.1.

By Lemma 1.1.2 we can say that the following has to be true

D(A,P1) = D(A,P2)

D(B,P1) = D(B,P2).

Since we know the coordinates of all the points, we can use Code A.1 to express

D(A,P1) = D(A,P2) and D(B,P1) = D(B,P2) as

((b− 1)2 + 4b− 3)2 + (b + 1)2

9
=

((b− 2)b− 2b + 1)2 + (b− 2)2

9
((b− 1)2 − 2b)2 + (b− 2)2

9
=

((b− 2)b + 4b− 2)2 + (b + 1)2

9

respectively.

We can now use Code A.1 to solve this equation for b, which gives us the following

solutions

b = 0, b = 1, b =
1

2
.

Since r = 0 is a reflection of r = 1 about the line x = 1
2
, we can conclude that r = 1

and r = 1
2
, which can be seen in Figure 2.2.2, are the only possible centroidal Vornoi

tessellations for 2 generator points in a square region.
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(a) (b)

Figure 2.2.2.

2.3 Two Generator Points in a Rectangle

Theorem 2.3.1. Ler R be a rectangle with length r and hight 1. If
√

2
3
< r ≤ 1, then for

2 generator points in R, there exist precisely three centroidal Voronoi tessellations. For

all other values of r there exists precisely one centroidal Voronoi tessellation.

Proof. Let P1 and P2 be generator points in a rectangular region with length r and hight

1. Let B = (b, 0) and A = (a, 1) be the points at which the perpendicular bisector of the

line P1P2 intersect with the edge of the region, as can be seen in Figure 2.3.1.

(0,1)

(0,0) (r,0)

(r,1)A (r-b,1)

B (b,0)

Figure 2.3.1.
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We know by Lemma 2.1.3 that the line AB passes through G, and therefore we can say

that a = r − b.

Using Lemma 1.2.2 we can find the coordinates of P1 and P2, which are

P1 = (
(b− r)2 + br

3r
,
b− 2r

r3
)

P2 = (−(b− 2r)b + br − 2r2

3r
,
b + r

3r
).

By Lemma 1.1.2 we can say that the following has to be true

D(A,P1) = D(A,P2)

D(B,P1) = D(B,P2).

Since we know the coordinates of all the points, we can use Code A.2 to express

D(A,P1) = D(A,P2) and D(B,P1) = D(B,P2) as

1

9
((3b− 3r +

(b− r)2 + br

r
)2 + (

b− 2r

r
+ 3)2) =

1

9
((3b− 3r − (b− 2r)b + br − 2r2

r
)2 + (

b + r

r
− 3)2)

1

9
((3b− (b− r)2 + br

r
)2 + (

b− 2r

r
)2) =

1

9
((3b +

(b− 2r)b + br − 2r2

r
)2 + (

b + r

r
)2)

respectively.

We can now use Code A.2 to solve these equations for b, which gives us the following

solutions

b =
r +
√

3r2 − 2

2
, b =

r −
√

3r2 − 2

2
, b =

r

2
.

If r ≤
√

2
3
, then 3r2 − 2 < 0, and

√
3r2 − 2 becomes an imaginary number. Therefore

r+
√
3r2−2
2

and r−
√
3r2−2
2

do not exists in R when r ≤
√

2
3
.

If r > 1, then r <
√

3r2 − 2. It follows from there that r < r+
√
3r2−2
2

. Therefore, when

r > 1, then r < b, which puts the point B outside the rectangle. It also follows from there

that 0 > r−
√
3r2−2
2

. Therefore, when r > 1, then o > b, which puts the point B outside the

rectangle.

Therefore, we can conclude that b = r+
√
3r2−2
2

and b = r−
√
3r2−2
2

for
√

2
3
< r ≤ 1,

and b = r
2

for all values of r, are the only possible centroidal Vornoi tessellations for 2

generator points in a rectangular region.
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2.4 Two Generator Points in a Trapezoid

Before we look at regions with 3 generator points, we will first consider a trapezoid region

as can be seen in Figure 2.4.1

Theorem 2.4.1. For 2 generator points in a right trapezoid region, there is no centroidal

Voronoi tessellations.

Proof. Let P1 and P2 be generator points in a trapezoid region with hight 1, and lengths

c and r. Let B = (b, 0) and A = (a, 1) be the points at which the perpendicular bisector

of the line P1P2 intersect with the edge of the region, and let G = (m,n) be centroid of

the region, as can be seen in Figure 2.4.1.

(0,1)

(0,0) (r,0)

(c,1)

B (b,0)

A (a,1)

Figure 2.4.1.

We know by Lemma 2.1.3 that the line AB passes through G. Since A, B, and G are

all part of the same line, we can express a in terms of b, m, and n.

Suppose that the equation of the line AB has the form x = ry + k.

Substituting the coordinates of point B, this equation becomes b = r · 0 + k. Therefore

k = b.
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Substituting the coordinates of point G, this equation becomes m = rn + b. Therefore

r = m−b
n

, which gives us

x =
m− b

n
y + b.

Substituting the coordinates of point A, the equation becomes a = m−b
n

+ b.

Furthermore, by Lemma 1.2.2, we can say that m = c2+r(c+r)
3(c+r)

, and n = 2c+r
3(c+r)

. Therefore,

a = c2+r2+cr−bc−2br
2c+r

.

Using Lemma 1.2.2 we can find the coordinates of P1 and P2, which are

P1 = (
(b− bc−c2+2br−cr−r2

2c+r
)b + (bc−c2+2br−cr−r2)2

(2c+r)2

3(b− bc−c2+2br−cr−r2
2c+r

)
,
b− 2(bc−c2+2br−cr−r2)

2c+r

3(b− bc−c2+2br−cr−r2
2c+r

)
)

P2 = (
(b− bc−c2+2br−cr−r2

2c+r
)b− (c− bc−c2+2br−cr−r2

2c+r
)(c + bc−c2+2br−cr−r2

2c+r
)− (c + r)r

3(b− c− r − bc−c2+2br−cr−r2
2c+r

)
,

b− 2c− r − 2(bc−c2+2br−cr−r2)
2c+r

3(b− c− r − bc−c2+2br−cr−r2
2c+r

)
).

By Lemma 1.1.2 we can say that the following has to be true

D(A,P1) = D(A,P2)

D(B,P1) = D(B,P3).

Since we know the coordinates of all the points, we can use Code A.3 to express

D(A,P1) = D(A,P2) as

1

9
(
(b− bc−c2+2br−cr−r2

2c+r
)b + (bc−c2+2br−cr−r2)2

(2c+r)2

b− bc−c2+2br−cr−r2
2c+r

+
3(bc− c2 + 2br − cr − r2)

2c + r
)2

+
1

9
(
b− 2(bc−c2+2br−cr−r2)

2c+r

b− bc−c2+2br−cr−r2
2c+r

− 3)2 =

=
1

9
(
(b− bc−c2+2br−cr−r2

2c+r
)b− (c− bc−c2+2br−cr−r2

2c+r
)(c + bc−c2+2br−cr−r2

2c+r
)− (c + r)r

b− c− r − bc−c2+2br−cr−r2
2c+r

+
3(bc− c2 + 2br − cr − r2)

2c + r
)2 +

1

9
(
b− 2c− r − 2(bc−c2+2br−cr−r2)

2c+r

b− c− r − bc−c2+2br−cr−r2
2c+r

− 3)2.
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And D(B,P1) = D(B,P3) can be expressed as

1

9
(3b−

(b− bc−c2+2br−cr−r2
2c+r

)b + (bc−c2+2br−cr−r2)2
(2c+r)2

b− bc−c2+2br−cr−r2
2c+r

+
1

9
(
b− 2(bc−c2+2br−cr−r2)

2c+

b− bc−c2+2br−cr−r2
2c+r

)2 =

=
1

9
(3b−

(b− bc−c2+2br−cr−r2
2c+r

)b− (c− bc−c2+2br−cr−r2
2c+r

)(c + bc−c2+2br−cr−r2
2c+r

)− (c + r)r

b− c− r − bc−c2+2br−cr−r2
2c+r

)2

+
1

9
(
b− 2c− r − 2(bc−c2+2br−cr−r2)

2c+r

b− c− r − bc−c2+2br−cr−r2
2c+r

)2.

We can now use Code A.3 to solve these equations for b, with parameter c 6= r, which

shows us that this case has no solution. These equations only have a solution when the

c = r, at which point the region just becomes a rectangle.

Therefore, we can conclude that 2 generator points in a right trapezoid region have no

centroidal Voronoi tessellations.
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3
CVTs with 3 Generator Points

Lemma 3.0.1. Let P1, P2 and P3 be points of a triangle. The perpendicular bisectors of

the lines P1P2, P2P3 and P3P1 meet at a single point.

Proof. Let the perpendicular bisectors of P1P2 and P1P3 intersect at a point O. Since

any point on the perpendicular bisector of a segment is equidistant from the endpoints of

the segment, we can say that D(O,P1) = D(O,P2), and D(O,P1) = D(O,P3). Then, by

the transitive property, D(O,P2) = D(O,P3). We can therefore say that the point O is

on the perpendicular bisectors of P2P3. Since D(O,P1) = D(O,P2) = D(O,P3), then the

point O is equidistant from P1, P2 and P3.

Voronoi tessellations for 3 generator points in a square region can be separated into two

groups.

The first group consists of tessellations in which the perpendicular bisectors do not

intersect inside the square, as can be seen in Figure 3.0.1a.

The second group consists of tessellations in which the perpendicular bisectors do inter-

sect inside the square, as can be seen in Figure 3.0.1b. Furthermore, by Lemma 3.0.1 we

know that that the only possibility when the perpendicular bisectors do intersect inside

the square is when all three intersect in a common point.
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(0,1)

(0,0) (1,0)

(1,1)

(a)

(0,1)

(0,0) (1,0)

(1,1)

(b)

Figure 3.0.1.

3.1 Three Generator Points in a Square - Group 1

Theorem 3.1.1. For 3 generator points in a square region where the perpendicular bi-

sectors of the lines between the generator points do not intersect inside the square, there

exists precisely one centroidal Voronoi tessellation.

Proof. Let P1, P2 and P3 be generator points in a square region. Let A = (a, 1), B =

(b, 0), C = (c, 1) and R = (r, 0) be the points at which the perpendicular bisectors of the

lines P1P2 and P2P3 intersect with the edge of the region, as can be seen in Figure 3.1.1,

Since we know for from Theorem 2.4.1 that a right trapezoid has no CVTs, we can say

that the polygon made by the points (0, 0), (0, 1), C, R can not be a trapezoid, and thus

can only be a rectangle. Therefore it must be true that c = r.

Furthermore, since the polygon made by the points (0, 0), (0, 1), C, R is a rectangle we

can say that a = r − b.
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(0,1)

(0,0) (1,0)

(1,1)

R (r,0)

C (c,1)

B (b,0)

A (a,1)

Figure 3.1.1.

Using Lemma 1.2.2 we can find the coordinates of P1, P2 and P3, which are

P1 = (
(b− r)2 + br

3r
r,−b− 2r

3r
)

P2 = (−(b− 2r)b + br − 2r2

3r
r,−b + r

3r
)

P3 = (
(r + 1)(r − 1) + 2r2 − 2

6(r − 1)
,
1

2
).

By Lemma 1.1.2 we can say that the following has to be true

D(A,P1) = D(B,P2)

D(A,P1) = D(B,P2)

D(C,P2) = D(C,P3)

D(R,P2) = D(R,P3).

Since we know the coordinates of all the points, we can use Code A.4 to express

both D(C,P2) = D(C,P3), D(R,P2) = D(R,P3) D(C,P2) = D(C,P3) and D(R,P2) =
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D(R,P3) as

1

9
((3b− 3r +

(b− r)2 + br

r
)2 + (

b− 2r

r
+ 3)2) =

1

9
((3b− 3r − (b− 2r)b + br − 2r2

r
)2 + (

b + r

r
− 3)2),

1

9
((3b− (b− r)2 + br

r
)2 + (

b− 2r

r
)2) =

1

9
((3b +

(b− 2r)b + br − 2r2

r
)2 + (

b + r

r
)2),

1

9
((3r +

(b− 2r)b + br − 2r2

r
)2 + (

b + r

r
− 3)2) =

1

36
(6r − (r + 1)(r − 1) + 2r2 − 2

r − 1
)2 +

1

4
,

1

9
((3r +

(b− 2r)b + br − 2r2

r
)2 + (

b + r

r
)2) =

1

36
(6r − (r + 1)(r − 1) + 2r2 − 2

r − 1
)2 +

1

4

respectively.

We can now use Code A.4 to solve this equation for b and r, which gives us the following

solutions

b = 1, r = 2

b = 0, r = 0

b =
1

3
, r =

2

3
.

The solution b = 1, r = 2 is invalid because it puts the point R outside the square. The

solution b = 0, r = 0 is invalid because it puts the centroids P1 and P2 on the edges of the

square, and we are only interested in situations where P1, P2 and P3 are in the interior.

Therefore, b = 1
3
, r = 2

3
is the only valid solution. So b = 1

3
, r = 2

3
, c = 2

3
and a = 1

3
,

as illustrated in Figure 3.1.2, is the only centroidal Voronoi tessellation for 3 generator

points in a square region where the perpendicular bisectors do not intersect inside the

square.

3.2 Three Generator Points in a Square - Group 2

Theorem 3.2.1. For 3 generator points in a square region where the perpendicular bisec-

tors of the lines between the generator points DO intersect inside the square, and where

the line x = 1
2
is assumed to be one of the perpendicular bisectors, there exists precisely

one centroidal Voronoi tessellation.
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(0,1)

(0,0) (1,0)

(1,1)

R (2/3,0)

C (2/3,1)

B (1/3,b)

A (1/3,1)

Figure 3.1.2.

Proof. Let P1, P2 and P3 be generator points in a square region. Let A = (0, a), B = (1, b)

and C = (c, 0) be the points at which the perpendicular bisectors of the lines P1P2, P1P3

and P2P3 intersect with the edge of the region, respectively. Since we know by Lemma 3.0.1

that all three of the perpendicular bisectors meet at a single point, let G = (m,n) be the

point where all three of the perpendicular bisectors meet, as can be seen in Figure 3.2.1.

(0,1)

(0,0) (1,0)

(1,1)

C (1/2,0)

B (1,b)A (0,a)

Figure 3.2.1.

Since we are assuming that the line x = 1
2

is one of the perpendicular bisectors, we can

say that the points C and G are on that line, and therefore c = 1
2

and m = 1
2
.
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Using Lemma 1.2.2 we can find the coordinates of P1, P2 and P3, which are

P1 = (
a + 5b + 6n− 12

6(a + b + 2n− 4)
,
(a + n)a− (b + n)(b− 2n) + 2(b + 1)(b− 1)− 4

a + b + 2n− 4
)

P2 = (
a + 2n

6(a + n)
,
(a + n)a + n2

3(a + n)
)

P3 = (
5b + 4n

6(b + n)
,−(b + n)(b− 2n)− 2b2 + n2

3(b + n)
).

By Lemma 1.1.2 we can say that the following has to be true

D(A,P1) = D(A,P2)

D(G,P1) = D(G,P2)

D(B,P1) = D(B,P3)

D(G,P1) = D(G,P3)

D(C,P2) = D(C,P3)

D(G,P2) = D(G,P3).

Since we know the coordinates of all the points, we can use Code A.5 to express

D(A,P1) = D(A,P2) as

1

9
(3a− (a + n)a− (b + n)(b− 2n) + 2(b + 1)(b− 1)− 4

a + b + 2n− 4
)2 +

1

36
(
a + 5b + 6n− 12

a + b + 2n− 4
)2 =

=
1

9
(3a− (a + n)a + n2

a + n
)2 +

1

36
(
a + 2n

a + n
)2,

D(G,P1) = D(G,P2) as

1

9
(3n− (a + n)a− (b + n)(b− 2n) + 2(b + 1)(b− 1)− 4

a + b + 2n− 4
)2 +

1

36
(
a + 5b + 6n− 12

a + b + 2n− 4
− 3)2 =

=
1

9
(3n− (a + n)a + n2

a + n
)2 +

1

36
(
a + 2n

a + n
− 3)2,

D(B,P1) = D(B,P3) as

1

9
(3b− (a + n)a− (b + n)(b− 2n) + 2(b + 1)(b− 1)− 4

a + b + 2n− 4
)2 +

1

36
(
a + 5b + 6n− 12

a + b + 2n− 4
− 6)2 =

=
1

9
(3b +

(b + n)(b− 2n)− 2b2 + n2

b + n
)2 +

1

36
(
5b + 4n

b + n
− 6)2,
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D(G,P1) = D(G,P3) as

1

9
(3n− (a + n)a− (b + n)(b− 2n) + 2(b + 1)(b− 1)− 4

a + b + 2n− 4
)2 +

1

36
(
a + 5b + 6n− 12

a + b + 2n− 4
− 3)2 =

=
1

9
(3n +

(b + n)(b− 2n)− 2b2 + n2

b + n
)2 +

1

36
(
5b + 4n

b + n
− 3)2,

D(C,P2) = D(C,P3) as

1

9
(
(a + n)a + n

a + n
)2 +

1

36
(
a + 2n

a + n
− 3)2 =

1

9
(
(b + n)(b− 2n)− 2b2 + n2

b + n
)2 +

1

36
(
5b + 4n

b + n
− 3)2,

and D(G,P2) = D(G,P3) as

1

9
(3n− (a + n)a + n

a + n
)2 +

1

36
(
a + 2n

a + n
− 3)2 =

1

9
(3n +

(b + n)(b− 2n)− 2b2 + n2

b + n
)2 +

1

36
(
5b + 4n

b + n
− 3)2.

We can now use Code A.5 to solve these equations for a, b and n, which gives us the

following solutions

1. a = 1
2
I, b = 1

2
I, n = −1

2
I

2. a = −1
2
I, b = −1

2
I, n = 1

2
I

3. a = 1.00974195868289e− 28− 1
2
I, b = −1

2
I, n = 1

2
I

4. a = 1
2
I, b = 1

2
I, n = −3.82610927270291e− 16− 0.4999999999999999 · I

5. a = −1
2
I, b = −1

2
I, n = −7.86299641775921e− 16 + 0.4999999999999999 · I

6. a = 0.1030571046735446−0.5475362769479363·I, b = 0.1030571046735446−

0.5475362769479363·I, n = −0.1557575148939911+0.452543468512838·I

7. a = 0.1030571046735446+0.5475362769479363·I, b = 0.1030571046735446+

0.5475362769479363·I, n = −0.1557575148939908−0.4525434685128378·

I
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8. a = 0, b = 0, n = 0

9. a = 1, b = 1, n = 1

10. a = −1
2
, b = −1

2
, n = 1

11. a = 1.400583090379009, b = 1.400583090379009, n = 0.1253255465235577

12. a = 1.070293398533007, b = 1.070293398533007, n = 0.9333089043605717

13. a = −0.1893382352941176, b = −0.1893382352941176, n = 0.2664015627180131

14. a = 0.7623474723997675, b = 0.7623474723997675, n = 0.4864789517702816.

Solutions 1 - 7 are invalid because they contain imaginary numbers.

Solutions 8 and 9 are invalid because they put the centroids P1, P2 and P3 on the edges

of the square, and we are only interested in situations where P1, P2 and P3 are in the

interior.

Solutions 10, 11, 12 and 13 are invalid because the values of a and b are larger than 1

or smaller then 0, thus putting them outside the square.

Therefore, a = 0.7623474723997675, b = 0.7623474723997675, n = 0.4864789517702816

is the only solution.

The above proof is not entirely conclusive, as it does not account for the possibility

that the points A and B cross the edges of the region along a different line segment.

We will need to check for the pairs A = (0, a) and B = (b, 1) as seen in Figure 3.2.2a,

A = (a, 1) and B = (b, 0) as seen in Figure 3.2.2b, A = (a, 1) and B = (b, 1) as seen in

Figure 3.2.2c.

The pairs A = (a, 1), B = (1, b) and A = (a, 0), B = (b, 1) do not need to be checked

because they are reflections of A = (0, a), B = (b, 1) and A = (a, 1), B = (b, 0) about the

line x = 1
2
, respectively.
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(0,1)

(0,0) (1,0)

(1,1)

C (1/2,0)

B (b,1)

A (0,a)

(a)

(0,1)

(0,0) (1,0)

(1,1)

C (1/2,0) B (b,0)

A (a,1)

(b)

(0,1)

(0,0) (1,0)

(1,1)

C (1/2,0)

B (b,1)A (a,1)

(c)

Figure 3.2.2.
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The pairs A = (a, 0), B = (1, b) and A = (0, a), B = (b, 0) do not need to be checked

because they are reflections of A = (a, 1), B = (1, b) and A = (0, a), B = (b, 1) about the

line y = 1
2
, respectively.

The pair A = (a, 0), B = (b, 0), does not need to be checked because in it the polygon

formed by generator point P1 would be concave, and CVTs can only have convex polygons.

Repeating the process from the proof of Theorem 3.2.1 for A = (0, a), B = (b, 1) gives

us the following solutions

a = 1, b = (1/2), n = 1

a = 0.9999983117974968, b = 1.497287326388889, n = 0.9999979278862989

a = 1.0, b = 0.7506799637352675, n = 1.0

a = 1.0, b = 0.4915223987149741, n = 1.0

a = 0, b = (1/2), n = 0.

All of these solutions are invalid because when a = n = 1, 0, it puts the centroids P2

and P3 on the edges of the square, and we are only interested in situations where P2 and

P3 are in the interior.

Repeating the process from the proof of Theorem 3.2.1 for A = (a, 1), B = (b, 0) gives

us the following solution

a =
1

2
, b =

5

4
, n =

3

2
.

This solution is invalid because it puts points B and G outside the square.
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Repeating the process from the proof of Theorem 3.2.1 for A = (a, 1), B = (b, 1) gives

us the following solutions

a =
1

2
, b =

5

4
, n = −1

2

a =− 1

4
, b =

1

2
, n = −1

2

a =− 1

2

√
2 +

1

2
, b =

1

2

√
2 +

1

2
, n = −1

2

a =
1

2

√
2 +

1

2
, b = −1

2

√
2 +

1

2
, n = −1

2

a =1.851430158289364, b = −0.8514301582893641, n = 2.601207590569293

a =2.499010257333093, b = −1.499010257333093, n = 0.7766141097939924

a =− 0.1507406988578537, b = 1.150740740740741, n = −0.4355982612674445

a =0.2328028055031022, b = 0.7671971944968977, n = −0.3731344371247012

a =2.499010257333093, b = −1.499010257333093, n = 0.7766141097939924

a =− 0.1507406988578537, b = 1.150740740740741, n = −0.4355982612674445

a =0.2328028055031022, b = 0.7671971944968977, n = −0.3731344371247012

a =1.851430158289364, b = −0.8514301582893641, n = 2.601207590569293

a =(0.01173174360500562 + 1.146401586303696 · I), b = (0.9882682563949989−

1.146401586303694 · I), n = (0.6944841956433466− 1.162959733078031·)

a =(0.01173174360500235− 1.146401586303706 · I), b == (0.9882682563949955+

1.146401586303684 · I), n = (0.6944841956433466 + 1.162959733078031 · I)

a =(−0.2279829885120222− 0.3357976917092346 · I), b = (1.227982988512035+

0.3357976917092294 · I), n = (0.5209712936710452− 0.02090145223396259 · I)

a =(−0.2279829885120221 + 0.3357976917092346 · I), b = (1.227982988512035−

0.3357976917092294 · I), n = (0.5209712936710452 + 0.02090145223396259 · I)

a =(0.4298731892826677 + 1.467511436524454 · I), b = (0.5701268107173323−

1.467511436524454 · I), n = (0.9675114365244545− 0.6798731892826693 · I)
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a =(0.4298731892826694− 1.467511436524453 · I), b = (0.5701268107173305+

1.467511436524453 · I), n = (0.9675114365244545 + 0.6798731892826693 · I)

a =(−0.1798731892826694 + 0.03248856347554584 · I), b = (1.179873189282669−

0.03248856347554584 · I), n = (−0.4675114365244545− 0.07012681071733087 · I)

a =(−0.1798731892826694− 0.0324885634755458 · I), b = (1.179873189282669+

0.0324885634755458 · I), n = (−0.4675114365244545 + 0.07012681071733087 · I)

a =(0.01173174360500562 + 1.146401586303696 · I), b = (0.9882682563949944−

1.146401586303696 · I), n = (0.6944841956433466− 1.162959733078031 · I)

a =(0.01173174360500235− 1.146401586303706 · I), b = (0.9882682563949976+

1.146401586303706 · I), n = (0.6944841956433466 + 1.162959733078031 · I)

a =(−0.2279829885120222− 0.3357976917092346 · I), b = (1.227982988512022+

0.3357976917092346 · I), n = (0.5209712936710452− 0.02090145223396259 · I)

a =(−0.2279829885120221 + 0.3357976917092346 · I), b = (1.227982988512022−

0.3357976917092346 · I), n = (0.5209712936710452 + 0.02090145223396259 · I).

The first eleven of these solutions are invalid because the values of a, b and n are higher

than 1 or lower then 0, thus putting them outside the square. The rest of the solutions

are invalid because they contain imaginary numbers.

Therefore, we can conclude that A = (0, a) and B = (1, b), as shown in Figure 3.2.1, is

the only situation where a centroidal Voronoi tessellation exists.



Appendix A
Sage Code

A.1 Two Generator Points in a Square

a, b = var(’a, b’)

def Area(L):

v = (1/2) * sum(L[i][0] * L[(i+1)%(len(L))][1]

- L[(i+1)%(len(L))][0] * L[i][1] for i in range(len(L)))

return v

def Cx(L):

v = (1/(6 * Area(L))) * sum((L[i][0]+L[(i+1)%(len(L))][0])

* (L[i][0] * L[(i+1)%(len(L))][1] - L[(i+1)%(len(L))][0]

* L[i][1]) for i in range(len(L)))

return v

def Cy(L):

v = (1/(6 * Area(L))) * sum((L[i][1]+L[(i+1)%(len(L))][1])

* (L[i][0] * L[(i+1)%(len(L))][1] - L[(i+1)%(len(L))][0]
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* L[i][1]) for i in range(len(L)))

return v

def Cent(L):

v = [Cx(L), Cy(L)]

return v

def D(A, B):

v = (A[0] - B[0])^2 + (A[1] - B[1])^2

return v

L = [[0,0], [0,1], [1,1], [1,0]]

A = [1-b,1]

B = [b,0]

P1 = [L[0], L[1], A, B]

P2 = [B, A, L[2], L[3]]

solve ([D(A, Cent(P1)) == D(A, Cent(P2)), D(B, Cent(P1)) == D(B, Cent(P2))], b)

A.2 Two Generator Points in a Rectangle

r, a, b = var(’r, a, b’)

def Area(L):

v = (1/2) * sum(L[i][0] * L[(i+1)%(len(L))][1]

- L[(i+1)%(len(L))][0] * L[i][1] for i in range(len(L)))

return v



A.2. TWO GENERATOR POINTS IN A RECTANGLE 29

def Cx(L):

v = (1/(6 * Area(L))) * sum((L[i][0]+L[(i+1)%(len(L))][0])

* (L[i][0] * L[(i+1)%(len(L))][1] - L[(i+1)%(len(L))][0]

* L[i][1]) for i in range(len(L)))

return v

def Cy(L):

v = (1/(6 * Area(L))) * sum((L[i][1]+L[(i+1)%(len(L))][1])

* (L[i][0] * L[(i+1)%(len(L))][1] - L[(i+1)%(len(L))][0]

* L[i][1]) for i in range(len(L)))

return v

def Cent(L):

v = [Cx(L), Cy(L)]

return v

def D(A, B):

v = (A[0] - B[0])^2 + (A[1] - B[1])^2

return v

L = [[0,0], [0,1], [r,1], [r,0]]

A = [r-b,1]

B = [b,0]

G = Cent(L)

P1 = [L[0], L[1], A, B]

P2 = [B, A, L[2], L[3]]
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solve ([D(A, Cent(P1)) == D(A, Cent(P2)), D(B, Cent(P1)) == D(B, Cent(P2))], b)

A.3 Two Generator Points in a Trapezoid

r, a, b, c, m, n = var(’r, a, b, c, m, n’)

def Area(L):

v = (1/2) * sum(L[i][0] * L[(i+1)%(len(L))][1]

- L[(i+1)%(len(L))][0] * L[i][1] for i in range(len(L)))

return v

def Cx(L):

v = (1/(6 * Area(L))) * sum((L[i][0]+L[(i+1)%(len(L))][0])

* (L[i][0] * L[(i+1)%(len(L))][1] - L[(i+1)%(len(L))][0]

* L[i][1]) for i in range(len(L)))

return v

def Cy(L):

v = (1/(6 * Area(L))) * sum((L[i][1]+L[(i+1)%(len(L))][1])

* (L[i][0] * L[(i+1)%(len(L))][1] - L[(i+1)%(len(L))][0]

* L[i][1]) for i in range(len(L)))

return v

def Cent(L):

v = [Cx(L), Cy(L)]

return v

def D(A, B):
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v = (A[0] - B[0])^2 + (A[1] - B[1])^2

return v

L = [[0,0], [0,1], [c,1], [r,0]]

a = (c^2 + r^2 + c*r - b*c - 2*b*r)/(2*c + r)

#or a = (Cent(L)[0] - b)/Cent(L)[1] + b

A = [a,1]

B = [b,0]

P1 = [L[0], L[1], A, B]

P2 = [B, A, L[2], L[3]]

solve ([D(A, Cent(P1)) == D(A, Cent(P2)), D(B, Cent(P1)) == D(B, Cent(P2))], b)

A.4 Three Generator Points in a Square - 1

r, a, b, c = var(’r, a, b, c’)

def Area(L):

v = (1/2) * sum(L[i][0] * L[(i+1)%(len(L))][1]

- L[(i+1)%(len(L))][0] * L[i][1] for i in range(len(L)))

return v

def Cx(L):

v = (1/(6 * Area(L))) * sum((L[i][0]+L[(i+1)%(len(L))][0])

* (L[i][0] * L[(i+1)%(len(L))][1] - L[(i+1)%(len(L))][0]

* L[i][1]) for i in range(len(L)))

return v
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def Cy(L):

v = (1/(6 * Area(L))) * sum((L[i][1]+L[(i+1)%(len(L))][1])

* (L[i][0] * L[(i+1)%(len(L))][1] - L[(i+1)%(len(L))][0]

* L[i][1]) for i in range(len(L)))

return v

def Cent(L):

v = [Cx(L), Cy(L)]

return v

def D(A, B):

v = (A[0] - B[0])^2 + (A[1] - B[1])^2

return v

L = [[0,0], [0,1], [1,1], [1,0]]

A = [r-b,1]

B = [b,0]

C = [r,1]

R = [r,0]

P1 = [L[0], L[1], A, B]

P2 = [B, A, C, R]

P3 = [R, C, L[2], L[3]]

solve ([D(A, Cent(P1)) == D(A, Cent(P2)), D(B, Cent(P1)) == D(B, Cent(P2)),

D(C, Cent(P2)) == D(C, Cent(P3)), D(R, Cent(P2)) == D(R, Cent(P3))], r)
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A.5 Three Generator Points in a Square - 2

a, b, c, m, n = var(’a, b, c, m, n’)

def Area(L):

v = (1/2) * sum(L[i][0] * L[(i+1)%(len(L))][1]

- L[(i+1)%(len(L))][0] * L[i][1] for i in range(len(L)))

return v

def Cx(L):

v = (1/(6 * Area(L))) * sum((L[i][0]+L[(i+1)%(len(L))][0])

* (L[i][0] * L[(i+1)%(len(L))][1] - L[(i+1)%(len(L))][0]

* L[i][1]) for i in range(len(L)))

return v

def Cy(L):

v = (1/(6 * Area(L))) * sum((L[i][1]+L[(i+1)%(len(L))][1])

* (L[i][0] * L[(i+1)%(len(L))][1] - L[(i+1)%(len(L))][0]

* L[i][1]) for i in range(len(L)))

return v

def Cent(L):

v = [Cx(L), Cy(L)]

return v

def D(A, B):

v = (A[0] - B[0])^2 + (A[1] - B[1])^2

return v
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L = [[0,0], [0,1], [1,1], [1,0]]

A = [0,a]

B = [1,b]

C = [1/2,0]

G = [1/2,n]

P1 = [L[1], L[2], B, G, A]

P2 = [A, G, C, L[0]]

P3 = [B, G, C, L[3]]

solve ([D(A, Cent(P1)) == D(A, Cent(P2)), D(G, Cent(P1)) == D(G, Cent(P2)),

D(B, Cent(P1)) == D(B, Cent(P3)), D(G, Cent(P1)) == D(G, Cent(P3)),

D(C, Cent(P2)) == D(C, Cent(P3)), D(G, Cent(P2)) == D(G, Cent(P3))], a, b, n)
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