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Abstract

The purpose of this project is to show that quandle unification reduces to quandle matching.
We show that any unification problem U can be embedded into a matching problem M . If a
unifier exists for M , then the narrowing sequence N of that unifier can be refactored to N ′ such
that all of its idempotence narrowing steps involving substitutions are done last. At the moment
when the narrowing sequence N ′ needs only to do idempotence steps to unify M , we show that
this implies a form for the embedded matching problem U such that U is guaranteed to have a
unifier. This result also verifies that a quandle unification algorithm which uses the embedding
technique is solving unification and not just matching.
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1
Introduction

The topic of this paper is a proof that the quandle unification problem reduces to the quandle

matching problem, which verifies the unification algorithm derived by Goldstein in 2021 [11].

The goal of chapter 2 is to establish the connection between knot theory and the quandle

axioms, referencing Joyce [6], Reidemeister [9], and Nelson [7]. We also present additional

quandle identities known as delta rules. The delta rules are instrumental for the term rewriting

system that this paper largely focuses on–established in McGrail’s 2018 paper [1]. In chapter 3

a number of key definitions from universal algebra are introduced, as well as properties of

reduction and term rewriting system. Much of this chapter references Baader and Nipkow’s

book [2]. Chapter 4 introduces the decidable problem of syntactic unification, citing Martelli

and Montanari [3]. It then presents the problems of equational matching and unification. In

chapter 5, the logic programming language Prolog is briefly covered using Sterling and Shapiro’s

book [5] for the purposes of understanding how a quandle unification algorithm was implemented

by Goldstein [11]. Finally, chapter 6 references Gallier and Snyder [4] as well as Dougherty

and Johann [10] to provide a definition for narrowing and its use in the problem of equational

unification. We then prove a result about refactoring narrowing sequences, as well as the general

case of embedding a unification problem into a matching problem. We end by showing that we

can reduce quandle unification to quandle matching.
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Quandles and their Relationship to Knots

2.1 What is a Quandle?

Quandles are an algebraic structure that have recently become a subject of study.

Definition 2.1.1. A quandle is a set S with a binary operation ∗ that satisfies the following

axioms [6].

1. For all x ∈ S we have that x ∗ x = x. (Idempotence)

2. For all x, y ∈ S, there exists a unique z ∈ S such that x = z ∗ y. (Right-cancellation)

3. For all x, y, z ∈ S, we have that (x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z). (Right-distributivity)

△

Axiom 2 is equivalent to the existence of right inverses [7]. In other words, a quandle Q has

an operation / where (x∗ y)/y = x for all elements x, y ∈ Q. A quandle can also equivalently be

defined with left inverses and left distributivity. While being interesting on their own, quandles

are also useful at modeling other mathematical objects. For instance, quandles have a connection

to knots, knot diagrams, and their isotopy-preserving transformations.

3



4 CHAPTER 2. QUANDLES AND THEIR RELATIONSHIP TO KNOTS

Figure 2.2.1: An example of an oriented knot diagram.

2.2 Oriented Knot Diagrams

Definition 2.2.1. A knot is an embedding of the circle in R3. In other words, it is a continuous

function K : [0, 1]→ R3 that is injective everywhere except for the endpoints [8]. △

A knot is not injective at its endpoints because they have to meet to create a loop. So given

a knot K : [0, 1]→ R3, we have

K(0) = K(1).

Definition 2.2.2. We say two knots K1 and K2 are ambient isotopic—or equivalent—if there

exists a continuous function H : R3 × [0, 1]→ R3 such that

1. For each t ∈ [0, 1] the mapping taking x ∈ R3 to H(x, t) ∈ R3 is a homeomorphism of R3

onto itself

2. H(x, 0) = x for all x ∈ R3

3. H(K1, 1) = K2).

In the case above, we call H an ambient isotopy. △

One useful way to represent knots is a knot diagram. A knot diagram is a projection of a knot

onto a 2 dimensional plane with two constraints. As long as no strands of a knot lie directly on

top of each other and no points exist where three strands cross each other, then a knot projection
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≠

x x

y
z

Figure 2.2.2: The trefoil knot (right) is the simplest knot which is not isotopic to the unknot
(left).

is a valid knot diagram. The information contained in a knot diagram uniquely characterizes a

knot up to isotopy. By recording the over/under crossings of a knot, that is enough information

to determine its isotopy class. For the purposes of quandles, we deal with oriented knots. This

means that for a certain strand, we give it an orientation. Since knots are embeddings of S1,

then we only need to assign a direction to one unbroken strand and follow it until it joins back

with itself to determine the orientations of all the strands.

One way to know if two knots are ambient isotopic is if there exist a series of local, invariant-

preserving steps that take one knot to the other. There are three of such moves, known as the

Reidemeister moves [9]. If there is a series of Reidemeister moves that takes one knot to another

knot, then they are ambient isotopic.

2.3 The Quandle Operations on Knot Diagrams

Before we can discuss Reidemeister moves and their connection to the quandle axioms. We first

define the ∗ and / operations of quandles in the context of knot diagrams. Given some knot

diagram, if a strand x crosses under a strand y from left to right, then the resulting strand is

labeled x ∗ y [6]. Similarly, if a strand x crosses under a strand y from right to left, then the

resulting strand is labeled x/y. Notice that if we reverse the orientation of a knot, then each ∗

operation becomes /, and vice-versa.
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x
x * y

y

Figure 2.3.1: A crossing in an oriented knot that corresponds to the ∗ operation of a quandle.

x / y

y

x

Figure 2.3.2: A crossing in an oriented knot that corresponds to the / operation of a quandle.

2.4 Type I Reidemeister Move

The Type I Reidemeister move corresponds to the first quandle axiom, also known as idempo-

tence. On the left we see that the strand x crosses under itself from left to right, which leads

to the strand y. Therefore, x ∗ x = y. However, note that the end of the strand corresponding

to y on the left diagram is equivalent to the end of the strand corresponding to x on the right.

Therefore, x = y, and so

x ∗ x = x. (2.4.1)

Notice that by reversing the orientation of our diagram, we then know that

x/x = x. (2.4.2)
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< = >

x

y

x

Figure 2.4.1: A Type I Reidemeister move.

The idempotence of knot theory is made very intuitive by the knot diagram. A loop formed by

a strand crossing over or under itself is the same as a single strand without that loop. One can

imagine pulling the strand “taught”, which would remove the loop.

2.5 Type II Reidemeister Move

x
y

z

w

< = >

x
y

Figure 2.5.1: A demonstration of a Type II Reidemeister move.

The Type II Reidemeister move says that if two strands are stacked without any complicating

crossings, then we can pull those two strands apart. This corresponds to the second quandle

axiom of right-cancellation. On the left diagram, strand z is formed by x crossing under y from

left to right, so z = x ∗ y. Additionally, the strand w is formed by z crossing under y from right

to left, and so w = z/y = (x ∗ y)/y. Notice, however, that the end assigned to w on the left
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knot diagram is equivalently x on the right diagram. Therefore w = x, and by reversing the

orientation we have:

(x ∗ y)/y = x (2.5.1)

(x/y) ∗ y = x. (2.5.2)

2.6 Type III Reidemeister Move

x

y

z
s w

t

s
z

w

y

x
t

< = >

Figure 2.6.1: A demonstration of a Type III Reidemeister move.

The Type III Reidemeister move corresponds to the third quandle axiom of associativity.

Notice that every under crossing in both diagrams are right to left. In other words, each

operation will be /. Therefore in the left diagram we have

x = y/w

= (z/s)/w.

In the right diagram, notice that t = s/w and y = z/w. So,

x = (z/s)/w = (z/w)/(s/w).

As in the previous two cases, we can also reverse the orientation to get the following two

properties:

(x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z) (2.6.1)

(x/y)/z) = (x z)/(y/z). (2.6.2)
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The third Reidemeister move is a bit harder to understand, but it still has a fairly intuitive

logic. If a strand crosses under two other strands who are also crossing, then we can move the

bottom strand without affecting the relation the other two strands have.

2.7 Additional Quandle Identities

The following are direct results of the quandle axioms in Definition 2.1.1:

Theorem 2.7.1. Let Q be a quandle. Then for all x, y, z ∈ Q, the following are true.

1. x ∗ (y ∗ z) = ((x/z) ∗ y) ∗ z

2. x ∗ (y/z) = ((x ∗ z) ∗ y)/z

3. x/(y ∗ z) = ((x/z)/y) ∗ z

4. x/(y/z) = ((x ∗ z)/y)/z.

We refer to these identities as the delta rules.

Proof. These derivations are all directly from McGrail’s paper, but they are short enough to

put here, and it will be useful to familiarize oneself with the style of algebraic manipulations

one does in quandle systems [1].

1.

x ∗ (y ∗ z) = ((x/z) ∗ z) ∗ (y ∗ z)

= ((x/z) ∗ y) ∗ z.

Here we use the right-cancellation axiom of quandles to substitute in (x/z) ∗ z for x, and

then extract z from both subterms using right-distributivity.

2.

x ∗ (y/z) = ((x ∗ (y/z)) ∗ z)/z

= ((x ∗ z) ∗ ((y/z) ∗ z)/z)

= ((x ∗ z) ∗ y)/z.
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Notice that each of these rules involve repeated application of introducing new terms with

right-cancellation and then distributing to get helpful new representations.

3.

x/(y ∗ z) = ((x/z) ∗ z)/(y ∗ z)

= ((((x/z)/y) ∗ y) ∗ z)/(y ∗ z)

= ((((x/z)/y) ∗ z) ∗ (y ∗ z))/(y ∗ z)

= ((x/z)/y) ∗ z

4.

x/(y/z) = ((x ∗ z)/z)/(y/z)

= ((((x ∗ z)/y) ∗ y)/z)/(y/z)

= ((((((x ∗ z)/y)/z) ∗ z) ∗ y)/z)/(y/z)

= ((((x ∗ z)/y)/z) ∗ (y/z))/(y/z)

= (((x ∗ z)/y)/z).

These new identities will be important for a term rewriting system for quandles. The next

section covers what reduction systems are and how we can use the delta rules along with idem-

potence and right-cancellation identities to get a term rewriting system.



3
Term-Rewriting and Reduction Systems

This chapter will introduce the notion of term rewriting as a computational model. A term

rewriting system differs from equational theory in that equations of a term rewriting system are

used as directed replacement rules. For the rest of the paper, the convention unless otherwise

specified for term rewriting system identities will be that the left-hand side can be replaced by

the right-hand side, but not vice-versa.

3.1 Terms, Operations, and Algebras

We will be introducing a number of notation from universal algebra which will be useful for the

purposes of studying quandle algebra. Universal algebra is the study of algebraic structures.

The more well-known algebraic structures include groups, rings, and fields. All of the standard

definitions in this section and Section 3.2 are taken from “Term Rewriting and all that” By

Franz Baader and Tobias Nipkow[2].

Definition 3.1.1. A signature Σ is a set of function symbols, where each f ∈ Σ is associated

with a non-negative integer n known as its arity. The arity is the number of arguments that a

function symbol takes. We denote the set of all f ∈ Σ with arity n with Σ(n). We refer to 0-ary

elements as constants. △

11
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The set of n-ary functions where n > 0 can be thought of as symbols for actual functions,

whereas all symbols for 0-ary functions can be thought of as constants in the common under-

standing.

Let’s make a simple signature Σ for a quandle. The quandle axioms tell us that it will always

have two binary operations, ∗ and /. Since we want elements to act on, our signature will

also include constants a, b, and c. Recall that constants are simply 0-ary—sometimes called

nonary—functions. Thus we have that

Σ = {a, b, c, ∗, /}.

Using our signature, we can construct terms such as a ∗ a or (b/a) ∗ (a/c). These aren’t the only

kind of terms we can make, however. We can also make terms that contain variables, which are

a special kind of symbol. Let’s precisely define what we mean by a term and a variable.

Definition 3.1.2. Let Σ be a signature and X a set of variables symbols such that Σ∩X = ∅.

We define the set of all terms T (Σ, X) inductively. We have that

1. x ∈ T (Σ, X) if x ∈ X,

2. For all n ∈ Z≥0, we have f(t1, . . . , tn) ∈ T (Σ, X) for all f ∈ Σ(n) and t1, . . . , tn ∈ T (Σ, X).

A term t is simply an element of T (Σ, X), and a variable is a symbol for which any other term

can be substituted in. △

Note that in order to substitute a term in for a variable, we also need to have a signature

defined.

Example 3.1.3. Let’s continue with our example above and use the same signature Σ =

{a, b, c, ∗, /}. Now let our variable set be V = {X,Y, Z}. Besides our constants, notice that

quandles only have binary operators. Here are some examples of valid terms given our signature

and variable set.

1. a ∗ Z
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2. a/(b/(X ∗ a)/a)

3. Y ∗ Y ∗ Z ∗ (a/Z) ∗ (Y/b).

Notice that every instance of a variable symbol is representing the same universally quantified

object. This means if we substitute something in for a variable, we must replace every instance of

that variable in the term with the substituted value. Suppose we want to apply the substitution

[Y → (Z/c)] to the third example term above. Recall that variables can be instantiated for

any term in T (Σ, V ), including terms with other variables. So if we apply our substitution

[Y → (Z/c)], our term would become

(Z/c) ∗ (Z/c) ∗ Z ∗ (a/Z) ∗ ((Z/c)/b).

♢

Definition 3.1.4. Let Σ be a signature and X a set of variable symbols disjoint from Σ.

Then a substitution is a function σ : X → T (Σ, X). The set of variables that σ doesn’t

map to themselves again is called the domain. If a substitution changes a variable, we say it

instantiates that variable. A substitution can easily be turned into a mapping from one term to

another. Given our substitution σ from above, we can define a mapping ϕ : T (Σ, X)→ T (Σ, X)

such that, for t ∈ T (Σ, X), we have

ϕ(t) =

{
σ(t) if t ∈ X

f(ϕ(t1), . . . , ϕ(tn)) if t = f(t1, . . . , tn).
(3.1.1)

Notice that if t is not a variable, then t is guaranteed to take the form of f(t1, . . . , tn) where

f ∈ Σ(n) and t1, . . . , tn ∈ T (Σ, X) for some n ∈ Z≥0. △

For the rest of the paper, when we talk about substitutions, we are usually referring to this

process of extending a substitution into a mapping from a term to another term. Notice that a

substitution leaves all ground sub-terms unaffected, and some variables as well. In other words,

it’s enough to define a substitution σ by the set of variables V where σ(v) ̸= v for all v ∈ V .
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Definition 3.1.5. Let σ and ϕ be substitutions with domain T (Σ, V ) for some signature Σ and

variable set V . The composition σϕ of these two substitutions is defined as

σϕ(x) = σ(ϕ(x))).

△

Example 3.1.6. Let σ and ϕ be substitutions for T (Σ, V ) as defined in Example 3.1.3. Suppose

σ only sends Y to X/b and ϕ only sends X to a ∗ a. Notice that the order in which we apply

these substitutions matters. In other words it is not always the case that σϕ(t) = ϕσ(t) for a

general t ∈ T (Σ, V ). Consider the term t = (X ∗ b)/(Y ∗ b). Notice that

σϕ(t) = ((a ∗ a) ∗ b)/((X/b) ∗ b),

and

ϕσ(t) = ((a ∗ a) ∗ b)/(((a ∗ a)/b) ∗ b).

For this reason, we need to be careful when composing substitutions. ♢

Remark 3.1.7. For composition of substitutions that all instantiate a single variable only, we

have a special notation which proves to be very useful. Using our usual signature and variable

sets, suppose we have a series of substitutions s1, s2, and s3 that respectively send X to a, Y to

b, and Z to c. Then we can represent the composition of these functions as

[X → a, Y → b, z → c].

We apply these substitutions left to right, so this notation represents the composition s3 ◦

s2 ◦ s1(x). We frequently use this notation because narrowing steps—a method for solving

unification problems—involve instantiating a single variable at each step. For more information

see Chapter 6 ♢

Definition 3.1.8. A term is called ground if it contains no variables. △

Ground terms are important because there are no substitutions which map them to a different

term (since there are no variables to instantiate).
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3.2 Reduction terminology.

A reduction system (A,→) consists of a set of elements A and a binary relation→ on A. Instead

of saying (a, b) ∈→, we say that a → b, or “a reduces to b”. We say that a
∗→ b if there exists

r1, r2, . . . , rn ∈ A such that

a→ r1 → r2 → . . .→ rn → b.

Another way to say this is that a path of reductions exists from a to b, or a transitively

reduces to b.

Definition 3.2.1. Let (A,→) be a reduction system. Then → is terminating if there does

not exist some infinite chain of reductions a1 → a2 → a3 → . . . where {a1, a2, a3, . . .} ⊆ A. △

Note that a terminating reduction does not mean that the set it acts on is finite. It is enough

that for each element of some infinite set, any chain of reductions starting from that element is

finite.

Definition 3.2.2. Let (A,→) be a reduction system. Then x ∈ A is reducible if there exists

y ∈ A such that x → y. An element of a reduction system x is in normal form if it is not

reducible. We also sometimes say that x is reduced. △

Note that if a rewrite system is terminating, that means each of its elements has a normal

form. Normal forms are not inherently unique, however. For that, we need a stronger constraint.

Definition 3.2.3. Let (A,→) be a reduction system. Then a ∈ A is confluent if and only if for

all distinct b, c ∈ A such that x
∗→ b and a

∗→ c, there exists d ∈ A such that b
∗→ d and c

∗→ d.

If a term rewriting system is terminating and confluent, we say that it is convergent. △

Importantly, a convergent term rewriting system is enough to guarantee unique normal forms

for its elements.

Theorem 3.2.4. Let (A,→) be a reduction system. If it is convergent, then each element in A

will have a unique normal form.
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Proof. Let (A,→) be a terminating an confluent reduction system. Let a ∈ A. Since → is

terminating, we know that a will have normal forms. Let m and n be normal forms of a. For

a contradiction, suppose m ̸= n. As m and n are normal forms of a, we know a
∗→ m and

a
∗→ n. By definition 3.2.3, m and n being distinct implies there exists l ∈ A such that m

∗→ l

and n
∗→ l. Since m and n are normal forms, they are not reducible, and therefore we have a

contradiction. Thus we know

m = n.

With unique normal forms, we are closer to being able to create a decision procedure for

evaluating the equality of two quandle terms.

Definition 3.2.5. A rewrite rule is an identity l = r for terms l and r where an instance of

a certain variable in r implies it also exists in l. In other words, the simplification from l to r

doesn’t introduce any new variables. A term rewriting system is a set of rewrite rules. A

redex is an instance of a subterm that matches with the left-hand side of a rewrite rule. △

Note that, given some term rewriting system T , the reduction system→T will be well-defined

[2]. Therefore when we say things like “T is confluent”, we are actually referring to the reduction

system induced by T . Also, terms can be in normal form—or reduced—relative to T , since we

just mean the reduction system induced by T .

3.3 A Quandle Term Rewriting System

Here we present a terminating and confluent rewriting system for the first order equational

theory of quandles defined in Definition 2.1.1. This rewriting system was first proposed by

Mcgrail et al. in 2018 [1].

Definition 3.3.1. Let Q be a quandle. Let x, y, z be elements of Q. Then our term rewriting

system R consists of the following rules.

R.1 x ∗ x→ x
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R.2 x/x→ x

R.3 (x ∗ y)/y → y

R.4 (x/y) ∗ y → x

R.5 x ∗ (y ∗ z)→ ((x/z) ∗ y) ∗ z

R.6 x ∗ (y/z)→ ((x ∗ z) ∗ z)/z

R.7 x/(y ∗ z)→ ((x/z)/y) ∗ z

R.8 x/(y/z)→ ((x ∗ z)/y)/z.

Recall that the first four rules correspond to the idempotence and right-cancellation axioms of

quandles in Definition 2.1.1. The remaining four are the delta rules from Theorem 2.7.1. Unless

specified otherwise, when we refer to R we are referring to the above set of rewrite rules.

Theorem 3.3.2. The rewrite system R is both terminating and confluent, and so it is conver-

gent [1]. Therefore it generates unique normal forms for all quandle terms.

△

Example 3.3.3. Let’s use our quandle Q defined above to develop intuition for how R simplifies

terms to their normal form. Our signature and variable set will be the same Σ and V from earlier

examples. Given the term

(((c ∗ c)/(A ∗ b)) ∗ (A ∗ b) ∗ (a ∗ c)),

we can outline the reductions that our rewrite system R will make to carry it to a normal form.

(((c ∗ c)/(A ∗ b)) ∗ (A ∗ b)) ∗ (a ∗ c) = ((c/(A ∗ b)) ∗ (A ∗ b)) ∗ (a ∗ c) (R.1)

= c ∗ (a ∗ c) (R.4)

= ((c/c) ∗ a) ∗ c (R.5)

= (c ∗ a) ∗ c. (R.2)
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Notice that each step reduces the size of the overall term except for the delta rule. The first four

rules corresponding to idempotence and right-cancellation reduce the total number of operators

in the term, however the four delta rules actually increase the number of operators. The size of

this increase has an exponential relationship to the number of operators in the right term of a

delta rule. As an example, let’s look at the normal form of the term (a ∗ (b ∗ (c/X))). Notice

that each left subterm is a constant whereas—until we’ve reached X—the right subterms are all

binary operations on other terms. We call this form a right-leaning term due to the fact that

all of the closing parentheses appear on the right end of the term. In this case, we only need to

successively apply delta rules to fully simplify.

(a ∗ (b ∗ (c/X))) = ((a/(c/X) ∗ b)) ∗ (c/X) (R.5)

= ((((a ∗X)/c)/X) ∗ b) ∗ (c/X) (R.8)

= ((((((a ∗X)/c)/X) ∗ b) ∗X) ∗ c)/X (R.6)

The original term, (a∗(b∗(c/X))), has 3 operators and the resulting term has 7. In general, if we

have n operators in a right-leaning term that requires no other reductions other than those from

delta rules, then the number of operators after carrying out the delta rules will be 2n − 1. ♢

Now we have some intuition for how our term rewriting system arrives at a normal form.

While the idempotence and right cancellation rules are intuitively simplifying since they reduce

the total number of operators, it is not clear why the delta rules are simplifying. For this reason,

we give a simplified version of the argument that Mcgrail used to show that the term rewriting

system R will eventually always terminate. Please see their full paper for more details [1]. Note

that we will be using ◦ as an unspecified quandle operator for the remainder of this paper. In

other words, ◦ ∈ {∗, /} and furthermore

◦′ =

{
∗ if ◦ = /

/ if ◦ = ∗.
(3.3.1)

Theorem 3.3.4. The term rewriting system R in Definition 3.3.1 is terminating.
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Proof. Let S be a set of nonary function symbols. Let T our set of terms over the signature

TQ = {∗, /} ∪ S. Now we define a measure function m : R→ N such that

m(t) =

{
0, if t is a variable or constant,

1 +m(t1) + 3m(t2), if t = t1 ◦ t2.
(3.3.2)

Now we want to show that, given some term t, the overall measure of t will reduce with each

rewrite step. If we can show this, then the fact that the measure of a term is bounded from below

by 0 tells us that the measure of any sequence of rewrite steps on t will eventually converge to

some value. At this point we will be unable to simplify further, and so any sequence of reduction

steps will be finite. It is enough to show that the right-hand side of each rewrite rule has measure

smaller than the left-hand side. For idempotence and right cancellation rules, showing the left-

hand side has smaller measure is trivial. Thus we only need to consider the general form of the

delta rule

r ◦1 (s ◦2 t)→ ((r ◦−1
2 t) ◦1 s) ◦2 t.

for arbitrary terms r, s, and t. So,

m(r ◦1 (s ◦2 t)) = 1 +m(r) + 3m(s ◦2 t)

= 4 +m(r) +m(s) +m(t),

and

m(((r ◦−1
2 t) ◦1 s) ◦2 t) = 1 +m((x ◦−1

2 z) ◦1 s) + 3m(z)

= 3 +m(r) +m(s) +m(t).

Thus each delta rule reduction decreases the overall measure of whatever term is being delta-

reduced. Now we have that each reduction step strictly reduces the measure, and so any sequence

of reduction steps on a term is strictly decreasing. Since it is also bounded from below by zero,

we now know that any sequence of reduction steps will be finite, and thus R is terminating.

Recall that, in Example 3.3.3, when our term rewrite system terminated it ended up pushing

all the opening parentheses to the left. Only in this form—the opposite of the right-leaning

term—are we unable to do any more delta rules.
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Definition 3.3.5. A term t is delta reduced if it is of the form

t = (. . . (t0 ◦1 t1) ◦2 t2) . . .) ◦n tn,

where t1, t2, . . . , tn are all either variables or constants. Note that the left ellipsis represents n−3

open parentheses symbols. The right ellipsis, on the other hand, represents the application of

n−3 more operators and terms, beginning with ◦3t3 up to ◦n−1tn−1. We will use this convention

of ellipses in reduced terms for the remainder of the paper. We say this term is delta reduced

because we cannot simplify it further through the use of delta rules. A reduced term is by

definition also delta reduced. △

3.4 A Term Rewriting Decision Procedure

A term rewriting system that guarantees unique normal forms is useful because it creates a

simple method for determining if two expressions are in the same equivalence class under some

theory. For a precise definition of a theory, see Definition 4.2.1.

Algorithm 3.4.1. Let T1 and T2 be ground quandle terms. Suppose we are asked to determine

whether or not T1 equals T2 under the quandle theory. Our decision procedure is as follows:

1. In T1, search for a subterm Ts that matches the left-hand side of a rewrite rule in R.

2. Replace Ts with the right-hand side of the same rewrite rule in R.

3. Repeat steps 1 and 2 until there are no more possible reductions to be made to T1.

4. Repeat steps 1-3 for T2, at which point T1 and T2 will both be in normal form.

5. If T1 is syntactically identical to T2, then we return true. Otherwise we return false.

♢

Notice that steps 3 and 5 of this algorithm rely on the existence of normal forms for expressions

and their uniqueness respectively. Note that this decision procedure is only guaranteed to work

if there are no variables. The presence of variables in one or both of the expressions will make

this procedure unusable.



4
Unification

To show the ways in which variables can complicate deciding whether or not two terms are

equal to each other, we will consider a simple example with terms from our usual signature and

variable set Σ and V .

Example 4.0.1. Let us look at the expression

(a/(b ∗ c)) ∗X = ((a ∗ b)/(a ∗ b))/b

and try to determine if it is false or not. If we simplify both terms to their normal forms, the

expression becomes

(((a/c)/b) ∗ c) ∗X = a.

Clearly, the decision procedure in Algorithm 3.4.1 would say that these two are not identical,

however we still have the variable X that we can instantiate. Notice that if we apply the

substitution [X → (b ∗ c)], the left-hand side of the expression becomes (((a/c)/b) ∗ c) ∗ (b ∗ c),

which can be simplified further. So,

(((a/c)/b) ∗ c) ∗ (b ∗ c) = (((((a/c)/b) ∗ c)/c) ∗ b) ∗ c ((R.5))

= (((a/c)/b) ∗ b) ∗ c ((R.3))

= (a/c) ∗ c ((R.4))

= a. ((R.4))

21
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Thus if we allow substitutions, then we know that the expression (a/(b∗c))∗X = ((a∗b)/(a∗b))/b

is true. ♢

For this reason, we will need a new decision procedure if we want to handle problems that

involve variables, also known as unification.

Definition 4.0.2. The unification problem is about finding a set of substitutions for variables

such that two terms are equationally equal to each other. If no such substitution set exists, we

want to be able to determine this as well. Note that the reduced form of Example 4.0.1 is not an

instance of general unification, but a subproblem known as matching where variables appear

only on one side of the expression. △

Before we look at equational unification, let us first look at an easier form of unification–one

that does not allow any term rewriting.

4.1 Syntactic Unification

Definition 4.1.1. Syntactic unification is the process of trying to unify two expressions to

make them syntactically identical. Expressions are syntactically identical if they contain

exactly the same symbols in each position. △

Example 4.1.2. Suppose we look at expressions using our usual signature Σ = {a, b, c, ∗, /}

and variable set V = {A,B,C}. Imagine that we are given the equation

X ∗ x = Y ∗ x

and asked if the two expressions are syntactically identical. In this case, we do not think of x and

y as elements of some quandle, because under the problem of syntactic unification we cannot use

the quandle axioms to simplify terms, and so the only option we have is to try and instantiate

X and Y such that both sides are syntactically identical. Now consider the substitution

[Y → X].
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Then we have X ∗ x = (X) ∗ x, and now we can substitute in any term for X and these two

expressions will be syntactically identical. Let [X → z], then (z) ∗ x = (z) ∗ x. The series of

substitutions in order to make two terms syntactically identical is known as a syntactic unifier.

In this case, our syntactic unifier is

[Y → X,X → z].

Importantly, the substitutions are read left to right. So we first substitute in X for Y , and then

z for x. The astute among you will have noticed that the substitution [Y → X] leads to the

expression X ∗ x = (X) ∗ x, which is already syntactically unified. In some sense, this unifier is

“better”, because it leaves us with a variable X to instantiate at some later point. The unifier

[Y → X] is what is known as the most general unifier. ♢

Definition 4.1.3. Let E1 = E2 be some expression denoted E where E1 and E2 both contain

variables. A unifier σ for E is said to be a most general unifier if, for all other unifiers ρ of

E, there exists a unifier τ such that

τ(σ(E)) = ρ(E).

△

A useful feature of syntactic unification is that it is decidable [3].

Definition 4.1.4. A problem is decidable if there exists an algorithm guaranteed to solve it

in finite time. △

Logic programming languages like Prolog rely on the fact that syntactic unification is decid-

able, since they use syntactic unification to answer queries within programs [5]. Not only is it

decidable, but linear time algorithms have been found for syntactic unification [3].

A sub-problem of syntactic unification is syntactic matching, where only one of the expres-

sions contains variables. While we have been using the conventional operators and elements of

quandles, syntactic unification problems function identically, irrespective of the symbols used to

represent their different elements. What we want, then, is to make use of quandle axioms in

order to simplify expressions.
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4.2 Equational Unification

Definition 4.2.1. Equational Unification is the problem of trying to unify two terms such that

they are equal under some theory. A theory is a fixed set of identities. △

Example 4.2.2. Suppose we had a theory E containing a commutative identity f(s, t) = f(t, s).

Now let a, b ∈ S and let X be a variable. Suppose we were given the equation

f(a, b) = f(b,X)

and asked to solve it for syntactic unification first and equational unification second. While we

cannot syntactically unify these two terms, we can make them equal under our above theory.

Consider the substitution [X → a]. Then

f(a, b) =E f(b, (a)).

♢

An example of a theory is the quandle theory in Definition 2.1.1. We can use idempotence,

right cancellation, and right distributivity identities to alter terms while still keeping them in

the same equational equivalence class. Due to these new identities, equational unification is

usually harder than syntactic unification, though that depends on the theory. Oftentimes it is

much more likely that equational unification problems are not decidable.

Theorem 4.2.3. The general form for a quandle unification problem that cannot be immediately

rewritten to a matching problem is

(. . . (t0 ◦1 t1) ◦2 t2) ◦3 . . .) ◦n tn = B,

where t0 and B are variables and t1 through tn are either constants or variables.

Proof. Let E1 = E2 be a quandle expression such that E1 and E2 both contain variables. We

can use the rewrite system R to make both terms reduced, and so our expression becomes

(. . . (t0 ◦1 t1) ◦2 t2) ◦3 . . .) ◦n tn = (. . . (s0 ◦1 s1) ◦2 s2) ◦3 . . .) ◦m sm.
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where each s and t term is either a variable or a constant. Notice that we can isolate t0 by right

canceling the outermost term on the left-hand side. So,

t0 = (. . . (s0 ◦1 s1) ◦2 s2) ◦3 . . .) ◦m sm) ◦−1
1 t1) ◦−1

2 t2) ◦−1
3 . . .) ◦−1

n tn.

If t0 is a constant, then only the right-hand side contains variables, and so this expression reduces

to a matching problem. We can similarly isolate s0, and so if it is a constant then the expression

will also reduce to a matching problem. Therefore, the general form for a quandle unification

problem will be

(. . . (t0 ◦1 t1) ◦2 t2) . . .) ◦i ti = B,

where t0 and B are variables and t1 through ti are either constants or variables.

Note that all the identities in our term rewriting system R in Definition 3.3.1 come directly

from the axioms of the quandle theory, and so we can use R to rewrite terms in the quandle

unification problem. This still, however, does not tell us how to find substitutions for a unifier.

Before we get to that, however, we briefly have to discuss the some implementation details of

the quandle unification algorithm created by Goldstein in 2021 [11].
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5
Prolog

As Prolog was the language that Goldstein chose to implement a unification algorithm, we will

briefly cover its basics in this chapter [11]. Prolog is a logic programming language, and one

of the earliest [5]. It is dynamically typed, and unlike most other programming languages it is

primarily declarative. This means programming in Prolog involves designing a program such

that it describes the logical constraints of some computation, as opposed to directly manipulating

the state of a program through commands. A program in Prolog consists of a series of relations,

either facts or rules. A computation is a query on these relations. Prolog only has a single data

structure: the term. The definitions in this chapter are taken from “The Art of Prolog” by Leon

Sterling and Ehud Shapiro. Please see the full book for more details [5].

5.1 Basic Definitions

Prolog consists of using terms and statements, which is taken from formal logic. The simplest

statement in Prolog is a fact. A fact says that some relation holds between some number of

objects. Some examples of facts are:

food ( p i z za ) .
l e s s ( two , f i v e ) .
s i b l i n g s ( leah , c o l l i n , james ) .

Note that a fact can define a relation for any number of objects, including just one. An-

other name for a relation is a predicate. In this case, food, less , and siblings are all predi-

27
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cates. The objects predicates refer to are also known as atoms. The atoms in this case are

pizza, two, five , leah, collin , and james. Importantly, predicates and atoms begin with low-

ercase letters. This is because objects beginning in uppercase letters are reserved for variables

in Prolog. A finite collection of facts is known as a program. It can also be thought of as a

database. Here is an example of a program:

f a th e r ( l y l e , james ) .
f a t h e r ( michael , noah ) .
f a t h e r ( michael , a l i c e ) .
f a t h e r ( michael , anna ) .
f a t h e r ( ben , l y l e ) .
f a t h e r ( ben , he rbe r t ) .
f a t h e r ( ben , michael ) .
male ( michael ) .
male ( l y l e ) .
male ( noah ) .
male ( james ) .
male ( herbe r t ) .
male ( ben ) .
female ( sarah ) .
female ( a l i c e ) .
female ( anna ) .
mother ( sarah , james ) .

The query is the second kind of statement in Prolog. A query in Prolog asks if a relation

holds between objects. If we take the above program to be our fact-base, then an example of a

query we might ask is:

?= f a t h e r ( ben , michael ) .
t rue .

When a query is made in relation to a program, the query is the statement is a logical consequence

of the program. In this case, father(ben, michael) is a fact in our program, and as such is

immediately true. Suppose we wanted to know all the children of ben. To do that we can use

variables. Variables are stand-ins for a single but unspecified value. Using variables we can pose

the following query:

?= f a t h e r ( ben , X) .
X = l y l e ;
X = herber t ;
X = michael .
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In this case, the query father(ben, X)? is asking whether or not there exists some value for X in

the program that would make the statement true. We can also use variables to define universal

facts. If we wanted to define multiplication for natural numbers with zero and without using

variables, we would have to write

t imes ( zero , one , ze ro ) .
t imes ( zero , two , ze ro ) .
t imes ( zero , three , ze ro ) .

and so on. With variables, we can summarize this infinite list of facts with a single fact:

t imes ( zero , X, zero ) .

This fact reads for all X, X times zero is zero, so in other words the variable X is universally

quantified. Now that we have defined variables, we can define terms.

Definition 5.1.1. A term is either a variable, constant, or a compound term. A compound

term consists of a functor—which is an atom—and a number of terms as its arguments. △

Examples of compound terms are

country ( somal ia ) .
p lus ( two , three , f i v e ) .
f oo (X) .
t imes ( zero , X, zero ) .
t imes (2 , t imes (2 , 2 ) , 8 ) .

As stated previously, terms are the only data structure of Prolog, and they are very flexible

for that reason. Now we can talk about the most powerful kind of statement in Prolog: the rule.

5.2 Rules, Backtracking, and Declarative Programming

Suppose we had some fact P. in our program. Notice that we could pose it as the query P? as

well. Without specifying it as a fact or query, we refer to P on its own as a goal.

Definition 5.2.1. A rule in Prolog is a statement of the form

S ← G1, G2, . . . , Gn.

Where the goal S is known as the head, and the body of the rule is made up of the goals

G1, G2, . . . , Gn where n > 0. △
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When combined with variables, rules can be used to capture more complicated logical rela-

tionships. For instance, we could define a daughter rule as:

daughter (X, Y) := f a t h e r (Y, X) , female (X) .

In words, this rule says that X is the daughter of Y if X is the father of Y and X is a female.

The head of a rule is satisfied only if all the goals in the body can be satisfied as well. Note that

a rule is the same as any other goal, and can be used in the body of other rules. Note that if

we wanted to define a grandparent rule, it would take four different rules with alternating uses

of the predicates father and mother. Instead, we can define a more general parent rule.

parent (X, Y) := f a t h e r (X, Y) .
parent (X, Y) := mother (X, Y) .

Now we have a much simpler time defining a grandparent rule:

grandparent (X, Z) := parent (X, Y) , parent (Y, Z ) .

Using our family program from above, we can now use rules to make more advanced queries.

?= grandparent (X, Y) .
X = ben ,
Y = james ;
X = ben ,
Y = noah ;
X = ben ,
Y = a l i c e ;
X = ben ,
Y = anna ;

Here our program found four instances where ben was a grandparent, but how Prolog searches

the program space to find these solutions is also important. This is where we get to the topic

of backtracking. Prolog will first search the program space for a constant with which to

instantiate X, and then for some constant to instantiate Y such that the grandfather rule is

true. In this case, the fact father(michael, noah). is the first fact from top-to-bottom of our

program where X can be instantiated such that the first goal of the grandfather rule would

be true. In other words, the first substitution Prolog makes is [X → michael]. The problem

then becomes finding a substitution for Y such that the goal parent(michael, Y). is satisfied.

The first substitution for Y we would get is [T → noah], giving us parent(michael, noah). The



5.3. EVALUATION ALGORITHM 31

program will be unable to find a Z such that parent(noah, Z) is true, and so it will backtrack

and try to find another instantiation of Y . At some point, it will run out of instantiations for

Y and backtrack another step. At this point, it will find the substitution [X → ben]. It is with

this instantiation of X that we find our four solutions. Backtracking is an extremely powerful

aspect of Prolog, and enables us to solve much more complicated logic problems.

5.3 Evaluation Algorithm

The simplest part of the unification algorithm is the sub-process of evaluation, which cor-

responds to the term rewrite system R for quandles [11]. The evaluation process consists of

searching some expression for subterms that match the left-hand side of some rewrite rule and

replacing them with the right-hand side of that same rewrite rule. This part of the algorithm

seeks to simplify expressions as much as possible without instantiating any variables. It does

this by searching within a term for subterms that match the redex of a rewrite rule and replacing

it with the reduct of said rewrite rule.

In our program, evaluation is done with the rule eval/2. We have two definitions for this rule.

eva l (E1 , E2) :=
e va l on e s t ep (E1 , E3 ) ,
! ,
eva l (E3 , E2 ) .

and

eva l (E1 , E1 ) .

The latter definition can be thought of as our base case. If eval fails to find any more simplifi-

cations, it will return itself. The former definition is a recursive method of successively applying

single evaluation steps. The argument E1 is the input expression and E2 will be the final sim-

plified expression. In sentence form, this rule says that E1 evaluates to E2 if E1 evaluates to

E3 in a single step, and E3 then evaluates to E2. This recursive call to eval will cause E3 to

evaluate to some E4 in a single step, and this process continues until it cannot be simplified

any further, at which point this rule will not be able to be satisfied and the program will find

the base case definition of eval. In the terminology of a reduction system, the first eval rule is
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known as the transitive closure, and the second eval rule is known as the reflexive closure.

Our eval rule is meant to search for every simplification it can make under the term rewriting

system, and therefore eval one step must be defined for each of these simplifications. For the

idempotence rules, we have

eva l on e s t ep ( s t a r (E, E) , E ) .
e v a l on e s t ep ( d i v i (E, E) , E ) .

Similarly, right-cancellation gives us

e va l on e s t ep ( s t a r ( d i v i (E1 , E2 ) , E2 ) , E1 ) .
e v a l on e s t ep ( d i v i ( s t a r (E1 , E2) E2 ) , E1 ) .

We now need to have each delta rule as well:

e v a l on e s t ep ( s t a r (E1 , s t a r (E2 , E3 ) ) ,
s t a r ( s t a r ( d i v i (E1 , E3 ) , E2 ) , E3 ) ) .

e v a l on e s t ep ( s t a r (E1 , d i v i (E2 , E3 ) ) ,
d i v i ( s t a r ( s t a r (E1 , E3 ) , E2 ) , E3 ) ) .

e v a l on e s t ep ( d i v i (E1 , s t a r (E2 , E3 ) ) ,
s t a r ( d i v i ( d i v i (E1 , E3 ) , E2 ) , E3 ) ) .

e v a l on e s t ep ( d i v i (E1 , d i v i (E2 , E3 ) ) ,
d i v i ( d i v i ( s t a r (E1 , E3 ) , E2 ) , E3 ) ) .

Finally, we need to have rules that can simplify the subterms of a term. We do this by noting

that a complex term is rooted at an operator, either star or divi. Then we just have to look at

the subterms on either side of this operator. So this gives us

e va l on e s t ep ( s t a r (E1 , E2 ) , s t a r (E3 , E2 ) ) :=
e va l on e s t ep (E1 , E3 ) .

e v a l on e s t ep ( s t a r (E1 , E2 ) , s t a r (E1 , E3 ) ) :=
e va l on e s t ep (E2 , E3 ) .

e v a l on e s t ep ( d i v i (E1 , E2 ) , d i v i (E3 , E2 ) ) :=
e va l on e s t ep (E1 , E3 ) .

e v a l on e s t ep ( d i v i (E1 , E2 ) , d i v i (E1 , E3 ) ) :=
e va l on e s t ep (E2 , E3 ) .
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In sentence form, the first rule says “star(E1, E2)) simplifies to (star(E3, E2)) if we can simplify

E1 to E3 in a single step”. Notice that the second rule does this for the right subterm, and the

next two do the same for the divi operation.

5.4 The Cut Operator and Unnecessary Backtracking

The ! is known as the cut operator in Prolog, and is used to prevent backtracking. What this

means is that if eval one step cannot be satisfied, it will not try to backtrack to a previous single

evaluation step and change it. Notice that our evaluation algorithm is reducing any quandle

expression to its normal form within our term rewriting system. As McGrail showed that this

term rewriting system is confluent, we should be able to find our normal form by applying term-

rewrites in any order [1]. Therefore if we are unable to simplify further, we know that we have

reached a normal form and backtracking is worthless.

Remark 5.4.1. If n is the number of operators in some expression E, then the complexity of

eval without backtracking is O(n) and the complexity of eval with backtracking is O(n!). ♢

Proof. Notice that eval one step looks at each subterm. This means if n is the number of

operators, in the worst case it will look at n complex subterms and n+1 non-complex subterms

(constants or variables). In other words it is O(n). Now suppose we have some expression where

we can make rewrites A,B,C, and D in any order. Confluence tells us that any sequence should

arrive at the same normal form. In other words, A → B → C → D = A → B → D → C and

so forth. If we allow backtracking, we have to check every permutation of these four rewrites.

Thus our complexity becomes O(n!).

The cut operator should be used sparingly since it comes close to non-declarative program-

ming. Here we use it because we can prove that confluence of our term rewriting system tells

us the search space of a solution to our problem does not require backtracking.
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5.5 The Quandle Unification Algorithm

The inspiration for this paper is to verify the result of a previous senior project. In 2021,

Goldstein gave a unification algorithm for quandles [11]. In it, the algorithm takes a quandle

unification problem E1 = E2 and converts it into a matching problem like so.

E1 = E2

a ∗ E1 = a ∗ E2

(a ∗ E1)/E2 = a,

where a is some constant outside of the signature for quandle terms E1 and E2. The algorithm

then attempts to unify (a ∗ E1)/E2 and a. If it finds such a unifier, then that implies E1 = E2,

and we have solved our unification problem. This implication, however, is not as clear as it

seems. Suppose that in our unifier for (a ∗ E1)/E2 and a, we instantiate some variables inside

E1 or E2 to include a. Notice that this now does not immediately correspond to a unifier of

E1 = E2, because that unification problem does not include a in its signature. Thus, in order

for Goldstein’s unification algorithm to be true, we must show that a solution to the converted

matching problem does in fact lead to a solution for the unification problem in all cases. We

now pick up where we left off at the end of Chapter 4 by discussing narrowing.
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Narrowing and the Unification-Matching Re-
duction

Narrowing drives the bulk of the algorithm used by Goldstein in their quandle unification al-

gorithm, and it will be a very useful tool for showing that unification reduces to matching for

quandles. For more details on how narrowing was implemented in the Prolog algorithm, see [11].

6.1 Narrowing

Definition 6.1.1. Given a term t and a theory E, a single narrowing step involves the

following [10].

1. Pick a compound subterm t1 ∈ t that contains at least one variable X.

2. Let L = R be an identity in E. Search for a unifier for L and t1 of the form σ = [X → Y ]

where Y is any term.

3. If such a unifier σ exists, then we apply the substitution σ(t) and, within it, we replace

the subterm σ(t1) with σ(R).

A narrowing step is substitution free if we do not instantiate any of the variables in t1.

Narrowing is the process of continually composing narrowing steps on some expression E1 = E2

until a unifier has been found. △

35
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The process of narrowing on an expression E1 = E2 is a method for enumerating all possible E-

unifiers for that expression. In other words, if a unifier exists for some expression then repeatedly

searching the space of composition of narrowing steps will return that unifier [4]. The only

problem that occurs, however, is if the narrowing process is not guaranteed to terminate at

some point.

Definition 6.1.2. Let t be a term. A narrowing sequence on t is a sequence of narrowing

steps

N = [s0, s1, s2, . . . , sn]

where si is a single narrowing step involving instantiation of some variable in t, unification of

some subterm t1 with the reduct of a rewrite rule, and finally full reduction of t using rewrite

system R. So,

N = sn(sn1(. . . (s1(s0(t))))).

Importantly, in a narrowing sequence we fully reduce t after each narrowing step. This is because

a variable instantiated in some narrowing step can occur many times throughout the term t,

and thus provides many new opportunities to simplify the term. △

Example 6.1.3. As an example of why we want to fully reduce between narrowing steps,

consider

t = ((((a ∗ t2)/t1) ∗ t0) ∗ t1)/t2,

where t1 is a variable. Suppose we do the following narrow step n.

[t1 → t2] (n)

((((a ∗ t2)/(t2)) ∗ t0) ∗ (t2))/t2

((a ∗ t0) ∗ t2)/t2.

Notice, however, that the instantiation of t1 has also given us another opportunity to right

cancel. If we fully reduce this term, we get a ∗ t0. This is why a narrowing step of a narrowing

sequence is always followed by reduction of the term, and in practice we will always be starting
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our narrowing sequence either with a reduced term, or by reducing it before any narrowing

steps. Notice that Definition 6.1.1 tells us that a simple rewrite step is also a narrowing step–it

only requires variable instantiation in the identity of the term rewriting system, and not the

term itself. So, a narrowing sequence is a sequence of narrowing steps where we try to do as

many simple rewrite narrowing steps—steps that do not require variable instantiation in t—in

between each narrowing step si which requires instantiation of some variable in t. Therefore, if

we had a narrowing sequence consisting of only n we would have the following.

[t1 → t2] (n)

((((a ∗ t2)/(t2)) ∗ t0) ∗ (t2))/t2

((a ∗ t0) ∗ t2)/t2.

a ∗ t0.

♢

Narrowing sequences for quandles have a unique property that we can exploit in service of

showing that quandle unification reduces to quandle matching.

Theorem 6.1.4. Let t be a quandle term. For every narrowing sequence N of t, there exists a

narrowing sequence N ′ which does all of its delta rule narrowing steps first, right cancel rules

second, and idempotence rules third such that

N(t) = N ′(t).

Proof. Let t be a term in reduced form. Let N be a narrowing sequence for t that contains

subsequences I = [i1, i2, . . . , in1 ] , R = [r1, r2, . . . , rn2 ], and D = [d1, d2, . . . , dn3 ]. Note We will

be using i to denote an instance of an idempotence narrowing step, r for an instance of a right

cancellation step, and d for a delta rule step. Furthermore, we have that

length(N) = length(I) + length(R) + length(D).

Note that N will be of the form N = [s1, s2, . . . , si, si+1, . . . , sn] Where 1 ≤ i < n and si and

si+1 are two different types of narrowing steps. Then each case we must look at corresponds
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to each different pair of narrowing steps. Recall that we are using the ◦ symbol to denote an

instance of some quandle operator, either ∗ or /.

Case 1: (Delta rules and right cancellation)

Suppose we look at right cancellation and delta steps as the first pair. Then either can

come first, and t is constrained to two possible forms. Either

t = (. . . (E1 ◦1 A) ◦−1
1 Y ) ◦2 . . .) ◦3 Y,

or

t = (. . . (E1 ◦1 Y ) ◦−1
1 A) ◦2 . . .) ◦3 Y

where E1 is some expression in normal form, Y is a variable, and A is a variable or a

constant. Note that we only need to consider these two cases WLOG because these are

the only forms of t where r and d share a variable involved in both steps–namely Y . In

each case where right cancel and idempotence steps do not share a variable, it is trivial to

show that you can apply either narrowing step first and arrive at the same result.

1.1 Let t = (. . . (E1 ◦1A)◦−1
1 Y )◦2 . . .)◦3 Y. We want to consider the case where we apply

right cancellation first. Notice that, if we want to do right cancellation and then a

delta rule, A must be a variable because otherwise we would apply the substitution

[Y → A] for our initial right cancellation, which would make the outer Y in both cases

a constant and we would no longer be able to narrow with a delta rule. Suppose that

N = [s1, s2, . . . , si, r, d, si+1 . . . , sn]. Thus, our narrowing sequence will be

[A→ Y ] (r)

(. . . (E1 ◦1 (Y )) ◦−1
1 Y ) ◦2 . . .) ◦3 Y

(. . . (E1 ◦2 . . .) ◦3 Y

[Y → (Y1 ◦4 Y2)] (d)

(. . . (E1 ◦2 . . .) ◦3 (Y1 ◦4 Y2)

(. . . (E1 ◦2 . . .) ◦−1
4 Y2) ◦3 Y1) ◦4 Y2.
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Now we need to show that we arrive at the same normal form for t by applying some

series of delta rules first and then possibly right cancellation rules. Recall that A still

must be a variable, since we are working with the same term t. Then our sequence is

[Y → (Y1 ◦4 Y2)] (d)

(. . . (E1 ◦1 A) ◦−1
1 (Y1 ◦4 Y2)) ◦2 . . .) ◦3 (Y1 ◦4 Y2)

(. . . (E1 ◦1 A) ◦−1
1 (Y1 ◦4 Y2)) ◦2 . . .) ◦−1

4 Y2) ◦3 Y1) ◦4 Y2

(. . . (E1 ◦1 A) ◦−1
4 Y2) ◦−1

1 Y1) ◦4 Y2) ◦2 . . .) ◦−1
4 Y2) ◦3 Y1) ◦4 Y2

[A→ (Y1 ◦4 Y2)] (d′)

(. . . (E1 ◦1 (Y1 ◦4 Y2)) ◦−1
4 Y2) ◦−1

1 Y1) ◦4 Y2) ◦2 . . .) ◦−1
4 Y2) ◦3 Y1) ◦4 Y2

(. . . (E1 ◦−1
4 Y2) ◦1 Y1) ◦4 Y2) ◦−1

4 Y2) ◦−1
1 Y1) ◦4 Y2) ◦2 . . .) ◦−1

4 Y2) ◦3 Y1) ◦4 Y2

(. . . (E1 ◦−1
4 Y2) ◦1 Y1) ◦−1

1 Y1) ◦4 Y2) ◦2 . . .) ◦−1
4 Y2) ◦3 Y1) ◦4 Y2

(. . . (E1 ◦−1
4 Y2) ◦4 Y2) ◦2 . . .) ◦−1

4 Y2) ◦3 Y1) ◦4 Y2

(. . . (E1 ◦2 . . .) ◦−1
4 Y2) ◦3 Y1) ◦4 Y2.

Note that the sequence of narrowing steps [r, d] results in the same final substitution

as the sequence [d, d′].Therefore we can construct

N ′ = [s1, s2, . . . , si, d, d
′, si+1, . . . , s

n],

where N ′(e) = N(e) for all terms e.

1.2 Now suppose t = (. . . (E1 ◦1 Y ) ◦−1
1 A) ◦2 . . .) ◦3 Y . We again begin with right

cancellation first. The reasoning is almost identical to that of the previous case. Let

N be the same form as in section 1.1, and notice that A must still be a variable for

the same reasons. So our narrowing sequence is as follows.

[A→ Y ] (r)

(. . . (E1 ◦1 Y ) ◦−1
1 (Y )) ◦2 . . .) ◦3 Y
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(. . . (E1 ◦2 . . .) ◦3 Y

[Y → (Y1 ◦4 Y2)] (d)

(. . . (E1 ◦2 . . .) ◦3 (Y1 ◦4 Y2)

(. . . (E1 ◦2 . . .) ◦−1
4 Y2) ◦3 Y1) ◦4 Y2.

Similar to the previous case, we now need to show that we can reach the same reduced

form with delta rules first and possibly some right cancellations after. Then,

[Y → (Y1 ◦4 Y2)] (d)

(. . . (E1 ◦1 (Y1 ◦4 Y2)) ◦−1
1 A) ◦2 . . .) ◦3 (Y1 ◦4 Y2)

(. . . (E1 ◦1 (Y1 ◦4 Y2)) ◦−1
1 A) ◦2 . . .) ◦−1

4 Y2) ◦3 Y1) ◦4 Y2

(. . . (E1 ◦−1
4 Y2) ◦1 Y1) ◦4 Y2) ◦−1

1 A) ◦2 . . .) ◦−1
4 Y2) ◦3 Y1) ◦4 Y2

[A→ (Y1 ◦4 Y2)] (d′)

(. . . (E1 ◦−1
4 Y2) ◦1 Y1) ◦4 Y2) ◦−1

1 (Y1 ◦4 Y2)) ◦2 . . .) ◦−1
4 Y2) ◦3 Y1) ◦4 Y2

(. . . (E1 ◦−1
4 Y2) ◦1 Y1) ◦4 Y2) ◦−1

4 Y2) ◦−1
1 Y1) ◦4 Y2) ◦2 . . .) ◦−1

4 Y2) ◦3 Y1) ◦4 Y2

(. . . (E1 ◦−1
4 Y2) ◦1 Y1) ◦−1

1 Y1) ◦4 Y2) ◦2 . . .) ◦−1
4 Y2) ◦3 Y1) ◦4 Y2

(. . . (E1 ◦−1
4 Y2) ◦4 Y2) ◦2 . . .) ◦−1

4 Y2) ◦3 Y1) ◦4 Y2

(. . . (E1 ◦2 . . .) ◦−1
4 Y2) ◦3 Y1) ◦4 Y2.

Therefore, in either case, we can find narrowing steps [d, d′] that results in the same

final form of t as the sequence [r, d], and so given our narrowing sequence with the

form

N = [s1, s2, . . . , si, r, d, si+1 . . . , sn],

we have shown we can construct a new sequence

N ′ = [s1, s2, . . . , si, d, d
′, si+1, . . . , s

n]
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where N(e) = N ′(e) for all terms e. Now we know that if we arrive at a contiguous

subsequence S of a narrowing sequence consisting only of i delta rules and j right

cancellation rules with i, j ∈ N, there exists a contiguous subsequence S′ with i + j

delta rules that results in the same end forms as S for any term.

Case 2: (Delta and idempotence) Now we look at delta and idempotence narrowing steps. Notice

again that the only non-trivial cases are one where the same variable is involved in the

idempotence and delta rule steps. Thus we have two cases for what a term can look like.

Either

t = (. . . (A ◦1 Y ) ◦2 . . .) ◦3 Y

or

t = (. . . (Y ◦1 A) ◦2 . . .) ◦3 Y.

2.1 Suppose t = (. . . (A◦1Y )◦2. . .)◦3Y . We first consider the case of the idempotence step

first. Notice that A must be a variable and not a constant, otherwise our idempotence

step would involve sending Y to a constant. This would then make it impossible to

carry out a delta rule step with the outer Y , now having been instantiated as a

constant. Let N = [s1, s2, . . . , sj , i, d, sj+1, . . . , sn] be a sequence of narrowing steps.

Then our contiguous subsequence [i, d] applied to t will be

[A→ Y ] (i)

(. . . ((Y ) ◦1 Y ) ◦2 . . .)

(. . . (Y ◦2 . . .) ◦3 Y

[Y → (Y1 ◦4 Y2)]

(. . . ((Y1 ◦4 Y2) ◦2 . . .) ◦3 (Y1 ◦4 Y2)

(. . . ((Y1 ◦4 Y2) ◦2 . . .) ◦−1
4 Y2) ◦3 Y1) ◦4 Y2.
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Now we want to reach the same form given application of delta rules first and poten-

tially idempotence rules second. Notice that we can do the following sequence

[Y → (Y1 ◦4 Y2)] (d)

(. . . (A ◦1 (Y1 ◦4 Y2)) ◦2 . . .) ◦3 (Y1 ◦4 Y2))

(. . . (A ◦1 (Y1 ◦4 Y2)) ◦2 . . .) ◦−1
4 Y2) ◦3 Y1) ◦4 Y2

(. . . (A ◦−1
4 Y2) ◦1 Y1) ◦4 Y2) ◦2 . . .) ◦−1

4 Y2) ◦3 Y1) ◦4 Y2

[A→ (Y1 ◦4 Y2)] (d′)

(. . . ((Y1 ◦4 Y2) ◦−1
4 Y2) ◦1 Y1) ◦4 Y2) ◦2 . . .) ◦−1

4 Y2) ◦3 Y1) ◦4 Y2

(. . . ((Y1 ◦1 Y1) ◦4 Y2) ◦2 . . .) ◦−1
4 Y2) ◦3 Y1) ◦4 Y2

(. . . (Y1 ◦4 Y2) ◦2 . . .) ◦−1
4 Y2) ◦3 Y1) ◦4 Y2.

2.2 Now we consider t = (. . . (Y ◦1 A) ◦2 . . .) ◦3 Y . Note that N is of the same form as

in section 2.1, and A is still a variable for the same reasons. Doing idempotence first

results in the sequence

[A→ Y ] (i)

(. . . (Y ◦1 (Y )) ◦2 . . .) ◦3 Y

(. . . (Y ◦2 . . .) ◦3 Y

[Y → (Y1 ◦4 Y2)] (d)

(. . . ((Y1 ◦4 Y2) ◦2 . . .) ◦3 (Y1 ◦4 Y2)

(. . . ((Y1 ◦4 Y2) ◦2 . . .) ◦−1
4 Y2) ◦3 Y1) ◦4 Y2.

Now, notice that we can reach the same end form with the sequence

[Y → (Y1 ◦4 Y2)] (d)

(. . . ((Y1 ◦4 Y2) ◦1 A) ◦2 . . .) ◦3 (Y1 ◦4 Y2)

(. . . ((Y1 ◦4 Y2) ◦1 A) ◦2 . . .) ◦−1
4 Y2) ◦3 Y1) ◦4 Y2
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[A→ (Y1 ◦4 Y2)] (d′)

(. . . ((Y1 ◦4 Y2) ◦1 (Y1 ◦4 Y2)) ◦2 . . .) ◦−1
4 Y2) ◦3 Y1) ◦4 Y2

(. . . ((Y1 ◦4 Y2) ◦−1
4 Y2) ◦1 Y1) ◦4 Y2)) ◦2 . . .) ◦−1

4 Y2) ◦3 Y1) ◦4 Y2

(. . . ((Y1 ◦1 Y1) ◦4 Y2)) ◦2 . . .) ◦−1
4 Y2) ◦3 Y1) ◦4 Y2

(. . . ((Y1 ◦4 Y2)) ◦2 . . .) ◦−1
4 Y2) ◦3 Y1) ◦4 Y2.

Therefore, in either case, we can find narrowing steps [d, d′] that results in the same

final form of t as the sequence [i, d], and so given our narrowing sequence with the

form

N = [s1, s2, . . . , si, i, d, si+1 . . . , sn],

we have shown we can construct a new sequence

N ′ = [s1, s2, . . . , si, d, d
′, si+1, . . . , s

n]

where N(e) = N ′(e) for all terms e.

Case 3: (Right cancellation and idempotence) The final case we need to consider is the

idempotence-right cancellation pair. Thus our narrowing sequence will look like

N = [s1, s2, . . . , sj , i, r, sj+1, . . . , sn].

We must show that we can construct a contiguous sequence that is equivalent to the

sequence [i, r], but where all right cancellation steps are done before idempotence steps.

Our term can be of the form

t = (. . . (Y ◦1 A) ◦2 . . .) ◦3 B) ◦−1
3 Y,

where Y is a variable. Notice that at least one of B or A must be a variable, otherwise

we would not be able to carry out an idempotence and then a right cancellation or vice

versa. We don’t have to consider the cases where the leftmost Y and A are flipped or
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where the rightmost Y and B are flipped because idempotence and right cancellation are

commutative. If we can prove it works for this form then we know it works in all four

different cases.

3.1 Let A be a variable, and so the narrowing sequence of [i, r] is constrained to

[Y → A] (i)

(. . . ((A) ◦1 A) ◦2 . . .) ◦3 B) ◦−1
3 (A)

(. . . (A ◦2 . . .) ◦3 B) ◦−1
3 A

[A→ B] (r)

(. . . ((B) ◦2 . . .) ◦3 B) ◦−1
3 (B)

(. . . (B ◦2 . . .).

We could have sent A to Y as our first idempotence step as well, but this would not

change the end result since we could have simply sent Y to B in that case. Notice,

however, that we can instead do the sequence

[Y → B] (r’)

(. . . ((B) ◦1 A) ◦2 . . .) ◦3 B) ◦−1
3 (B)

(. . . ((B) ◦1 A) ◦2 . . .)

[A→ B] (i’)

(. . . (B ◦1 (B)) ◦2 . . .)

(. . . (B ◦2 . . .).

3.2 Suppose now that B is a variable. This case is nearly identical to the above so it

does not need repeating of the algebra. For both our original [i, r] and flipped [r′, i′]
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sequences, we could keep our first substitutions, and the second substitutions would

be flipped. For both of them, we now send B to A.

Therefore we now know that, given some sequence of narrowing steps [i, r], we can

find an equivalent sequence [r′, i′].

Now that we have covered each individual pair, we finally can move onto our general case.

Let N = [s1, s2, . . . , si, si+1, . . . , sn] be a sequence of narrowing steps as defined at the beginning

of this proof. Recall that it contains subsequences I = [i1, i2, . . . , in1 ], R = [r1, r2, . . . , rn2 ], and

D = [d1, d2, . . . , dn3 ], and that

length(N) = length(I) + length(R) + length(D).

Let d be the first delta rule step that appears in N after a step of some other kind, either

idempotence or right cancellation. So N = [s1, . . . , si−1, si, d, si+1 . . . , sn] where si is not a

delta rule. In either case, we have shown that there exists d′ such that the contiguous sub-

sequence [d, d′] gives the same result as [si, d]. Thus we know that the narrowing sequence

S = [s1, . . . , si−1, d, d
′, si . . . , sn]. will give the same end result as N when applied to any term.

Now we repeat the process for S and look at [si−1, d]. If si−1 is not a delta rule step, then we

can do the same transformation to get a new narrowing sequence, moving d back another step.

Eventually, we will encounter a delta rule to the left of d and the process will stop. Note that

at this point everything to the left of d will be a delta rule, since it was the first to appear after

either an idempotence or right cancellation step. Now we repeat the process, finding the first

delta rule to appear after some non-delta rule and repeatedly swapping it back a step until we

cannot. This will result in a narrowing sequence

N ′ = [d1, d2, . . . , dn3 , s′1, s
′
2, . . . , s

′
m],

equivalent to N , where each of s′1, s
′
2, . . . , s

′
m is either a right cancellation or idempotence step

and D′ = [d1, d2, . . . , dn1 ] is a contiguous subsequence of delta rules.

We now want to generate a new narrowing sequence from N ′ that does all its right cancellation

steps before any idempotence steps, but after all of its delta rule steps. Let [i, r] be the first
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contiguous subsequence in N ′ where a right cancellation step appears after an idempotence step.

We showed in case 3 above that there exists narrowing steps r′, i′ such that the sequence [r′, i′] is

equivalent to [i, r] when applied to any term. Thus, we can generate a new narrowing sequence

that is equivalent to N ′, except that the contiguous subsequence [i, r] has been replaced with

[r′, i′]. Just like with delta rules, we can repeat this process—swapping right cancellation steps

with idempotence steps until it reaches either another right cancellation step or a delta rule

step—until we create a narrowing sequence that does every right cancellation step before any

idempotence step. Let this narrowing sequence be N ′′ Notice that our delta rule steps remain

unaltered from N ′ to N ′′. Let R′ = [r1, r2, . . . , rn1 ], and I ′ = [i1, i2, . . . , in3 ] be subsequences in

N ′′. Then, due to our construction, we know that

N ′′ = [d1, d2, . . . , dn1 , r1, r2, . . . , rn2 , i1, i2, . . . , in3 ].

Notice that—at each step from N to N ′′—we proved that every narrowing sequence produced

the same final result as N for any term we applied it to. Thus, we know that

N(t) = N ′′(t)

for all terms t.

6.2 The Unification-Matching Reduction

Now that we have the above result that any narrowing sequence can be refactored such that all

of its delta rule narrowing steps are done first, right cancels are done second, and idempotence

rules third, we are close to being able to reduce unification to matching. The last thing we

need to do is present the general form for what an embedding of a unification problem into a

matching problem will look like.

Lemma 6.2.1. Consider the quandle term T = a ∗ (. . . (t0 ◦1 t1) ◦2 t2) ◦3 . . .) ◦n tn). where the

subterm (. . . (t0 ◦1 t1) ◦2 t2) ◦3 . . .) ◦n tn) is delta reduced. Then

T
∗→ (. . . (a ◦−1

n tn) ◦−1
n−1 tn−1) . . .) ◦−1

2 t2) ◦−1
1 t1) ∗ t0) ◦1 t1) ◦2 t2) ◦3 . . .) ◦n tn.
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Note that this resulting term is also delta reduced, so the ellipsis on far left of the equation

corresponds to repeated open parentheses.

Proof. Let s0 = t0 and sn+1 = sn ◦n+1 tn+1, for all n ∈ N, where tn is some quandle term. We

show by induction that

a ∗ sn
∗→ (. . . (a ◦−1

n tn) ◦−1
n−1 tn−1) . . .) ◦−1

2 t2) ◦−1
1 t1) ∗ t0) ◦1 t1) ◦2 t2) ◦3 . . .) ◦n tn

for all terms a.

As a base case, note that a ∗ s0 = a ∗ t0 which is already in reduced form.

Now for our inductive hypothesis, suppose that

a ∗ sn
∗→ (. . . (a ◦−1

n tn) ◦−1
n−1 tn−1) . . .) ◦−1

2 t2) ◦−1
1 t1) ∗ t0) ◦1 t1) ◦2 t2) ◦3 . . .) ◦n tn

for some n, for all terms a. Then

a ∗ sn+1 = a ∗ (sn ◦ n+ 1tn+1)

= ((a ◦−1
n+1 tn+1) ∗ sn) ◦n+1 tn+1.

Now we let xa = (a ◦−1
n+1 tn+1). Notice that our inductive hypothesis tells us

xa ∗ sn
∗→ (. . . (xa ◦−1

n tn) ◦−1
n−1 tn−1) . . .) ◦−1

2 t2) ◦−1
1 t1) ∗ t0) ◦1 t1) ◦2 t2) ◦3 . . .) ◦n tn,

and so

a ∗ sn+1 = (xa ∗ sn) ◦n+1 tn+1

∗→ (. . . (xa ◦−1
n tn) ◦−1

n−1 tn−1) . . .) ◦−1
2 t2) ◦−1

1 t1) ∗ t0) ◦1 t1) ◦2 t2) ◦3 . . .) ◦n tn) ◦n+1 tn+1

= (. . . (a ◦−1
n+1 tn+1) ◦−1

n tn) . . .) ◦−1
2 t2) ◦−1

1 t1) ∗ t0) ◦1 t1) ◦2 t2) ◦3 . . .) ◦n tn) ◦n+1 tn+1

With this general form of the embedded unification problem, we can show that unification

reduces to matching.

Theorem 6.2.2. The quandle unification problem reduces to the quandle matching problem.
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Proof. We want to show that, given any quandle unification problem, we can convert it to a

quandle matching problem whose solution corresponds to a solution for the quandle unification

problem. The other direction is trivial to show, since unification is harder than matching. Let Σ

be some quandle signature containing the constant a and V be a variable set. Let Σ′ = Σ−{a}.

Consider the quandle unification problem with the signature and variable set (Σ′, V ). Recall

from Theorem 4.2.3that the general form of a unification problem that is not reducible to a

matching problem will be

(. . . (t0 ◦1 t1) ◦2 t2) . . .) ◦n tn = B, (6.2.1)

where t1, . . . , tn ∈ Σ′ ∪ V and t0, B ∈ V . Notice that if a unification problem is simply in the

form of a matching problem (or can be converted to one using quandle axioms), then obviously

the solution to one corresponds to the other. Now, we transform this expression to a matching

problem with signature Σ by adding a ∗ . . . to both sides of the expression and moving B to the

left side with right cancellation. So our matching problem will look like

(a ∗ (. . . (t0 ◦1 t1) ◦2 t2) . . .) ◦n tn)/B = a.

By Lemma 6.2.1, we know this problem can be recast to

((. . . (a ◦−1
n tn) ◦−1

n−1 tn−1) . . .) ◦−1
2 t2) ◦−1

1 t1) ∗ t0) ◦1 t1) ◦2 t2) ◦3 . . .) ◦n tn)/B = a. (6.2.2)

Now that we have our original unification problem and the unification problem encoded into a

matching problem, we first show that a right-cancellation or delta rule narrowing step on the

matching side corresponds to an equivalent operation on the unification side.

Case 1: Right cancellation

Suppose we look at the narrowing step that does right cancellation between terms ti and

ti+1 in the expression.

(. . . (a ◦−1
n tn) . . .) ◦−1

i+1 ti+1) ◦−1
i ti) . . .) ∗ t0) . . .) ◦i ti) ◦i+1 ti+1) . . .) ◦n tn)/B = a.

In order for a right cancel to be possible, we know that ◦i = ◦−1
i+1. Suppose we somehow

unify ti and ti+1 with narrowing step u in order to get a right cancel at . . .◦iti)◦i+1ti+1) . . ..
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Notice, however, that ◦i = ◦−1
i+1 tells us that ◦−1

i = (◦−1
i+1)

−1 = ◦i+1. Therefore we also

can immediately right cancel at . . .) ◦−1
i+1 ti+1) ◦−1

i ti) . . . as well. So, overall, we have the

sequence

[ti = ti+1] (u)

(. . . (a ◦−1
n tn) . . .) ◦−1

i+1 ti+1) ◦−1
i (ti+1)) . . .) ∗ t0) . . .) ◦i (ti+1)) ◦i+1 ti+1) . . .) ◦n tn)/B

(. . . (a ◦−1
n tn) . . .) ◦−1

i+1 ti+1) ◦−1
i ti+1) . . .) ∗ t0) . . .) ◦i−1 ti−1) ◦i+2 ti+2) . . .) ◦n tn)/B

(. . . (a ◦−1
n tn) . . .) ◦−1

i+2 ti+2) ◦−1
i−1 ti−1) . . .) ∗ t0) . . .) ◦i−1 ti−1) ◦i+2 ti+2) . . .) ◦n tn)/B.

Recall that our unification problem is of the form in Equation 6.2.1. Notice that we are

guaranteed to be able to apply our narrowing step u on the unification side as well. We

will get

[ti = ti+1] (u)

(t0 ◦1 t2) ◦2 . . .) ◦i (ti+1) ◦i+1 ti+1) . . .) ◦n tn.

(t0 ◦1 t2) ◦2 . . .) ◦i−1 ti−1) ◦i+2 ti+2) . . .) ◦n tn.

Therefore a right cancellation narrowing step u in the unification problem corresponds

to two right cancellation narrowing steps in matching–the same step u and then another

right cancel involving the same two terms. This means that both problems eliminate terms

using right cancellation in the same way. If we suppose that ti+1 was the only instance

of that specific term, then we have now successfully eliminated it from both problems.

Importantly, since right cancellation is the only way to eliminate constants, we now know

that if a constant is eliminated from the matching problem it will be eliminated from

the unification problem and vice-versa. Notice that this happens because the form of the

matching problem has a kind of symmetry. Starting from t0 and until we reach a on the

left and B on the right, each term one step further away from t0 is the same, and its

operator is the inverse of the other. If we can maintain this symmetry, then we know that
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right cancellation rules will continue to have a direct correspondence. In order to keep the

property that constant elimination is mirrored across matching and unification, we must

maintain some symmetrical window about t0.

We still have one corner case to address. Suppose that ◦n = ∗. This means we can

instantiate B in order to get a right cancel rule with tn on the matching side.

[B → tn]

((. . . (a ◦−1
n tn) ◦−1

n−1 tn−1) . . .) ◦−1
2 t2) ◦−1

1 t1) ∗ t0) ◦1 t1) ◦2 t2) . . .) ◦n tn)/(tn) = a

((. . . (a ◦−1
n tn) ◦−1

n−1 tn−1) . . .) ◦−1
2 t2) ◦−1

1 t1) ∗ t0) ◦1 t1) ◦2 t2) . . .) ◦n−1 tn−1 = a.

Now, if we were to be able to right cancel ◦−1
n tn with ◦−1

n−1tn1 , then it seems we have

introduced an asymmetry. To address this, let us see how this operates in the unification

problem.

Notice that if we instantiate B on the unification side to be tn, we can eliminate tn on the

left side by right cancellation. So,

[B → tn]

(. . . (t0 ◦1 t1) ◦2 t2) . . .) ◦n tn = (tn)

(. . . (t0 ◦1 t1) ◦2 t2) . . .) ◦n tn) ◦−1
n tn = tn ◦−1

n tn

(. . . (t0 ◦1 t1) ◦2 t2) . . .) ◦n−1 tn−1 = tn.

Now suppose we right cancel ◦−1
n tn with ◦−1

n−1tn1 on the matching side, implying that tn

and tn−1 have been unified. Notice that this lets us do the same trick as with B. We can

right cancel tn−1 on the left-hand side, and it collapses back to a single simple term on the

right-hand side due to idempotence. Notice that, as right cancellation functions based on

the symmetry we first outlined, we have shown that all cases of right cancellation result

in a mirrored elimination of terms across unification and matching.

Case 2: Delta rule
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This case turns out to be relatively simple. Again, we just have to check that a delta rule

narrowing step maintains symmetry about some term t0. Let us begin in the unification

problem, and suppose we have a narrowing step d that does the following.

[ti → (F ∗G)] (d)

(. . . (t0 ◦1 t1) ◦2 t2) . . .) ◦i−1 ti−1) ◦i (F ∗G) . . .) ◦n tn

(. . . (t0 ◦1 t1) ◦2 t2) . . .) ◦i−1 ti−1)/G) ◦i F ) ∗G) . . .) ◦n tn.

If we apply the same narrowing step d in our matching case, we get

[ti → (F ∗G)] (d)

(. . . (a ◦−1
n tn) . . .) ◦−1

i+1 ti+1) ◦−1
i (F ∗G)) . . .) ∗ t0) . . .) ◦i (F ∗G)) ◦i+1 ti+1) . . .) ◦n tn)/B

(. . . (a ◦−1
n tn) . . .) ◦−1

i+1 ti+1)/G) ◦−1
i F ) ∗G) . . .) ∗ t0) . . .) ◦i (F ∗G)) ◦i+1 ti+1) . . .) ◦n tn)/B

(. . . (a ◦−1
n tn) . . .) ◦−1

i+1 ti+1)/G) ◦−1
i F ) ∗G) . . .) ∗ t0) . . .)/G) ◦i F ) ∗G) ◦i+1 ti+1) . . .) ◦n tn)/B.

Notice that this preserves the same symmetry we were looking for in the right cancellation

case. In other words, this form still tells us that term elimination—most importantly

constants—is mirrored across both problems.

Once again, we must cover our corner case with the asymmetry induced by right cancelling

with B. On the matching side, our potentially problematic case will be

((. . . (a ◦−1
n tn) ◦−1

n−1 tn−1) . . .) ◦−1
2 t2) ◦−1

1 t1) ∗ t0) ◦1 t1) ◦2 t2) . . .) ◦n−1 tn−1 = a

[tn → (F ∗G)]

((. . . (a ◦−1
n (F ∗G)) ◦−1

n−1 tn−1) . . .) ◦−1
2 t2) ◦−1

1 t1) ∗ t0) ◦1 t1) ◦2 t2) . . .) ◦n−1 tn−1 = a

((. . . (a/G) ◦−1
n F ) ∗G) ◦−1

n−1 tn−1) . . .) ◦−1
2 t2) ◦−1

1 t1) ∗ t0) ◦1 t1) ◦2 t2) . . .) ◦n−1 tn−1 = a.
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Notice that the only case for a right cancel is between G and tn−1. Note this implies that

∗ = ◦n−1, and so / = ◦−1
n−1. Let us see what this case looks like in the unification side.

(. . . (t0 ◦1 t1) ◦2 t2) . . .) ◦n−1 tn−1 = tn

[tn → (F ∗G)]

(. . . (t0 ◦1 t1) ◦2 t2) . . .) ◦n−1 tn−1 = (F ∗G)

(. . . (t0 ◦1 t1) ◦2 t2) . . .) ◦n−1 tn−1)/G = F

[G→ tn−1]

(. . . (t0 ◦1 t1) ◦2 t2) . . .) ◦n−1 tn−1)/(tn−1) = F

(. . . (t0 ◦1 t1) ◦2 t2) . . .) ◦n−2 tn−2 = F.

Doing this right cancellation on the matching side will give the form

((. . . (a/G) ◦−1
n F ) ∗G) ◦−1

n−1 tn−1) . . .) ◦−1
2 t2) ◦−1

1 t1) ∗ t0) ◦1 t1) ◦2 t2) . . .) ◦n−1 tn−1 = a

[G→ tn−1]

((. . . (a/(tn−1)) ◦−1
n F ) ∗ (tn−1)) ◦−1

n−1 tn−1) . . .) ◦−1
2 t2) ◦−1

1 t1) ∗ t0) ◦1 t1) ◦2 t2) . . .) ◦n−1 tn−1 = a

((. . . (a/tn−1) ◦−1
n F ) ◦−1

n−2 tn−2) . . .) ◦−1
2 t2) ◦−1

1 t1) ∗ t0) ◦1 t1) ◦2 t2) . . .) ◦n−1 tn−1 = a.

Notice that F and tn−2 cancelling in the matching problem was handled in the previous

case–this corresponds to a right cancelling and idempotence rule on the unification side.

If, however, F and tn−1 unify to right cancel on the matching side, then that corresponds

to a simple subsitution [F → tn−1] with no reduction on the unification side. Notice, then,

that the asymmetric right cancellation of (. . .) ◦n−2 t2)) ◦n−1 tn−1 on the outside of the

matching problem would again correspond to the right cancellation and idempotence trick

on the unification side. Besides these values, our symmetry window stays the same, and

so we know we continue to have a correspondence of term elimination.
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Case 3: Idempotence

Idempotence is a bit more complicated than the first two cases. While we can do unifi-

cation idempotence on the matching side in a way the preserves symmetry, notice that

we can potentially have a narrowing step for matching that sends tn to a, leading to an

idempotence rule. Since a does not exist in the signature of the unification side, this leads

to a problem. We will be unable to do some equivalent idempotence step on the unification

side. We first deal the easy case and then outline our solution to the more difficult one.

Because our procedure relies on Theorem 6.1.4 to allow us to consider narrowing sequences

that do all idempotence narrowing steps last, notice that we only have to handle the case

of simple idempotence narrowing steps, or idempotence steps that do not require variable

instantiation to perform. We handle the idempotence narrowing steps at the very end of

this proof.

3.1 (Unification to matching) In the unification problem, we only have a single place to

do simple idempotence, and that is the subterm (t0 ◦1 t1). So our narrowing sequence

will be as follows.

[t0 = t1]

(. . . ((t1) ◦1 t1) ◦2 t2) . . .) ◦n tn

(. . . (t1 ◦2 t2) ◦3 t3) . . .) ◦n tn.

Now suppose ◦−1
1 = / WLOG. If we apply the same narrowing sequence of i to the

matching side, then we get

[t0 = t1]

(. . .) ◦−1
2 t2) ◦−1

1 t1) ∗ (t1)) ◦1 t1) ◦2 t2) . . .

(. . .) ◦−1
2 t2) ◦1 t1) ◦2 t2) . . . .

Notice that if ◦1 were equal to / instead, we would get right cancellation on the

right side. This form still preserves the symmetry of the matching side, and so our
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term elimination principle still holds. Notice that this case also completes the right

cancellation case. Before, we had not addressed what would happen to the unification

problem if we did a narrowing step on the matching side that involved right cancelling

with t0. Now we know that this leads to idempotence on the unification side.

3.2 (Matching to unification)

The only place we can do simple idempotence on the matching side is the subterm

(a ◦−1
n tn). Though it is tempting to assume that we know tn will never be a, and

so we will never have a simple idempotence case, recall from Theorem 6.1.4 that

our solution for the delta rule and idempotence case was to actually embed simple

idempotence within the second delta rule. Thus we cannot rule out the possibility that

the embedded simple idempotence will have been with a. So, our simple idempotence

narrowing step on the matching side will be as follows.

[tn = a]

((. . . (a ◦−1
n (a)) ◦−1

n−1 tn−1) . . .) ◦−1
1 t1) ∗ t0) ◦1 t1) . . .) ◦n−1 tn−1) ◦n (a))/B

((. . . (a ◦−1
n−1 tn−1) . . .) ◦−1

1 t1) ∗ t0) ◦1 t1) . . .) ◦n−1 tn−1) ◦n a)/B.

Notice that we now still have a symmetrical window up to tn−1 from either side of t0

that corresponds to our unification problem.

If we end up in this case, then we know that tn was either a term or a subterm for

which a variable was instantiated, and that tn became a. For the unification side,

suppose that we kept that anonymous variable instantiation, but instead sent tn to

X, a fresh variable that does not appear anywhere else in the unification problem.

Now the left-hand side of our unification problem will be of the form

(t0 ◦1 t1) ◦2 t2) . . .) ◦n X

with the stipulation that, from now on, we cannot instantiate X until the very end

of our procedure. If we did, we would not have a corresponding operation on the
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matching side. Notice that our corner case with the asymmetry caused by sending

something to B is unaffected in this case. We still send whatever we would have sent to

a to X. With this, we have managed to maintain our narrowing step correspondence

between matching and unification. If tn−1 gets sent to a for right cancellation on the

matching side, we send tn−1 to X for right cancellation on the unification side. Our

delta rules function the same, and notice that our window of symmetry starting at t0

going to tn−1 on either side has been preserved. Thus, for every operation, we know

that term elimination is mirrored in both problems.

Now let N be a narrowing sequence that solves M , a matching problem of the form in Equa-

tion 6.2.2 which encodes a unification problem U of the form described by Equation 6.2.1. By

Theorem 6.1.4, there exists narrowing sequence N ′ which solves M , but does all delta rule and

right cancel narrow steps before idempotence. Let M ′ be the form of M after all delta and right

cancel steps have been applied. If we can only now do idempotence steps to reach a unifier, we

know that M ′ is of the form

(. . . (a ◦1 s1) ◦2 s2) . . .) ◦n sn) = a,

where si is either a variable or the constant a for all 1 ≤ i ≤ n. Note that right cancellation is

the only step that can eliminate constants, and so—after we have done all our right cancellation

steps in N ′—we know that M ′ cannot have constants other than a on the left-hand side if it

unifies with a through only idempotence narrowing steps. Now let U ′ be the form of U after

having also performed all delta and right cancel steps in N ′. As proved in the cases above, if

M ′ has eliminated all constants beside a at this point in the narrowing sequence, then the same

is true for U ′. Notice that, at each time we would have substituted in a for the matching side,

we instead substituted in the variable X— a fresh variable that did not occur anywhere else in

the unification problem—and stipulated that we could not instantiate it. In essence, treating it

like a new constant. So, U ′ is of the following form

(t0 ◦1 t1) ◦2 t2) . . .) ◦m tm = E,
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Where ti is either the variableX or some other variable for 0 ≤ i ≤ m and E is some term. Recall

that, in the matching and unification side, the variable B in Equation 6.2.2 and Equation 6.2.1

occurred in special cases of right cancellation for both problems, and so it is possible that E

could be a constant. On the matching side, we immediately have a solution that corresponds to

sending every variable in {s1, . . . , sn} to a and using a series of idempotence steps to collapse

the entire left-hand side to a. For the unification side, we importantly are guaranteed that every

term on the left-hand side will be a variable. Therefore, we send all variables—X included—to

the term E and let the left-hand side collapse from idempotence rules as well.

Thus, for any quandle unification problem, we can embed it into a quandle matching problem,

whose solution implies the existence of a solution to the embedded unification problem, and so

quandle unification reduces to quandle matching.



7
Conclusion

7.1 Results

This paper shows that the quandle unification problem reduces to the quandle matching problem.

We show that any unification problem can be embedded into a matching problem, and that

the existence of a solution for that matching problem implies the existence of a solution for

the embedded unification problem. This proves the claim of Elliott Goldstein, who previously

created a quandle unification algorithm by solving an embedded matching problem. As an

intermediate result, this paper also showed that a narrowing sequence for a quandle term can

be refactored to partition its different types of narrowing steps. This result allowed for insights

into what the final form of a solution looked like for both matching and unification cases, and

will be very useful for future work.

7.2 Future Work

What remains to be shown is a bound on the number of delta rule narrowing steps in a unifier.

Without this bound, the quandle unification algorithm cannot be proven to terminate at some

point. More generally, the future work will be on determining the decidability of quandle

unification. As we have shown quandle unification reduces to matching, it will be easiest to

either show that unification is undedicable or that matching is decidable.

57
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