
Bard College Bard College

Bard Digital Commons Bard Digital Commons

Senior Projects Spring 2023 Bard Undergraduate Senior Projects

Spring 2023

Classification of Doubly-Even Linear Binary Codes: An Analysis of Classification of Doubly-Even Linear Binary Codes: An Analysis of

the SageMath Implementation the SageMath Implementation

Tom Gadron
Bard College

Follow this and additional works at: https://digitalcommons.bard.edu/senproj_s2023

 Part of the Discrete Mathematics and Combinatorics Commons

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Recommended Citation Recommended Citation
Gadron, Tom, "Classification of Doubly-Even Linear Binary Codes: An Analysis of the SageMath
Implementation" (2023). Senior Projects Spring 2023. 114.
https://digitalcommons.bard.edu/senproj_s2023/114

This Open Access is brought to you for free and open
access by the Bard Undergraduate Senior Projects at
Bard Digital Commons. It has been accepted for inclusion
in Senior Projects Spring 2023 by an authorized
administrator of Bard Digital Commons. For more
information, please contact digitalcommons@bard.edu.

http://www.bard.edu/
http://www.bard.edu/
https://digitalcommons.bard.edu/
https://digitalcommons.bard.edu/senproj_s2023
https://digitalcommons.bard.edu/undergrad
https://digitalcommons.bard.edu/senproj_s2023?utm_source=digitalcommons.bard.edu%2Fsenproj_s2023%2F114&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/178?utm_source=digitalcommons.bard.edu%2Fsenproj_s2023%2F114&utm_medium=PDF&utm_campaign=PDFCoverPages
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://digitalcommons.bard.edu/senproj_s2023/114?utm_source=digitalcommons.bard.edu%2Fsenproj_s2023%2F114&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@bard.edu
http://www.bard.edu/
http://www.bard.edu/

Classification of Doubly-Even Linear Binary
Codes: An Analysis of the SageMath

Implementation

A Senior Project submitted to
The Division of Science, Mathematics, and Computing

of
Bard College

by
Tom Gadron

Annandale-on-Hudson, New York
May, 2023

ii

Abstract

Classification of doubly-even linear binary codes involves finding and enumerating permutation
equivalence classes of subspaces of the vector space Fn

2 . This project provides an analysis and
explanation of the SageMath functions written by Robert Miller that implement the algorithm
used for generating these codes.

iii

iv

Contents

Abstract iii

Acknowledgments vii

1 Introduction 1

2 Explanation of Current SageMath Implementation 3

2.1 Some Terms and Definitions . 3

2.2 self orthogonal binary codes . 4

2.3 BinaryCode objects and the BinaryCodeClassifier class 7

2.4 generate children . 8

3 Suggestions for Performance Improvements 21

3.1 Minor Improvements Based on the SageMath Functions 21

3.2 Major Possible Improvements on the Structure of the Algorithm 25

3.2.1 The Gaborit Mass Formula . 25

3.2.2 Memoization . 28

3.2.3 Parallelization . 30

4 Conclusion 31

Appendices 33

A Translation to Julia and Other Resources 33

A.1 Why Julia was chosen . 33

A.2 GitHub Repo . 33

v

vi CONTENTS

B Other Resources and Ideas 35

Acknowledgments

Thank you to my advisor Charles Doran for all your patience, guidance, and encouragement.
The LaTeX template used by this paper is built from combining the LaTeX template from Prof.

Ethan Bloch’s webpage https://faculty.bard.edu/bloch/tex/ [2] and the bibtex citation
https://www.overleaf.com/learn/latex/Bibliography_management_with_bibtex.

vii

https://faculty.bard.edu/bloch/tex/
https://www.overleaf.com/learn/latex/Bibliography_management_with_bibtex

viii

1
Introduction

With classification of doubly even binary linear error correcting codes, the goal is to find and

count the equivalence classes of subspaces of the vector space Fn
2 , where each vector has a

weight divisible by 4, for a given length of n and dimension k. An additional condition for these

subspaces is that k ≤ n
2 . Two codes are said to be equivalent if their columns can be permuted

to arrive at the same code. This project is based off of the work by Charles Doran and Robert

Miller in “Codes and Supersymmetry in One Dimension”[3], where they were originally studying

Adinkras, they found and enumerated equivalences classes of these codes for up to n=28. The

focus of this project is on the SageMath[5] implementation of the algorithm (written in Cython)

used to generate these codes. Some goals of this project are to analyze this implementation to

give better exposition on how exactly this algorithm works, point out some optimizations that

could be made, translate the algorithm to the Julia[1] programming language, and additionally

begin to implement parallelization in the algorithm. Hopefully this project could also serve as

a “quickstart” guide to anyone else that wants to pick up this problem to try to make progress

on it.

1

2 INTRODUCTION

2
Explanation of Current SageMath Implemen-
tation

2.1 Some Terms and Definitions

Even though a code is a full vector subspace, it is practical to refer to codes by their basis matrix

as a shorthand, since a basis defines a unique vector space.

Codes are vector subspaces, and often a vector in binary code will be referred to as a word of

the code. The term ”word” will primarily be used in this paper instead of vector.

Child code: As defined in Appendix B.4 of ”Codes and Supersymmetry in One Dimension”[3],

a child of a doubly-even code, D, is the doubly even code equal to the span of D
⋃
{x}, where x

is not in D.

Something that comes up a few times within SageMath is using integer values as booleans.

Cython treats 0 as False, and any other value as True.

Dimension: The dimension of a code is the number of rows in its basis matrix.

Length: The length of a code is the length of any word within the code.

Degree: Within the binary representation, all words are represented as unsigned 32-bit integers,

so the degree of a code is the number of non-zero columns its basis matrix contains.

Weight of vector: The weight of a vector is the number of 1s it contains.

3

4 CHAPTER 2. EXPLANATION OF CURRENT SAGEMATH IMPLEMENTATION

2.2 self orthogonal binary codes

Found in the directory /sage-9.8/src/sage/coding in the databases.py file, the main func-

tion called that generates the equivalence classes of doubly-even codes is

self orthogonal binary codes . The parameters of this function are the length of the code

n, the dimension of the code k, the divisibility, b, of the weight of all the basis vectors in the

code (this is set to 4 for doubly-even codes), the parent code, parent, to recursively generate

codes from, a BinaryCodeClassifier object BC, a boolean, equal, to determine whether to also

return codes with length and dimension less than n and k, and a function, in test, to test the

size of codes. A user would generally only need to specify n, k, b, and equal when calling the

function from Sage. Given n, k, the function will optionally return all codes with size less than

or equal to n and k, or only the codes with size n and k. Looking at how this function is written,

we see that for the original call of the function by a user to get doubly-even codes of size n, k

would look like self orthogonal binary codes(n, k, b=4, equal=True) Following the text

of this function, because the parameter equal is True, this if-statement will be evaluated:

if equal:

in_test = lambda M: (M.ncols() - M.nrows()) <= (n-k)

test for recursion: see if parent code has size

similar to size of codes we want

out_test = lambda C: (C.dimension () == k) and (C.length () == n)

test for output: we only output codes that have the specified

dimensions that we want

As we can see, in test tests the difference between the length of the code (number of columns in

the basis matrix) and the dimension of the code (number of rows in the basis matrix). Because

we know k ≤ n
2 , we have n− k ≥ n− n

2 = n
2 . This function is used in determining which codes

will be passed into the next level of recursion. The out test function is just used to check that

codes have the proper requested size, and is used when returning output from the function.

Because the parameter parent defaults to None, this original call of the function will result in

the evaluation of this if-statement:

2.2. SELF ORTHOGONAL BINARY CODES 5

if parent is None:

initial function call before recursion

for j in range(d, n+1, d):

M = Matrix(FiniteField(2), [[1]*j])

initial parents are 1 dimensional

one parent for each multiple of d (4 for doubly even)

if in_test(M):

for N in self_orthogonal_binary_codes(n, k, d, M, BC , in_test=

in_test):

if out_test(N):

yield N

Thus the function will, for each multiple, j, of 4 less than n, begin by creating a code of j 1s

of dimension 1, and then pass it in as a parent code for recursion. Seeing as we are starting

with “base-case” codes of dimension 1, this is bottom-up recursion. The yield keyword here

outputs the code but does not end the function, here is a more thorough explanation of the

yield keyword.

For the next level of recursion with a parent that is not None, and because the default value of

equal is False, we go into the else statement for both of the above if-statements.

else:

in_test = lambda M: True

out_test = lambda C: True

Here we see that when equal=False, all codes pass both in test and out test.

Next, the else statement of the other if-statement reads as:

else: # recursion

C = LinearCode(parent)

if out_test(C):

yield C

if k == parent.nrows ():

return

exit condition: the parent code has the desired dimension

for nn in range(parent.ncols()+1, n+1):

iterate over codes with degree greater than the parent

and <= given degree

if in_test(parent): # we can move this if statement outside of the loop

for child in BC.generate_children(BinaryCode(parent), nn , d):

for N in self_orthogonal_binary_codes(n, k, d, child , BC ,

in_test=in_test):

if out_test(N):

this test might be applied to some codes

that have already passed it

yield N

https://stackoverflow.com/a/231855

6 CHAPTER 2. EXPLANATION OF CURRENT SAGEMATH IMPLEMENTATION

First, the parent code is interpreted as a LinearCode object, and then is yielded. If the parent

code has dimension equal to k, then no more child codes need to be generated, and so the function

returns and ends. Otherwise, child codes are to be generated. The outer loop iteration deter-

mines the length of the child codes. Then, the next inner loop generates the child codes of length

nn from the parent code, which are then passed back into self orthogonal binary codes to

continue recursion.

Figure 2.2.1 is a diagram showing the structure that this part of the algorithm takes on:

Figure 2.2.1: Recursion in the self orthogonal binary codes function

This diagram illustrates how for a given parent code, a length n, and a dimension k, there is one

call to the generate children function for each each length of code from parent.ncols+1 (the

number of columns in the parent code) to n. Each call to generate children can return some

or no child codes, which are then fed back in to self orthogonal binary codes to continute

recursion.

2.3. BINARYCODE OBJECTS AND THE BINARYCODECLASSIFIER CLASS 7

2.3 BinaryCode objects and the BinaryCodeClassifier class

Found in the directory /sage-9.8/src/sage/coding in the binary code.pyx file, the

BinaryCode and BinaryCodeClassifier serve as computationally efficient ways to represent

binary codes. The .pyx extension indicates that this is a Cython source file, so it is a mix of

Python and C. Since each entry of a word in a binary code is a 0 or 1, then a word in a binary

code can be interpreted as an integer in binary. For example, the word (0, 1, 0, 1, 1, 0, 1) as a

binary integer would be 1011010, or 90 in base ten. Note that written out, bits appear in the

opposite order as a binary integer compared to their vector representation, as the low index

entries of a vector appear on the left, but these correspond to the lower-order bits of the inte-

ger, which appear on the right when written. Often an integer will be cast to the custom type

codeword, for example word = <codeword>1. codeword is just an alias for a 32-bit unsigned

integer. Representing words as integers allows efficient computations using bitwise operations

instead of operations over 2-dimensional arrays. For example, taking the bitwise XOR of two

words is the same as doing vector addition.

BinaryCode objects can be initialized from a matrix or another BinaryCode object along with

a word. The member variables of a BinaryCode object are:

• ncols: the number of columns in the code

• nrows: the number of rows in the code

• nwords: the number of words in the code, this is equal to 2nrows

• basis: an array of integers representing a basis for the code

• words: an array of integers listing all the words of the code

• radix: maximum length of word that can be represented

8 CHAPTER 2. EXPLANATION OF CURRENT SAGEMATH IMPLEMENTATION

The BinaryCodeClassifier class is used in various calculations relating to BinaryCode ob-

jects, notably containing the class methods:

• aut gp and can label: calculates the automorphism group and canonical label a given

binary code

• generate children: Generate child codes of specified length for a given binary code

An important member variables of BinaryCodeClassifier objects is ham wts which is an array

containing the Hamming weights for each binary word up to length 16.

2.4 generate children

Next, arguably the most important function of the algorithm is generate children in the

binary code.pyx file. The parameters of this function are a BinaryCode object, B, which is the

parent code to generate children from, an integer n, as the desired length of the code, and an

integer d, which serves the same purpose as in the self orthogonal binary codes function.

This function returns one code from each permutation equivalence class that is a child of the

parent code B.

The generate children function starts with the call:

B.put_in_std_form ()

This function performs row reduction on the code, and then permutes columns, which results in

an identity matrix on the left and other data on the right.

For example, Figure 2.4.1 shows a 16, 8 code with rows and columns shuffled:

Figure 2.4.2 shows the same code in standard form:

2.4. GENERATE CHILDREN 9

Figure 2.4.1: 16, 8 code with rows and columns shuffled

Figure 2.4.2: 16, 8 code in standard form

The next step in this function is to obtain an orthogonal basis for B:

ortho_basis = expand_to_ortho_basis(B, n)

In appendix B.3 of ”Codes and Supersymmetry in One Dimension”[3], the format of the orthog-

onal basis generated is explained to look like Figure 2.4.3:

Figure 2.4.3: Matrix Representing Structure of Orthogonal Basis

The output from the function expand to ortho basis does not match this form exactly, as the

columns are not guaranteed to be in the same order.

10 CHAPTER 2. EXPLANATION OF CURRENT SAGEMATH IMPLEMENTATION

Here is a code in standard form and an orthogonal basis of length 12 for that code:

Figure 2.4.4: Code in standard form

Figure 2.4.5: Orthogonal Basis for above code

Here is a permutation of the columns of the orthogonal basis to match the block matrix

diagram:

Figure 2.4.6: Orthogonal Basis with columns permuted

The next step is to obtain the automorphism group of the original code:

aut_gp_gens , labeling , size , base = self._aut_gp_and_can_label(B)

The implementation of this function comes from the GUAVA package for GAP, as explained in

the beginning of Appendix B in “Codes and Supersymmetry in One Dimension”[3].

As documented by comments in the binary code.pyx file, the outputs are:

"""

gens -- a list of permutations (in list form) representing generators

of the permutation automorphism group of the code CC.

labeling -- a permutation representing the canonical labeling of the

code. mostly for internal use; entries describe the relabeling

on the columns.

size -- the order of the automorphism group.

base -- a set of cols whose action determines the action on all cols

"""

2.4. GENERATE CHILDREN 11

A copy, in canonical form, of the original code is obtained by permuting the columns of the code

according to the permutation represented by labeling:

can_lab = create_word_perm(labeling[:B.ncols])

for i from 0 <= i < B.nrows:

B_can_lab[i] = permute_word_by_wp(can_lab , B.basis[i])

Then B can lab is put into standard form through row reduction:

while row < B.nrows:

i = row

move to next row until we find a 1 in the column

that ’current ’ represents

while i < B.nrows and not B_can_lab[i] & current:

i += 1

if i < B.nrows:

if i != row:

swap = B_can_lab[row]

B_can_lab[row] = B_can_lab[i]

B_can_lab[i] = swap

for j from 0 <= j < row:

if B_can_lab[j] & current:

B_can_lab[j] ^= B_can_lab[row]

for j from row < j < B.nrows:

if B_can_lab[j] & current:

B_can_lab[j] ^= B_can_lab[row]

row += 1

current = current << 1

However, to my knowledge, this setting up of B can lab into standard form does not serve a

purpose with regard to generating child codes, as the variable B can lab is not referenced

anywhere else in the function.

Next the permutations representing the generators of the original code’s automorphism group

are initialized:

for i from 0 <= i < len(aut_gp_gens):

parent_generators[i] =

create_word_perm(aut_gp_gens[i] + list(xrange(B.ncols , n)))

Since B.ncols is the number of columns of the original code, this piece concatenates the list

representing the automorphism group generator with the list of the form (B.ncols, . . . , n − 1),

to account for the length specified for the child codes.

The next step is to determine, for the orthogonal basis based on the original code, how many

rows make up the upper part of the basis matrix:

12 CHAPTER 2. EXPLANATION OF CURRENT SAGEMATH IMPLEMENTATION

while ortho_basis[k] & (((<codeword>1) << B.ncols) - 1):

k += 1

This expression: ((<codeword>1) << B.ncols) - 1 amounts to 2B.ncols − 1, which, in binary,

looks like a string of B.ncols 1s. This type of expression with a bitwise AND with a string of

ones amounts to getting the value of the first few bits of the word. The bitwise operation of

this value with a row in the orthogonal basis as a boolean is checking for the smallest index of

k where the lowest-order B.ncols bits are all 0.

For example, for this orthogonal basis for a length 8 code: We see that past the 2nd row, the

Figure 2.4.7: Orthogonal Basis with first 8 bits highlighted

first 8 bits are all zero, and so the value of k for this would end up being 3.

Thus, with this knowledge, we sum over all the rows k and below to get the initial candidate for

a word to add for a potential child code:

j = k

word = 0

while ortho_basis[j]:

word ^= ortho_basis[j]

j += 1

Next:

log_2_radix = 0

find smallest power of 2 greater than sizeof(int) * 8

while ((<codeword>1) << log_2_radix) < <codeword>self.radix:

log_2_radix += 1

In the initialization of the BinaryCodeClassifier class, self.radix is defined as

self.radix = sizeof(int) << 3.

2.4. GENERATE CHILDREN 13

Using the log 2 radix value, we determine the size of the orbit checks array and initialize

each entry to be 0.

if k < log_2_radix:

orb_chx_size = 0

else:

orb_chx_size = k - log_2_radix

orbit_checks = <codeword *>

sig_malloc (((<codeword>1) << orb_chx_size) * sizeof(codeword))

for temp from 0 <= temp < ((<codeword>1) << orb_chx_size):

orbit_checks[temp] = 0

Before the main loop begins, these values are set:

combo = 0

parity = 0

gate = (<codeword>1 << B.nrows) - 1

k_gate = (<codeword>1 << k) - 1

nonzero_gate = ((<codeword>1 << (n-B.ncols)) - 1) << B.ncols

radix_gate = (((<codeword>1) << log_2_radix) - 1)

The values of gate, k gate, and radix gate will look like a string of 0s followed by a string of

1s, like 00000111.

However, nonzero gate is right-shifted again, so it will have padding 0s in the low-ordered bits

as well. An example of a value of nonzero gate could be 11000000.

Importantly, nonzero gate will be used to make sure the word being considered does not have

any zeros in the indices from B.ncols+1 to n, since the original parent code is of length B.ncols,

it would have 0s in those columns, and so this ensures that codes are of the desired length. For

example, we see that for this parent code:

Figure 2.4.8: Parent code

14 CHAPTER 2. EXPLANATION OF CURRENT SAGEMATH IMPLEMENTATION

Its corresponding child codes have 1s in the last row in the extra added columns:

Figure 2.4.9: Child codes

Ignoring the contents of the main if-statement for now, here is the structure of the main loop to

generate child codes:

while True:

nonzero_gate & word == nonzero_gate: check to see if word

agrees with nonzero_gate at every position nonzero_gate

has a 1

(ham_wts[word & 65535] + ham_wts [(word >> 16) & 65535])%d == 0

for d=4, check if both halves of word are doubly -even

if nonzero_gate & word == nonzero_gate and (ham_wts[word & 65535] + ham_wts[

(word >> 16) & 65535])%d == 0:

contents of if -statement block

checking if code augmented with word is a valid child code

parity ^= 1

i = 0

every other loop

if not parity:

while not combo & (1 << i): i += 1

i += 1

i = number of "trailing" 0s in combo + 1

if i == k: break

else:

combo ^= (1 << i) #toggle the i-th bit

word ^= ortho_basis[i]

Breaking this down, the loop condition is to continue until we have i = k. The variable i is

calculated each iteration of the loop, and k was set before the loop started, and is the index of

2.4. GENERATE CHILDREN 15

the row in ortho basis that separates the words from the original code and the words added

by the orthogonal basis. The expression parity =̂ 1 is toggling parity between 0 and 1, so we

have that every other iteration, we evaluate this block:

while not combo & (1 << i):

i += 1

i += 1

The boolean expression not combo & (1 << i) is equivalent to combo & (1<<i)==0, so we are

testing that the i-th position of combo is 0. Thus this block of code will count the first i places

where combo has a 0 and then add one.

Overall, this will result in iterating over all values of combo from 0 to 2k − 1, and the variable

word will take on a value for each different combination of sums of words from the first k − 1

rows of ortho basis.

Thus we know that this loop will have one iteration for each different combination of words from

the first k − 1 rows of ortho basis.

For example, here is a code in standard form and the associated orthogonal basis:

Figure 2.4.10: Code in standard form

Figure 2.4.11: Orthogonal basis

16 CHAPTER 2. EXPLANATION OF CURRENT SAGEMATH IMPLEMENTATION

In this example, the n passed into generate children is 16. The resulting k value was 4, and

the initial word is 1111000000000000. Here is how combo, word, i, and parity change with

each iteration of this loop:

Figure 2.4.12: Values for each iteration of main loop

2.4. GENERATE CHILDREN 17

Now, looking at the main if statement, we see that the conditions to proceed into the main

part of this while-loop are:

if nonzero_gate & word == nonzero_gate and (ham_wts[word & 65535] + ham_wts[(

word >> 16) & 65535])%d == 0:

temp = (word >> B.nrows) & ((<codeword>1 << k) - 1)

if not orbit_checks[temp>>log_2_radix] & ((<codeword>1) << (temp &

radix_gate)):

The outer if-statement checks that word has 1s in the last n − B.ncols places, and the second

part of the boolean expression checks that word has doubly-even weight.

Upon passing both of these if-statements, we create an augmented code by including word into

the original code. We get the automorphism group and canonical label for this augmented code:

B_aug = BinaryCode(B, word)

new code made from B and word

aug_aut_gp_gens , aug_labeling , aug_size , aug_base = self._aut_gp_and_can_label(

B_aug)

can_lab = create_word_perm(aug_labeling[:n])

This augmented code is of length n, so it is longer than B. From this augmented code we take

its basis, permute it to the canonical label, do row reduction, and then apply the inverse of the

canonical label to put the columns back.

Now a copy of the basis is made, excluding the newly added word:

rs = []

rs is a copy of the newly created code

without the added word

for i from 0 <= i < B.nrows:

r = []

for j from 0 <= j < n:

r.append ((((<codeword>1)<<j)&temp_basis[i])>>j)

rs.append(r)

m = BinaryCode(matrix(ZZ , rs))

m_aut_gp_gens , m_labeling , m_size , m_base = self._aut_gp_and_can_label(m)

18 CHAPTER 2. EXPLANATION OF CURRENT SAGEMATH IMPLEMENTATION

With the automorphism groups for m and B aug, we get the intersection of the two groups by

converting both of them to permutation group objects:

if len(m_aut_gp_gens) == 0:

aut_m = PermutationGroup([()])

else:

aut_m = PermutationGroup([PermutationGroupElement([a+1 for a in g]) for g in

m_aut_gp_gens])

if len(aug_aut_gp_gens) == 0:

aut_B_aug = PermutationGroup([()])

else:

aut_B_aug = PermutationGroup([PermutationGroupElement([a+1 for a in g]) for

g in aug_aut_gp_gens])

H = aut_m._gap_(gap).Intersection2(aut_B_aug._gap_(gap))

Example:

Automorphism group for B aug:

[(3,5)(6,7), (3,6)(5,7), (2,3)(4,7), (1,2)(6,7)]

Automorphism group for m:

[(4,5), (2,4)(5,6), (1,2)(6,7)]

Intersection of automorphism groups of m and B aug:

[(1,2)(6,7), (2,6)(4,5), (2,5)(4,6)]

As defined by the GAP Reference Manual, given two groups G and U ,

”A right transversal t is a list of representatives for the set U\G of right cosets (consisting of

cosets Ug) of U in G.”[4]

Thus the next step is to get the right transversal of H in aut B aug:

rt_transversal = [

[int(a) - 1 for a in g.ListPerm(n)] for g in aut_B_aug.RightTransversal(H)

if not g.IsOne ()

]

rt_transversal.append(list(xrange(n)))

Using the above example, the resulting right transversal is

[

[0, 1, 4, 3, 2, 6, 5],

[0, 1, 5, 3, 6, 2, 4],

[0, 2, 1, 6, 4, 5, 3],

[0, 1, 6, 3, 5, 4, 2]

]

2.4. GENERATE CHILDREN 19

These are still permutations but are in list form instead of cycle notation.

Using this we verify whether B aug is a valid child code to be included in the output of the

generate children function. This is done within this block of code:

bingo2 = 0

for coset_rep in rt_transversal:

hwp = create_word_perm(coset_rep)

#dealloc_word_perm(gwp)

bingo2 = 1

for j from 0 <= j < B.nrows:

temp = permute_word_by_wp(hwp , temp_basis[j])

if temp != B.words[temp & gate]:

bingo2 = 0

dealloc_word_perm(hwp)

break

if bingo2:

dealloc_word_perm(hwp)

break

We see that this function is iterating over the elements of the right transversal that was just

calculated. For each permutation in the right transversal, the corresponding WordPermutation

is created, and then we iterate over the rows of temp basis, excluding the last row. If we have

temp == B.words[temp & gate] for all the rows of temp basis, then bingo2 will be 1 after

the inner loop finishes, which indicates we have found a valid child code to include as output.

The augmented code B aug is added to output here:

if bingo2:

from matrix.constructor import Matrix

from rings.finite_rings.finite_field_constructor import GF

M = Matrix(GF(2), B_aug.nrows , B_aug.ncols)

for i from 0 <= i < B_aug.ncols:

for j from 0 <= j < B_aug.nrows:

M[j,i] = B_aug.is_one(1 << j, i)

output.append(M)

The BinaryCode object is converted into a Matrix object, which is added to the array repre-

senting the output.

20 CHAPTER 2. EXPLANATION OF CURRENT SAGEMATH IMPLEMENTATION

The final step is to update the orbit checks array:

orbits = [word]

j = 0

while j < len(orbits):

for i from 0 <= i < len(aut_gp_gens):

temp = <codeword> orbits[j]

temp = permute_word_by_wp(parent_generators[i], temp)

temp ^= B.words[temp & gate]

if temp not in orbits:

orbits.append(temp)

j += 1

for temp in orbits:

temp = (temp >> B.nrows) & k_gate

orbit_checks[temp >> log_2_radix] |= ((<codeword>1) << (temp & radix_gate))

Recalling the if-statements guarding the main section of while-loop one of the conditions to

consider an augmented code for output is

temp = (word >> B.nrows) & ((<codeword>1 << k) - 1)

if not orbit_checks[temp>>log_2_radix] & ((<codeword>1) << (temp & radix_gate))

Since orbit checks is thus based off of the orbits of child codes that have been generated by

function so far, this suggests that this serves to prevent duplicate codes from being included in

the output of the function.

This is the end of the while loop, we already covered the next section:

parity ^= 1

i = 0

every other loop

if not parity:

while not combo & (1 << i): i += 1

i += 1

i = number of "trailing" 0s in combo + 1

if i == k: break

else:

combo ^= (1 << i) #toggle the i-th bit

word ^= ortho_basis[i]

The generate children function ends with return output.

Thus this concludes this section explaining the text of the SageMath implementation of the

algorithm.

3
Suggestions for Performance Improvements

3.1 Minor Improvements Based on the SageMath Functions

Firstly looking at how the function self orthogonal binary codes is set up, recall that one

of the parameters of the function is in test, but every call to the function evaluates this if-else

statement:

these if -else blocks overwrite the input in_test function

if equal:

in_test = lambda M: (M.ncols() - M.nrows ()) <= (n-k)

test for recursion: see if parent code has size

similar to size of codes we want

out_test = lambda C: (C.dimension () == k) and (C.length () == n)

test for output: we only output codes that have the specified

dimensions that we want

else:

maybe add:

if in_test != None:

in_test = lambda M: True

out_test = lambda C: True

We see that no matter the value of equal, the value of in test is being set internally.

Additionally, we saw in Section 2.2 that recursive calls use the default value of False for equal,

but recursive calls to self orthogonal binary codes do specify a parent code, which results

in this block being evaluated:

21

22 CHAPTER 3. SUGGESTIONS FOR PERFORMANCE IMPROVEMENTS

if out_test(C):

yield C

if k == parent.nrows ():

return

exit condition: the parent code has maximal dimension

for nn in range(parent.ncols()+1, n+1):

iterate over codes with degree greater than the parent

and leq given degree

if in_test(parent): # we can move this if statement outside of the loop

for child in BC.generate_children(BinaryCode(parent), nn , d):

for N in self_orthogonal_binary_codes(n, k, d, child , BC , in_test=

in_test):

if out_test(N):

this test might be applied to some codes

that have already passed it

yield N

Since in this case equal==False, both in test and out test always evaluate to true. This

seems to suggest that this functionality is either not fully implemented or there was some kind

of oversight and these if-statements can just be omitted. The overwriting of in test could also

be avoided by checking if in test==None so that the parameter’s value can be used.

Additionally, treating user-level calls to self orthogonal binary codes and recursive calls

to the function the same way is causing if-statement conditions to be evaluated more than they

need to be. We know that recursive calls always include a parent code, so maybe a solution could

involve two versions of self orthogonal binary codes, one for user-level calls to the function

and one for recursive calls to the function. The user-level version would operate the same as the

function currently does, but it would make recursive calls instead to the recursive version of the

function, which can make some assumptions to run more quickly.

3.1. MINOR IMPROVEMENTS BASED ON THE SAGEMATH FUNCTIONS 23

This is the solution I came up with written in Julia:

Figure 3.1.1: My Julia Version of self orthogonal binary codes

Here I make the assumptions in GetCodes that d = 4, no parent is given, equal==True, and

in test and out test are already defined. The function codesRecursion makes the same

assumptions but takes a parent code as one of the parameters. I also moved the in test if-

statement outside of the loop, since the value of nn does not affect the output of in test.

24 CHAPTER 3. SUGGESTIONS FOR PERFORMANCE IMPROVEMENTS

Looking in the generate children function, the first easy improvement to make is to get rid

of the section where B can lab is created, since we saw that it does not appear anywhere else

in function. This could save a non-trivial amount of time since row reduction can be expensive.

Also for this block of code:

log_2_radix = 0

find smallest power of 2 greater than sizeof(int) * 8

while ((<codeword>1) << log_2_radix) < <codeword>self.radix:

log_2_radix += 1

Because self.radix is a constant and stored within the BinaryCodeClassifier object, it

would seem that log 2 radix would also be a constant and could be stored within the same

BinaryCodeClassifier object, instead of being recalculated each time generate children

runs.

Finally, in this section:

orbits = [word]

j = 0

while j < len(orbits):

for i from 0 <= i < len(aut_gp_gens):

temp = <codeword> orbits[j]

temp = permute_word_by_wp(parent_generators[i], temp)

temp ^= B.words[temp & gate]

if temp not in orbits:

orbits.append(temp)

This if-statement:

if temp not in orbits:

orbits.append(temp)

Because temp is not being inserted in a specific place, and is only being added if not already in

the list, this suggests that orbits could be implemented as a set instead of a list. Depending

on the implementation (such as a hash map), searching on sets is much faster than searching

on an unordered list. Especially for codes with large orbits, this could make a difference in the

performance of the algorithm.

3.2. MAJOR POSSIBLE IMPROVEMENTS ON THE STRUCTUREOF THE ALGORITHM25

3.2 Major Possible Improvements on the Structure of the Algorithm

3.2.1 The Gaborit Mass Formula

As shown in ”Codes and Supersymmetry in One Dimension”[3], the formula in Figure 3.2.1

gives a formula for the number of distinct doubly-even codes for a given n, k. This is different

from the number of permutation equivalence classes, but it is still helpful to verify that all the

permutation equivalence classes have been found.

Figure 3.2.1: The Gaborit Mass Formula for doubly-even codes

For a given code C of length n and its automorphism group Aut(C), we have that the number

of codes that can be reached by automorphisms of the code is n!
|Aut(C)| . Thus, the Gaborit Mass

Formula is equal to the sum of n!
|Aut(C)| for each permutation equivalence class of codes of size

n, k. We have seen that in the function self orthogonal binary codes that collects all the

26 CHAPTER 3. SUGGESTIONS FOR PERFORMANCE IMPROVEMENTS

codes and outputs them, there is no running count or sum that keeps track of these masses

for the codes that are generated, we also know that for a given parent code and a length n,

generate children will sometimes output no children. Thus there are some cases where, in

generating codes, all the codes of a given n, k have already been generated, but the algorithm

is still running!

Thus the solution I propose for a way to incorporate the mass formula to the algorithm,

is to keep a global variable that is in scope of both self orthogonal binary codes and

generate children functions, such that self orthogonal binary codes will update the total

for each code that is generated so far, and generate children will regularly check the value

of this global variable, so that it can terminate as soon as it detects that the mass formula has

been saturated by the masses contributed by the already generated.

Here is an example of the mass formula calculated for the codes of length 6, dimension 2.

According to Robert Miller’s Website, the one code of size 6,2 is

1 1 1 1 0 0

0 0 1 1 1 1

For the size of the automorphism group of this code, this amounts to counting the number of

different orderings of the columns. We see that the three types of columns present are
1
0
,
1
1
, and

0
1
, and there are two copies of each of these types of columns in the code. Combinatorically,

this is counting the number of ways to arrange 3 groups of 2 identical things, which comes out

to
(
1
3!

) (
6∗5
2!

) (
4∗3
2!

) (
2∗1
2!

)
= 15.

https://rlmill.github.io/de_codes/

3.2. MAJOR POSSIBLE IMPROVEMENTS ON THE STRUCTUREOF THE ALGORITHM27

Looking to the Mass Formula for n = 6, k = 2, we have

δ(6, 2) =
k−1∏
i=0

(2
n
2
−i−1 + 1)(2

n
2
−i−1 − 1)

2i+1 − 1

=
2−1∏
i=0

(2
6
2
−i−1 + 1)(2

6
2
−i−1 − 1)

2i+1 − 1

=
(2

6
2
−0−1 + 1)(2

6
2
−0−1 − 1)

20+1 − 1

(2
6
2
−1−1 + 1)(2

6
2
−1−1 − 1)

21+1 − 1

=
(22 + 1)(22 − 1)

1

(21 + 1)(21 − 1)

3

=
(5)(3)

1

(3)(1)

3

= 15

For another example, consider the 7, 3 case, which also only contains one permutation equiva-

lence class. The size of the automorphism group of the code is 168, and then 7!
168 = 30. Looking

at the mass formula, it gives a result of 30 as well.

28 CHAPTER 3. SUGGESTIONS FOR PERFORMANCE IMPROVEMENTS

3.2.2 Memoization

As we saw in the implementation of self orthogonal binary codes, every call to the function

that doesn’t pass in a parent code starts a bottom-up recursion starting at the small dimension 1

codes and generating codes recursively from that starting point each time. However, this means

across separate calls to generate various size codes, the algorithm ends up calculating the same

codes over and over again. The idea of memoization is that for recursive functions that calculate

the same value multiple times, storing those already-computed values allows subsequent requests

for those values to be retrieved from memory/storage instead of having to be computed again.

The idea for memoization in this case would be not just temporarily storing computed codes,

but storing already computed codes on the disk or other type of long term storage. We have

seen that codes are generated by other codes of smaller size, but knowing exactly which size

codes are necessary in order to generate all the codes of a desired size would suddenly make this

idea of memoization very practical.

This leads to:

Theorem 1: Let l(M) be the length of any doubly-even code M . If C is a child code of D (as

generated by the SageMath implementation for generating doubly-even codes) and C has length

n and dimension k, then dim(D) = k − 1 and l(D) < n.

Proof. (Part 1: dim(D) = k − 1)

Let D and C be doubly-even linear binary codes such that C is a child of D, the length of C

is n, and the dimension of C is k. By definition of child code in Appendix B.4 in “Codes And

Supersymmetry In One Dimension”, a child code, C, of D is made up of D and x, where x is a

word not contained in D. Let B be a basis for D. Because x is not in D, we know x is linearly

independent from the words in B, and so we know that B
⋃
{x} is a basis for C. Because C has

dimension k and B
⋃
{x} is a basis for C, we know |B

⋃
{x}| = k, and so |B| = k − 1. Because

B is a basis for D and by definition of dimension, dim(D) = k − 1.

3.2. MAJOR POSSIBLE IMPROVEMENTS ON THE STRUCTUREOF THE ALGORITHM29

(Part 2: l(D) < n)

Looking at the generate children function, we see that the condition to consider an augmented

code that might be a child made from D and x is nonzero gate & word == nonzero gate,

and nonzero gate is defined as ((<codeword>1 << (n-B.ncols)) - 1) << B.ncols. In

the self orthogonal binary codes function, we see that all calls to generate children happen

in this loop:

for nn in range(parent.ncols()+1, n+1):

if in_test(parent):

for child in BC.generate_children(BinaryCode(parent), nn , d):

The variable nn becomes the parameter n within generate children(parent,nn,d=4), and

nn in range(parent.ncols()+1, n+1) implies that l(parent) < l(parent) + 1 <= nn <= n.

Thus we have that nn > l(parent), and so looking back in generate children, the name of the

parameter representing the parent code is B, and the desired length of child codes is n. Because

B.ncols is the length of the parent code, nn > l(parent) implies n > B.ncols. Thus n-B.ncols

> 0 , and so, for the expression that defines

nonzero gate = ((<codeword>1 << (n-B.ncols)) - 1) << B.ncols, the inner expression

(<codeword>1 << (n-B.ncols)) - 1) is a string of 1s, of length n-B.ncols. Then, that value

is shifted left by B.ncols. The resulting value has B.ncols 0s on the right, and n-B.ncols 1s

on the left. Going back to the if-statement that determines whether a word will be considered

for a potential augmented code to return as a child nonzero gate & word == nonzero gate,

the bitwise AND between nonzero gate and word will return the value of the bits in word for

the indices where nonzero gate has a 1. Thus, testing for equality between nonzero gate &

word and nonzero gate, will ensure that for the indices from B.ncols+1 to n, word will also

have 1s in those indices. The code that word would be augmenting has length B.ncols, so we

know that for all vectors in B, they have 0s in the indices past B.ncols. Thus, an augmented

code made from B and word will have vectors with non-zero indices past B.ncols, since word

has 1s in the indices from B.ncols+1 to n. Thus we have that the augmented code made from

B and word will have length n. In the context of the self orthogonal binary codes function,

30 CHAPTER 3. SUGGESTIONS FOR PERFORMANCE IMPROVEMENTS

this means that child codes will have length between l(parent) < nn <= n. And so, we have

l(D) < l(C) = n.

Thus we have shown that for any child code C of D, dim(D) = dim(C)− 1 and l(D) < l(C).

✰

We now know that if we want to generate all codes of size n, k, we only need to generate the

children of codes that have length between 0 and n− 1, and dimension k − 1.

To make use of this fact and implement it as part of the algorithm, the function

self orthogonal binary codes, given n, k to generate, would first check on disk to see if the

codes of that size have already been generated, otherwise it would recursively generate the

children based off of the codes of dimension k−1 and all lengths less than n. The Gaborit Mass

Formula could also be tied into this, where, for partially completed n, k codes, the mass of codes

generated so far could be also stored on disk to track progress.

3.2.3 Parallelization

Looking at Figure 2.2.1, it is noticeable that this algorithm branches quite quickly. However, each

branch of the algorithm is independent in the way that the output of two functions generating

the children of two codes simultaneous would not be affected by one another, and their outputs

do not overlap. Also, we know recursion depth is limited by the size of codes, which we are

limiting to n = 32 for the purposes of this project, so what makes it so time consuming is the

breadth of function calls to be evaluated. Thus having multiple threads working independently

would be relatively simple and efficient for making the algorithm parallel. Especially with the

codes stored on disk, the main thread can just iterate over the codes of dimension k − 1 and

length less than n, assigning one code to each thread for that thread to generate the children

of. Additionally, there are many ways to split up the workload, such as splitting based on code

sizes instead of individual codes, so the breadth of parallelization could vary as needed for the

specifications of the system. Consider how arithmetic the algorithm is and with potentially

thousands of parallel threads possible, this could be a problem well suited to GPU computing.

4
Conclusion

Because the text in SageMath contains very little comments, the implementation can be rather

opaque to decipher. Hopefully the explanation of the SageMath implementation can help others

be brought up to speed on the algorithm without having to spend so much time working out

the details of the algorithm from the way it is written in SageMath. We also saw that there is

a lot of room for different kinds of improvements to be made, such as simple changes editing

a little bit of the text, and more major restructurings of the algorithm implementing the Mass

Formula, recording codes, and introducing parallel computing. As someone who spent so much

time trying to understand the details of the SageMath implementation before I could even start

trying to improve the algorithm, this paper is the kind of resource I wish I had, which would

have helped me get started testing changes/improvements much sooner.

31

32 CHAPTER 4. CONCLUSION

Appendix A
Translation to Julia and Other Resources

A.1 Why Julia was chosen

Julia is a modern, compiled programming language that is popular for mathematical compu-

tations and has strong support for parallel and concurrent programming. These aspects give

it an edge over the notoriously slow Python that the SageMath implementation is written in.

Additionally, decoupling this algorithm from the large system that SageMath holds and the

portability of Julia means after the translation is done, it will be much easier to make changes

and optimizations on a program that whose sole purpose is to produce these codes, instead of

the general purpose and interlocking parts of SageMath that all depend on each other. For any

future people that want to continue to work on this problem, it will be much more convenient

to look at and edit an independent program than working within the SageMath environment.

A.2 GitHub Repo

Here is a link to a repository containing a transliteration from SageMath to Julia, and also

includes a couple more miscellaneous files that may be useful, like a version of the databases.py

and binary code.pyx that are thoroughly commented, as well as a version of binary code.pyx

that is set up for tracing and prints outputs to a file.

33

https://github.com/tomgadron/Tom-Gadron-Senior-Project-Resources.git

34 APPENDIX A. TRANSLATION TO JULIA AND OTHER RESOURCES

Appendix B
Other Resources and Ideas

Some ideas/links I had floating around while working and thinking about this project.

• Table of Doubly Even Codes on Robert Miller’s Website

• Some graph libraries for Julia

• CSetAutomorphisms

• Oscar.jl

• SimpleGraphAlgorithms

• Slides from a lecture by Robert Miller on Graph Automorphisms: link

• Generating Linear Spans Over Finite Fields

• Ideas:

• What are the bounds on computational complexity of the overall algorithm?

• Use some code profilers to see where the most time is spent in the algorithm

• Could a randomized algorithm be effective for this somehow?

• Is there a definitive best language to implement this algorithm?

35

https://rlmill.github.io/de_codes/
https://github.com/AlgebraicJulia/CSetAutomorphisms.jl
https://oscar-system.github.io/Oscar.jl/dev/Combinatorics/graphs/
https://docs.juliahub.com/SimpleGraphAlgorithms/2oAmN/0.4.6/autodocs/
https://rlmill.github.io/talks/June_Meeting.pdf
http://matwbn.icm.edu.pl/ksiazki/aa/aa61/aa6127.pdf

36 APPENDIX B. OTHER RESOURCES AND IDEAS

Bibliography

[1] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah, Julia: A fresh approach to numerical
computing, SIAM Review 59 (2017), no. 1, 65–98.

[2] Ethan Bloch, Bard tex style files. https://faculty.bard.edu/bloch/tex/.

[3] Charles F. Doran, Michael G. Faux, Sylvester James Gates Jr., Tristan Hübsch, Kevin M. Iga, Gregory D.
Landweber, and Robert L. Miller, Codes and supersymmetry in one dimension, Advances in Theoretical and
Mathematical Physics 15 (2011), no. 6, 1909–1970.

[4] GAP – Groups, Algorithms, and Programming, Version 4.12.2, The GAP Group, 2022.

[5] The Sage Developers, Sagemath, the Sage Mathematics Software System (Version 9.8), 2023.
https://www.sagemath.org.

37

https://faculty.bard.edu/bloch/tex/

	Classification of Doubly-Even Linear Binary Codes: An Analysis of the SageMath Implementation
	Recommended Citation

	Abstract
	Acknowledgments
	Introduction
	Explanation of Current SageMath Implementation
	Some Terms and Definitions
	self_orthogonal_binary_codes
	BinaryCode objects and the BinaryCodeClassifier class
	generate_children

	Suggestions for Performance Improvements
	Minor Improvements Based on the SageMath Functions
	Major Possible Improvements on the Structure of the Algorithm
	The Gaborit Mass Formula
	Memoization
	Parallelization

	Conclusion
	Appendices
	Translation to Julia and Other Resources
	Why Julia was chosen
	GitHub Repo

	Other Resources and Ideas

