
Bard College Bard College

Bard Digital Commons Bard Digital Commons

Senior Projects Spring 2018 Bard Undergraduate Senior Projects

Spring 2018

Time and Frequency Independent Manipulation of Audio in Real Time and Frequency Independent Manipulation of Audio in Real

Time Time

Christian Albert Yost
Bard College

Follow this and additional works at: https://digitalcommons.bard.edu/senproj_s2018

 Part of the Signal Processing Commons

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Recommended Citation Recommended Citation
Yost, Christian Albert, "Time and Frequency Independent Manipulation of Audio in Real Time" (2018).
Senior Projects Spring 2018. 210.
https://digitalcommons.bard.edu/senproj_s2018/210

This Open Access work is protected by copyright and/or
related rights. It has been provided to you by Bard
College's Stevenson Library with permission from the
rights-holder(s). You are free to use this work in any way
that is permitted by the copyright and related rights. For
other uses you need to obtain permission from the rights-
holder(s) directly, unless additional rights are indicated by
a Creative Commons license in the record and/or on the
work itself. For more information, please contact
digitalcommons@bard.edu.

http://www.bard.edu/
http://www.bard.edu/
https://digitalcommons.bard.edu/
https://digitalcommons.bard.edu/senproj_s2018
https://digitalcommons.bard.edu/undergrad
https://digitalcommons.bard.edu/senproj_s2018?utm_source=digitalcommons.bard.edu%2Fsenproj_s2018%2F210&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/275?utm_source=digitalcommons.bard.edu%2Fsenproj_s2018%2F210&utm_medium=PDF&utm_campaign=PDFCoverPages
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://digitalcommons.bard.edu/senproj_s2018/210?utm_source=digitalcommons.bard.edu%2Fsenproj_s2018%2F210&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@bard.edu
http://www.bard.edu/
http://www.bard.edu/

Time and Frequency Independent
Manipulation of Audio in Real Time

A Senior Project submitted to
The Division of Science, Mathematics, and Computing

of
Bard College

by
Christian Yost

Annandale-on-Hudson, New York
May, 2018

ii

Abstract

Analog audio implies time-frequency dependence. With digitally sampled audio, this time-
frequency dependence can be broken and either variable can be manipulated independently
of the other, in real time. This paper will mostly focus on the frequency domain algorithm
called the Phase Vocoder which breaks this time-frequency dependence. We will start by looking
at Fourier Theory and the effect of discrete sampling. Then we will look at the Phase Vocoder’s
theory of operation, as well as improvements made by Puckette, Laroche, and Dolson, to name
a few. Through all of this, simple examples will be presented in order to gain intuition into the
principles at hand. Towards the end, a time domain approach for time-frequency independence
called Granular Synthesis will be explored. We will compare it to the Phase Vocoder, and see
how our understanding of one changes how we think and make decisions for the other. Finally
we will propose some ideas for further improvement to real-time time-frequency independent
manipulation of audio.

iv

Contents

Abstract iii

Dedication vii

Acknowledgments ix

1 Introduction 1

2 Fourier Theory and the Fourier Transform 5

2.1 Properties of the FFT . 15

2.1.1 Linear Transform . 15

2.2 Phase . 16

2.2.1 Unique Reconstruction . 16

2.3 Fourier Transform as a Change of Basis . 18

2.3.1 The Delta Function . 18

2.4 The Fourier Transform in Practice . 20

2.4.1 The Fast Fourier Transform . 20

2.4.2 Windowing . 21

2.4.3 Periodicity . 21

2.4.4 Overlap Add Synthesis . 24

2.5 How the Fourier Transform is Calculated . 28

2.5.1 DFT Calculation . 28

2.5.2 IDFT Calculation . 30

2.5.3 Spectral Leakage . 31

3 The Phase Vocoder 37

3.1 A Simple Example . 38

3.2 Theory of Operation . 42

3.3 Some Notes on MAX/MSP Implementation of the Phase Vocoder 47

3.3.1 Sampling Rate and pfft∼ . 48

vi

3.3.2 Pitch Shifting . 50
3.4 Cartesian vs. Polar Complex Math . 50

3.4.1 Complex Multiplication . 51
3.4.2 Complex Division . 51
3.4.3 Inverse Modulus Scaling . 53

3.5 Miller Puckette’s Phase Locking . 54

4 Laroche’s Approaches 59
4.1 Identity Phase Locking . 60
4.2 Identity Phase Locking in Max/Msp . 61

4.2.1 Double Buffering . 61
4.2.2 Phasor Retro Fitting . 62

4.3 Scaled Phase Locking . 65
4.3.1 PhaVoRIT . 66

5 Other Algorithms 69
5.1 Granular Synthesis . 69

5.1.1 Dennis Gabor . 70
5.1.2 Theory of Operation . 73
5.1.3 Characteristics . 75
5.1.4 Parameters . 76

5.2 The Grain Vocoder . 79
5.3 The Saphe Covoder . 79

5.3.1 Cepstrum Analysis . 80
5.3.2 Theory of Operation . 84

Appendices 89

A Code 89

B Notation and Equations 93
B.0.3 Notation . 93
B.0.4 Equations . 94

Bibliography 95

Dedication

This project is dedicated to Joel Embiid, Ben Simmons, Dario Saric, Robert Covington, JJ
Redick, Markelle Fultz, TJ McConnell, Marco Belinelli, Ersan Ilyasova, Richaun Holmes, Justin
Anderson, and Amir Johnson. Trust the Process.

viii

Acknowledgments

I would like to thank Matthew Deady and Matthew Sargent for all of their help and generosity;
Paul Hembree for some inside experience and personal advice; and Cort Lippe for coming through
with guidance in tricky territory at the right time. Lastly I would like to thank my parents.

x

1
Introduction

Understanding how information is represented in signals is always the first step in successful

DSP [7]. The original goal of this project was to gain a nuanced understanding of the Phase

Vocoder. Along the path created with that aim, many stops are made to better understand the

processes that go into such an algorithm. We will explore properties of the FFT in order to

try and gain a more complete understanding. Contained in this project is information about

the Fourier Transform and its inverse as it applies to Digital Signal Processing, from the point

of view of an undergraduate who has background in mathematics and music. The aim of this

project is simply as stated above: to understand how information is represented in signals. To

achieve this, properties, theorems, and applications of the Fast Fourier Transform are investi-

gated and often demonstrated with simple examples in order to instill the roots of intuition.

Our signals of interest are musical signals, and therefore we place the additional constraint that

any signal processing done must result in a signal that is pleasing to the ear. This project is

meant as a guide for somebody who enjoys manipulation of digital signals. Some experience with

Max/Msp/PD and understanding of simple math concepts is assumed.

To start we will look at an overview of Fourier Theory and specifically how it applies to

digital signal processing. Included are properties of the transform, a conceptual view of Fourier

2 INTRODUCTION

Theory as a change of basis to a function space, and some tricks used to improve the perfor-

mance of the Discrete Fourier Transform, as well as a look at a simple DFT calculation program.

Then we will explore how these ideas allow for the time modification of signals. The Phase

Vocoder is an algorithm first proposed in the 1960’s by Flanagan and will be investigated in-

tensely. The core observation was to construct signals based on the phase derivative. We will

note some peculiarities when creating the Phase Vocoder, as well as some improvements pro-

posed by the creator of Max, Miller Puckette.

After we have a solid understanding of the Phase Vocoder as well as some idea of how to

remedy certain ailments, we look at the work of Laroche and Dolson, who have put the largest

stamp on our approach to the Phase Vocoder since it was invented. These include Identity Phase

Locking and Scaled Phase Locking. Some notes and approaches to implementing Identity Phase

Locking in real time are made. Observations made by other engineers in reference to Laroche

and Dolson will be mentioned as well. The most notable of these ideas is how the nonlinearity

of human hearing affects Identity and Scaled Phase Locking.

Finally we will look at other, in between time and frequency domain approaches to modifying

the duration of a signal independent of its frequency. This include the ideas of Dennis Gabor,

Granular Synthesis, and the Grain Vocoder. I then propose a Phase Vocoder which recognizes

the problem of multiple harmonic sources occupying the same spectral space. Using Cepstrum

Analysis to separate individual harmonic sources, the Saphe Covoder hopes to remedy the prob-

lems caused by spectral crowding.

I hope to bridge the gap between the DSP engineers who pioneered what we are about to get

into, and the signal processing hobbyists who use these ideas everyday, and would like to dig a

INTRODUCTION 3

bit deeper into what is going on, in order to better understand how information is represented

in signals for more successful DSP.

4 INTRODUCTION

2
Fourier Theory and the Fourier Transform

Fouriers theory states the following: any periodic signal can be represented as a sum of sinusoids.

A Fourier Transform looks like:

X(ω) =

∫ ∞
−∞

x(t)e−iωtdt

where we input a function of time, and return a function of frequency. Similarly, the Inverse

Fourier Transform takes a function of frequency and returns a function of time.

x(t) =
1

2π

∫ ∞
−∞

X(ω)eiωtdω

These equations tell us how to go from a representation in time to a representation in frequency,

and back, without loss of information. It is important to notice here that both integrals have

endpoints that stretch from negative to positive infinity. These formulas use parentheses to

denote continuous time and frequency. This is a Digital Signal Processing (DSP) project, and

such endpoints, domain properties, and in fact integration itself, are of little use to us. Therefore

we will be focusing on the following: the Discrete Fourier Transform (DFT). For an analysis

time interval T ,

where tn = n · T
N
, and ωk = k · 2π

T

X[ωk] =

N−1∑
n=0

x[tn]e−iωktn = F [x[tn]]

6 2. FOURIER THEORY AND THE FOURIER TRANSFORM

and the Inverse Discrete Fourier Transform (IDFT)

x[tn] =
N−1∑
k=0

X[ωk]e
iωktn = F−1[X[ωk]]

It is important to notice how these latter transforms have changed from the former. Let us

first start with time. In the DFT, our time variable is placed in brackets. This denotes discrete

time, rather than continuous time. Why discrete time? For the remainder of this project we will

be using digital processing techniques, where a function is sampled once over a specified time

interval, T . Our frequency variable ωk also appears in brackets because it is also not continuous.

Since we are no longer dealing with continuous time and frequency functions, our integrals have

now become finite sums over N discrete points, each point taken every 1
fs

seconds where fs is

our sampling frequency with units samples per second.

The output of the forward DFT, X[ωk], is frequency domain data. The DFT takes N time

domain points as input, and produces N
2 complex frequency domain points called Fourier Coef-

ficients. These Fourier coefficients look like a+ bi, where a is the real component and describes

how much cos(ωk) is in the signal, or how similar the signal and cos(ωk) are; and b is the imagi-

nary component and describes how much sin(ωk) is in the signal, or how similar the signal and

sin(ωk) are. We will get into what we mean by “how similar” later. Fourier coefficients that look

like this are in cartesian form. There is one other form for Fourier coefficients, polar form.

We arrive at the polar representation of Fourier coefficients using Euler’s identity

A · eiθ = Acos(θ) +Aisin(θ)

where A is the amplitude and θ is the phase. We obtain the amplitude and phase information

for a particular frequency ωk from the cartesian form where

A = Mag(X[ωk]) = |X[ωk]| =
√
a2 + b2 , and

θ = arg(a+ bi) = tan−1
(b
a

)

7

numbers that look like these are called complex exponentials, and we see them in our equations

for the DFT. This form of Fourier coefficients is perhaps easier to understand than the former,

especially for audio applications, perhaps because it conveys something closer to how we already

talk about sound. For example, if for a Fourier coefficient X[ωk], its amplitude is large, then we

hear the frequency ωk more in whatever chunk of sound we are analyzing. Fourier coefficients

in polar form describe a complex sinusoid. A complex sinusoid is a 3 dimensional plot where

we look at the complex plane versus time. Here we can see how the cartesian and polar forms

of Fourier coefficients are describing the same thing. For X[ωk] = a + bi, the real a, or cosine,

component describes how the horizontal dimension of the complex sinusoid changes with time,

while the imaginary b, or sine, component describes how the vertical dimension of the complex

sinusoid changes with time. The behavior of a complex sinusoid is commonly describes as a

corkscrew motion, which we can see in figure 2.0.1.

Figure 2.0.1. A complex sinusoid with its individual components graphed vs. time

So if such a motion is described by each Fourier coefficient X[ωk], and there are Fourier coeffi-

cients for N
2 unique frequencies per frame, we can think of our frequency domain representation

as data for a bank of N oscillators, a sine and cosine wave for each frequency ωk, that when

summed together give us the analysis time domain signal.

8 2. FOURIER THEORY AND THE FOURIER TRANSFORM

The DFT produces N
2 complex frequency domain points. So out of all frequencies ω ∈ R,

which frequencies does the DFT produce data for? For a sampling period T = N
fs

, where fs is

the sampling frequency, the DFT produces data for all frequencies ωk where

ωk =
k · 2π
T

radians per second

where k = 0, 1, 2, ..., N2 . Here we can see that the frequencies the DFT produces data for are

the first N
2 harmonics of the frequency 2π

T radians per second. 2π
T radians per second is the

fundamental frequency of the DFT, and has the value

ω1 =
2π

T
=

2π
N
fs

=
2πfs
N
· 1 cycle

2π radians
=
fs
N

Hz

The max frequency, the k =
(
N
2

)th
harmonic, that the DFT produces data for is

ωN
2

=
N
2 2π

T
=
N

2
· ω1 =

N

2
· fs
N

=
fs
2
Hz

For the case that k = 0, X[ωk=0] tell us the average value, or the DC offset of the signal over the

sampling interval T . Thus we see that an N point DFT produces data for frequencies 0 to fs
2 ,

linearly, in increments of fs
NHz. The value fs

2 Hz is called the Nyquist Frequency or the Nyquist

Rate. Why does the DFT stop at fs
2 Hz? It’s not that the DFT filters out frequencies about the

Nyquist Frequency, but rather that as frequencies get higher than fs
2 , because of sampling, they

start to look to the DFT like other frequencies. What sampling means is that we only get one

look at the signal every 1
fs

seconds, and from the collection of looks at the signal, or samples,

we can try and guess what is happening in the original signal. Therefore we can see that for any

sinusoid which completes a cycle in under 2 samples, when we patch together the looks we got

of it, the result will look vastly different than the original signal, since we will have missed all of

the original signal’s behavior in between sampling instances, which for high frequencies is most

of the behavior.

Consider the complex exponential form of our analysis frequencies,

eiωktn = ei
k2π
T
·nT
N = ei

2πnk
N = (ei

2πn
N)k

9

We see that our frequencies are the kth powers of the N th roots of unity around the unit circle.

Thus we see that for any frequency ωk = 2π
N k radians per second, it can have the following values

at times tn = n∗T
N . The following figures illustrate the “snapshot” behavior of sampling.

Figure 2.0.2. Possible values during analysis time period T for a frequency ωk

Now let’s instead fixed the time point tn and see what different frequencies are “allowed”.

This latter set of figures gives us a good look at the sampling process, and how that translates

to only a finite set of analysis frequencies. We also see that data for N
2 < k ≤ N has been included.

However, earlier we stated, and intuited, that only data for the frequencies corresponding to

k = 0, 1, ..., N2 was produced by the DFT. Notice that for any frequency ωN−p, where 0 ≤ p < N
2 ,

10 2. FOURIER THEORY AND THE FOURIER TRANSFORM

11

Figure 2.0.3. Possible frequencies ωk at a certain time point tn

in other words k > N
2 , we see that

ωN−p =
2π

T
· (N − p) =

2πNfs
N

− 2πfsp

N
= 2πfs −

2πfsp

N
= −2πfsp

N
= −ωp

Here we see that the frequencies corresponding to N
2 < k < N are just the negatives of frequencies

below the Nyquist Frequency. We will focus on this mirrored information later, and why we need

it. Furthermore, for any frequency ωN+q, where 0 < q ≤ N
2 , we see that

ωN+q =
2π

T
· (N + q) =

2πNfs
N

+
2πfsq

N
= 2πfs +

2πfsq

N
=

2πfsq

N
= ωq

In this way, frequencies above the sampling frequency simply look like frequencies below the

Nyquist Frequency, as we can see in the following figure. When a frequency is moved to another

frequency band in the spectrum, it is called aliasing. In the following figure, we can see how the

frequency 44219 Hz is aliased to 119Hz when the sampling rate is 44100 samples per second,

however if we raise the sampling rate to 96000 samples per second, we see that the frequency is

no longer aliased.

As we can see in the above figure, when a signal contains frequencies higher than the Nyquist

Frequency, they are reconstructed in the time domain erroneously. This is one limitation of the

DFT. In order to avoid this, signals are band limited before frequency domain analysis. Band

limiting is the process of filtering out frequencies above the Nyquist Frequency in order to avoid

12 2. FOURIER THEORY AND THE FOURIER TRANSFORM

Figure 2.0.4. Frequency aliasing based on sampling rate

reconstructing the time domain signal incorrectly. This is usually done by applying a filter with

a square shaped frequency response and unity gain for frequencies 0 - fs2 Hz, and zero everywhere

else.

We normally think of frequency as a function of time: by inputting a time and output the

value of a sinusoid at that time. However, there is a slight tweak to this model that will become

useful conceptually later on. Instead of thinking of frequencies as functions of time, we want to

sometimes think of frequencies as functions of phase. We are able to go between the two domains

seamlessly since both time and phase are linear. In between inputting time and outputting a

value, we convert the time to where the sinusoid is in its cycle, or in other words its phase.

This is done by multiplying the time by however many radians the frequency completes over a

specified period of time. Thinking about sinusoids in this way is common in DSP, for example

when we think of updating the phase for a digital driven oscillator, as pointed out by Puckette

in [6]. Thus we can also think of the above figures which fix the frequency k and show the values

at time n of instead showing the values at phase φ.

As we stated earlier, the DFT returns N
2 complex frequency domain points for frequencies

0 − fs
2 Hz, spaced linearly fs

NHz appart. So each complex point is actually representing data

for a range of frequencies. The Fourier coefficient X[ωk] represents data for frequencies kfs
N Hz

13

to (k+1)fs
2N Hz. Because of this, sometimes data for multiple frequencies can be analyzed as if it

were a single frequency, and after frequency domain modification has occurred, be reconstructed

into the time domain as if it were such. This is another limitation of the DFT. Because western

musical harmony is built off of power multiples of a fundamental frequency, i .e. exponential, and

the DFT spectrum is spaced linearly, we sometimes get not enough information about certain

frequencies, and too much about others. The lower bins of the DFT contain octaves of frequency

information, while the higher bins contain cents of frequency information. This is an unfortunate

pairing, since the lower half of the spectrum usually contains more important musical informa-

tion. Spectral manipulation of low frequencies is sometimes impossible without altering other

frequencies present in the signal.

For example, if you had an FFT with a frame size set to N = 1024 samples, and a sampling

rate of 44100 samples per second, the frequency range per bin would be fs
N = 44100

1024 = 43.066Hz.

So if you had an input time signal with a frequency of 20Hz in it, as well as its first harmonic,

2 ∗ 20 = 40Hz, it would be impossible to alter the frequency information of the 20Hz part of

the signal without also altering the 40Hz part of the signal. If you know what sort of frequency

domain manipulation you would like to do, any information about the input signal is very valu-

able, since you can then make more intelligent decisions on FFT variables. So in the above case,

if you knew before analysis that you wanted to manipulate the 20Hz part of the signal, you

would wisely choose a DFT size of N = 4096 so that ω1 = ∆f = fs
N = 44100

4096 = 10.77Hz. Now

the 20Hz and 40Hz components of the signal would have their own spectral bins, and data for

each frequency could be varied independently of the other.

The fundamental frequency of the DFT has a large effect on the spectral data produced by

the DFT. The more similar the DFT’s fundamental frequency ω1 and the frequency content

of the input signal are, the cleaner the data produced by the DFT is going to be. Consider 2

14 2. FOURIER THEORY AND THE FOURIER TRANSFORM

signals,

f1 = sin(172.265625Hz), and f2 = sin(173Hz)

being analyzed by a DFT where N = 2048, so ω1 = fs
N = 44100

2048 = 21.533Hz. f1 is the 8th

harmonic of the DFT’s fundamental frequency, while f2 is not related to the harmonic series of

the DFT. The DFT gives the following amplitude spectra

Figure 2.0.5. Spectra generated from a 2048 point FFT with a fundamental frequency of 21.5332031 Hz.
top Amplitude spectrum of f1. bottom Amplitude spectrum of f2.

Here we see that the DFT is inherently biased towards signals whose frequency content more

closely resembles the harmonic series of the DFT’s fundamental frequency ω1.

So at first glance it would seem always advantageous to choose a larger N , since then we would

always have more accurate frequency domain data. However, when processing real time musical

signals, we must keep in mind the cost of higher frequency resolution. Our frequency domain

data takes longer to be produced, as well as longer to be resynthesized, the larger N is. Because

we need a larger N for more precise frequency domain data, higher frequency resolution comes

at the cost of longer computation time .So in order to obtain more accurate pitch information

on a real time signal, we must sacrifice the precise timings that events in the signal will occur.

2.1. PROPERTIES OF THE FFT 15

And if we think of events in a signal which are time specific as rhythm, we see that frequency

domain resolution of pitch and time domain rhythm are inversely proportional.

2.1 Properties of the FFT

2.1.1 Linear Transform

The Fourier Transform is a linear transformation, meaning that it is homogeneous and additive.

For a transform to be homogeneous, it must be the case that scalar multiplication in one domain

results in identical scalar multiplication in the other domain. We can easily intuit this: if we

increase or decrease the amplitude of a signal, it seems obvious that the frequencies that make

up that signal would also all increase or decrease, respectively, in amplitude. This in fact is the

case, as we see in the following

k · x(t) = k ·
∫
X(ω)e−iωtdω =

∫
k ·X(ω)e−iωtdω

For rectangular coordinates, this means that both the real and imaginary parts of each X(ω)

are multiplied by k, since if X(ω) = x+ iy, then

k ·X(ω) = k · (a+ bi) = k · a+ k · bi

For polar coordinates, if Mag[X(ω)] = r, then we see that Mag[k ·X(ωk)] is

Mag[k ·X(ω)] =
√

(ka)2 + (kb)2 =
√
k2a2 + k2b2

=
√
k2(a2 + b2) =

√
k2
√
a2 + b2 = k · r = k ·Mag[X(ωk)]

For a transform to be additive, it must be the case that addition in one domain corresponds

to addition in the other domain. If two time signals x1(t) and x2(t) have frequency domain

representations X1(ω) and X2(ω), respectively, we see that

x(t1) + x(t2) =

∫
X1(ω)e−iωtdω +

∫
X2(ω)e−iωtdω

=

∫
(X1(ω)e−iωt +X2(ω)e−iωt)dω =

∫
(X1(ω) +X2(ω))e−iωtdω

16 2. FOURIER THEORY AND THE FOURIER TRANSFORM

For rectangular coordinates, we simply sum X1(ω) and X2(ω) point by point, in other words

X1(ωk) +X1(ωk) = (a1 + b1i) + (a2 + b2i) = (a1 + a2) + (b1 + b2)i

While the algebra works nicely for rectangular representations, there is unfortunately no simple

computation for polar coordinates. Intuitively we know to simply add the two vectors corre-

sponding to X1(ωk) and X2(ωk) in the classic ”nose to tail” fashion. However, mathematically

this always results in converting to rectangular coordinates. We will come back to polar and

cartesian coordinate representations and calculations in Chapter 4.

2.2 Phase

In order to motivate why we should investigate phase in the first place, let us start off with a

simple observation. Consider the signal x[tn] and its Fourier Transform X[ωk]. Now let’s generate

two new signals x1[tn] and x2[tn] from the Inverse Fourier Transform of X[ωk], such that x1[tn]

is constructed from the magnitude spectrum of X[ωk] and a set of random numbers for its phase

information; while x2[tn] is constructed from the phase of X[ωk] and a set of random numbers

for its magnitude information.

We see that x2[tn], which retained the phase information, shares the edges of the original

x[tn], while x1[tn], which retained the magnitude information, does not resemble the x[tn] at all.

From this we can learn that it is the phase information that encodes when events happen in a

signal. As we build up to looking at the Phase Vocoder, keep in mind that the time of the signal

is precisely what we are concerned with. Therefore it makes sense that we should be processing

the phase information of a signal!

2.2.1 Unique Reconstruction

In the previous example, each signal’s magnitude spectrum was different from the other’s. One

reconstructed signal’s magnitude spectra was random, and the other signal’s magnitude spectra

was that of a square wave. However, what if two signals have the same magnitude spectrum,

does that mean they have the same time representation? The magnitudes alone are not enough

2.2. PHASE 17

Figure 2.2.1. Top original square wave. Middle wave synthesized from phase information of a. but random
magnitude values. Bottom wave synthesized from magnitude information of a. but random phase values.
See appendix for code.

information to properly reconstruct the time signal they represent. As we will see, signals with

identical magnitude spectra can have very different time domain representations. Consider the

signal x1 = 3cos(2πtN) + sin(11πtN) and x2 = 3sin(2πtN) + cos(11πtN). Clearly these two signal have

the same frequency content of 2π radians per second, and 11π radians per second. If we take

the Discrete Fourier Transform with N = 256 points, we obtain the following plots.

Although x1 and x2 have identical magnitude spectra, the time signals are very different. The

phase information is clearly crucial for reconstructing the correct time domain signal. Such an

observation is of crucial importance as we perform frequency domain manipulation, and tells

us that “correct” phase values give us “correct” time signals. While cosine and sine have phase

values and offsets of their own, phase here refers to the phase of a complex sinusoid and is found

by plotting the sine component vs the cosine component and looking at the angle the resultant

vector makes with the positive cosine/real axis. Thus our real and imaginary or cosine and sine

components are always at zero phase.

18 2. FOURIER THEORY AND THE FOURIER TRANSFORM

Figure 2.2.2. Magnitude and Phase spectra for x1 and x2, as well as their time domain representation.

2.3 Fourier Transform as a Change of Basis

Let us look again look at our equation for the Discrete Fourier Transform

x[tn] =
1

N

N−1∑
n=0

X[ωk]e
iωktn

Our time domain signal is identical to the sum of N sinusoids. Therefore we can imagine our

signal as existing in an N dimensional function space, where each function eωk represents one

dimensional in the space. What about if we want to know the amplitude of one particular

frequency, in other words the contribution of 1 of the N dimensions to the whole signal? We

want to pick out a particular term of a finite sum. What is a function that is zero everywhere

except at one point/sample where it is 1?

2.3.1 The Delta Function

We use cos and sin for a vector in R2 to find out out much the x and y components contribute

to the whole vector, respectively. Similarly we use the delta function in a Fourier Transform to

find how much the ωthk component contributes to our time signal. Let us first look at different

forms the delta function can take. Consider the following,

2.3. FOURIER TRANSFORM AS A CHANGE OF BASIS 19

1

N

N−1∑
n=0

ei
k−m
N

2πn

This is the sum of a complex sinusoid at frequency k−m
N Hz, divided by the number of points

which we are adding. This summation represents the average value of the function over one full

period. For any (k−m) 6= 0, the average is equal to zero, since the average of a sine and cosine

wave over one full period is zero. However, when (n−m) = 0, we see that

1

N

N−1∑
n=0

ei
0·2π
N

n =
1

N

N−1∑
n=0

1 =
1

N
(1 + 1 + ...+ 1 + 1) =

1

N
(N) = 1

Thus we see that the summation 1
N

∑N−1
n=0 e

i k−m
N

2πn is the same as a delta function centered at

k = m, denoted δ(k,m).

Now let’s look again at our formulas for the DFT and IDFT

x[tn] =

N−1∑
k=0

X[ωk]e
−iωktn , X[ωk] =

1

N

N−1∑
m=0

x[tm]eiωktm

Let’s look at what happens when we replace X[ωk] in our expression for x[tn] with its finite

summation.

x[tn] =
N−1∑
k=0

1

N

N−1∑
m=0

x[tm]eiωktme−iωktn =
N−1∑
k=0

1

N

N−1∑
m=0

x[tm]eiωk(tm−tn)

Recall that tn = n
fs

for n = 0, 1, 2, ..., N − 1 and ωk = 2πk
T for T = N

fs
, so we see that

=
1

N

N−1∑
k=0

N−1∑
m=0

x[tm]eiωk(tm−tn) =
1

N

N−1∑
k=0

N−1∑
m=0

x[tm]e
i 2πkfs

N
(m−n
fs

)
=

1

N

N−1∑
k=0

N−1∑
m=0

x[tm]ei
k
N
2π(m−n)

Since the two summations have the same endpoints, by the properties of finite sums, we know

the two summations as well as the scalar 1
N can be rearranged such that

=

N−1∑
m=0

x[tm]
1

N

N−1∑
k=0

ei
k
N
2π(m−n)

It is important here to note the crucial step in any form of the Fourier Transform that just

took place: the summands are switched! We went from first summing through the time indices

to first summing through the frequency indices. Furthermore, note the innermost summation in

20 2. FOURIER THEORY AND THE FOURIER TRANSFORM

the previous equation: it is exactly the form of the delta function which we introduced earlier!

Finally we see that,

=

N−1∑
m=0

x[tm]δ(m,n) = x[tn]

Which is what we started out with! As we see, the DFT is a transform, as we have just went

from the time domain, to the frequency domain, and then again returned our original sample

from the time domain.

So if we want to know the mth Fourier coefficient, we simply multiply our DFT by

1
N

∑N−1
n=0 e

i−m2π
N

n, where it follows that for

X[ωm] =
1

N

N−1∑
n=0

N−1∑
k=0

X[ωk]e
iωktne−iωmtn =

1

N

N−1∑
n=0

X[ωk]

N−1∑
k=0

ei
2π(k−m)

N
n

=
1

N

N−1∑
n=0

X[ωk]δk,m = X[ωm]

Thus we see how the delta function isolates a component of the N dimensional frequency do-

main representation of our signal. In this way multiplying by the spectrum by the summation∑N−1
n=0 e

i
2π(−m)

N
n tells us how much the mth frequency component X[ωm] is contributing to the

signal’s total energy.

2.4 The Fourier Transform in Practice

2.4.1 The Fast Fourier Transform

Up until now we have been thinking about the Fourier Transform and its discrete form the DFT.

However, most (if not all) cases of using the Fourier Transform in practice use the Fast Fourier

Transform (FFT). The Fast Fourier Transform produces the same data as the DFT, except at a

much faster speed. This is due to a few tricks that can be done with discrete data which we will

see later. The inverse direction is called the Inverse Fast Fourier Transform (IFFT). Because the

FFT allows us to process data into frequency domain data much quicker, there are a few new

techniques that can be used to improve the performance of frequency domain processing. We

will see these in the following sections.

2.4. THE FOURIER TRANSFORM IN PRACTICE 21

2.4.2 Windowing

When we use the Fast Fourier Transform, windowing is applied to both the input and output of

the FFT. When a signal is windowed, it is multiplied by another signal. Windowing is a form

of amplitude modulation and serves two purposes. First of all it makes the signal look more

periodic. Secondly, windowing allows us to overlap-add multiple instances of the FFT running

at once. We don’t want to window a signal by any other arbitrary signal; there are certain

windowing properties that, when met, make the FFT work more like we want it to. Common

windowing signals include the Hanning, Hamming, and Blackman windows. The following are

formulas for calculating a window of length N .

Hanning Window = .5[1− cos(2πn

N − 1
)] = sin2(

πn

N − 1
)

Hamming Window = .54− .46cos
(2πn

N − 1

)
Blackman Window = .42− .5cos

(2πn

N − 1

)
+ 0.08cos

(4πn

N − 1

)
, 0 ≤ n ≤ N

Figure 2.4.1. Common windowing functions

2.4.3 Periodicity

The Fourier Transform is operating under the assumption that whatever signal it is analyzing is

periodic, in other words, that the endpoints of the signal are “connected”. The Fourier Transform

“thinks” a signal is periodic because it is comparing it to periodic signals! Namely eiωt. This

is a pretty big problem for most real-world, real-time applications, since not many signals are

periodic. Windowing is one way to make a signal look more periodic. All of the above mentioned

windows have the property that the end points approach zero. Because of this, our signal begins

22 2. FOURIER THEORY AND THE FOURIER TRANSFORM

to look more periodic, since both ends are approaching zero.

Why are jumps at the endpoints important? Because the Fourier Transform will assume that

they are meaningful, and try to account for them in the spectrum with high frequencies. The

effect of time domain sharp transitions on the signal’s Fourier Transform is common. The most

common, and simplest, example is known as the Gibbs Effect : the result of modeling a square

wave as a sum of sinusoids. As the Fourier Transform tries to reconstruct the edges of the signal

(where the signal changes from 1 to 0), higher and higher frequencies are added. However, the

Fourier reconstructed signal constantly overshoots the original value of the time signal at these

sharp transitions. As we will see, as more frequencies are added, the width of this overshoot

narrows, however the height remains the same at about 9% of the amplitude of the square wave

[3].

Figure 2.4.2. The Gibbs effect as more sinusoids are used to reconstruct a square wave

2.4. THE FOURIER TRANSFORM IN PRACTICE 23

Windowing reduces sharp transitions between the beginning and end of an analysis signal,

thus reducing the the amount of frequencies the FFT thinks are in the signal, and would add

to try and account for large, fast changes in amplitude. We can see the effect windowing has on

the signal from figure 2.0.5, where we compared at a signal which has a similar harmonic series

to the FFT to a signal that doesn’t.

Figure 2.4.3. Same figure as in figure 2.3.2 but the bottom plot shows the spectrum of the windowed 173
Hz signal.

As we can see, a lot of the noise has been removed from the spectrum as a result of applying

a Hanning window to the 173 Hz signal. This is because the input signal now looks much more

periodic to the FFT. However, the plot is still not nearly as clean as the unwindowed signal

whose frequency matches a multiple of the FFT’s fundamental frequency, which is naturally

periodic with respect to the FFT.

However, by making our input signal look more periodic, we have added a new frequency to

the spectrum that is not in the original signal: the windowing function’s frequency, which is

24 2. FOURIER THEORY AND THE FOURIER TRANSFORM

also the fundamental frequency of the FFT. However, because of a nice property of windowing

functions, we will see that these additional frequencies will be gone when the constructed time

domain signal reaches our ears.

2.4.4 Overlap Add Synthesis

Windows that satisfy the constant-overlap-add (COLA) property allow us to join multiple in-

stances of the IFFT when synthesizing a new time domain signal[2]. Overlap adding has a few

advantages. Firstly, our windowing frequency that was added to the input signal to the FFT is

now “undone”. Secondly, since we are windowing our output IFFT, and the ends of the window

approach zero, we hear the transition between synthesis frame u and synthesis frame u+1 much

less than if the output were unwindowed, thus making the output sound more like a continuous

waveform. Each of these IFFT instances, and consequently FFT instances, is offset from the

others by a hop factor, R, usually between 2 and 8. It is often said that each FFT instance is

360
R degrees out of phase from the last instance. The COLA property states that for a window

w, it must be the case that

R−1∑
m=0

w(n−mN

R
) = 1, for 0 ≤ n ≤ N − 1

in order to overlap-add R FFT/IFFT instances. An obvious first window that comes to mind is

the triangular window, described by the function

w[n] = 1− 2

N
·
∣∣∣N

2
− n

∣∣∣
Let’s show that this window satisfies the COLA property for a hop factor of 2. Consider w[n] +

w[n+ N
2],

=
(

1− 2

N

∣∣∣N
2
− n

∣∣∣)+
(

1− 2

N

∣∣∣N
2
− (n+

N

2
)
∣∣∣)

let’s assume that n < N
2 . It follows that

=
(

1− 2

N
(
N

2
− n)

)
+
(

1− 2

N

∣∣∣N
2
− n− N

2
)
∣∣∣) = 1− 1 +

2n

N
+
(

1− 2

N
(n)
)

=
2n

N
+ 1− 2n

N
= 1

2.4. THE FOURIER TRANSFORM IN PRACTICE 25

Figure 2.4.4. Triangular Window

We see that the same argument is also true for n > N
2 , since w[n+ N

2] = w[n− N
2] by the fact

that for point w[m] = w[m + N], since w is length N , and the distance of n + N
2 to n − N

2 is

(n+ N
2)− (n− N

2) = n+ N
2 − n+ N

2 = N . Finally, since addition is commutative, we see that

w[n] + w[n+
N

2
] = w[n+

N

2
] + w[n] = w[n− N

2
] + w[n] = w[n∗] + w[n∗ +

N

2
]

for n∗ = n − N
2 , which we already showed was true above. So we have shown for a hop factor

R = 2, the triangular window satisfies the COLA property. However, what about for a hop factor

R > 2? The same proof applies for any even hop factor R = 2q, by grouping the 2q windows,

into q pairs of windows. For a hop factor R = 2q, where q ≥ 2, we add the additional step of

including a factor of 1
q , since each pair of windows will have a gain of 1, and we are summing q

of them. So if we want to maintain unity gain, the total sum must be scaled by 1
q . Figure 2.4.6

shows 4 overlapping triangular windows as the composition of 2 pairs of windows.

It can be shown that the Hanning window also satisfies this COLA property nicely. It follows

that

h[n] + h[n+ (N − 1)/2] = .5[1− cos(2πn

N − 1
)] + .5[1− cos(2π(n+ (N − 1)/2)

N − 1
)]

26 2. FOURIER THEORY AND THE FOURIER TRANSFORM

Figure 2.4.5. Traditional Triangle Window Overlap Add diagram, Hop Factor of 4, each window 90 degrees
out of phase from the last.

Figure 2.4.6. Hanning Triangle Overlap Add diagram reordered to show the diagram as a composition of
pairs of windows, each window 180 degrees out of phase with its pair.

= .5[1− cos(2πn

N − 1
)] + .5[1− cos(2πn

N − 1
+
π(N − 1)

N − 1
)]

= .5[1− cos(2πn

N − 1
)] + .5[1 + cos(

2πn

N − 1
)]

= .5− .5 · cos(2πn

N − 1
) + .5 + .5 · cos(2πn

N − 1
) = 1

Once again, we use a hop factor R = 2. The same argument as above applies for even hop factors

R = 2q, including the scalar 1
q .

2.4. THE FOURIER TRANSFORM IN PRACTICE 27

Figure 2.4.7. Traditional Hanning Window Overlap Add diagram, Hop Factor of 4, each window 90
degrees out of phase from the last.

Figure 2.4.8. Hanning Window Overlap Add diagram reordered to show the diagram as a composition of
pairs of windows, each window 180 degrees out of phase with its pair.

Both the FFT input x[t] and the IFFT output y[t] are windowed with signals that satisfy

the COLA property. The first problem of windowing, the addition of windowing frequencies to

the signal, is taken care of simply by unwindowed overlap-add synthesis, because the COLA

property is satisfied for the input window, which is adding frequencies to the signal in the

first place. In order to show this, it follows that by windowing x[n] by w[n] with R = 2 and

frame size N , and no spectral modification between analysis and resynthesis, in other words

F−1(F [x[n] ∗ w[n]]) = x[n] ∗ w[n], that every group of N
2 samples from x[t] in FFT instance 1

will be overlapped with the same N
2 samples from x[t] in FFT instance 2, except windowed 180

degrees out of phase from each other, such that

F−1(F [x[n] ∗ w[n]]) =

N
2∑

n=0

[
w[n] ∗ x[n]

]
+

N
2∑

n=0

[
w[n+

N

2
] ∗ x[n]

]

=

N
2∑

n=0

[
w[n] ∗ x[n] + w[n+

N

2
] ∗ x[n]

]
=

N
2∑

n=0

[(
w[n] + w[n+

N

2
]
)
x[n]

]

28 2. FOURIER THEORY AND THE FOURIER TRANSFORM

=

N
2∑

n=0

1 · x[n] = x[n]

Thus the COLA property “undoes” the additional frequencies added to the signal by the

window, simply by overlap adding. However, we window the output signal y[t] anyway because

it removes audible discontinuities between adjacent IFFT synthesis frames. And because (let’s

stick with a simple hop factor of R = 2), once again, half of the data each FFT is analyzing is

also being analyzed by the other FFT, the COLA property ensures that we there is no change in

amplitude for these samples because of the windowing or overlap-add process, and the resultant

signal sounds like a continuous waveform.

2.5 How the Fourier Transform is Calculated

Here we will look at a Java implementation of the Discrete Fourier Transform. In the following

sections, we will highlight and go through certain sections of the code which embody the concepts

we have been working with.

2.5.1 DFT Calculation

The DFT works by comparing the input signal to a set of sines and cosines. Here, by comparing

we mean multiplying the input signal by a sine wave and a cosine wave at frequency ωk = 2πk
T ,

for 0 ≤ k < N
2 , sample by sample, and summing the resultant products. The value of the sum

will tell us how much cosine and sine are in the input signal. The larger the sum, the more

similar the input signal is to the sine or cosine at that frequency ωk. In the following example,

we will look at one frame of a simple signal which we create. This is not the type of Fourier

Transform one would use in real time, however, it is a simple version which is easy to understand.

First we start by creating our signal. In this example, our signal will be

x[t] = −cos(16πt

256
) + sin(

23πt

256
)

t is between 0 and 256, since x[t] is sampled 256 times, and frequency is in units radians per

second. We will only look at the first half of the spectrum, which is the only information useful

2.5. HOW THE FOURIER TRANSFORM IS CALCULATED 29

to us now, since the second half is a mirrored copy of the first. We see the time domain repre-

sentation in the following figure

Figure 2.5.1. x[t] = −cos(16πt
256) + sin(23πt

256)

To calculate the spectrum of the above signal, we must first create two arrays, one for the real

or cosine component, and another for the imaginary or sine component. Each of these arrays

has length N
2 . Why N

2 and not N? Because we are taking N points and transforming them into

another N points, and we are storing these points in 2 objects, it makes sense that each object

have size N
2 , so that in total there are still N data points. Next we create two FOR loops, one

nested inside of the other. The outer FOR loop counts through the frequency indices i, from

0− N
2 , and the inner FOR loop counts through the time domain samples j from 0−N , at the

frequency specified by the outer FOR loop, and multiplies the signal by these sinusoids. The real

array accumulates the product of the signal times a cosine wave at frequency i, and the imagi-

nary array accumulates the negative of the product of the signal times a sine wave at frequency i.

Figure 2.5.2. Java nested FOR loop in Processing 3 to calculate the real and imaginary spectral arrays

Next, in order to visualize the amplitude spectrum, we must go to the world of the 3D com-

plex sinusoids, where instead of data for scaled sines and cosines at different frequencies, we

30 2. FOURIER THEORY AND THE FOURIER TRANSFORM

have data on the amplitude and phase of 3D sinusoids at different frequencies. We obtain the

amplitude spectrum simply by the Pythagorean Theorem and obtain the following plot.

Figure 2.5.3. Amplitude spectrum for x[t] = −cos(16πt
256) + sin(23πt

256). Clearly we see a peak at 8Hz, 11Hz
and 12Hz.

So we have 128 spectral bins. Earlier we stated that the center frequency ωk of bin k was

kfs
N , where fs was the sampling frequency and N was the frame size. Here N = 256. Usually

the sampling rate for audio is fs = 44100 samples per second. In general our sampling rate is

the number of samples we record divided by the amount of time it takes to record that many

samples. Here we are sampling the signal 256 time over a time interval of T . However, here we see

that the rate at which the signal is created and analyzed does not have any effect on the result!

Whether we add a sample every 100 millisecond or every 2 seconds, does not change anything

because the signal is already prepared. All that matters is there are 256 samples to represent

the signal. So, T in this example is 1, and fs = N
T = 256

1 . Therefore the center frequency of ωk

is k·256
256 = k. The frequency width of each bin is (k) Hz − (k − 1) Hz = 1Hz.

2.5.2 IDFT Calculation

The Inverse Discrete Fourier Transform is strikingly similar to the Forward Discrete Fourier

Transform. This is one of the beauties of the Fourier Transform! We saw this earlier in the for-

mulas for the forward and inverse Fourier Transform, and the same is true for discrete computer

2.5. HOW THE FOURIER TRANSFORM IS CALCULATED 31

calculation. In this direction, we start with two arrays of length N
2 , and want to synthesize a

time domain signal of length N from the array data. This direction of the Fourier Transform

is perhaps easier to conceptualize since we are “constructing a time domain signal as a sum of

sinusoids”, which is often how Fourier Theory is informally described. First we create an array

to store the synthesized signal. Then we use the same structure of two FOR loops, one nested

inside of the other. Again, the outer loop counts through the frequency indices 0 < i < 128,

while the inner loop counts through the time indices 0 < N < 256. The sine or cosine wave

chosen by the outer loop is scaled by the corresponding real or imaginary Fourier Coefficient

stored in the array, and the array to store the synthesized signal accumulates the sum of these

terms. Lastly, each sine and cosine that we are summing is also scaled by the number of them

that there are, namely N
2 . Here we see the Java code for the aforementioned process. And finally

Figure 2.5.4. Time domain signal accumulates the scaled sine and cosines to create the synthesized signal.

let’s compare our synthesized signal with the original signal

2.5.3 Spectral Leakage

The cause of trouble when using the Discrete Fourier Transform, and algorithms that use the

Fourier Transform such as the Phase Vocoder, is Spectral Leakage. Spectral Leakage is the effect

from having discrete frequency bins, each which correspond to a range of frequencies, rather

than a particular one. We have already seen this in the previous sections, such as in figure 2.4.3,

where signals less periodic with respect to the FFT exhibit more spectral leakage than signals

that are more periodic with respect to the FFT. We also saw how windowing can help reduce

spectral leakage. As we will see in the following chapter, spectral leakage will fill bins that are

in reality empty, thus distorting the signal when we synthesize it back into the time domain.

Improvements to the Phase Vocoder acknowledge this fact and try to minimize the distortion.

In order to build up to such algorithms, we will start with a simple example to show the problem

32 2. FOURIER THEORY AND THE FOURIER TRANSFORM

Figure 2.5.5. Synthesized signal from the DFT spectral data

Figure 2.5.6. Original Time Domain signal

at hand, and to motivate understanding for how algorithms in the following sections are working.

Consider a 256 sample, discrete time signal of the function f1[t] = cos(2π∗tT).

By using the aforementioned method of calculating a signals frequency spectrum, we obtain the

following amplitude spectrum Clearly, because f1[t] is exactly one of the basis functions that

the DFT is comparing it to, the amplitude spectrum of f1[t] looks nice.

Now consider a second signal, f2[t] = cos(3πtT) and see the time domain and frequency domain

representation of f2[t]. Clearly there is only one frequency present in the f2[t], however, due to

spectral leakage, one would think from looking at the amplitude spectrum that many frequencies

2.5. HOW THE FOURIER TRANSFORM IS CALCULATED 33

Figure 2.5.7. f1[t] = cos(2πt
T)

Figure 2.5.8. 8 point amplitude spectrum of f1[t], with a peak at bin 2.

are present. Here because f2[t] does not resemble exactly any of the basis functions the DFT is

comparing it to, we see that f2[t] ends up kind of looking like all of them.

Now this isn’t always bad. Let us see if the reconstruction of f2[t] resembles the original signal

at all. Here we will overlay the original signal as black points, overtop of the resynthesized signal

as white circles.

So the Discrete Fourier Transform is good at performing exact reconstruction of a signal, even

if the frequency data is inaccurate, as long as no modification is made in the frequency domain.

34 2. FOURIER THEORY AND THE FOURIER TRANSFORM

Figure 2.5.9. f2[t] = cos(3πt
T)

Figure 2.5.10. 8 point amplitude spectrum of f2[t], with spectral leakage throughout the spectrum.

Figure 2.5.11. The two signals agree nicely, even though the spectrum was erroneously calculated.

2.5. HOW THE FOURIER TRANSFORM IS CALCULATED 35

However, as we will see, if we start to change the frequency domain data, the reconstructed

signal will not always turn out how we want it.

36 2. FOURIER THEORY AND THE FOURIER TRANSFORM

3
The Phase Vocoder

Most time domain methods used to modify the duration of a signal also modify the component

frequencies of the signal. Think about playing a record at various speeds. When it is played

slower, all of the pitches are scaled down relative to how much you are slowing it down. Simi-

larly, when played faster, all of the pitches are scaled up relative to the speed change (namely

twice as fast or half as slow corresponds to uniform frequency shift of up or down an octave,

respectively.) This is known as time and frequency dependence. In this chapter, we will look at

the Phase Vocoder: a frequency domain algorithm which allows us to modify a signal’s time and

frequency independently of each other. The Phase Vocoder was introduced in 1966 by James

Flanagan and R. M. Golden. Since then, many DSP engineers have put their own spin on the

algorithm in order to try and achieve better time and frequency independence. Here we will

look at the basic idea of the algorithm, as well as a simple modification made to the PV to

try and instill vertical phase coherence, a problem that arises as a result of spectral leakage

and sinusoids moving through the spectrum. Then later we will look at more advanced, and

complicated, approaches to achieving better vertical phase coherence.

Let’s start with a few simple observations. In 2.2 we looked the Fourier Transform of a square

wave. From subsets of the frequency domain data we synthesized two new signals, one signal

38 3. THE PHASE VOCODER

retained amplitude information, while the other retained phase information. We then noticed

that the timing of events was preserved in the signal which retained the phase information of

the square wave. Thus concluding that the phase information in some way encodes the timing

of events in a signal. So when we think about what we are trying to achieve, time/frequency

independence, it seems natural that the phase information of a signal’s frequency domain rep-

resentation should be at the center of it. Which in fact it is.

We stated earlier that the FFT usually processes samples in chronological order, in other

words, after samples 0 through N − 1 have been transformed into frequency domain data,

samples N through 2N − 1 are the next samples processed. However, this does not always have

to be true. In fact we can process frames of time domain samples in any particular order, as

long as each frame represents a section of the original signal. Thus we see that the next frame

analyzed is not necessarily the next frame in time! This fact is also at the core of the Phase

Vocoder’s theory of operation.

3.1 A Simple Example

Before we get into the math of the Phase Vocoder, let’s first look at a simple example, and

then follow up with an informal description of what the algorithm is doing, in order to gain

some intuition on why the Phase Vocoder might do what it does. To start, remember that one

frame of FFT data has the correct short term amplitude and phase information. And since we

don’t have to read through a sound sample in order, one might ask why we cannot just read

FFT frames out of order and reconstruct a time stretched/contracted signal from that data.

The frequency information for each N point frame would be correct, and because of the COLA

property, we wouldn’t hear the edges between IFFT frames. So it is conceivable that by simply

reconstructing FFT frames out of chronological order, time/frequency independence could be

achieved. Let’s see what would result if such an approach were taken to a simple sine wave at

the FFT’s fundamental frequency, ω1.

3.1. A SIMPLE EXAMPLE 39

Figure 3.1.1. Simple time domain signal sin(ω1).

In the following figure, we have a hop factor of 2 and no spectral modification is made, so the

FFT input and IFFT output. We are trying to achieve a time stretch of 2 on a signal that is 2N

samples long thus generating a signal that is 4N samples long, which has the same frequency

as content as the 2N signal. In order to achieve this time stretch we read frames of the signal

out of order. For a time stretch of 2, we must read through the signal half as fast. The figure

below illustrates this process, and the following table shows the sample indices through which

each frame reads.

Figure 3.1.2. Time stretching by reading FFT frames out of order with no spectral modification.

frame FFT1 samples FFT2 samples

1 0→ N − 1

2 (N2 − 1)→ (3N2 − 1)

3 (N2)→ (3N2 − 1)

4 N → 2N − 1

5 N → 2N − 1

6 (3N2)→ (5N2 − 1)

7 (3N2)→ (5N2 − 1)

8 2N → 3N − 1

40 3. THE PHASE VOCODER

As we can see from the output signal at the bottom of the figure, time modification inde-

pendent of frequency did not result from simply reading the frames out of order. So just the

fact that we can read frames out of order does not guarantee time/frequency independence.

The output signal above resembles the input signal for half frame sections, so it retains some

frequency relationship to the input. However, its phase of the output sine wave is clearly not

continuous. The result is a chopped up and respaced version of the input. Hardly the length 4N

signal of frequency ω1 we were hoping for.

In order to construct the signal we want, we must look at the phase derivative between adjacent

analysis FFT frames and add it to the phase from the most recently synthesized IFFT frame.

In [13] Flanagan makes the clever observation that a sinusoids phase at any time can be found

by summing the phase derivative up until the desired time. Now if we combine this observation,

with our previous one; in other words that phase can be calculated by accumulating phase

derivatives, and we don’t have to read frames in chronological order, and use them to create a

new signal, we see in the following figure that the synthesized signal is exactly what we want

it to be. The summing of phase derivatives smoothes the discontinuities we saw in the above

figure, in the same way that integration creates smooth functions. The following table has the

FFT phase values of the Fourier coefficient X[ω1] and the corresponding IFFT synthesis phase

for Y [ω1], which are phases for each Fourier coefficient’s corresponding 3D complex sinusoid.

frame FFT1 phase FFT2 phase phase difference IFFT1 phase IFFT2 phase

1 π
2 0 π

2

2 −π
2 π −π

2

3 −π
2 π π

2

4 π
2 π −π

2

5 π
2 π π

2

6 −π
2 π −π

2

7 −π
2 π π

2

8 π
2 π −π

2

So the basic idea is the following: if we measure how much the phase changed between two

analysis time points, spaced N
2 samples apart, then the output phase should change by the same

3.1. A SIMPLE EXAMPLE 41

Figure 3.1.3. Time stretching by reading FFT frames out of order. First take the phase difference between
adjacency analysis frames, and the calculate the synthesis phase by adding the difference to the most
recently synthesized frame’s phase.

amount, since the synthesis points are also spaced N
2 samples apart. So we just add the differ-

ence we calculated from the analysis frames to the synthesis phase calculated N
2 samples ago, in

order to create the current synthesis phase. The above example as the advantage that the time

modification factor is equal to 1
R , so each FFT simply recalls the samples it previous analyzed

to calculate the phase difference. In instances where this is not the case, each FFT instance will

need another FFT instance paired with it, simply to calculate the previously analyzed samples.

However, we keep the above example simple in order to see the mechanics of the Phase Vocoder.

We see this approach works for a simple input signal, a single sine wave. However, what about

for any arbitrary signal? Think back to the whole concept of Fourier theory: any arbitrary signal

can be modeled as a sum of sines and cosines! Therefore it is perfectly reasonable (and true) that

this algorithm will have the same result for any input signal, since the calculation takes place

channel by channel, in other words sinusoid by sinusoid. So if we bring back our oscillator bank

analogy from chapter 2, we see that the Phase Vocoder keeps the oscillators humming continu-

42 3. THE PHASE VOCODER

ously. And as we will see shortly, we retain the unaltered amplitude information for each current

FFT’s analysis frame (which is reading through the signal at the rate of time modification), and

therefore the amplitudes will be properly scaled to the desired time modification. In short: if

we think of a signal as the sum of a bank of oscillators, the Phase Vocoder keeps the oscillators

oscillating continuously, and scales each oscillator’s envelope to the desired time modification.

3.2 Theory of Operation

Now let’s formalize what we have formerly informally have shown is a pretty good way to effect

a signal’s time/frequency content independently. Flanagan gives a nice simple formula in his

original Phase Vocoder paper, where he models a signal as the summed output of a bank of

bandpass filters. We will start with this formula, and then rather than thinking of the a bank

of n bandpass filters, we will think of a bank of n sinusoids. First we should note the advantage

a physical system model such as a bandpass filter bank has. The output of a physical filter is

not only dependent on the current input, but also all of the previous inputs up to the current

one. So in order to correctly construct the output of a physical filter at a particular moment

in time, one must go back to when the input started, and sum all of the outputs up until the

present moment. If fn(t) is the output of the nth bandpass filter, where its impulse response is

gn(t) = h(t)cos(ωnt) and h(t) is the impulse response of a physical low pass filter, at time t,

then we see that

fn(t) =

∫ t

0
f(λ)h(t− λ)cos(ωn(t− λ))dλ

Then he makes the clever move to show that this is the real Fourier Transform of a signal f(t)

such that

fn(t) = Re
[
eiωnt

∫ t

0
f(λ)h(t− λ)e−iωnλdλ

]
By then denoting the Fourier Transform of f(t) by F(ωn, t), he shows that

fn(t) = Re[eiωntF(ωn, t)] =
∣∣F(ωn, t)

∣∣cos(ωnt+ φ(ωn, t))

3.2. THEORY OF OPERATION 43

where φ(ωn, t) is the short-time phase spectra, and both
∣∣F(ωn, t)

∣∣ and φ(ωn, t) are evaluated at

ωn. Normally φ is calculated using the arctan function. However, there is a huge problem with

this. First, since we must choose a range to restrict our angle θ when calculating θ = arctan(ba),

we know there exists asymptotes at the endpoints of the range. Crossing the asymptote will

result in huge jumps in tan and arctan. We see this in the following figure which shows the tan

and arctan functions.

We see that arctan(ba) = θ is restricted from −π
2 to π

2 , and that for some X[ωk] = −a + bi,

that

∠(−a+ bi) = arctan
(b

−a

)
= arctan

(−b
a

)
= ∠(a− bi)

Clearly the point −a+ bi 6= a− bi, and their arguments differ by π. Because of the restricted

range of arctan, the argument of the former gets confused with the argument of the latter. How-

ever, notice the derivative on either side of the asymptote. While the value of arctan will jump

drastically when we go across the discontinuity, the derivatives on either side of the discontinuity

are very similar, and in fact continuous! This is perhaps more noticeable in the graph for tan,

but simply think of the the graph of arctan as the graph of tan rotated 90 degrees. Therefore,

harking back to our physical filter model where we summed the outputs of the inputs across

time to find the current output, if we sum the phase derivatives across time to calculate the

current phase of ωn, since the phase derivative is continuous, our phase calculation will be much

44 3. THE PHASE VOCODER

smoother and better behaved than the arctan function, and not exhibit jumps of π radians.

This is the primary advantage of calculating phase by accumulating phase derivatives and is the

first of two monumental observations by Flanagan. He goes on to rewrite the above equation in

terms of the phase derivative,

fn(t) =
∣∣F(ωn, t)

∣∣cos(ωnt+ φ̃(ωn, t)) where φ̃(ωn, t) =

∫ t

0
φ̇(ωn, t)dt

for the phase derivative φ̇(ωn, t). This approach does have the disadvantage of losing any additive

phase constants, however, Flanagan notes the the loss of the phase constant is not particularly

noticeable. If instead of the output of a band pass filter, we think of a sinusoid at frequency ωn

and its unit circle plot from chapter 2, we see that our sinusoids motion around the unit circle

will be continuous, instead of exhibiting phase jumps of π. We can think of the additive phase

constant as having the effect of rotating our points from figure 2.0.2 around the unit circle, while

still maintaining the inner point relationships.

Let’s restate the above equations in terms of complex sinusoids, instead of bandpass filters.

Let us denote the analysis FFT spectral data of an input signal x[tn] for the kth frequency over

frame u as X[tua, ωk]. Similarly, the output signal y[tn] will be synthesized from the IFFT data

Y [tus , ωk], where the subscripts a and s denote the analysis or synthesis time points respectively.

3.2. THEORY OF OPERATION 45

We see that

x[tn] =
N−1∑
k=0

|X[tua, ωk]|e−i(ωktn+∠X̃[tua ,ωk])

where

∠X̃[tua, ωk] =

u∑
p=0

∠X[tpa, ωk]− ∠X[tp−1a , ωk]

Thus we can reconstruct a signal from its phase derivative spectrum, rather than just its phase

spectrum, which will give us more well behaved approximation.

Here we see that we are thinking of sinusoids as functions of phase, which we showed was

another way to think of them in chapter 1. Let’s try to understand frequency and phase a bit

more, and see what relationships we can draw between the two. Frequency has units radians or

cycles per period of time. Phase has units radians, degrees, or “cycle-index”, which runs from

0-1. All of these ways of describing phase tell you where a sinusoid is in its cycle. Now let’s look

at what we get when we take the difference of a sinusoid’s phase between time points tb and ta

over the time period tb − ta.
φ(tb)− φ(ta)

tb − ta

The above equation has units change in cycle over change in time, which shakes out to cycles

per period of time, in other words frequency. So if we express the change in the phase over a

time period of a sinusoid at frequency ωk we see that

φk(tb)− φk(ta)
tb − ta

= ωk(t)

Let’s think about how the left hand side of the equation looks. Notice that this is the definition

for the derivative of a function! Therefore we can draw the following conclusion

d

dt
φ(t) = ω(t)

which loosely implies that ∫
ω(t)dt = φ(t)

46 3. THE PHASE VOCODER

So far we have only looked at the math to redefine the Fourier Transform in terms of the

phase derivative. This is the first realization Flanagan has in his paper. The second one is what

this fact implies for time stretching and compression. He writes that an attractive feature of the

Phase Vocoder is that the operations for expansion and compression of the time and frequency

scales can be carried out by simple scaling of the phase-derivative [13]. Laroche and Dolson

give a nice formula in [4] for a time scaling factor of α = tus
tua

, which uses the frequency/phase

relationships we saw above.

φ(ωk, t
u
s) = φs(ωk, 0) +

∫ tus

0
ωk

(λ
α

)
dλ

where ωk is the instantaneous frequency of the kth sinusoid. This is the ideal phase for ωk at

time tus . If we do some u-substitution, we see that

let u =
λ

α
⇒ du =

dλ

α
⇒ dλ = α · du

and furthermore
tus
α

=
αtua
α

= tua

So our above integral becomes∫ tus

0
ωk

(λ
α

)
dλ =

∫ tua

0
ωk(u)α · du = α

∫ tua

0
ωk(u)du

Thus we see that

φ(ωk, t
u
s) = φs(ωk, 0)+ = α

∫ tua

0
ωk(u)du

= φs(ωk, 0) + α
[
φk(t

u
a)− φk(0)

]
What this is telling us is that the phase evolution up to a desired time tus = αtua is equal to

α times the phase evolution up to tua. We can intuit why this is true, since change of phase

is constant with respect to time. We can show this by looking at the phase of ωk equal to 2π

radians per Tk seconds, φk(t) = 2πt
T such that

φk(αt) =
2παt

Tk
=
α

1

2πt

Tk
= αφk(t)

3.3. SOME NOTES ON MAX/MSP IMPLEMENTATION OF THE PHASE VOCODER 47

So again switching to notation more common with DSP, it follows that

α∠X[tpa, ωk] = ∠X[αtua, ωk]

Let’s synthesize a signal y[tn] from Y [tus] by scaling the time of x[tn] by α when α > 1 results in

time stretching and α < 1 results in time compression, such that

∠Y [tus , ωk] = α∠X̃[tua, ωk] = α
u∑
p=0

∠X[tpa, ωk]− ∠X[tp−1a , ωk]

=

u∑
p=0

∠X[αtpa, ωk]− ∠X[αtp−1a , ωk]

for tus = αtua. We see that this can be simplified a bit by noticing that

=
u−1∑
p=0

[
∠X[αtpa, ωk]− ∠X[αtp−1a , ωk]

]
+ ∠X[αtua, ωk]− ∠X[αtu−1a , ωk]

= ∠Y [tu−1s , ωk] + ∠X[αtua, ωk]− ∠X[αtu−1a , ωk] = ∠Y [tus , ωk]

So we can calculate the current synthesis phase ∠Y [tus , ωk] by adding the difference between the

analysis phases ∠X[tua, ωk] and ∠X[tu−1a , ωk] to the previous synthesis phase ∠Y [tu−1s , ωk]. This

is precisely the approach we took when looking at the sine wave in the beginning of the chapter.

So we calculate our time stretched signal y[tn] where

y[tn] =

N−1∑
k=0

|X[tua, ωk]|e−i(ωktn+∠Y [tua ,ωk])

Which is what we demonstrated in our initial example.

3.3 Some Notes on MAX/MSP Implementation of the Phase Vocoder

A few notable tutorials exist showing the object oriented implementation of the Phase Vocoder

in Pure Data and Max/Msp. Namely Miller Puckette’s ”Phase Vocoder Time Bender”, and Cort

Lippe and Richard Dudas’ ”The Phase Vocoder Part I & II”. These are wonderful examples of the

phase vocoder, that give some serious DSP power to even the most casual patching enthusiast.

However, when one is trying to abstract some of the bigger picture ideas from these tutorials,

or see the manifestations of algorithms from articles on the PV, there are a few details that get

48 3. THE PHASE VOCODER

brushed over in the tutorials, or are not well documented in PD or Max documentation. Here

we will clarify some of the details that are otherwise left out of such tutorials, but are integral

to a full understanding of the PD and MAX/MSP Phase Vocoder patches.

3.3.1 Sampling Rate and pfft∼

In our first step of the Phase Vocoder, we count through the sample whose timing we are mod-

ifying. When we see how this is done in PD and Max/Msp, there is a curious scalar of 1
R that

persists across programs, and isn’t given more of an explanation than “for 4 times overlap”.

When building the Phase Vocoder without pfft∼ in Max or without block∼ in Pure Data, there

seems to be some timing issues when we include this 1
R scalar. It doesn’t seem to add up. If we

are accumulating indices in Max at 1
R the rate, shouldn’t the sample last for hopfactor times

longer? Which it does when we implement the algorithm outside of pfft∼ with the factor of 1
R .

And in Pure Data, shouldn’t by counting through the same about of samples in 1
R the amount

of time reduce the duration of the sample by a factor of R? Which it does when we use the

Phase Vocoder outside of a subpatch.

However, because of some undocumented properties of pfft∼ and block∼ (block∼ is slightly

better documented than pfft∼), these scalars are in fact necessary, and are a result of many

Fourier Transform instances running at once. Because the Phase Vocoder is running R FFT

instances, the PV must process R times as much data in the same amount of time. Because of

this, the sampling rate of these objects is different than the larger Phase Vocoder patch that they

are apart of, namely R times larger. We see in the table below, that by including the factor R in

our sample location calculation, the signal counting through the sample at the higher sampling

rate, and the original sampling rate will agree at all possible points, in time! Consider 2 signals,

f1 and f2, where f2 is sampled 4 times faster than f1.

3.3. SOME NOTES ON MAX/MSP IMPLEMENTATION OF THE PHASE VOCODER 49

Figure 3.3.1. factor of 1
R included in two different Phase Vocoders. top PV from Miller Puckette’s ”Phase

Vocoder Time Bender” tutorial. bottom PV from Cort Lippe and Richard Dudas’ ”Phase Vocoder Tutorial
Part I”.

sample number f2 f1

0 0 0

1 0.25 1

2 0.5 2

3 0.75 3

4 1 4

5 1.25 5

6 1.5 6

7 1.75 7

8 2.0 8

50 3. THE PHASE VOCODER

We see that index by index the two signal do not agree. However let’s think about when these

sample land in time, when f1 is sampled at 44100 Hz and f2 is sampled at 176400 Hz. So 1

sample in f2 represents .00566ms and 1 sample in f1 represents .0226ms. When we look at the

samples in time, we see that they agree at each possible moment in time.

t(ms) f2[t] f1[t]

0.00 0 0

.00566 0.25

.01133 0.5

.01701 0.75

.0226 1 1

.02834 1.25

.03401 1.5

.03968 1.75

.04535 2 2

Thus we see that even though one signal is an up sampled version of the other, that they still

agree in time.

3.3.2 Pitch Shifting

So far in our investigation into time/frequency independence we have only looked at modifying

time without affecting a signal’s frequency. However, it is also possible to modify the frequency

and keep the timing of a signal the same. Phase vocoder pitch-shifting is rather straightforward,

at least from a DSP perspective. For a given sample sampled at fs, in order to modify its pitch

by a factor of β, we simply count through the sample at a rate of βfs and perform the Phase

Vocoder algorithm normally otherwise. This is the same effect as playing a record faster or slower

to change its pitch, as we pointed out earlier.

3.4 Cartesian vs. Polar Complex Math

Earlier, we looked at the linearity of the Fourier Transform using both cartesian/rectangular

coordinates, and polar coordinates. This same duality exists for all complex operations using

the Fourier Transform, including the Phase Vocoder. When we are subtracting or adding phases,

we can either use the cartesian or polar representation of the Fourier coefficients. Clearly, polar is

more intuitive, since the phase information is laid out in plain sight. However it should be noted

3.4. CARTESIAN VS. POLAR COMPLEX MATH 51

that the cartesian coordinate version is computationally far cheaper than the polar coordinate

algebra, because of the problems we pointed out earlier with the tan and arctan functions, which

are used when working with polar coordinates. However, the cartesian operations are perhaps a

bit muddier conceptually. We will look at the cartesian algebra for the Phase Vocoder, and the

steps for an accurate, and ultimately faster Phase Vocoder algorithm.

3.4.1 Complex Multiplication

We will start by looking at the polar representation of Fourier coefficients in order to gain some

intuition on what algebraic operations do to the amplitude and phase. Consider the two complex

numbers z1 = A1e
iθ1 and z2 = A2e

iθ2 . When we multiply them together, we get the following

z1 × z2 = A1e
iθ1 ×A2e

iθ2 = A1A2e
i(θ1+θ2)

Multiplying two complex numbers multiplies the amplitude and adds the phase. Now if we were

to think of this is terms of real and imaginary parts, we see that for z1 = a+ bi and z2 = c+ di

z1 × z2 = (a+ bi)(c+ di) = ac− bi+ i(ad+ bc)

So because this is equivalent to A1A2e
i(θ1+θ2), the phase of the complex number ac−bi+i(ad+bc),

must be θ1 + θ2 and the amplitude is A1A2.

3.4.2 Complex Division

Complex multiplication takes care of our second step in the Phase Vocoder, adding the phases

of two complex numbers, however we are first finding the phase difference between two complex

numbers. In order to do this with cartesian coordinates, we must perform complex division.

Again, let’s first look at the polar representation

z1
z2

=
A1e

iθ1

A2eiθ2
=
A1

A2
ei(θ1e−θ2) =

A1

A2
ei(θ1−θ2)

Dividing two complex numbers divides the numerator’s amplitude by the denominator’s ampli-

tude, and subtracts the denominator’s phase from the phase of the numerator. The cartesian

algebra for complex division is a bit trickier, however, we will see that the desired result is still

52 3. THE PHASE VOCODER

achieved. Again consider the two complex numbers z1 = a + bi and z2 = c + di. We see that

dividing z1 by z2 yields

z1
z2

=
a+ bi

c+ di

Since real denominators are easier to do algebra with than complex denominators, let us multiply

both the numerator and the denominator by the complex conjugate of z2, z̄2 = (c− di)

a+ bi

c+ di
× c− di
c− di

=
(a+ bi)(c− di)
(c+ di)(c− di)

=
(ac+ bd) + i(bc− ad)

c2 + d2

While this may look like a busier form of the complex number we started with, there exists some

superfluous information as well as a nice symmetry which makes this form very useful. First off,

notice that the real valued scalar 1
c2+d2

is not needed. The phase of (ac+bd)+i(bc−ad)
c2+d2

is exactly

the same as (ac+ bd) + i(bc− ad). We can see this by first breaking up the real and imaginary

parts of the number

(ac+ bd) + i(bc− ad)

c2 + d2
=

(ac+ bd)

c2 + d2
+
i(bc− ad)

c2 + d2

Now let us look at its arctan in order to find the phase information

arctan

(
(ac+bd)
c2+d2

i(bc−ad)
c2+d2

)
= arctan

(ac+ bd

bc− ad

)
= arg

(
ac+ bd+ i(bc− ad)

)
While it is not true that all scalars q ∈ R don’t effect a complex number z’s argument, it is true

that all scalars q∗ ∈ R such that q∗ > 0 leave the complex number z’s phase unchanged! And

since we are squaring both c and d, it must be the case that q∗ = c2+d2 > 0 for all c, d ∈ R−{0}.

Because the scalar 1
c2+d2

has no effect on the phase, and right now we aren’t concerned with

the amplitude of z1z2 , let’s throw out this factor of 1
c2+d2

and only worry about ac+bd+i(bc−ad).

The second advantage of this form is how much it looks like cartesian multiplication. We have

simply switched the subtraction and addition sign between each real and imaginary part. Recall

that we used the complex conjugate of z2 in order to get a form of z1
z2

that we liked. Since we

end up ignoring the denominator, we see that dividing z1 by z2, as far as phase information is

concerned, is just multiplying z1 by the complex conjugate of z2, z̄2. Again we can think to the

3.4. CARTESIAN VS. POLAR COMPLEX MATH 53

polar form of these numbers. The complex conjugate of a number z, has an argument −arg(z).

So if we want to subtract the arguments of two complex numbers, we see that it is the same as

adding the argument of the conjugate, which is multiplying by the conjugate in cartesian form.

Now we have two similar cartesian formulas which add or subtract the phases of two complex

numbers while avoiding the use of the arctan function.

3.4.3 Inverse Modulus Scaling

Earlier we made the quick move to throw out the amplitude information, which could have

seemed like a convenient way to get the phase information to look nicer and more workable.

We were able to do this because in the Phase Vocoder, the only amplitude information we care

about is the amplitude of the current frame we are analyzing. However, the problem of amplitude

distortion is important, because we do care about at least one amplitude, and we only care that

it stays the same. In order to keep amplitude information a Fourier coefficient unchanged, we

must give whichever Fourier coefficient we are manipulating it with unity amplitude. Let us once

again start with polar coordinates to keep the algebra simple and gain some intuition. Suppose

for z1 = A1e
iθ1 and z2 = A2e

iθ2 we want a complex number with the sum of the phases of z1

and z2, but only the amplitude of z1. By simply multiplying z1 and z2 we obtain

z1 × z2 = A1e
iθ1 ×A2e

iθ2 = A1A2e
i(θ1+θ2)

The resultant phase is correct, but the amplitude is A1A2, not just A1. So in order to achieve

this, we must first multiply z2 by 1
|z2| = 1

A2
. We now see that by multiplying z1 by 1

A2
z2 we

obtain

z1 ×
1

A2
z2 = A1e

iθ1 × A2

A2
eiθ2 = A1e

i(θ1+θ2)

Now the product has the amplitude of z1 and the phase is the sum of the phase of z1 and

the phase of z2, as we wanted. Now let’s look at the cartesian form. For a complex number

z2 = c+ di,

1

|z2|
=

1

A2
=

1√
c2 + d2

54 3. THE PHASE VOCODER

So to perform the above operation in cartesian coordinates, it follows that the complex number

(a+ bi)× 1√
c2 + d2

(c+ di) =
ac− bd+ i(ac+ bd)√

c2 + d2

has the amplitude of z1 but the phase of arg(z1)+arg(z2). Such is the operation performed when

updating the phase for a channel in the Phase Vocoder. In this context, z1 has the amplitude of

the current analysis Fourier coefficient, and the phase increment that z2 should advance by.

Now suppose we want a complex number whose argument is arg(z1) − arg(z2) but whose

amplitude is |z1|. We see that by scaling z2 by 1
|z2| , we obtain the following

z1 ÷
1

A2
z2 =

A2A1e
iθ1

A2eiθ2
= A1e

i(θ1−θ2)

Now let us move to the cartesian representation. So for z∗2 = (c+ di) 1
|z2| , we see that

z1
z∗2

=
a+ bi

1
|z2|(c+ di)

=
a+ bi

c+ di
·
√
c2 + d2

=
((ac+ bd) + i(bc− ad)

c2 + d2

)√c2 + d2

1
=

(ac+ bd) + i(bc− ad)√
c2 + d2

Again, this look remarkably similar to our cartesian complex multiplication, again the operations

between the real and imaginary numbers are switched. So in the Phase Vocoder, for all operations

with complex numbers which aren’t the “current analysis” Fourier coefficient, we scale them

by the inverse modulus in order to avoid amplitude distortion. Ultimately, if we think of our

oscillator bank analogy for the Fourier Transform, this inverse modulus scaling ensures that the

amplitude envelopes of each oscillator are preserved and scaled for any time modification factor

α. We will be using these equations to calculate Phase Vocoder Fourier coefficients in Max/Msp

or Pure Data.

3.5 Miller Puckette’s Phase Locking

In Chapter 2 we saw the effect of spectral leakage on a signal’s spectrum. Sinusoids which don’t

fit nicely into the FFT’s harmonic series end of affecting multiple bins. Under no spectral modi-

fications, this does not matter, as we saw earlier in chapter 2 with figure 2.5.11. However, as we

3.5. MILLER PUCKETTE’S PHASE LOCKING 55

change the frequency domain data, such as with algorithms like the Phase Vocoder, these false

frequencies become more present in the output signal. Vertical Phase Coherence is the phase

agreement of adjacent FFT bins so that false frequencies calculated as a result of the discrete

nature of the FFT at least share the same time characteristics of the original signal. Spectral

leakage is one cause of vertical phase coherence failure.

Miller Puckette addressed the problem of vertical phase coherence in his 1995 paper ”Phase-

locked Vocoder” by setting the synthesis phase of each channel of the Phase Vocoder to the sum

of itself, and the synthesis phase of its two adjacent neighbors. The idea being that for two low

amplitude bins on either side of a peak in the spectrum, the phase of the peak channel will stay

relatively unchanged, while bringing the phase of the lower amplitude bins much closer to the

phase of the peak. We will explore this idea with a simple example.

Consider a signal with the following 4 synthesis Fourier coefficients for channels k − 1, k, k +

1, k + 2 with the following values.

56 3. THE PHASE VOCODER

bin Amplitude Phase Complex Number

k − 1 .1 π
8 ≈ .3927 .0924 + .0393i

k 1.0 π
4 ≈ .7854 .707 + .707i

k + 1 .1 11π
8 ≈ 4.3197 −.0393− .0924i

k + 2 .1 5π
8 ≈ 1.9635 −.0393 + .0924i

Given this set of synthesis vectors, we will calculate the updated synthesis phases to be processed

by the PV using Miller Puckette’s idea.

∠Y (k) = ∠
(
Y (k − 1) + Y (k) + Y (k + 1)

)
∠Y (k + 1) = ∠

(
Y (k) + Y (k + 1) + Y (k + 2)

)
it follows that

∠Y (k) = tan−1
.0393 + .707− .0924

.0924 + .707− .0393
= .7104 radians

∠Y (k + 1) = tan−1
.707− .03939− .0393

.707− .0924 + .0924
= .84417 radians

Figure 3.5.1. new synthesis FFT vectors after the phase has been corrected

We can see that the phase of bin k + 1 has gravitated towards the phase of bin k, while bin

k’s phase has stayed relatively unchanged. Remember, the equation

y[tn] =

N−1∑
k=0

Y [tus , ωk]e
iωktn

3.5. MILLER PUCKETTE’S PHASE LOCKING 57

is just giving us one real number in the time domain, and we’re getting the number from summing

all of our complex vectors in nose to tail fashion. So the more the irrelevant vectors agree with

the relevant ones, the closer of an approximation the finite sum is to the actual signal we are

trying to construct.

58 3. THE PHASE VOCODER

4
Laroche’s Approaches

Perhaps the most significant improvement to the Phase Vocoder was introduced by Jean Laroche

and Mark Dolson in 1999 called Identity Phase Locking. Most subsequent improvements of the

PV are just modified Identity Phase Locking algorithms. Here we will look at how Laroche

and Dolson attempted to instill vertical phase coherence, as well as adjustments made to their

foundational approach in the past two decades. We saw above that the output phase of the

IFFT is calculated by adding the phase difference between analysis time points to the most

recent phase calculated for each frequency ωk. This assumes that the phase changed uniformly

between the analysis points, as a result of that assumption, uniform change is reflected in the

output. However, what if a sinusoid’s phase changed non-uniformly over the N sample time

period, in other words, its frequency changed over the course of analysis. While we saw earlier

that discrete sampling limited our frequency resolution, now we see here that it also limits our

time resolution. If we look at the N sample spectrum of a discrete time signal, we have no

idea when the peaks in the spectrum occured within the N sample window. And if a sinusoids

frequency changes within an analysis frame, it is entirely possible (and pretty likely) that it will

effect multiple spectral bins, in which case, the phase for a set of bins should change continuously,

as the sinusoid moves through each bin, rather than changing continuously bin by bin. This was

the core observation made by Laroche and Dolson which prompted their Identity Phase Locking

60 4. LAROCHE’S APPROACHES

and Scaled Phase Locking algorithms. Sinusoids whose frequency changes within an analysis

frame is the second source of vertical phase coherence failure.

4.1 Identity Phase Locking

In Jean Laroche and Mark Dolson’s 1999 paper Improved Phase Vocoder Time-Scale Modifi-

cation of Audio, new techniques were proposed expounding upon the simple idea set forth by

Miller Puckette. Laroche and Dolson’s Identity Phase Locking preserves the relationship between

analysis and synthesis phases for spectral peaks, and mimics that relationship for channels neigh-

boring the peak. Laroche and Dolson define a Spectral Peak, denoted ωkl , as a channel which

has a larger amplitude than the amplitudes of the 2 bins on each side of it. These other two

channels on either side of the peak are said to neighbor the peak. Neighboring channels lie in

the peak’s region on influence. The size of the region of influence is the distance from one peak

to the next, and is not necessarily the same size on either “side” of the peak, we will see what

this means later. For all channels ωk which lie in channel ωkl ’s region of influence, their synthesis

phases are computed using the following equation

∠Y (tus , ωk) = ∠Y (tus , ωkl)− ∠X(tua, ωkl) + ∠X(tua, ωk)

Just from a glance we can see that this technique has an obvious computational advantage.

Because we are calculating the synthesis phase for each channel based on the synthesis phase

of a spectral peak and the analysis phases of each, we don’t need to perform trigonometric

calculations in order to get synthesis phases on any channels except for the peaks. First we

calculate the synthesis phase for all peak channels using the regular phase vocoder algorithm.

Then the difference between the peak channel’s synthesis phase and analysis phase is calculated.

θ = ∠Y (tus , ωkl)− ∠X(tua, ωkl)

From that we generate a new complex sinusoid

Z = eiθ

4.2. IDENTITY PHASE LOCKING IN MAX/MSP 61

and multiply the analysis Fourier coefficients in the peak’s region of influence by it in order to

calculate the synthesis phase for each Fourier coefficient.

Y (tus , ωk) = Z ·X(tus , ωk)

4.2 Identity Phase Locking in Max/Msp

Here we will look at implementing Identity Phase Locking in Max/Msp for real-time fre-

quency/time independent manipulation. The following sequence of steps is given in [4], which

breaks down Identity Phase Locking.

1. Coarse Peak Picking Stage

2. Calculation of ∠Y (tus , ωkl) for peak channels ωkl only

3. Calculate the angle θ and the phasor eiθkl

4. Calculate Y (tua, ωk) = X(tua, ωk)e
iθkl for channels k in kl’s region of influence.

While the list of steps is short, and operations are simple enough, creating a patch that

processes audio in real time with the desired result in not as trivial. The first obstacle that must

be overcome is knowing information about the current analysis frame, before we analyze it.

4.2.1 Double Buffering

Double buffering is a technique used to address the problem we just mentioned, and is common

practice in image processing but has other applications as well. Double buffering writes data to

one buffer, while reading from another buffer. When we are finished reading the data from one

buffer, we then begin writing data to it, and then read from the buffer we were just writing to.

Now we can see that if we are looking at sample n, and we want to know data about sample

n+ 2, we simply look two samples ahead in the buffer which we have already written the data

to. However, this has the obvious disadvantage of introducing a frame of lag. So if we want to

look at a certain set of data, at a certain time, we must process the data one frame ahead of

62 4. LAROCHE’S APPROACHES

when we want to analyze it.

The first place we will use double buffering is in the peak picking stage of Identity Phase

Locking. We need to know the spectral amplitude peaks in an analysis frame so we know which

bins whose raw Phase Vocoder synthesis phase we should calculate. To do this, we need to know

the channel with the largest amplitude in a set of 5, so we want to find the channels k such that

k has a larger amplitude than channels k − 2, k − 1, k + 1, and k + 2. By writing the spectral

amplitude data into a buffer one frame, and then reading from it the next, we can simultaneously

look at channels k and k + 2. And since we are reading from a sound file, this isn’t hard at all.

Once we know the spectral peaks we can then go ahead and calculate their synthesis phase in

order to generate the phasors Z = eiθ.

4.2.2 Phasor Retro Fitting

The second obstacle to overcome when performing Identity Phase Locking is using the correct

phasor when calculating the updated synthesis phase for each bin. The problem arises when we

want to stop using phasor Zl and want to start using phasor Zl+1. The point where we switch

phasors is either set to the middle frequency ω =
ωkl+ωkl+1

2 , or the middle bin
kl+1−kl

2 . Earlier for

the peak picking stage, we simply wanted to know if a channel was a peak or not, this was simple

enough because we had a fixed neighborhood size, and we were performing the calculation on

the sample we were working with. However, it is not guaranteed that
kl+1−kl

2 =
kl+2−kl+1

2 . We

need to know if a channel is halfway between two peaks or not; and if it is, to start using the

next phasor, which up until now we haven’t calculated yet! Consider the following table which

has some possible analysis Fourier coefficients and illustrates how we are trying to distribute the

phasors.

4.2. IDENTITY PHASE LOCKING IN MAX/MSP 63

k |X = [tua, ωk]| Y [tus]

0 0.1 eiθ1X[tua, ω0]

1 1 eiθ1X[tua, ω1]

2 0.1 eiθ1X[tua, ω2]

3 0.1 eiθ1X[tua, ω3]

4 0.1 eiθ6X[tua, ω4]

5 0.1 eiθ6X[tua, ω5]

6 1 eiθ6X[tua, ω6]

7 0.1 eiθ6X[tua, ω7]

8 0.1 eiθ9X[tua, ω8]

9 1 eiθ9X[tua, ω9]

10 0.1 eiθ9X[tua, ω10]

11 0.1 eiθ13X[tua, ω11]

12 0.1 eiθ13X[tua, ω12]

13 1 eiθ13X[tua, ω13]

We see that even though the neighborhood size is fixed, the distance between peaks, and

therefore their neighborhoods, can vary. In the above table we see a couple of different cases

for neighborhood boundary distribution. The neighborhood boundaries are marked by the small

space between rows. We see that the distance between the first peak ω1 and the second peak

ω6 is 4 bins. Therefore, if we mark the boundary as
kl+1−kl−1

2 above the lower peak, the deci-

sion on where to switch phasors is trivial. We stop using eiθ1 at ω4 and start using eiθ6 , where

Y [tus , ω4] = eiθ6 ·X[tua, ω4]. The size of the region of influence above ω1 and below ω6 is 2 bins.

Moving on to the next peak, ω9, we see that the distance between ω6 and ω9 is different than

the distance between ω1 and ω6. However, even though the distance between these two peaks is

different than between the previous two peaks, the decision on where to stop using one phasor

and start using the next is still trivial. We stop using eiθ1 at bin k6 + k9−k6−1
2 = 8. The region

of influence size above ω6 and below ω9 is 1 bin.

The size of the region of influence above ω9 and below the next peak ω13 is not as trivial as

it was for the first two peaks. Even though the first two peaks had different sized regions of

influences, it was still easy to pick out the boundary, since the amount of bins in between the

peaks was an even number. However, we see that there are an odd number of bins between peak

64 4. LAROCHE’S APPROACHES

ω9 and ω13. The size of the region of influence above the lower peak, will be different than the

size of the region of influence below the higher peak. Therefore we must make a decision on

how to divide the bins in between. In this case, as we saw in the above table, we give make the

region of influence above the lower peak the smaller portion of the difference, and the region

of influence below the higher peak the larger portion. This decision is based on the logarithmic

distribution of musical spectral data. Later we will an Identity Phase Locking approach which

takes this consideration a step further. But for now, while the difference isn’t overwhelming, we

see that giving the higher peak a larger region of influence mimics a logarithmic neighborhood

size a bit more.

One approach to navigating these possible cases of varying and lopsided regions of influence, is

to know the distance above and below every peak to the next, before we calculate their phasors.

The following table outlines the steps were such an approach to be taken.

frame process known

n identify peak amplitudes

n+ 1 calculate difference between peaks peak amplitudes

n+ 2 calculate phasors and synthesis phase difference between peaks

However, we are able to cut out one step based on another property of double buffering.

Because the data we are writing won’t be used until the next frame, we can temporarily write

incorrect data, as long as it is corrected by the next frame. What this means is that instead of

simultaneously writing phasor data for the peak and the bins in its region of influence above

and below, which requires knowing how large the region of influence above and below is, we can

instead only write phasor data for the peak channel and the bins in its lower region of influence,

because those are the only peaks we already know. These doesn’t save us the extra double buffer,

however, it does save us an extra step. I call this process Phasor Retrofitting and the process is

outline in the following table

frame process known

n identify peak amplitudes

n+ 1 phasors for lower regions of influence peak amplitudes

n+ 2 calculate synthesis phase phasors

4.3. SCALED PHASE LOCKING 65

Interestingly, there is no guarantee that there is more than one spectral peak. If we think

of the graph of the amplitude spectrum, we see that the peaks occur at points of inflection,

where the derivative changes from positive to negative. The peaks are the points of inflection

such that each of the two points below have a positive derivative, and each of the two points

above a have negative derivative. Therefore, if an amplitude spectra has either strictly positive

or strictly negative derivatives, there would only be one peak. Now such a spectrum is extremely

unlikely, however, what we can learn from this observation is that there is no guarantee on the

density of peaks in the spectrum. The distribution of spectral peaks can be as high as 1 every

3 bins, or as low as 1 out of all bins.

4.3 Scaled Phase Locking

In the same paper, [4], Laroche and Dolson propose an improvement that builds upon their

Identity Phase Locking, Scaled Phase Locking. Scaled Phase Locking recognizes that if a sinusoid

changes from bin k to bin k+ 1, that in order to properly ensure that the peak has a continuous

phase value, the phase difference calculated should be

∠X[tu−1a , ωk+1]− ∠X[tu−1a , ωk]

and should be accumulated to ∠Y [tu−1s , ωk]. We can see the aforementioned case in the figure

4.3.1. So our equation for updating the phase of a peak becomes

∠Y [tus , ωk+1] = ∠Y [tu−1s , ωk] + ∠X[tua, ωk+1]− ∠X[tu−1a , ωk]

As pointed out by Laroche and Dolson, such an approach would correctly calculate φ(ωk, t
u
s)

from section 3.2. In the above figure, we can see the simplest case of sinusoidal movement: a sinu-

soid moving in one direction, one bin at a time. However, we can imagine far more complicated

trajectories a single peak could take. Suppose a violin player glissandos from E5 = 659.3Hz

to B7 = 3951.07Hz in one frame’s time; for a FFT frame size of 4096 samples this would be

66 4. LAROCHE’S APPROACHES

Figure 4.3.1. sinusoid moving through the spectrum

from bin 61 to bin 366. How is the Scaled Phase Locking supposed to know to look so far down

the spectrum, and skip possible peaks in between, to pick out its previous location and phase

update that value? It is at this point that one must sacrifice the freedom of real-time manipu-

lation, in order to construct a time modified signal, which is outside the scope of this project.

The heuristics needed to link peaks to their predecessors in a previous frame, and/or distinguish

them from the onset of new peaks not present in the previous frame are not complete enough to

accomodate any arbitrary signal in real time. One must first record the raw spectral data, then,

knowing the trajectory of peaks in the spectrum, guide the Scaled Phase Locking algorithm to

follow these peaks through time according to how they change, as well as note when a new peak

arrives in the spectrum. While Scaled Phase Locking is not general enough for any arbitrary

signal to be manipulated in real time, it is the most substantial step towards perfect sinusoidal

tracking in order to instill vertical phase coherence in the Phase Vocoder.

4.3.1 PhaVoRIT

In the 2006 paper by Thorsten Karrer, Eric Lee, and Jan Borchers “PhaVoRIT: A Phase Vocoder

for Real-Time Interactive Time-Stretching” some important observations are made about the

structure of musical signals that inform how we perform phase updating in the Phase Vocoder.

Namely how the nonlinearity of human hearing should inform our approach to peak picking in

4.3. SCALED PHASE LOCKING 67

the spectrum.

An important observation to make when Phase Locking a musical signal, is the proximity of

intentional components in the spectrum. We want to avoid flagging a channel as noise, and up-

dating its phase as such, when in fact it is an intentional part of the analysis signal, and should

have its phase updated as if it were a peak. This is an issue for lower bins in the spectrum, and

for low bass tones, as identified by [11]. When a low note is present in a signal being analyzed

by the PV, and parts of its harmonic series fall in the region of influence of another spectral

peak, the harmonic’s phase is updated as if it were noise in the spectrum, which is incorrect. For

example, if for an FFT size frame size of 4096, there exist a 20Hz tone, located in bin 2 of the

spectrum, and it has a larger amplitude than its first harmonic, 40Hz, located in bin 4 of the

spectrum, we see that the first harmonic falls under the region of influence of the fundamental,

given a neighborhood of 5 channels as proposed by Laroche and Dolson in [4]. Thus its phase is

updated based on how much the fundamental’s phase has changed from synthesis to analysis,

which is half as much as the phase for the first harmonic should have changed. In order to avoid

such miscalculations, [11] suggests adjusting the regions of influence based on where they fall in

spectrum. Clearly a 20Hz difference won’t affect a 400Hz fundamental or any of its harmonics,

so it should not be treated as such, yet as we saw 20Hz does matter for bins lower in the spec-

trum. Such an observation results in deciding the size of each region of influence as a function

of frequency. The larger the frequency of a peak, the larger its region of influence should be.

Karrer, Lee, and Borchers took such an approach in [11] for Laroche and Dolson’s Scaled Phase

Locking. Here we will take such an approach to the more general, more real-time, Identity Phase

Locking. In the patch, when a neighborhood changes from 2 bins to 4 bins is a variable parameter

set by the user. Same for switching from 4 bins to 6 bins, and from 6 bins to 8 bins. The following

table shows a pretty good distribution of each region of influence, as showed by informal listening

tests.

68 4. LAROCHE’S APPROACHES

bin range frequency range (Hz) neighborhood size

0− 50 0− 538.5 unaffected

51− 100 549.5− 1077 2

101− 200 1087.8− 2154 4

201− 1000 2164.7− 10770 6

1001− 2048 10780.7− 22050 8

5
Other Algorithms

Here ends our purely mathematical pursuit of time modification. This chapter will look at results

for time modifications if we loosen the constraints of strict mathematical accuracy. While we have

been focusing on literature from physicists, engineers, and mathematicians thus far, there exists

a whole other body of literature written by composers and academics who are thinking about

these ideas in a different way. Some of these include Matt Sargent, Cort Lippe, JoAnn Kuchera-

Morin, and Iannis Xenakis. Included in this chapter is Granular Synthesis, the Grain Vocoder,

and a new approach to the Phase Vocoder, the Saphe Covoder. And while we may become

less textbook with our use of math, this newfound freedom will bring with it some interesting

mathematical perspectives on how we interact with some of the ideas we have already explored.

5.1 Granular Synthesis

So far our topics of investigation have all included some form of the Fourier Transform. When

using Fourier’s theory with computers we have diverted to the Discrete Fourier Transform,

which, as we have seen, creates a whole lot of problems as a result of trying to model a signal

after perfectly period sinusoids of any frequency for an infinite amount of time. We will see

that by abandoning the pursuit of theoretical limits, and embracing the limits of the human

70 5. OTHER ALGORITHMS

auditory and perceptual systems, some curious results come about when considering the different

representations of a signal.

5.1.1 Dennis Gabor

The physicist Dennis Gabor wrote about human perception as it relates to communications in

[16] and then later specifically regarding acoustics in [17]. His realization was that the Fourier

view of sound in accurately describes how we experience it. The frequency description is time-

less, where waves are perfectly periodic and have infinite duration; and the time description is

infinite with respect to its component frequencies. The ear does not experience all real number

frequencies between 20 and 20000 Hz, nor do we have a limitless perception of sound in time.

Gabor presented his idea of sound being comprised of what he calls elementary particles or ele-

mentary signals, as a perceptual measurement of signals. Signals, or particles, are represented in

an information diagram by their characteristic cell, which is an area plotted from the frequency

vs time axes of the information diagram.

Figure 5.1.1. Original figure of the characteristic cell of an elementary particle in the information diagram
from Gabor’s paper [17].

Given a certain range of frequencies on the x-axis, there exists an effective time on the y-axis

needed in order to perceive frequencies in that range. We can all verify this from experience.

5.1. GRANULAR SYNTHESIS 71

Frequencies from a wide range will sound the same if we only hear them for a short time. However,

given a longer period of time to listen, the ear is able to pick out precise frequencies. We can see

this illustrated in the following figure, where within a short enough window, frequencies ranging

from f to 4f all look about the same.

Figure 5.1.2. Small ∆t results in a large ∆f .

Gabor writes that when we plot these frequency ranges vs. effective duration, that the area of

the resultant rectangle is at least 1, in other words, ∆t∆f ≥ 1. Below we see the cell associated

with the property shown above.

Figure 5.1.3. Characteristic cell associated with figure 5.1.2.

72 5. OTHER ALGORITHMS

We call a signal whose characteristic cell has area 1, in other words ∆t∆f = 1, elementary

particles. Gabor gives a formula for an elementary particle s(t), where

s(t) = e−α
2(t−t0)2ei2πf0t

and the Fourier Transform of s(t) is

S(f) = e−(
π
α
)2(f−f0)2ei2πt0f

for a real constant α where ∆t =
√
π
α and ∆f = α√

π
. These elementary signals are illustrated in

[17] with the following figure,

Figure 5.1.4. Original figure of a characteristic signal in the time domain from Gabor’s paper [17].

We see that the limα→0 is a simple harmonic oscillation, and that the limα→∞ is the delta

function. Thus for α = 0 we simply obtain the Fourier analysis, and for α = ∞ we obtain a

series of delta functions, which is equal to s(t) itself. However, for 0 < α < ∞, we obtain the

Gabor Transform of a signal. We see that the Gabor Transform of a signal lies somewhere in be-

tween its time domain representation and its frequency domain representation. Like the Fourier

Transform, the Gabor Transform is linear, therefore it is additive and homogeneous. Gabor’s

theory states that we can represent any arbitrary signal in terms of elementary particles. In

frequency-time space we can plot these elementary particles, each with a complex amplitude

factor ci,k, to create a matrix-like object shown in the following figure

5.1. GRANULAR SYNTHESIS 73

Figure 5.1.5. From [17]; matrix-like orientation of elementary particles used to represent a signal.

Gabor’s original motivation for his theory was to save bandwidth for signal communication. If

multiple frequencies are indistinguishable from each other to the human ear, as we saw with the

short ∆t window, then it is redundant to include all of them. Therefore bands of the spectrum

which are perceptually identical for a given ∆t are left empty except for one frequency within that

band. Gabor writes that while this style of signal representation is not complete, it contains most

of the subjectively important features [17]. Thus the Gabor Transform became the groundwork

for Granular Synthesis.

5.1.2 Theory of Operation

Granular Synthesis algorithms, or Granulators, break a sample up into grains, typically between

10ms and 2000ms. There are two types of grains, synthetic and sampled. Synthetic grains syn-

thesize their signal from a wavetable, while the sound for a sampled grain comes from a stored

sample, which each grain reads from. Here we will focus on the latter form of Granular Synthesis,

since that has been our focus so far. There are three main approaches to granular synthesis of a

stored sound: repetition, reordering, and interweaving [8]. Repetition takes a sample and feeds it

into a delay line with feedback, or repeats the read location in the sound file. Reordering changes

the order in which individual grains appear in the original sample. This is usually done by speci-

74 5. OTHER ALGORITHMS

fying a range for the granulator to read from, where grains are not chosen in chronological order

within the range. Interweaving involves multiple samples which the granulator is reading from,

and mixes the grain from each in a single output signal. Granular Synthesis is unique because

it retains both frequency domain information (event timing, duration, envelope shape, wave-

form shape) and frequency domain information (short term spectrum of the waveform inside the

grain, and the period of the waveform) [9]. The idea of granular synthesis is simple, however,

due to the fact that a granulator can be processing thousands of grains a second, the process as

a whole is not as trivial as it seems at the grain by grain level.

Earlier we looked at the Gabor Transform and how it became the basis for the idea of granular

synthesis. However, we did not mention how Gabor’s theory effects the time and frequency of

the signal it approximates. We said that the Gabor Transformation was a linear transformation,

in other words that for two time signals s0(t) and s1(t) and their respective Gabor Transforms

G0(t, f) and G1(t, f), it is the case that

a · s0(t) + b · s1(t) = a ·G0(t, f) + b ·G1(t, f)

for a, b ∈ R. Suppose we want to obtain a signal s2(t) by time stretching s1(t) by a factor of

2, but retain the frequency content of the original signal. We know that the Gabor Transform,

G1(t, f), of s1(t) contains all of the perceptually important information need to construct s1(t).

Therefore we can speculate that some linear combination of time shifted G1’s, converted back

into the time domain, might create a signal close to what we imagine s2(t) would be like. This

clearly does not suffice as a rigorous mathematical proof. Gabor himself writes that “[e]xpansion

into elementary functions is in general a rather inconvenient mathematical process [17].” How-

ever, it does at least get us thinking about the Gabor Transform and its properties enough to

perhaps try such an approach on our own, after which we find the result to quite resemble the

s2(t) we hoped to create, at least on the level of raw human perception.

5.1. GRANULAR SYNTHESIS 75

Granular Synthesis time modification is similar in some ways to how the Phase Vocoder mod-

ifies time. The same trick applies: the next grain processed is not necessarily the next grain in

time. To start, the granulator chooses a point in the sample, say t0, and then creates grains by

counting forward the grain duration amount of time, say n, through the sample from that point

to point tn. Because the granulator processes the signal out of time, the next grain does not

necessarily start at tn+1. If time expansion is desired, the next grain would start at some point

ti where 0 < i < n. If time compression is desired, then the next starting point ti would lie later

in the sample where i > n. However, if no time modification is desired, then simply ti = tn+1.

If we want to pitch-shift, then the rate at which we count forward through the sample from

our starting point is adjusted accordingly, and is tied to the sampling rate of the sample, as well

as the sampling rate of the DSP software, as we saw when looking at pfft ∼ and block ∼. Like

in the Phase Vocoder, we simply count through the sample faster or slower than it was sampled.

Again, analogous to playing a record faster or slower.

5.1.3 Characteristics

Sound produced through granular synthesis is often described as “organic”. Ross Bencina

writes,“The metaphor of sonic clouds has been used to describe sounds generated using Granu-

lar Synthesis ... gestures evocative of accumulation / dispersal, and condensation / evaporation

may be created [8].” In [8], John Strawn takes this analogy so far as to specify types of granular

synthesis sonics clouds as cumulus or stratus! Again, the theory behind granular synthesis only

requires that the result satisfy some degree of human perception.

One of the clear advantages of Granular Synthesis is the absence of the digital artifacts that

distract from acoustic samples which are the plague of Frequency domain approaches such as

the Phase Vocoder. In return, we acquire a whole new set of sonic characteristics not present

in our original sample. The tradeoff is that these characteristics are controllable by parameters

which dictate how the granular synthesis operates. Now the modification to the original sample

76 5. OTHER ALGORITHMS

is intentional and can be artistic, rather than distracting, as we see in the case of the Phase

Vocoder. Next we will look at parameters in a Granulator which contribute and can be adjusted

to change the overall output sound.

5.1.4 Parameters

The main parameters in a Granulator are the Grain Density, Grain Duration, Grain Amplitude,

Envelope Shape, Panning, and Pitch. For most of these parameters, there are two ways which

we can decide their value: fixed/intervalic, or stochastic/random within a range. Whether a

parameter is decided randomly or not has a large effect on the overall sound of the granulator.

There are sometimes thousands of grains being synthesized in a second, and consequently it is

impossible to specify the parameters individually for each grain. Because of this, the processes

of grain generation, parameter setting, and synthesis are often unified as one process, where

parameters are adjusted on the global level [8].

The Grain Density parameter has perhaps the largest effect on the overall sound of Granular

Synthesis. Grain Density dictates the number of grains per unit of time, usually per second.

Grain generation, which consequently results in grain density, has two different approaches.

There exists stochastic grain onset, and periodic grain onset. A stochastic grain onset algorithm

uses random numbers to generate grains, while periodic grain onset generates grains at a regular

interval. In either case, the less dense the grain density, the more each grain is recognized by the

listener. Consequently, the effect of the envelope on the grain is stronger the lower the density,

because there are less grains to obscure the envelope’s shape. We can think about seeing the

shadows of people walking behind a screen. The fewer people there are passing by at once, the

easier it is to make out each individual. Inversely, the higher the grain density, the less distin-

guishable each grain’s envelope is. Once again, if there are more shadows occupying the same

space, each shadow becomes harder to distinguish from the others. Therefore, the envelope shape

parameter is more important, the lower the grain density parameter is.

5.1. GRANULAR SYNTHESIS 77

The grain density is analogous to the hop factor of overlap adding instances of FFT. Similar

to how the grain envelope’s role in the overall output of granular synthesis depends on the grain

density; the choice of the FFT windowing function becomes more important the smaller the hop

factor is. This is because the larger the hop factor is, the more we hear sound from under the

peak of the windowing function. And if the hop factor is low, more of the sound in our output

is coming from the edges of the window, which is where unwanted time domain discontinuities lie.

Grain Duration specifies how long each grain is, usually in milliseconds. Depending on the

length of the grain, it will be easier or harder to recognize the original sample. The longer each

grain lasts, the easier it will be to hear recognize the sample it comes from. Inversely, the shorter

the grain is, the harder it will be to identify. This is the inverse relationship between ∆t and ∆f

we saw in the Gabor Transform. Because of this, shorter grain sizes are often used to produce a

certain effect, rather than to represent the original sample accurately. Strawn writes that when

the grain duration is smaller, they create “crackling and popping textures [8].”

Grain Duration is analogous to the spectral frame size used in the FFT. Here we can also see

the effect Gabor’s observation has on the FFT. The smaller the frame size, in other words the

smaller ∆t is, the more similar different frequencies look to the FFT’s perception of a signal. As

we stated earlier, the reconstructed signal from an FFT with a small frame size, after spectral

modifications have taken place, is less accurate than the same signal from an FFT with a larger

frame size, which is what we have seen to also be the case with granular synthesis.

Envelope Shape plays a large role in the sonic characteristic of each grain, and consequently

the sound of the granulator as a whole. Envelopes such as the Pulse Envelope, shown below,

create “resonant grains that sound like woodblock taps in sparse textures when the grain dura-

tion is less than 100ms [8].” The effect of the envelope changes drastically based on the grain

duration. In general, when the grain duration is small enough (about 50ms or so), envelopes

78 5. OTHER ALGORITHMS

start to look and act like impulses, since they are shrunk in time. Because they are shrunk so

much in time, envelopes which did have smoother transitions now have sharp edges, and these

edges have large spectral effects, albeit for only a short amount of time.

Figure 5.1.6. top left Quasi-Gaussian grain envelope. bottom left Same as top but with a longer top. top
right Pulse envelope. bottom right Trapezoid Envelope.

Panning, Delay, and Feedback are all parameters controllable by the user. Like most granu-

lator parameters, they can either be set stochastically or to be fixed. Of course limits can be

set on the stochastic decision too. Adjusting these parameters have the effect of making a more

coherent output sound, albeit at the cost of holding true to the original sample.

The Pitch of a grain can be changed by simply reading through the sample at a faster or slower

rate, resulting in a higher or lower pitch, respectively. Obviously this will change the amount

of information from the original sample that is in the grain. So if we want to keep the original

amount of information from the original sample that is in each grain, then the grain duration

must be adjusted according to the pitch shifting factor. For example, if we want to pitch-shift by

a factor of 2, but want still want the grain to represent 1000ms of information from the original

sample, then the grain duration should be set to 500ms. If the grain duration is left untouched,

then the sample will represent information from 2000ms, over a grain duration of 1000ms.

5.2. THE GRAIN VOCODER 79

5.2 The Grain Vocoder

After having thought about elements of the FFT in a different way through granular synthesis,

it is a fun exercise to come back to the FFT and Phase Vocoder, and treat them as a Granulator

of sorts.

This approach mainly affects the overall amplitude envelope for each frequency. For the nor-

mal Phase Vocoder, by using the amplitude information of the current frame we are reading,

which is dictated by the time scale modification factor, the long term amplitude envelopes for

each frequency are scaled to to exactly resemble the envelope in the original signal. However,

by introducing variance in the read location of our sample, this is no longer the case. While the

amplitude envelope for each frequency of the output will have a similar general profile to the

envelope in the original signal, the two car vary drastically if we compare smaller sections of the

two envelopes.

One result of this is a more organic sound when the speed is set to 0. In the normal Phase

Vocoder, when the speed is set to zero, in order to freeze a certain sound, the output is not very

pleasant. This is because the amplitude for each frequency band is held at a constant. However,

given a sample whose amplitude envelope per frequency changes smoothly, by adding a bit of

variance to where we are reading from in the sample, the output also changes smoothly. The

effect is a sort of continuous splattering, rather than a jammed machine.

5.3 The Saphe Covoder

As we pointed out in section 4.3.1, we want to avoid intentional spectral peaks being phase

updated as if they were discrete spectral noise. In that example, we looked at a low tone and its

harmonics. There is also the case of harmonics of a single voice in the signal lying close to the

fundamental or harmonics of another single voice in the signal, and the phase of one or more

of those peaks being incorrectly updated if it lies in the region of influence of another, louder

80 5. OTHER ALGORITHMS

peak. We will say such a signal exhibits Spectral Crowding. In cases of high spectral crowding

due to multiple harmonic sources, it would be extremely helpful to be able to separate each

sound source, phase update each individually, and then recombine the results to form a new

time modified signal. A similar approach has been taken by [15], where signals are searched for

harmonic elements and percussive elements. Elements of each type are grouped and separated,

treated independently, and rejoined in the output signal. Here I will propose a similar approach,

however, instead of flagging sources as either harmonic of rhythmic, we will go the step further

and separate each harmonic source from the others entirely.

5.3.1 Cepstrum Analysis

Cepstrum Analysis performs the aforementioned operation: separating distinct sound sources

within a signal. This is possible due to the periodic structure of musical harmonics. Most musi-

cal instruments have a harmonic structure for a fundamental f0 of the form f0, 2f0, 3f0, 4f0, ...

Others, such as the clarinet, only have the odd multiples of the fundamental f0, these are

f0, 3f0, 5f0, 7f0, ... Either way, these frequencies are periodic in the spectrum. So far we have

seen the Fourier Transform group periodicity in the time domain, into one point in the frequency

domain. By performing a Fourier Transform on the spectrum of a time signal, we are able to

group periodic structures in the spectrum, into one point in the Cepstrum.

Consider the following spectrum of a sawtooth wave f1(t) with a frequency 128π
T for a time

period T seconds.

Figure 5.3.1. Spectrum of a 128π
T radians per second sawtooth wave.

5.3. THE SAPHE COVODER 81

Now suppose we performed a Fourier Transform on this amplitude spectrum. The Fourier

Transform would compare this spectrum to a set of sinusoids just like it we have seen it do for

time signals throughout this project. This is illustrated in the following figure,

Figure 5.3.2. Comparison of the spectrum from Figure 5.3.1. to a cosine wave.

and would produce a graph similar to the following figure.

Figure 5.3.3.

This is the idea of Cepstrum Analysis.

Cepstrum Analysis was first proposed by Bogert, Healy, and Tukey in [19] as a method for

analyzing echoes in order to study seismic activity. Since then Cepstrum analysis continues to

be widely used in earth sciences, as well as analysis of machinery and speech processing. From

[18], we get the following equations for calculating the Cepstrum.

c(τ) = |F
[
log
(
Fxx(f)

)]
|2

where

Fxx(f) = |F [fx(t)]|2

82 5. OTHER ALGORITHMS

is the power spectrum of a time signal fx(t). [18] also gives us the following definition for the

power cepstrum

cp(τ) = F−1
[
log
(
Fxx(f)

)]
These formulas work well for pure analysis purposes. However, if reconstruction back into the

time domain is desired, the Complex Cepstrum must be used. The Complex Cepstrum is calcu-

lated with the following formula.

cc(τ) = F−1[log
(
Fx(f)

)
]

Fx(f) is the complex spectrum of fx(t). Therefore we calculate the complex logarithm as follows

log
(
Fx(f)

)
= log

(
|Fx(f)|

)
+ i∠Fx(f)

Because Cepstrum analysis uses the Fourier Transform, it has a similar vocabulary, however,

the terms mean slightly different things in the time domain than they mean for a single Fourier

Transform. The peak in Figure 5.3.3. is at a quefrency bin (from “frequency”) and is called a

rahmonic, since it represents a structure of harmonics. Specifically we are looking at the gam-

nitude (from “amplitude”). Since this is a polar representation, we also have a saphe (from

“phase”). We can perform the same operations in the cepstrum that we could in the spectrum.

Cepstral filtering is called liftering. There is both long-pass (from “high-pass”) and short-pass

(from “low-pass”). You go so far as to find mention of alanysis (from “analysis”) and repiod

(from “period”). However, these latter two are less common than the others. The title of this

section follows a similar linguistic pattern as already exists in the field.

Consider the spectrum of a signal f(t) = f1(t) × f2(t) where f1(t) is our sawtooth wave of

frequency 128π
T radians per second from earlier, and f2(t) is a sawtooth wave of frequency 100π

T

radians per second.

The Fourier Transform will analyze it in the following way

And produce the following Cepstrum

5.3. THE SAPHE COVODER 83

Figure 5.3.4. Spectrum of f(t) = f1(t)× f2(t).

Figure 5.3.5. Fourier Analysis Figure 5.3.4.

Figure 5.3.6. Cepstrum of the signal f(t) = f1(t)× f2(t).

We can see that there is a peak corresponding to each harmonic source., and that frequency

and quefrency are inversely proportional. High frequencies correspond to low quefrencies, and low

frequencies correspond to high quefrencies. This is because the harmonics of a higher frequency

are spaced further apart than the harmonics of a lower frequency. As we stated from the onset

of this section, we want to separate these harmonic sources. In order to separate the two peaks,

we create two new cepstra, each one with only one of the two peaks, where the other peak

has been liftered. We then perform an Inverse Fourier Transform in order to convert back into

the frequency domain where normal spectral manipulation can resume. We are able to simply

subtract a quefrency from the cepstrum because we are taking the logarithm of our spectrum.

84 5. OTHER ALGORITHMS

Suppose we a have some signal f1(t) where

f1(t) = f0(t) · h(t)

for two signal f0(t) and h(t). Then we know that

F [f1(t)] = F [f0(t)] · F(h(t)]

If we take the logarithm of both sides of the equation we see that

log
(
F [f1(t)]

)
= log

(
F [f0(t)] · F [h(t)]

)
= log

(
F [f0(t)]

)
+ log

(
F [h(t)]

)
Either of the logs can be removed. This is our liftering step. Then we can re-obtain the

spectrum from the Inverse Fourier Transform of e to the power of the liftered cepstrum. This

process of separating harmonic sources is called deconvolution. Several of the aforementioned

applications of Cepstrum Analysis use deconvolution.

5.3.2 Theory of Operation

Here I propose a method for time modification of musical signal using Identity Phase Locking

in the Phase Vocoder, and the fact that there likely exists harmonic distortion of sound sources

as a result of spectral crowding. Following the pattern of coining terms, it is called the Saphe

Covoder. The following diagram outlines the conceptual steps for performing saphe covoding.

There are some obvious limitations to this approach and problems that need solutions. We

notice that the number of FFT/IFFT pairs need to perform the Phase Vocoder algorithm varies

depending on how many sound sources there are. Ideally you would always be able to process

harmonic sources individually, however this requires that we first know how many sources there

are, which limits our ability to operate in real-time. One possible solution is to set a maxi-

mum number of sources the Saphe Covoder is able to process, say q, where the Saphe Covoder

is running q + 1 FFT/IFFT instances. If a signal had more than q harmonic sources, say p,

the first q FFT/IFFT instances would process the first q harmonic sources, and the remaining

5.3. THE SAPHE COVODER 85

Figure 5.3.7. Saphe Covoder Operation Diagram

p−q peaks would be processed by a dump FFT/IFFT instance, just like a normal Phase Vocoder.

86 5. OTHER ALGORITHMS

Justification for such an approach could be that for signals with many harmonic sources, the

timbre of each individual instrument is less distinguishable. The result of this approach would

be that the first q sources would be properly phase updated, and that spectrum of the other

combined p − q sources would be less spectrally dense than the spectrum of all the original q

sources anyway, and thus exhibit less harmonic distortion than the classic Phase Vocoder. Fur-

thermore, the harmonic distortion that it did exhibit would be far less noticeable, since there is

more sound to mask to inaccuracies. This is similar to how we were thinking about the percep-

tion of envelope shape as it relates to grain density in granular synthesis.

The decision then becomes which harmonic sources to isolate, and which to group together.

At first glance a good choice seems to be isolating the higher rahmonics, since they correspond

to lower frequency fundamentals, which we have seen to exhibit the most problems in the classic

phase vocoder; and grouping the lower rahmonics, which correspond to higher frequency fun-

damentals, since, as a result of the logarithmic distribution of musical information, the upper

end of the spectrum is naturally less dense than the lower half. The dump spectrum of only the

higher frequency sources would be far less crowded than the dump spectrum of only the lower

frequency sources. We can see that the computational costs of such would rise proportional to

q. For a Saphe Covoder which would process q+ 1 peaks, and running at a hop factor of R, the

total number of FFT/IFFT pairs running simultaneously would be R(q + 1).

The Cepstrum has an interesting perceptual meaning. Like Cepstrum Analysis, our ears group

together harmonics, and we interpret them as the timbre of an instrument. For example, earlier

we mentioned the clarinet, and that it only produces odd harmonics. The absence of the even

harmonics results in the warm tone of the clarinet, and distinguishes it from other instruments.

The saxophone on the other hand creates harmonics at all integer multiples of the fundamental

frequency. As a result, the saxophone has a much brighter timbre than that of the clarinet.

Therefore, it seems like a Cepstrally conscious Phase Vocoder would create a more musical

5.3. THE SAPHE COVODER 87

output, as a result of less harmonic distortion because of spectral crowding, and that the timbre

of time modified musical signals would stay intact. In this way, the Saphe Covoder seems to

operate on the same level as the Gabor Transform: the level of human perception. While the

cost of computing increases significantly, it seems that the computational considerations taken

by DSP engineers of the 1990’s and 2000’s are far less relevant, and that as a result of faster

more accurate computers, the opening of the 3rd decade of the 21st century should bring with

it more musical time-modified signals than ever before.

88 5. OTHER ALGORITHMS

Appendix A
Code

90 APPENDIX A. CODE

Figure A.0.1. Java DFT Calculation

91

Figure A.0.2. Max/Msp Phase Vocoder Patch

92 APPENDIX A. CODE

Figure A.0.3. Max/Msp Granulator Patch

Appendix B
Notation and Equations

B.0.3 Notation

Hop Factor

Frame Index

Frequency Index

Time Point

Sampling Period

Sampling Frequency

Discrete Fourier Analysis Time Instant

Discrete Inverse Fourier Synthesis Time

Instant

FFT Analysis Point

FFT Analysis Phase

IFFT Synthesis Point

IFFT Synthesis Phase

Peak Channel

Gabor Transform

R

u

k

tn

T

fs

tua

tus

ωkl

X[tua, ωk]

∠X[tua, ωk]

Y [tus , ωk]

∠Y [tus , ωk]

ωkl

G(t, f)

94 APPENDIX B. NOTATION AND EQUATIONS

B.0.4 Equations

Fourier Transform

Discrete Fourier Transform

Inverse Fourier Transform

Discrete Inverse Fourier Transform

Magnitude

Phase

Euler’s Identity

Sampling Period

Discrete Frequency Point

Hanning Window

Hamming Window

Blackman Window

Constant Overlap Add Property

Instantaneous Frequency

Identity Phase Locking Equation

Identity Phase Locking Phasor

Scaled Phase Locking Peak Phase Equation

Gabor Elementary Signal

Fourier Transform of Elementary Signal

Power Spectrum

Cepstrum

Power Cepstrum

Complex Cepstrum

Complex Logarithm

F(x(t)) = X(ω) =
∫∞
−∞ x(t)e−iωtdt

X[ωk] =
∑N−1

n=0 x[tn]e−jωktn

F−1(X(ω)) = x(t) = 1
2π

∫∞
−∞X(ω)eiωtdω

x[t] =
∑N−1

n=0 X[ωk]e
jωktn

A = Mag(X[ωk]) = |X[ωk]| =
√
a2 + b2

θ = φ(a+ bi) = arg(a+ bi) = tan−1(ba)

A · eiθ = Acos(θ) +Aisin(θ)

T = 1
fs

ωk = k · 2πT

h[n] = .5[1− cos(2πn
N−1)]

h[n] = .54− .46cos
(

2πn
N−1

)
h[n] = .42− .5cos

(
2πn
N−1

)
+ 0.08cos

(
4πn
N−1

)
,∑R−1

m=0w(n−mN
R) = 1, for 0 ≤ n ≤ N − 1

φ(ωk, t
u
s) = φs(ωk, 0) +

∫ tus
0 ωk

(
λ
α

)
dλ

∠Y (tus , ωk) =

∠Y (tus , ωkl) + ∠X(tua, ωk)− ∠X(tua, ωkl)

eiθ where θ = X[tua, ωkl −X[tu−1a , ωkl

∠Y [tus , ωk+1] =

∠Y [tu−1s , ωk] + ∠X[tua, ωk+1]− ∠X[tu−1a , ωk]

s(t) = e−α
2(t−t0)2ei2πf0t

S(f) = e−(
π
α
)2(f−f0)2ei2πt0f

Fxx(f) = |F [fx(t)]|2

c(τ) = |F
[
log
(
Fxx(f)

)]
|2

cp(τ) = F−1
[
log
(
Fxx(f)

)]
cc(τ) = F−1[log

(
Fx(f)

)
]

log
(
Fx(f)

)
= log

(
|Fx(f)|

)
+ i∠Fx(f)

Bibliography

[1] Julius O. III Smith, Mathematics of the Discrete Fourier Transform(DFT), BookSurge
Publishing, Stanford CA, 2007.

[2] , Spectral Audio Signal Processing, W3K Publishing, Stanford CA, 2011.

[3] Steven W. Smith, The Scientist and Engineer’s Guide to Digital Signal Processing, Califor-
nia Technical Publishing, San Diego CA, 1997.

[4] Jean Laroche and Mark Dolson, Improved Phase Vocoder Time-Scale Modification of Audio,
IEEE Transactions on Speech and Audio Processing 7 (1999), 323 – 332.

[5] Miller Puckette, book, San Diego CA, 30 December 2006.

[6] , Phase-locked Vocoder, IEEE (1995).

[7] Cort Lippe and Richard Dudas, The Phase Vocoder - Part I, Cycling ’74 (02 November
2006).

[8] , The Phase Vocoder - Part II, Cycling ’74 (02 July 2007).

[9] Ross Bencina, Audio Anecdotes III, A K Peters Wellesley, 31 August 2001.

[10] Curtis Roads, The Computer Music Tutorial, MIT Press, London, England, 1996.

[11] Daniel W. Griffin and Jae W. Lin, Signal Estimation from Modified Short-Time Fourier
Transform, IEEE Trans. Acoust. Speech Signal Processing (April 1984).

[12] Thorsten Karrer, Eric Lee, and Jan Borchers, PhaVoRIT: A Phase Vocoder for Real-Time
Interactive Time-Stretching (January 2006).

[13] But Why? Intuitive Mathematics, The Fourier Transform, https://sites.google.com/
site/butwhymath/fourier-analysis/the-fourier-transform.

[14] James L. Flanagan and R. M. Golden, Phase Vocoder, IEEE Trans. Acoust. Speech Signal
Processing (18 July 1966).

[15] Jonathan Driedger and Meinard Mller, A Review of Time-Scale Modification of Music Sig-
nals, Proceedings of the International Conference on Digital Audio Effects (February 2016).

[16] Dennis Gabor, Theory of Communication (24 September 1945).

[17] , Acoustical Quanta and the Theory of Hearing, Nature (May 3, 1947).

https://sites.google.com/site/butwhymath/fourier-analysis/the-fourier-transform
https://sites.google.com/site/butwhymath/fourier-analysis/the-fourier-transform

96 Bibliography

[18] R.B. Randall and J. Hee, Cepstrum Analysis, Brel & Kjaer Technical Review (August 1981).

[19] B.P. Bogert, M.J.R. Healy, and J.W. Tukey, The Quefrency Alanysis of Time Series for
Echoes: Cepstrum, Pseudo-Autocovariance, Cross-cepstrum and Saphe Cracking, Proceed-
ings of Symposium on Time Series Analysis (1963).

	Time and Frequency Independent Manipulation of Audio in Real Time
	Recommended Citation

	Abstract
	Dedication
	Acknowledgments
	Introduction
	Fourier Theory and the Fourier Transform
	Properties of the FFT
	Linear Transform

	Phase
	Unique Reconstruction

	Fourier Transform as a Change of Basis
	The Delta Function

	The Fourier Transform in Practice
	The Fast Fourier Transform
	Windowing
	Periodicity
	Overlap Add Synthesis

	How the Fourier Transform is Calculated
	DFT Calculation
	IDFT Calculation
	Spectral Leakage

	The Phase Vocoder
	A Simple Example
	Theory of Operation
	Some Notes on MAX/MSP Implementation of the Phase Vocoder
	Sampling Rate and pfft
	Pitch Shifting

	Cartesian vs. Polar Complex Math
	Complex Multiplication
	Complex Division
	Inverse Modulus Scaling

	Miller Puckette's Phase Locking

	Laroche's Approaches
	Identity Phase Locking
	Identity Phase Locking in Max/Msp
	Double Buffering
	Phasor Retro Fitting

	Scaled Phase Locking
	PhaVoRIT

	Other Algorithms
	Granular Synthesis
	Dennis Gabor
	Theory of Operation
	Characteristics
	Parameters

	The Grain Vocoder
	The Saphe Covoder
	Cepstrum Analysis
	Theory of Operation

	Appendices
	Code
	Notation and Equations
	Notation
	Equations

	Bibliography

