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4 

 

Abstract 
The goal of this project is to develop an agent capable of playing a particular game at an 

above average human level. In order to do so we investigated reinforcement and deep learning 

techniques for making decisions in discrete action spaces with hidden information. The methods 

we used to accomplish this goal include a standard word2vec implementation, an alpha-beta 

minimax tree search, and an LSTM network to evaluate game states. Given just the rules of the 

game and a vector representation of the game states, the agent learned to play the game by 

competitive self play. The emergent behavior from these techniques was compared to human 

play. 
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1 

Introduction 

1.1 Pokémon  
 

 
Figure 1.1  Pokémon Game Covers[13] 

 
The Pokémon franchise has existed since the early 1990’s. The cute characters translated             

well from the pages of comic books to the Game Boy Color. While the trading card game has                  

maintained a solid popularity among fans, the video game series has become a flagship series for                

Nintendo’s handheld console line. After seven generations of games and countless spinoffs, the             

core gameplay remains unchanged. Twenty years since the first game stormed the market, a              

competitive scene has really found its footing. Each year Nintendo hosts worldwide tournaments             

in a variety of formats. Players of all ages compete to win prizes. When the games first emerged,                  
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the lack of wireless capabilities on Gameboy devices meant that players had to meet up in order                 

to play in person. This shortcoming meant that competitive Pokémon was relegated to weekend              

tournaments and casual play between friends. However, recent advances have made Nintendo’s            

handheld gaming device capable of playing games via Wi-fi. The result has been a rapidly               

changing and well defined metagame.  

In competitive gaming there are two layers of strategy that determine every match. On              

one level, there is the in-game strategy. This is generally the project that game playing AI aims                 

to tackle. The techniques used here are usually either a reinforcement learning algorithm or tree               

search. However, no player walks into a competitive match without planning. In games like              

chess and go, the only decisions that define the game are made after the clock starts. However, in                  

games such as Magic: the Gathering or Pokémon the players need to make a handful of                

decisions before starting a match. These are the decisions that define the metagame, sometimes              

referred to as just the meta. In chess, we may say that the meta is defined by the types of                    

strategies that a player may employ. Knowing that your opponent is more likely to play               

aggressively or passively can help you find a winning strategy. Pokémon works much the same               

way. Knowing that the meta favors aggressive play styles will help you make decisions in the                

game. Pokémon also comes with a set of decisions made before the game begins. These               

decisions are based on the meta. Some AI techniques such as tree searches are not generally                

useful here. 

Pokémon is a turn-based strategy game. Unlike in games like tic-tac-toe, decisions are             

made and execute simultaneously by each player. This game structure involves some hidden             

information. Because each player makes a decision without the knowledge of the other player’s              
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decision, there is no way to be sure to which state an action will take the game. Furthermore,                  

some actions have a stochastic element. The result is an extensive form of the game that is very                  

difficult for humans to work on.  

Before a game begins, each player chooses six pokémon(characters) out of a few hundred              

to comprise their team. Each of those six characters is given four moves each with a limited and                  

preset number of uses. Each pokémon is also equipped with one item and a particular stat                

distribution. Every pokémon has six statistics which govern their effectiveness in a game: speed,              

attack, special attack, defense, special defense, and health points(hp). Once your team is             

assembled, you can take your crew online and look for an opponent. 

The goal of each game is to knock out your opponent’s pokémon by reducing their health                

to zero. On any given turn one pokémon from each team is active on the battlefield. Players can                  

choose to have their pokémon use one of their four previously equipped moves to either damage                

the opponent or otherwise make the game more favorable. Players may also switch their active               

pokémon out for another pokémon in their team. This action does not allow either the pokémon                

leaving or entering the battlefield to use one of their moves. Learning when to switch and when                 

to use a particular move are the critical parts of learning to play the game for human players.                  

Each pokémon and each move have a particular type assigned to them. The interactions between               

those types can be found in the figure below. Note that, for example, ghost-type pokémon are                

immune to fighting type moves. Flying-type pokémon are weak to electric type moves. These              

interactions are central to playing the game well. Not only must a human player learn to make                 

effective decisions, good players also learn to anticipate the moves that their opponent will take.               
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Professional players often choose to switch to a pokémon that resists a type of move when they                 

believe that their opponent will try to use that type.  

1.2 Game Theory 
Game theory is a relatively young field of Mathematics. The objects of Game theory are               

the strategies used to play games. In order to best describe strategies, mathematicians appeal to               

the way that players value states. Though there are some examples of mathematical analyses of               

games going as far back as James Waldegrave’s letters with his nephew regarding the card game,                

the field as we know it today began in the 1930’s [11]. Shortly following John von Neumann’s                 

book Theory of Games and Economic Behavior in 1944, John Nash contributed what is perhaps               

the most recognizable finding of game theory: the Nash Equilibrium [6].  

 One helpful way of describing game states is by assigning a utility to an outcome. Real                

utility functions are not necessarily linear or logical. However we will use a simple example.               

Consider the following simple game. Each player has a penny. First, Player One chooses (out               

loud) heads or tails. Then, Player Two does the same. If the choices are the same, Player One                  

takes both pennies. If the choices are different Player Two takes both pennies. The table below                

shows the value, otherwise called utility, of each state as a pair of values in the form (Player                  

One’s value, Player Two’s values). This representation is called a strategic form. Note that each               

player’s reward is simply the negative of the other player’s reward. This kind of game is called a                  

zero-sum game. Any utility that one player receives is utility lost by the other player. Not all                 

games are zero-sum. Many games have cooperative strategies in which both players receive their              

highest reward by working together.  
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 Player Two 

 
 

Player One 

 Heads Tails 

Heads (1, -1) (-1,1) 

Tails (-1,1) (1,-1) 

Figure 1.2  A strategic form representation of the penny game 

The example game above is called a “perfect information game.” This kind of game is               

defined by the availability of the entire game state to every player. Perfect information games               

can also be described with a game tree. This representation is sometimes referred to as an                

extensive form. Below is a game tree detailing each state that the game could reach and each                 

action available to the players from that state. Note that the leaves of the tree are labeled with the                   

winner of the game if that state is reached. Nodes are color-coordinated to show which player                

must make a decision from that state. The edges are labeled with the choice that a player makes                  

from a state.  

 

Figure 1.3 An extensive form representation of the penny game 
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Game trees, like the one above, help us determine “winning strategies” for a player.              

These strategies are ones that guarantee a win for a player. Player Two has a winning strategy in                  

the game above. As long as Player Two chooses the opposite of what Player One chooses, Player                 

Two will always win. Player one has no winning strategy in this game.  

Some games lack this perfect information quality due to an element of chance or hidden               

information. Imperfect information games can still be described using a game tree. We can              

modify the rules of the game above to see how we might describe such a game. Suppose now,                  

the players make decisions and reveal their choices at the same time. The outcome rules will                

remain the same. Now we will need to modify our game tree to represent what a given player                  

knows about a game state. To do this, we will group states into “information sets”. Two states                 

belong to the same information set if a player can not determine which of the two state they are                   

in. Below is a game tree describing this game from the perspective of Player One. 

 

Figure 1.4 An extensive form game of the imperfect information variant of the penny game 
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Note that Player One cannot tell if they are in the state where Player Two has chose heads                  

or tails when they make a decision. Therefore, we group these states into an information set.                

Now that we have a game tree, we determine that no player has a winning strategy in this game.                   

As long as we can build an extensive form representation of a game, we can perform tree search                  

techniques and find winning strategies even if that tree contains information sets.  
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2 

Data Processing  

2.1 Problem Description 
This project is builds on research and applications of game playing techniques for             

artificial agents from the past few years [9]. In addition, it also is built on top of a recent project                    

for a Pokémon playing agent. In 2015 a graduate student at Stanford University released a               

pokemon playing agent [1]. The program was built using the JavaScript runtime Node. The              

project included a minimax and greedy algorithm for playing the game. The majority of the               

thousands of lines of code were dedicated to the game engine and interfacing therewith. One               

early hurdle for this thesis was combing through thousands of lines of code to find the places that                  

needed to be updated or otherwise modified. In the end the major contribution of this thesis                

besides general maintenance has been to develop a new function for describing and evaluating              

game states. 

This project had two phases. The first phase consisted of collecting and analyzing data. In               

this step the goal was to determine what underlying features of the game could be exploited. The                 

second phase involved choosing and implementing a model to evaluate the data. 

 

2.2 Entity Embeddings 
The first and most obvious problem for a game playing agent is determining a state description.                

Otherwise called feature engineering, we must first choose which features of a state best              
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encapsulate the relevant information for our agent. This problem is often referred to as “the               

framing problem.” For agents and robots working in the real world choosing how to describe               

inputs for your agent is an extremely difficult problem. At any given moment, the human               

experience contains more information than is communicable. Luckily for game playing agents,            

the “world” is restricted to a much more easily described state. Indeed for game-playing agents it                

is not the selection of features that matter so much as the representation thereof. Early               

neural-network- based reinforcement learning agents, such as TD-Gammon, used a series of            

integer or binary numbers to describe positions of stones on a board as well as a few binary                  

descriptions. Google’s Alpha-Go Zero represents the board as a grid [5]. This representation of              

the game state allows their agent to use a convolutional neural network. Representation matters.  

Previous iterations of Pokémon-playing agents have used easily accessible numerical          

descriptions to capture some of the information of a pokémon [1]. Such descriptions usually              

include values for remaining health and stat boosts. These descriptions are often augmented with              

a set of binary features to describe the state of the playing field as well as effects from previously                   

used moves. Some researchers will often include some engineered features in their state             

descriptions such as binary values to answer question such as: Does a pokémonhave a              

supereffective move against their opponent’s active pokémon? Is this pokémon faster than the             

opponent’s active pokémon? Does this pokemon have a priority move? These kinds of questions              

are useful in that they catch many of the features that human players seek when making decisions                 

while playing.  

The above description leaves out one major aspect of pokémon descriptions: stats. Each             

pokémon has six stats that describe their functionality as well as their role. A pokémon could be                 
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described by these six stats, their type, and their available moves. The problem with this               

representation is that the only information directly available to us in the game is the type of each                  

pokémon. The stat description may be inferred as the game goes on, but the Bayesian inferences                

and computational power needed to leverage our partial information eats away at the limited time               

available to our agent during each turn. A simpler, more generalizable representation is             

preferred.  

In order to improve upon the state representation from previous projects,we first use a              

common technique from natural language processing. Our goal is to find a representation of              

pokémon that captures not only their relative strengths but also the roles that those pokémon play                

on a team. Some teams rely heavily on specific synergies between two pokémon . Ideally our                

representation would be context sensitive. With this representation our model knows that            

pokémon likely fill different roles in different contexts. Supervised learning approaches were            

impossible here due to a lack of label data. Classifying pokémon into roles on a team is both                  

arbitrary and not discrete. Pokémon can fill more than one role and there is some disagreement                

about what those roles are and which pokemon fall into which role. To solve this problem we                 

employ the Word2Vec algorithm to generate embeddings for our pokémon . 

 Word2Vec(w2v) has many variations for different use cases. We used an out-of-the-box            

method that implements a continuous bag-of-words model (CBOW). This method means that the             

algorithm is learning to predict words given their context. Consider the word “cat.” Ideally, a               

vector representation of “cat” would be similar to a representation of “kitten.” Because the words               

are used in a similar context, they should have similar representations. Using a w2v model on                

large corpuses of English text often reveals words to be grouped together based on their meaning                
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and part of speech. Verbs are generally separate from nouns. Furthermore, nouns relating to              

travel are separated from nouns about food. The model learns to cluster entities based not only                

on data that can be labelled, such as part of speech, but also on more arbitrary ideas such as                   

domain. This clustering is important for our use because we need to capture data that can be                 

labeled(the stats of pokémon ), yet is unknown, as well as information that is not easily                

classified. One other peculiarity of the continuous bag-of-words model is that words are             

represented as the average of their contexts. For example, “apple” could refer to either the fruit                

or the company. As a result of this ambiguity, the vector representation is somewhere between               

business-related words and food-related words. This means that our model will likely catch that              

some pokémon can fill more than one role. Hence one should consider average of those roles                

weighted by their frequency in a given context in our training data sets. 

2.3 Team Builders 
To implement the w2v algorithm using CBOW, we need to collect data to train and test                

on and we need to transform our problem into a representation that can take advantage of w2v.                 

We will consider teams of pokémon akin to sentences. The pokémon are the words from which                

we are trying to learn a relationship between. In order to train our model we need examples of                  

teams that might see play in the tier of the game we are playing. One way to collect this data                    

would be to simply play the game and record the teams that we see. Unfortunately, this method                 

requires that we already have an agent which can play at the level we require. If we could collect                   

the data using this method, we would have already solved our problem and would have no need                 

for the data. Collecting data by playing the game would also be an incredibly time consuming                

method. The program is only capable of playing roughly a hundred games in a day if it plays                  
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non-stop. In order to have 10,000 team examples, the program would have to play continuously               

for three months. The time-scale of this project did not allow for such a data collection method.                 

Instead, we opted to generate sample teams using publicly available data. 

Smogon, the group that developed and maintains the website and platform on which we              

trained and tested our bot, publishes monthly statistics regarding pokémon usage and team play.              

For any given pokemon we have access to the percent of teams that used that pokémon this                 

month. These usages are broken down by tiers. Furthermore, Smogon offers pairwise conditional             

probabilities - given that a Pikachu is on a team, how much more or less likely is that a Charizard                    

is also on that team? This information gives us a simple technique to construct teams               

probabilistically using a hill-climbing algorithm. First, the usage probabilities are normalized.           

The program draws a pokémon from this set without replacement. The remaining pokémons’             

probabilities are updated using the pairwise-conditional probabilities of the pokemon just chosen.            

The set is re-normalized and is drawn from again. This process is repeated six times until a base                  

team is constructed. Then the algorithm removes the first pokémon selected, re-normalizes and             

draws again. The algorithm will slowly climb to a more probable team. We found that this                

process results in a set of teams that roughly matches the expected distribution of pokémon               

found in the original statistics. These teams are fed to the word2vec algorithm to generate a                

vector representation for our model. Code for the team builders can be found in appendix A. 
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3 

Game Playing Agent 

3.1 Problem Description 
The two techniques used to actually play the game, given our representation of game              

states, are a minimax tree search algorithm and an LSTM to evaluate game states. The tree of                 

game states is too deep to reach a terminal node to get evaluations of previous states. To solve                  

this deficiency of exhaustive tree search, we use an evaluation function approximated by a neural               

network. Figure 3.1 below shows a basic version of the network used to evaluate game states. 

 

 
Figure 3.1 A simple illustration of the evaluation network 
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3.2 Tree Searching 
One major advantage that game playing agents have over other kinds of reinforcement             

learning agents is access to a transition function. Our agent is not trying to learn the rules of the                   

game but rather how to act under those rules. There exists a whole class of reinforcement                

learning algorithms for learning models of environments. Luckily the rules of the game are given               

to the bot ahead of time in the form of a game engine. We can pass the engine a state-action pair                     

and receive a new state or set of states with probabilities for landing in each. The inclusion of a                   

transition function allows us to use tree search algorithms to determine which action we should               

choose in a given state. 

The tree search algorithm we implemented is called the minimax tree search with             

alpha-beta pruning. First, we will describe the vanilla minimax algorithm and then modify it with               

alpha-beta pruning to make it more efficient. The main intuition behind minimax is rather              

simple. We will assume that each player is acting to maximize their own expected value from the                 

game. Because Pokémon is a zero-sum game, we know that the action that is best for one player                  

is also worst for the other player. This insight allows us to predict moves that the other player is                   

likely to make from a given state by assuming they will choose the move which gives us the                  

lowest possible value. Likewise, we will always choose action which yields for us the highest               

possible value. 

The minimax algorithm works as follows begin at a leaf node. Then, we label the parent                

node with this value. Now, we compare that parent’s new value with the value of the leaf node’s                  

siblings. If this node represents a state from which player one makes a decision, then we label it                  

with the highest value of its children. Else, we label this node with the lowest value among its                  
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children. Once all children have been considered, we then propagate the value higher in the tree                

by comparing this node’s value with that of its parent. If the parent is empty, we label it with the                    

new value. We repeat this process until all nodes have been labeled. 

Consider the example tree below. The leaf nodes are labeled with the values Player One               

receives at that state. The layer above is labeled with the minimum of the children of those                 

nodes. The root is labeled with the max of its children. To perform minimax on this tree, we                  

would begin with the leaf node label with a -1. We propagate this value up to its parent because                   

that node is empty to begin with. Then, we compare -1 to -5 and choose the minimum. There are                   

no children left so we propagate this value higher. The root node is temporarily labeled with -5.                 

Now we move down the right side of the tree until we reach a leaf node. The node we have                    

reached is labeled 3 so we push that value up the tree. Now we compare 3 with 4 and choose the                     

lesser. Next we compare the value of the root to the value of last node we labeled. We maximize                   

this value by choosing 3. We have determined 3 to be the value of our root node. Notice that                   

Player One would prefer to play in the right branch of the tree, but Player Two would prefer us to                    

receive the value 3 instead of 4. Recall from our previous discussion regarding game trees and                

extensive forms of games that we can represent games with hidden information using trees. The               

algorithm does not change when information sets are present in our game tree. 

One way to make tree searches more effective is a method called pruning. As the name                

suggests, our goal when pruning a tree is to “chop off” certain branches by not searching them.                 

We can do this by cleverly propagating information about the best and worst values we have                

seen from a particular branch. In doing so, we can should be able to tell whether or not searching                   

down a branch will yield a better result than what we already have. This technique will allow us                  
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to search deeper into a tree by saving time by not searching every branch. The pruning technique                 

we used is called alpha-beta pruning. Alpha and beta are the best and worst values a given node                  

has seen on the path to the root. So now we will not only be labelling each node with our best                     

guess of the value of that node, but we will also label it with an alpha and a beta value.  

  

Figure 3.2 Note that this tee was searched in a left to right [14] 

 

Figure 3.3 Psuedocode of minimax with alpha-beta pruning[2] 
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The psuedocode above describes the alpha-beta pruning algorithm. The tree in figure 3.2             

shows the result of alpha-beta pruning. Note that the layers of the tree alternate between               

maximizer and minimizer nodes. The maximizer nodes are states where Player One must make              

an action. The minimizer nodes are nodes where Player Two must make an action. Where the                

beta value of an edge can guarantee a better worst case scenario by a path that it has already                   

visited, the algorithm will prune the tree. Red dashes across an edge indicate a pruned branch.                

The leaf node with value 5 not visited by this tree search. The key intuition here is that pruning                   

occurs when the algorithm can guarantee a better value by taking a different action earlier in the                 

game tree. 

 

3.3 Long-Short Term Memory Architecture 
The network architecture we implemented uses Long Short-Term Memory (LSTM) cells.           

This architecture is a kind of recurrent neural network. It is often used in natural language                

processing projects because of its unique time-based activation and training algorithm. Recurrent            

neural networks have an advantage over traditional feedforward networks in that they can             

“remember” previous states. This advantage makes them very useful for time series prediction             

and predicting words that are likely to follow a given sequence in natural language processing.               

We are able to pass the network a series of time steps(game states) and it will return a probability                   

that the given player will win from this state. This behavior more closely mimics the kind of                 

decision-making that real players enact when playing a game. The previous states inform one’s              

decisions. This architecture helps us fight the classic credit assignment problem in reinforcement             

learning. It is often said that some games can be determined by opening moves. However,               
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learning to recognize how decisions contribute to states that are many time steps away is a                

difficult problem. This learning is difficult if a network is only given the current state to evaluate.                 

For this reason we decided to implement an architecture that can accept a series of game states. 

 

Figure 3.4 The inner workings of an LSTM cell in context of its neighbors[12] 

The figure above shows the inner workings of an LSTM cell. Note that each cell receives                

a unique input and produces a unique output. Also note the way that information is propagated                

from a cell to its neighbor. The top lateral input is the state from the last cell. The new LSTM                    

cell will multiply this vector by the result of activating the first “forget gate” on the bottom                 

lateral input. A forget gate lets the cell learn which features need to be remembered to update the                  

state before we pass it to the next cell. Next the cell applies another sigmoid gate and a tanh                   

activation to the output of the last cell. This process determines the updates we want to add to the                   

previous description of the state. Finally, the cell performs an activation function on the state               

description from the previous cell. This activation is filtered through a gate which determines              

what the cell will output to the next layer of the network. This vector also becomes the bottom                  
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lateral input for the next cell. All of these steps and the relevant formulas can be found in the                   

Appendix. 

The LSTM cell described above works well because it can “remember” states that earlier              

cells have seen. However, this remembering is dependent upon gates that receive a lateral              

information. Our standard training algorithm for neural networks trains one layer at at time.              

Standard back-propagation cannot train the gates inside of the LSTM cells. So instead, we will               

use an algorithm called backpropagation through time(BPTT).  

The calculus and linear algebra involved here are rather similar to that of standard back               

propagation. We will still use the chain rule of differentiation. The key insight for BPTT is that                 

we first must “unroll” the LSTM layer. In order to calculate the error for the third cell we must                   

sum the errors of cells from third cell down to the first. We must perform this technique for each                   

output in the LSTM layer. The major departure from standard back propagation is that BPTT               

trains laterally. In standard backpropagation, the change in weights for one neuron do not affect               

the weights of other neurons in that layer. For further information on LSTM’s, BPTT, and               

recurrent neural networks in general, we recommend chapter 10 of Ian Goodfellow’s Deep             

Learning which is available online in full.[4] 
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4 

Results 

4.1 Team Builders 
The team generator, featured in the code below, creates teams from a given set of 

probabilities. The generator has two iterations. The first iteration is called the “naive” generator 

which builds teams from only the usage probabilities of a each pokémon . These probabilities 

describe the number of teams in which a given pokémon  is present. The second iteration, called 

the “smart” generator, builds teams with the usage probabilities of each pokémon  and the 

“teammates” value described in section 2.2. Recall that this value is the change in the probability 

of a pokémon  being in a team given that another pokémon  is on that team as well. To test the 

efficacy of these team-generation methods, each method generated 10,000 teams. The usage data 

is drawn from is collected from a set of 30,000 teams. The usage rate of each pokémon  is then 

calculated via each method. We then determined the difference between the generated usage rate 

and the original usage rate.  

 

 Average Usage 
Difference 

Variance of 
Usage Distance 

Average 
Teammate 
Usage Distance 

Teammate 
Usage Distance 
Variance 

Naive Team Builder 0.18% 0.28% 1.16% 4.70% 

Smart Team Builder 0.12% 0.29% 1.14% 6.76% 

Figure 4.1 A comparison of the difference in percent between expected and generated usage and 

pairwise teammate usage values. 
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4.2 Entity Embeddings 
To determine what the word embeddings had captured, we employed a few statistical 

tests. Although the meaning of the embedding is subjective, some numerical descriptions such as 

word similarity or cosine distance can show us how the entities are embedded. We describe the 

similarity of three descriptions of each entity. The first description is using only the publicly 

available stats of each pokémon . The second description is a result of performing the Word2Vec 

embedding described in section 2.1. Finally, we combine these two descriptions.  

 

Figure 4.2 Heatmap of the pairwise similarities of all pokémon using Word2vec 

The first feature description produced the heatmaps above. The first figure depicts the 

cosine similarity of all pairs of the 169 pokémon . Lighter colors indicate a shorter distance and 

therefore higher similarity.  
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Figure 4.3 Heat map of cosine similarity of pokémon using just in-game stats 

The second description is the result of the Word2Vec embedding. Here, dark colors 

indicate a negative relationship and light colors indicate a positive relationship. A negative 

relationship implies an opposite “definition.” For instance, “up” and “down” would have a 

negative correlation in a Word2Vec model trained on an English language corpus. The light 

colors indicate that two pokémon  are similar.  
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Figure 4.4 Heat map of an embedding using both Word2vec and the in-game stats of pokémon  

The final representation of the pokémon  is a combination of both earlier descriptions. 

Using both the Word2Vec embedding and the numerical description of pokémon via their 

in-game stats yielded the embedding shown above. This heatmap is using the same cosine 

distance measure as in Figure 4.2. Below is a table recording the averages and variances of 

pairwise distances of all pokémon using each of three embedding techniques. 

 

 Average Distance Variance in distances 

Word2Vec only .048 .094 

Stats only .043 .012 

Word2Vec and Stats .042 .012 

Figure 4.5 the averages and variances of pairwise distances of all pokémon using each of three 

embedding techniques. 
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4.3 Game-Playing Agent 
The network used to evaluate games states was successfully integrated with the existing 

JavaScript application for playing the game online. The network can accept a series of game 

states and produce a likelihood of winning from this position. The bot now also contains methods 

for collecting data such as series of game states paired with reward values and teams observed in 

play. At the end of each game, the bot can now train the network on either a single game or a 

batch of games. 

Results regarding the loss values from training were not possible given the time scale of 

this project. See the chapter 5 for relevant details of behaviors demonstrated by the network, 

training times, and methods for reducing the burden of data. 
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5 

Discussion and Future Work 

5.1 Overview 
Despite a successfully generated set teams, the none of the embeddings appear to 

successfully capture the semantic relationship between pokémon. However, with limited results 

to analyze, the state evaluation network does appear to be learning to play the game.  

5.2 Team Builder 
Surprisingly, the naive team builder performed just as well as the more complicated             

second iteration. There appears to be no significant difference between the results of the “naive”               

or “smart” versions of the team builder. This finding is against our intuition. However, these               

findings do validate our aim to replace the embeddings generated from these teams with an               

embedding based on teams actually observed while playing the game. Although the second             

iteration did not improve upon the naive team builder, the results of both versions are               

encouraging. The usage statistics of the generated teams do closely match those reported from              

smogon’s public reports. 

5.3 Entity Embeddings 
Determining the effectiveness of an embedding is a matter of performance. An            

embedding is more or less effective than a different representation if it facilitates better learning.               

However, there are a few measures by which we study the embedding directly. The provided               

heat maps show how some of characters are related in our representation.  
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The new vector representation does not appear to successfully capture the relation            

between pokémon . The global heat maps are fairly bland. Both Figure 4.2 and Figure 4.3 show                 

that most of the pokémon have high similarity values. The more complex representation did not               

help further differentiate pokémon as indicated by Figure 4.4. The large amount of lightly              

colored squares indicate that few of the pokémon are very dissimilar. This conclusion is further               

supported by the table in Figure 4.5. The low average distance between pokémon coupled with               

the low variance in these distances suggest that the overwhelming majority of pokémon are              

grouped tightly together in a singly cluster. A low average distance but high variance would               

suggest that the pokémon we embedded evenly throughout the space. Unfortunately this was not              

the case. From these results it is impossible to tell whether or not Word2Vec is simply not the                  

right tool for the job or it was not used effectively in this implementation. 

The Word2Vec model may have failed to capture the relationship between pokémon but             

it was successful in dramatically reducing the size of the network. Recall that the Word2Vec               

algorithm produced a five feature embedding for each entity. Each pokémon has eight stats. The               

game state otherwise has 51 features. A full explanation of the network structure can be found in                 

the chapter 3.  

Without this embedding, this network would have been overwhelmingly large. Some           

quick back-of-the-envelope math suggests the input layer would have been over 6,000 neurons             

large. Without some kind of feature engineering, the canonical way to represent a word in a                

vocabulary is by a one hot encoding. Using this technique would mean that each of the twelve                 

pokémon is represented by a vector that consists of 168 zeros and a single 1. Without any of the                   

other features of the game state, the input vector for the twelve pokémon alone would have been                 
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just over 2,000 features long. Estimating conservatively that there are only 100 moves which see               

play, we could give each pokémon a four hot embedding one hundred features long. This would                

give us an additional 4,800 neurons in our input layers. The final network uses an input layer of                  

fewer than 300 neurons. 

 

5.4 Game-Playing Agent 
On the burden of data: 

Google’s DeepMind group trained on roughly 5,000,000 games over the course of one             

month to achieve their results. However, much of the progress made in training occured within               

the first few days. After three weeks, they had surpassed the best human player. This project can                 

produce one game of training data in about six minutes running on a single NVIDIA GTX 980. It                  

would take this setup roughly fifty years to generate 5,000,000 games. Google used four tensor               

processing units(TPU’s) to train AlphaGo Zero [5]. A single TPU is twenty times faster than a                

single GTX 980.  

This bulk of data is not necessary to show progress or to learn behaviors. AlphaGo Zero 

exhibits many interesting strategies and appears to learn fundamental concepts after only a few              

hours of playing. These findings suggest that, even with the current unoptimized code, some              

progress can be made after only a week of training on 1,600 games. However, the time                

constraints of this project prohibited both training on this scale and tweaking hyperparameters. 

Further code optimizations may also improve training times. If games were generated            

locally via the game engine instead of played online, game times could be cut in half or better. It                   

is conceivable that a slight hardware upgrade coupled with a more efficient data collection              
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method may result in upwards of 1,000 games every two days. Distributed computing and online               

platforms such as Amazon Web Services may be one solution to facilitate such data collection.               

With these improvements, significant results could be obtained in just a few weeks. However this               

time scale remains outside the scope of this project. 

On the exhibited behaviors: 

After only a few days of training, the network began to exhibit behaviors consistent with               

beginner level play. For example, the network needed only a few days to learn the importance of                 

stat boosting moves. The agent would frequently prioritize moves that boosted its active             

pokémon’s stats over moves that deal damage to the opponent. This behavior was often              

exaggerated and lacked the nuance of average human level play. The agent would frequently use               

a stat boost move three or four times in a row when just once or twice would have been                   

sufficient. Furthermore, the agent failed to learn that stats have a limit. The agent sometimes               

boosted itself multiple times after the boosting move no longer had any additional effect.  

Similarly, the agent learned rather early on after just a day of training that health is                

critically important to winning. This learning resulted in the agent putting an overemphasis on              

healing moves. The agent would sometimes forego attacking the opponent to use moves that heal               

itself instead. This strategy is often referred to as a “stall” tactic. While it is a legitimate strategy,                  

in order to be effective, the player must also use moves which damage over time or inflict lasting                  

damage conditions on the opponent. The agent did not learn this asset of the strategy. Instead, the                 

agent would attempt to force the opponent to run out of uses of its best moves. This strategy                  

resulted in the opponent lacking the necessary tools to defeat the agent. So, in a sense, the agent                  

did find a successful strategy. However, this strategy is easily countered by human players of an                
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average level. Overall, the quick emergence of recognizable strategy is encouraging for an             

LSTM-based line of research.  

5.5 Next Steps 

This project has laid the groundwork for a few interesting research projects. The most              

conservative research direction would be to simply improve upon the network used in this              

project. Due to time and hardware constraints, the network was not allowed to train for long                

enough to gather numerical test results. Future work may include optimization of the code              

suggested in section 5.4. A project of this nature should include a benchmark of simpler               

feedforward evaluation network. Each of these networks should be tested on a live server against               

human players.  

A more ambitious but potentially more fruitful avenue for future work would be to              

implement a new tree search algorithm. Right now, the agent is using minimax with alpha-beta               

pruning. A future project may implement a Monte-Carlo Tree Search instead. This methodology             

is closer to the technique used by Google’s Alpha Go Zero [5]. A project of this variety should                  

also investigate the use of safe and nested subgames as used by Noam Brown and Tuomas                

Sandholm to play heads-up-no-limit Texas hold’em poker.[8] This line of research may also             

require a novel adaption of an existing tree search technique such as Monte-Carlo Tree Searches. 

One other area that a future project could improve upon this work is by further               

investigating the issue of representation. Further research is needed to determine whether or not              

Word2Vec can be used to embed pokémon based on their appearance in a set of teams. This                 

research may take the form of a more comprehensive study of the hyperparameters’ effect on the                
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embeddings. Because the vocabulary size, training data, and sentence length are smaller than             

what is typical for a natural language processing project, it is likely that the model simply overfit                 

to the given data set. One possible solution to this problem is to develop a novel adaptation of a                   

known embedding technique. 
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6 

Minds, Brains, and Behavior 

6.1 Overview 
This project can be divided into two sections - (1) creating and working with              

representations of game states and (2) playing the game. The first consists of the data processing                

and deep learning techniques used to find meaning in large amounts of data. The second section                

involves both the actual JavaScript application and the tree search technique implemented therein             

to play the game. Most importantly, these sections can be classified by the philosophical              

questions they investigate. The data processing techniques are in part an inquiry into how we               

determine the semantic value of entities. The parts of this senior project regarding the actual               

gameplay are aimed at the way that we can infer the semantic values that others hold. The                 

particular insight of this project is the way that the neural network techniques bridge the gap                

between these two areas of research.  

6.2 Philosophy 
The Word2Vec(w2v) algorithm described in section 2.1 aligns closely to the pragmatism            

characteristic of Ludwig Wittgenstein’s later work. In Philosophical Investigations,         

Wittgenstein develops a theory of what is for a sign to have a meaning [7]. A sign can be                   

anything that can convey meaning. Words are the typical example of signs. However, we may               

also consider vocal inflection, gestures, and appearance choices to be signs as well.. Though              

other linguists and philosophers have stressed the important of context to the meaning of signs.               
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Wittgenstein takes this idea as step further. Wittgenstein writes clearly that “the meaning of a               

word is its use in language [7].”  

The defining insight of w2v is a numerical representation of the semantic relationship of              

words based on their context. The vector representation of a word is constructed from the               

probabilities of other words to appear near it. The meaning of words are derived from their                

usage. The representation we generate for the Pokémon appears to be consistent with             

Wittgenstein’s pragmatism. 

 

6.3 Psychology 
The implementation of the game playing agent, including the tree search algorithm            

described in section 3.2, are examples of investigations into mind reading techniques. The tree              

search algorithm is attempting to predict the actions of another player. The same network is used                

to evaluate game states for both the agent and their opponent. This implementation choice makes               

two key assumptions. The first assumption is that, the opponent will always make the decision               

that gives them the best chance of winning. Secondly, that the opponent arrives at this evaluation                

similarly to the way that the agent does. 

The assumptions that this model makes are consistent with both Wittgenstein and            

psychologists such as Jeremy Carpendale and Charlie Lewis. Wittgenstein asks in Philosophical            

Investigations, “Does a child learn only to talk, or also to think? Does a child learn the sense of                   

multiplication before or after it learns multiplication [7]?” Carpendale and Lewis respond by             

saying that a child learns these things at the same time [3]. This response, in conjunction with the                  

reading of Wittgenstein's Philosophical Investigations implies that the concept of multiplication           
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and the process or language thereof are the same thing. Language and thinking are inextricably               

interwoven. 

From this position, Carpendale and Lewis describe how reasoning is explained in their             

model. Carpendale and Lewis suggest that “children understand talk about the psychological            

world as a pattern of activity…[3]” Furthermore, reasoning is not “based on the application of               

rules, but particular instances of rules would be manifest in the process of reasoning [3].”               

Reasoning, as Carpendale and Lewis describe here, is analogous to the tree search that our agent                

is performing. 

If Carpendale and Lewis are correct, then the assumption that our game-playing agent             

makes regarding the way that its opponent evaluates states comes down to an issue of               

representation. Our agent cannot learn the way the that their opponent represents states.             

Although that representation is critical to reasoning, our agent has no choice but to use its own                 

representation. Overcoming this semantic gap is not just an engineering problem, but it is also               

fundamentally an epistemological issue. By embracing pragmatism, we may also be able to             

disregard this problem. Though the agent cannot learn the representation that it opponent uses, if               

the agent wins the game, then it has done well enough. If the agent can consistently reason its                  

way to victory, then it has learned a representation that provides enough sematic middle ground               

between its representation and that of its opponent. The insights provided by Carpendale and              

Lewis are the basis for claiming that winning games or the appearance complex strategies which               

rely on prediction are ample grounds for deciding the success of the agent and of this project. 
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Appendix 

Appendix A: Team Generation Methods 
● def naiveTeam():  

●     return list(choice(list(pokeList), 6, p = 
norm(baseUsage),replace = False))  

●   

● def smartTeam():  

●     team =[]  

●     smartUsage = list(baseUsage)  

●     smartPoke = list(pokeList)  

●     smartNorm = []  

●     while len(team) < 6:  

●         smartNorm = norm(smartUsage)  

●         chosen = choice(smartPoke, p = smartNorm)  

●         if chosen not in team:  

●             team.append(chosen)  

●             for poke in data[chosen]['Teammates']:  

●                 if poke in smartUsage:  

●                     smartUsage[smartPoke.index(poke)] += 

data[chosen]['Teammates'][poke]/float(sum(list(data[poke]['
Abilities'].values())))  

●     return team  

●   

● def norm(given):  

●     return [i/sum(given) for i in given]  

 

  



39 

Appendix B: LSTM in JavaScript 
● var train_net = module.exports.train_net = function(win) {  

●     learnlog.info("Training neural network...");  

●   

●     const trainSet = [];  

●     _.each(states, function(state){  

●            trainSet.push({input: state, output: [win ? 1 : 

0]});  

●         });  

●   

●     const results = trainer.train(trainSet, trainOptions);  

●     learnlog.info(results);  

●     states = [];  

●     fs.writeFileSync('lstm.json', 
JSON.stringify(lstm.toJSON()));  

● }  
● function eval(battle) {  

●     var value = 0;  

●     var features = getVec(battle);  

●     console.log(features.length);  

●   

●     value = lstm.activate(features);  

●   

●     logger.trace(JSON.stringify(features) + ": " + value);  

●     return value;  

● }  
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Appendix C: LSTM Formulas 
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