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Abstract 
 
 

This project studies the classification variable ‘default’ in Peer to Peer lending dataset             

known as Lending Club. The project improved on existing work in terms of accuracy, F-1               

measure, precision, recall, and root mean squared error. We explored balancing techniques such             

as oversampling the minority class, undersampling the majority class, and random forests with             

balanced bootstraps. We also analyzed and proposed new features that improve the Learner             

performance. 
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Introduction 

 

Connor (2010) defines credit risk as to the “uncertainty about whether a counterparty will              

honor a financial obligation”. Engle (2009) mentions the growth “in the volume and diversity” of               

credit derivatives over the past decade. Malik (2010) mentions the importance of credit modeling              

to develop a system that can correctly rank borrowers in terms of their default risk. Extensive                

research has been conducted but it can be synthesized to six major subfields of study: 

 

● Default security pricing 
● Default intensity modeling 
● Comparative analysis of credit models  
● Comparative analysis of credit markets  
● Credit default swap 
● Loan loss provisions. 

 
 

It is important to measure credit risk, and thus researchers have developed methodologies             

to model credit risk. Saunders and Cornett (2011) group credit risk models into two groups:               

qualitative and quantitative models. Features such as reputation, financial leverage, earnings           

volatility, collateral, business cycle, and interest rates are employed in qualitative models.            

Quantitative models, however, aim at either producing a credit score, used to either determine              

the probability of default or classify borrowers into various default risk groups (Saunders 2011). 

 

The rise in big data and available processing power over the past decade has resulted in                

the rise of implementing data-driven learning methods. Machine Learning (ML) has become a             
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vital part of credit risk modeling applications (Bacham 2017). Bacham mentions the reasons why              

modern models have shifted towards a machine learning learner from “statistical learning            

methods” as these methods assume a formal relationship between features whereas ML methods             

may learn from the data without requiring any “rules-based programming”. This is evident from              

how learners are structured. An machine learning learner discerns the relationship between the             

features and the target variable through approximating a mapping function.  

 

Kruppa (2013) presents the case for the use of machine learning methods such as              

Random Forests (RF) to estimate individual customer credit risk. An RF is simply multiple              

decision trees aggregated over the same training space. The results of each decision tree is               

pooled through voting which results in a final prediction. Kruppa shows that RF outperforms              

industry standard logistic regression. Khandani (2010) also shows that bootstrapped CART trees            

outperformed industry standard models to classify rates of credit-card-holder delinquencies and           

defaults. Stefan (2015) performed an exhaustive benchmarking of 41 different ML classifiers            

against the industry standard Logistic Regression (LR). He showed that several classifiers predict             

credit risk significantly better than LR. He concludes with a recommendation of further             

benchmarking models against RF and states that LR can no longer serve as a benchmark for                

future models. RF will be discussed in greater detail in the methods section. 

 

Stefan’s (2015) results indicate that different models perform best on particular types of             

credit data. There exists different types of credit: mortgage, student loan, credit card, individual              

loans, and thus it’s imperative to differentiate these markets in model development. This paper              
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aims to model credit risk through a quantitative approach to classify credit risk in an emerging                

lending market known as Peer to Peer Lending (P2P). 

 

Peer to Peer lending is a derivative of microcredit principles and has attracted widespread              

popularity within the last decade (Rajdeep 2008). Financial transactions are defined as P2P             

lending if they bypass conventional intermediaries by directly connecting the borrower to the             

lender. The financial crisis of 2008 played a key role in the expansion of this market                

(Havrylchyk 2018) within the United States. Fig 1 shows the rise of lending platforms in recent                

years. The most popular lending platforms in terms of the dollar amount of loans issues are                

Lending Club and Prosper. 

 

 

                      Fig 1 shows the rise of P2P lending in the last 4 year and it’s projected growth to 2020 (SoFi). 
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The biggest P2P lending platform in the United States is an online website called              

“Lending Club”. The platform cuts the middleman, a traditional financial institution, and            

connects multiple investors and potential borrowers to invest capital and to borrow credit. The              

borrower can put up a loan request which consists of a description of the loan purpose with their                  

personal financial information. The investor then has the privilege to choose the amount of              

capital they would like to invest and also have the ability to choose the borrower. This market                 

has its advantages and disadvantages.  

 

The market allows borrowers who have a history of bad credit and who are faced with the                 

option of no credit from a traditional financial intermediary or a high-interest rate loan the ability                

to not only receive credit but also to secure a lower interest rate. For the investor, this market                  

provides the opportunity to receive a greater return on their capital as compared to depositing it                

in a savings account in a traditional bank. However, there is a great risk of the borrower                 

defaulting and not repaying the loan with interest (Magee 2011). Therefore, there is a growing               

need to understand what characteristics make a borrower or loan id “bad” and enable investors to                

make informed decisions.  

 

The body of literature around P2P lending has been growing ever since the formation of               

the first platform in 2005. Researchers have traditionally relied on the loan data provided by               

Prosper. Their data is structured to divide the information of borrowers into hard features and               

soft features. Hard features such as credit rating, loan amount, and debt to income ratio. Soft                

features may include information on the social network and social capital of borrowers. 
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Applications of ML principles in determining the default risk - the probability of a              

borrower to default - is in the implementation of a Neural Network [NN] with backpropagation               

(Zhang 2014). The NN scored an accuracy score of 78.6%. Freedman and Jin (2008) show that      

the credit rating of the borrowers is positively related to the success rate of loans. Fu (2017)                 

experimented with combining tree methods such as RF with a NN. Milad (2005) explored the               

features such as loan grade ( a score assigned by Lending Club for each borrower) and Fair Isaac                  

Corporation scores ( FICO) as indicators to default risk. Milad employed multiple learners             

including a cost based RF which achieved the highest 78.8% accuracy score. All these studies               

defined the problem of determining the risk of default as a classification problem. The              

classification variable has binary values: ‘0’ as not default, ‘1’ as default. Fig 2 shows this                

representation in a bar graph. A deeper look into these studies indicates that the classification               

variable, loan_status in most cases, contained an imbalance in instances. The instances in which              

a borrower would not default would be observed significantly greater than instances of a              

borrower to default. The existence of this class imbalance is problematic for classification             

models as they tend to become bias to the majority class, and hence resulting in the model                 

overfitting. This is shown by Chawla (2001). 

 



11 

 
Fig 2: A bar graph showing the count of default. The graph illustrates the class imbalance in the classification                    

variable 
 

A framework of strategies have been proposed and adopted by researchers regarding the class              

imbalance problem. Kotsiantis (2006) presents two approaches currently in literature: 

● Sampling techniques 
○ Under-Sampling 
○ Over Sampling 

● Algorithmic approaches 
○ Cost based models 
○ Balanced Bootstrap models 

 
The above balancing techniques are explained in the next section. 
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1.1 Sampling Techniques 

 

One balancing strategy is to undersample the majority class until a desired ratio between              

the two classes is achieved. This technique is called Random Undersampling (RUS). This can be               

done either by randomly removing instances of the majority class or through some heuristic until               

the minority class becomes some specified percentage of the majority class. The major drawback              

of random undersampling is that this method can discard potentially useful data that could be               

important for the model. Furthermore, the goal of a machine learning classifier is to estimate the                

probability distribution of the target population. Since that distribution is unknown the goal is              

then to try to estimate the population distribution using a sample distribution. We know that a                

sample distribution drawn randomly may be used to estimate the population distribution. Thus,             

by learning the sample distribution the learner may effectively learn the target distribution. Once              

we perform undersampling of the majority class, however, the sample can no longer be              

considered random. We may, however, remove instances from the majority class that are             

outliers, and that are located far from the decision boundary as proposed by Kubat (1997). This                

ensures that we are balancing the dataset by removing instances from the majority class that               

shifts the learner to overfit the majority class.  

 

Interjeet (2003) proposed an algorithm that built on top of Kubat’s work called NearMiss              

(NM). First, the algorithm determines n closest majority class instances for each minority class              

instance and then removes the majority class instance that has the highest average distance from               

 



13 

the three closest minority instances. This solution ensures that only those instances are removed              

that are furthest from the minority class.  

 

Similar to RUS to balance the dataset we could implement random oversampling of the              

minority class (ROS). This approach creates duplicates of the minority class instances.            

Japkowicz (2000) shows that oversampling does not significantly improve the recognition of the             

minority class. Work by Chawla (2001) suggests that new minority class instances can be created               

by interpolation. Chawla (2001) proposed an algorithm to tackle the classification problem by             

oversampling the majority class. His approach created synthetic instances of the minority class             

based on the distance between neighboring minority class instances. His approach is widely used              

and known as the SMOTE algorithm. The pseudocode is shown in Fig 4. 

 

As shown by Fig 4 SMOTE over-samples the minority class by taking each minority              

class sample and introducing synthetic examples according to the line segments connecting            

any/all of the k minority class nearest neighbors. The number of k nearest neighbors is randomly                

chosen based upon the percentage of over-sampling required. Fig 3 provides a more intuitive              

explanation of the algorithm. Synthetic examples notated as xnew in Fig 3 and Fig 4 are calculated                 

by first determining the difference in distance between the feature vector (sample) xi under              

consideration and its kth nearest neighbor: this is called dif. The nearest neighbor is determined               

at random. The value of gap is multiplied with dif and then added to xi. This approach effectively                  

forces the decision region of the minority class to become more general.  
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Fig 3: Demonstration of SMOTE: The line shows the distance between a minority class and its nearest                 
neighbor. A synthetic instance of the minority class called Xnew.  

 
 

The selection of the nearest neighbor and the computation of the function dif have been               

further researched and different variants of SMOTE have been developed. One such variant is              

known as SMOTE-Borderline. Nguyen (2009) proposed SMOTE-Borderline which classifies         

each Xi to be one of the three: 

 

● Noise being all nearest neighbours are form a different class from the one of Xi. 
● Danger being at least half of the nearest neighbors are from the majority class              

than the minority class. 
● Safe being all nearest neighbors are from the minority class: Xi. 
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The algorithm will use samples in ‘danger’ to generate new sample instances. The critical              

difference between SMOTE and SMOTE-Borderline is the instances selected as Xi. This is             

important as this difference affects what instances are used in creating new synthetic instances of               

the minority class. SMOTE picks Xi at random where SMOTE-Borderline would pick the             

instances on the border or referred to as ‘Danger’. After selecting Xi the algorithm works               

identical to the original SMOTE algorithm as to how diff and Xnew is used.  

 

   

                               Fig 4: Pseudo Code for the SMOTE Algorithm 
  

Next section we discuss the different Algorithmic approaches being studied to tackle the class              

imbalance problem.  
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1.2 Algorithmic Approaches 

 

A learner trained on an imbalanced dataset can overcome its bias by employing two              

strategies: a cost function, and a balancing approach. Naively, the cost function is the error of the                 

model. Through running the learner through a series of iterations we can optimize learners via               

learning from the error produced at each iteration. As the goal of learning from the error is to                  

reduce it each iteration Learners being used for imbalanced data may increase the loss if the                

learner misclassified the minority class. This shifts the learner to learn better on the minority               

class at each iteration. The learner through this heuristic would be able to discern a mapping                

function with more caution as misclassifying the minority class would lead to a greater penalty.               

In this area of research different ways to evaluate the cost of misclassifying the minority class is                 

developed. Within the realm of credit datasets, researchers have studied using the probability of              

the classification variable, and profit based models.  

 

Another algorithmic approach as suggested by Chen (2004) is to combine sampling            

techniques with ensemble methods such as RF. Normally, each tree in a RF is constructed from a                 

bootstrap sample of the training data, and thus there exists a significant probability that a               

bootstrap sample may contain few or even none of the minority class in an extremely imbalanced                

dataset. This results in RF learning poorly on the minority class. A simple solution to this                

problem is to use a stratified bootstrap. As noted by Chen (2004) this solution does not solve the                  

problem.  Thus, he proposed a solution to the problem and the algorithm is shown below: 

● For each iteration in a random forest, draw a bootstrap sample from the minority class.               
Randomly draw the same number of cases, with replacement, from the majority class. 

●  Induce a classification tree from the data to maximum size, without pruning.  
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● Repeat the two steps above for the number of times desired. Aggregate the predictions of                
the ensemble and make the final prediction. 
 

He compared his results to SMOTE and RUS. His model showed promise in some cases. We                

will be doing a similar comparison to see as mentioned in the next section.  
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1.3 Aims and Hypotheses 

 

The study by Milad (2015) used the Lending Club dataset which is publicly available on               

their website. Their study shows that RF performs better than compared to K-Nearest Neighbor,              

NN, and LR. Their paper in the preprocessing section did not indicate that there exists a class                 

imbalance in the classification variable, loan_status. Chawla (2004) shows that class imbalance            

may lead to an learner with a bias towards the majority class. The Milad study also failed to                  

mention how they tended to the missing values in the dataset. As shown by Er (date) the                 

treatment of missing values leads to better learners.  

 

We hypothesize that the model implemented by Milad may be improved if we explore              

strategies to address the existing class imbalance. This paper will employ sampling techniques,             

and a balanced bootstrap ensemble approach and observe whether this improves the performance             

of the learner. Comparisons to Milad’s learner are mentioned in Discussion and Results.  
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2. Methods 

 

Fig 5 summarizes the structure of methodology adopted in this study. Fig 5 also               

highlights the structure of our data wrangling process. We first preprocess through a series of               

data wrangling steps. The processed dataset is then split into a training and testing set comprised                

of a 70/30 split. The training data is then fed into different sampling techniques such as                

oversampling the minority class and under-sampling the majority class. This results in a balanced              

dataset for each technique. The learner is then trained on each balanced dataset. We test the                

performance of each model with the testing set which has not been balanced. We also test                

machine learning approaches to the class imbalance problem through balanced bootstraps. The            

ensemble method which is built upon the multiple bootstrap samples is also then tested and               

evaluated using the testing dataset. 

                                          

                                   Fig 5: Illustrates the structure of the methodology adopted in this paper.  
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The data is processed in two ways one as carried by Milad (2015) so we can fairly                 

compare our results. The second way would be our understanding of the dataset. 

 

In each step of our methodology we employed the use of Python version 3.6. We choose                

Python because of the availability of extensive machine learning and data analysis libraries. We              

used Scikit-Learn, Pandas, Numpy, Imblearn, Seaborn, Jupyter-Notebook and Matplotlib in our           

study.  
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2.1 Data Preparation 

 

This section we will describe the steps we took to preprocess the dataset. We first               

describe the dataset as used by Milad and then we propose our understanding of the Lending                

Club dataset.  
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2.1.1 Milad Data 

 

We used the Lending Club dataset collected from January 2012 to September 2014 to              

ensure we make a fair comparison to the model proposed by Milad. The dataset is fairly big with                  

the raw dataset containing 151 features and over 349666 observations. Following, the            

preprocessing steps outlined in Milad’s study the data is reduced to 16 features as shown in                

Table 1.  

Fig 6 shows the correlation of the features in Milads dataset. The heatmap shows that               

there are some features such as annual income and loan amount, and open account and total                

account that are correlated with each other. This could be because certain borrower with higher               

income require higher valued loans than compared to borrowers with lower annual income.             

Open account and total number of accounts are correlated because open account is a subset of                

total number of accounts. As we will mention in the next section highly correlated features may                

not concern our model building process. 

 

In the next subsection, we will mention the steps we took to structure our processed               

dataset. We will also highlight where it differs from Milads. 
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                Fig 6: The correlation matrix for the Lending Club dataset as processed by Milad.  
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Feature Variable Description 

loan_amnt The listed amount of the loan applied for by the 
borrower. If at some point in time, the credit 
department reduces the loan amount, then it will be 
reflected in this value. 

annual_inc The self-reported annual income provided by the 
borrower during registration. 

delinq_2yrs The past-due amount owed for the accounts on which 
the borrower is now delinquent. 

emp_length Employment length in years. Possible values are 
between 0 and 10 where 0 means less than one year and 
10 means ten or more years.  

home_ownership The homeownership status provided by the borrower 
during registration or obtained from the credit report. 
Our values are: RENT, OWN, MORTGAGE, OTHER 

purpose A category provided by the borrower for the loan 
request.  

inq_last_6mths The number of inquiries in the past 6 months 
(excluding auto and mortgage inquiries) 

open_acc Number of open trades in the last 6 months 

total_acc The total number of credit lines currently in the 
borrower's credit file 

term The number of payments on the loan. Values are in 
months and can be either 36 or 60. 

dti A ratio calculated using the borrower’s total monthly 
debt payments on the total debt obligations, excluding 
mortgage and the requested LC loan, divided by the 
borrower’s self-reported monthly income. 

revol_util Revolving line utilization rate, or the amount of credit 
the borrower is using relative to all available revolving 
credit. 

Income_to_Payment_Ratio A ratio of the borrower's monthly income to their 
monthly installment. 

Revolving_to_Income_Ratio A ratio of the borrowers is the ratio of the borrowers 
revolving balance to monthly income. 

months_credit_line The number of months the borrower opened their first 
credit line from the issue date of the loan. 

Table 1: Shows the features selected for the learner. 
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2.1.2 Our Data 
 

Although Milad chose loans from January 2012 to September 2014, the Lending club             

website has data available from 2007 to the present. We preprocess our dataset using the entire                

dataset available on lendingclub.com. Since the purpose of our study is to improve the credit risk                

model proposed by Milad we structure our data to improve the default risk model. Below we                

summarize the preprocessing, and feature selection procedure.  

 

We import the dataset into a pandas dataframe. The dataset contains current listings i.e.              

loans that are still active. These observations will be removed as we are attempting to understand                

why borrowers will default. The dataset also contains an extensive amount of missing values as               

shown in Fig 7. The figure suggests that there is a subset of features that are almost entirely                  

missing, a set with about a quarter missing, a set with about 6% missing, and a set with no                   

missing values.  

                             
     Fig 7: This shows the percentage of missing values for the different features in the dataset. 
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The Lending Club dictionary provides the definition of the different features in the             

dataset. The dictionary gives insight as to why some features have missing values. The set of                

features that is almost entirely missing is not due to there being missing observations but to how                 

the dataset is structured by Lending Club. The feature hardship_flag is a binary variable with               

values ‘N’ and ‘Y’. These values indicate borrowers being in the hardship settlement program              

designed by Lending Club to help borrowers who are involved in an unexpected life event.               

Almost all of the borrowers are not on the hardship plan and thus have the value ‘N’ for their                   

hardship_flag. Since there are 14 variables describing the hardship plan, and most borrowers are              

not on the plan these 14 features are almost entirely missing. This is one such example within the                  

dataset that provides context to the missing values in the dataset. We drop all 15 features as they                  

provide no relationship towards the default of a borrower.  

 

The dataset also contains features that were not available to the investor at the time of the                 

loan listing and was added later by Lending Club. We drop these features as the purpose of a                  

default risk model is to determine whether a borrower would default before approving the loan.               

The dataset is reduced to 34 features. Table 2 shows the names and description of the features                 

that were not included in Milad’s preprocessing of the dataset. All of the numeric variables were                

standardized by removing the mean and scaling to unit variance. The categorical variables were              

converted into dummy variables as the software library Scikit-learn is not compatible with             

categorical variables. 
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To understand the relationship between the different features a correlation matrix is            

created in the form of a heatmap as shown in Fig 8. The figure suggests that some of the features                    

are highly correlated with each other. Within linear models, this is a problem called              

multicollinearity, but since we will be employing a random forest we do not need to remove the                 

correlated features.  

                   
                            Fig 8:  The correlation matrix for the Lending Club dataset as processed by us.  
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Feature Variable Description 

int_rate Interest Rate on the loan 

grade LC assigned loan grade 

acc_open_past_24mths The number of trades opened in the past 24 months. 

bc_open_to_buy Total open to buy on revolving bankcards. 

bc_util The ratio of total current balance to high credit/credit 
limit for all bankcard accounts. 

avg_cur_bal The average current balance of all accounts 

num_actv_rev_tl Number of currently active revolving trades 

mo_sin_rcnt_rev_tl_op Months since most recent revolving account opened 

mort_acc The number of mortgage accounts. 

revol_bal Total credit revolving balance 

mo_sin_old_rev_tl_op Months since oldest revolving account opened 

pub_rec Number of derogatory public records 

pub_rec_bankruptcies Number of public record bankruptcies 

last_pymnt_amnt The last amount paid by the borrower for an account. 

Table 2: Shows the additional features that will be deployed in the learner. 
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2.2 Data Visualization 

In this section, we present some graphical representations of the Lending Club dataset.             

We hope it helps the reader to become familiar with the different features being employed in our                 

learners.  

Loan amount means the amount in U.S dollars the borrower received as a loan through               

Lending Club. The graph for this feature is shown in Fig 9. This feature has a range from 1200 to                    

40000. The value peaks at 10000 U.S dollars. From the box plot we can see that there exists                  

some outliers for the loan amount when the feature is grouped by default. The box plot also                 

shows that the value of loans at which borrowers default is higher than borrowers that do not                 

default.  

 
                        Fig 9: Illustrates the distribution of loan amount in the Lending Club dataset. 

 

Interest rate means the rate agreed by the borrower to pay on the principal amount which                

is the loan amount. This rate is determined by the grade assigned by Lending Club to each                 

borrower. The higher the grade the higher the interest rate. The heuristics used to assign these                

grades is unknown but Lending Club has stated they use the financial features of the borrowers                

in the assignment. The graph for Interest rate is shown in Fig 10, and the graph for grades is                   
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shown in Fig 11. The boxplot shown in Fig 10 illustrates that higher interest rates lead to higher                  

chances of the borrower defaulting. This behavior of borrowers can be correlated with the bar               

chart in Fig 11. The rise in grades show that the chance of a borrower would default also                  

increases. It is interesting however that a borrower not paying their loan can occur in all grade                 

assignments. Thus, a naive investing strategy of only investing in borrowers that have an              

assignment of ‘A’  would still in some cases observe the borrower in not being able to pay. 

 
 

 
           Fig 10: Illustrates the distribution of Interest rate in the Lending Club dataset.  
 

 
               Fig 11: Illustrates the Count and then the Default Rate by Grade in the Lending Club dataset.  
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2.3 Learner 
 

We will be using a RF in as our ML. For readers unfamiliar with RF we breakdown the                  

model structure through first defining decision trees and then ensemble methods. The reader may              

skip this section and go to page 33 for the hyper parameters selected for the RF.  
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2.3.1 Decision Tree (DT) 

A decision tree naively is a series of decisions undertaken through some form of              

information heuristic and stored in a tree like hierarchical structure. A more intuitive explanation              

can be shown through playing a game of Twenty Questions. Your opponent has secretly chosen a                

subject, and you must determine the subject. At each turn, you are allowed to ask a yes-or-no                 

question, and your opponent must answer truthfully. Since, we have limited number of question              

we have to determine the value of each question asked so we are able to narrow down the space                   

of possible subjects. If we draw the series of questions the resulting graph represents a tree with                 

binary splits at each node. Each question is carefully crafted to provide the most information               

regarding the secret subject, and this is the intuition behind decision trees. 

 

There have been several approaches to build decision trees in literature. We will use              

Classification and Regression Trees (CART) as proposed by Breiman et al (1984) in our model               

as this variant is supported by Scikit-Learn. CART determines the split based on the Gini Index                

as shown below. 

                

 

For a candidate (nominal) split attribute Xi , denote possible levels as L1 …, Lj . Once                 

Gini Indices are computed for each candidate split attribute, the split is done on the attribute that                 

has the highest Gini Index. 
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The CART algorithm recursively determines splits at each node until it determines that             

no further gain may be made or a pre-set stopping rule is satisfied. Next subsection we will                 

discuss ensemble learning and how a decision tree model may be converted to forests.  
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2.3.2 Ensemble Learning 

 

To provide an intuitive explanation of ensemble learning let us go back to the Twenty               

question game developed in the previous section. Now, suppose that you have asked your twenty               

questions. You are then offered the option to discuss your answer with a friend who also has                 

asked twenty questions, but their questions have been asked independently from yours. You and              

your friend then collectively guess the subject. One might have heard the phrase ‘two heads are                

better than one’ and that translates to our modified game. This is the basic motivation of                

ensemble learning, where multiple learners can learn independently on the sample space and then              

pool in their predictions together. Fig 12 visualizes ensemble learning.  

 

Ensemble learning can consist of different techniques but we will only discuss bagging.             

Bagging involves having each model in the ensemble vote with equal weight. In order to               

promote model variance, bagging trains each model in the ensemble using a randomly drawn              

subset of the training set.  

                                
Fig 12: Ensemble learning is illustrated in this image. Multiple models may be developed and their results pooled in                   
for a final prediction. 

 



35 

 

The next section we will pool in our discussion of DT and ensemble learning to convey the                 

technique of a RF. 
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2.3.3 Random Forest 

 

RF are multiple decision trees that are structured by using the ensemble learning             

technique called bagging. As discussed before this would result in each decision tree learning              

from a randomly drawn subset of the dataset. Splitting within each tree is done using the Gini                 

Index at each tree node. The attribute that has the highest Gini Index is chosen for the nominal                  

split. A key component of a RF that we have not discussed is what features are used to form the                    

best split. Each decision tree randomly chooses n number of features where n is a               

hyperparameter of the model. A formal definition of a RF is given below: 

 

Definition 1. A random forest is a classifier consisting of a collection of tree-structured 

classifiers {h(x, Θk ), k = 1, . . .} where the {Θk} are independent identically distributed random 

vectors and each tree casts a unit vote for the most popular class at input x. 

Consequently, the results of the multiple DT are pooled in through majority voting.  

 

As mentioned in Introduction we will also use RF with balanced bootstraps. This means              

that each tree in the RF will learn from a balanced random subsample of the dataset. 
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2.3.4 Model Hyperparameters 

This paper implemented the model architecture proposed by Milad with the RF size being              

80, attribute selection 5, and the tree depth of 25 is used. These numbers mean that for each tree                   

the candidate split attribute are chosen by a random selection of 5 attributes from the full set of                  

attributes. The split is only allowed to use one attribute out of the 5, and then a new set of                    

attributes are selected. For each tree in the classifier, the tree is allowed to grow for a depth of                   

25. 
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3. Results 
 
3.1 Evaluation Metrics 
 

Accuracy, the percentage number of correctly classifies predictions, is one of the most             

intuitive ways to evaluate learner. However, the metric can be shown to be flawed when in the                 

use of highly skewed data. For example, if the minority class was only 5 percent of the dataset, a                   

learner could simply overfit to the majority class and would be able to achieve an accuracy score                 

of 95%. Although, on its surface, an accuracy of 95% may show that we have a good learner, but                   

that is further from the truth considering in certain cases a misclassification of the minority class                

is not acceptable. We observe this in fraud detection, anomaly detection, and information             

retrieval. Thus, it's imperative that the metrics evaluate our learner take into account the true               

class membership of each observation with the prediction of the classifier. To illustrate the              

alignment of predictions with the true distribution, a confusion matrix (Fig 13) can be              

constructed. Using the confusion matrix further metrics can be derived which have been used in               

literature for evaluating learners based on imbalanced data. We use sensitivity measures such as              

precision, recall, accuracy score, F-1 measure, and root mean squared error (RMSE) to evaluate              

our models. These metrics are defined below. 
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                          Fig 13: This shows what sections of the confusion matrix is labeled as TN, FP, FN, TP.  
 
 

Precision 

This metric is defined as the number of true predictions of the borrower over the total                

number of predictions belonging to the positive class which is the sum of true positives and false                 

positives. A precision value of 0.80 would be interpreted as the model predictions are correct               

80% of the time. 

                                       

Recall 

This metric is defined as the ratio of true positives divided by the total number of positive                 

predictions. It is interpreted as what portion of actual positives was classified correctly. For              

example, if the recall value is 0.80 that means the learner correctly classified 80% of all loan                 

status. 

                                                      

Accuracy Score 

The percentage number of correctly classified predictions. 

F-1 Measure 

This measure is defined as the harmonic mean of precision and recall. The measure              

reaches its best score at 1 and the worst score at 0.  
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Root Mean Square Error 

This metric simply the squared difference between the predictions by the learner and the              

observed values. The lower the value the better our learner. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



41 

 

3.2 Model Comparison 

 

The tables shown below contain the results of our study. Table 3 is an exploration of                

improving the model proposed by Milad through balancing techniques. The dataset for all of the               

learners was prepared according to the specifications Milad laid out. The highest accuracy was              

achieved by SMOTE RF. The model also scored the highest F-1 measure, and Recall measure. 

Classifier Accuracy 
(%) 

Precision Recall RMSE F-1 Measure 

RF (Milad) 78 0.72 0.63 0.42 0.72 

RF-SMOTE 84.0 0.76 0.84 0.41 0.77 

RF-NM 49.1 0.75 0.49 0.71 0.55 

RF-RUS 61.0 0.79 0.61 0.63 0.66 

RF-Balanced 83.7 0.76 
 

0.84 
 

0.40 0.77 
 

RF-SMOTEBORDER 83.3 0.76 0.83 0.41 0.77 

Table 3: Shows the different evaluation metrics for the different classifiers plus sampling techniques on Milad’s                
processed dataset Jan 2012 - Sept 2014 
 
 

Table 4 shows results and is an exploration to improve the model through the addition of                

more features. The data is from Jan 2012 to September 2014 so we can make a fair comparison                  

to our own results in Table 3. RF with SMOTE as the balancing approach scored highest in all                  

metrics except for precision. SMOTEBORDER is a close second in terms of the evaluation              

metrics as compared to SMOTE. 
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Classifier Accuracy 
(%) 

Precision Recall RMSE F-1 Measure 

RF (Milad) 78 0.72 0.63 0.42 0.72 

RF-SMOTE 87.0 0.87 0.87 0.36 0.87 

RF-NM 78.4 0.87 0.78 0.46 0.81 

RF-RUS 79.2 0.88 0.79 0.46 0.81 

RF-Balanced 83.7 0.81 0.83 0.40 0.84 

RF-SMOTEBORDE
R 

86.4 0.87 0.86 0.37 0.87 

Table 4: Shows the different evaluation metrics for the different classifiers plus sampling techniques on our                
processed dataset Jan 2012 - Sept 2014 
 
 
 

In the next section we will discuss our results, their implications, and provide future              
insight to researchers in this field. 
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4 Discussion 
 

This study examined the classification variable in credit risk modelling within Peer to             

Peer lending market. We used the Lending Club dataset as a proxy to model the risk of default in                   

P2P lending. We explored balancing techniques and the use of more features to improve the               

credit risk model suggested by Milad (2015).  

 

Our results from Table 3 that draw a comparison to Milad (2015) model to the different                

balancing techniques suggest that there is evidence that supports our hypothesis that Milads             

learner was bias towards the majority class. We can observe this as the F-1 measure increases for                 

the sampling techniques that oversample the minority class. Under sampling techniques do            

poorly on Milads dataset, and model. We do not know the reason why this occurs. We think that                  

this may because that certain instances of the majority class is removed that are highly correlated                

with the classification variable but further exploration of feature variables present in Milads             

dataset is required to understand why that when undersampling of the majority class occurs the               

model greatly underperforms in all metrics.  

 

We also proposed a series of new features to be added into the model as we felt from                  

reading the Lending Club dictionary that these variables are relevant in determining the status of               

the loan. One such variable is last_pymnt_amnt which is the amount paid by the borrower on                

their last trade balance. This value represents the borrower making strides in repaying their credit               

which may be due on several accounts. The payment may not be related to Lending Club, but                 
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because we have no way to confirm that a borrower only has one loan listing this value could                  

also represent payment towards a Lending Club loan. We can observe this in Fig 14. These                

feature importances were determined by the Gini Index and is stored by the Scikit-Learn RF               

classifier.  

  

               Fig 14: The top 8 most important features in RF-SMOTE 
 

 

The variable last_pymnt_amnt is available to investors so we are not sure why such an               

important variable was left out in the analysis conducted by Milad. We can also observe other                

feature variables that we included in our model are in the top 8 features.  

 

Currently, there are several limitations within our own analysis. Fig 15 shows the             

issuance of number of loans issued since 2007. We can observe that the market started to gain                 

traction through the financial crisis of 2008 and as the economy improves so did the number of                 

loans. We wonder whether the credit risk model could be further improved by incorporating the               

financial health of the economy per fiscal year. As this market is for borrowers in a lower income                  
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group a further analysis of how national and global economic indicators may help in the model                

building process. We can see the importance of economic indicators because Lending Club             

offers its investors with a feature variable called ‘msa’ which is the Metropolitan Statistical Area               

of the borrower. This feature describes the economic wellbeing of the area in which the borrower                

lives. This feature , however, is not available in the dataset provided on their website although                

there is a feature for the state the borrower lives.  

              
         Fig 15: The number of loans issued and funded each year from 2007 to 2018 
 

 

Although, we wanted to test our improved models on the entire dataset from 2007 to               

2018 we first plot the RF-SMOTE learning curve as shown in Fig 16. The graph shows that the                  

learner stops learning at about 9000 training samples. We could, however, simply randomly             

sample the entire dataset and then train our model, but we choose not to. Firstly, because we                 

hypothesize that for an investor in 2019 borrower behaviors in the early stages of this market and                 

in the financial crisis may mislead the learner. We feel an in depth analysis of economic                

indicators and the date if loan issuance should be further studied to ensure the learner that is                 

learning may keep up with the changing behaviors of the borrower. 
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                                         Fig 16: The plot shows the learning curve for RF-SMOTE 
 
 
 
 

.  
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