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Abstract

This senior thesis attempts to determine the extent to which the P/NP dichotomy of finite
algebras (as proven by Bulatov, et.al in 2017) can be cast in terms of connectedness in Cayley
graphs. This research is motivated by Prof. Robert McGrail’s work “CSPs and Connectedness:
P/NP-Complete Dichotomy for Idempotent, Right Quasigroups” published in 2014 in which
he demonstrates the strong correspondence between tractability and total path-connectivity in
Cayley graphs for right, idempotent quasigroups. In particular, we will introduce the notion of
total V-connectedness and show how it could be potentially used to phrase the dichotomy in
terms of connectivity for another class of algebras, namely for Quay algebras.
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1
Introduction

Constraint Satisfaction Problems (CSPs) [1] are mathematical problems expressed as a set of

objects: a variable set, a value domain and a set of constraints. Their goal is to produce vari-

able assignments which satisfy given limitations. CSPs are widely used in the field of artifi-

cial intelligence as well as operations research. In 2017, Andrei A. Bulatov [3] proved that for

every constraint language Γ, the problem CSP (Γ) is either solvable in polynomial (P) or non-

deterministic polynomial (NP) time. In Prof. Robert McGrail’s paper “CSPs and Connectedness:

P/NP-Complete Dichotomy for Idempotent, Right Quasigroups” published in 2014 [2], the au-

thors proved that an idempotent, right quasigroup Q is path-connected in its right Cayley graph

if and only if it has a Merling term. They reduced the problem of P/NP classification of such

quasigroups to the search for Merling terms in Q. The goal of this project is to continue the

authors’ research and attempt to express the P/NP dichotomy of finite algebras in terms of con-

nectedness of their Cayley graphs. In order to do so, we restrict our study to binary algebras due

to the fact that Cayley graphs are generally constructed from algebras with binary operations.

We start our research by examining Cayley graphs of algebras with a weak near-unanimity term,

an operation whose existence implies tractability.



2 INTRODUCTION

1.1 Summary

First, we discuss the background knowledge behind our research. In Chapter 2, we describe

Constraint Satisfaction Problems and in the next chapter introduce the idea of a CSP over an

algebra. In the fourth chapter we proceed to summarize the results of the aforementioned publi-

cation [3] regarding the dichotomy of finite CSPs. Chapter 5 presents our results on connectivity

of a Cayley graph with regard to the existence of a near-unanimity and weak near-unanimity

term. We also introduce notions of weak-connectedness and V-connectivity. In the next chapter

we conclude the results from Prof. McGrail’s paper “CSPs and Connectedness: P/NP-Complete

Dichotomy for Idempotent, Right Quasigroups” [2] as well as phrase the dichotomy for this

group of algebras using the notion of V-connectedness. Lastly, Chapter 7 describes our results

on V-connectedness for Quay algebras.



2
Constraint Satisfaction Problems (CSPs)

Definition 2.0.1. A Constraint Satisfaction Problem (CSP) [1] is formally defined as a triple

〈X,D,C〉 where:

• X = {x1, . . . , xn} is a variable set,

• D = {d1, . . . , dn} is a nonempty domain of values for each variable,

• C = {c1, . . . , ck} is set of constraints.

Each constraint ci ∈ C is a pair (tj , ρj) where tj is a tuple of variables of length mj , called the

constraint scope, and ρj is an mj-ary relation on the corresponding domains, called the constraint

relation. A state is an assignment of values to some (incomplete assignment) or all (complete

assignment) variables. An assignment is consistent if it does not violate any constraints. The

solution to a CSP is a complete and consistent assignment that satisfies all the constraints. Some

CSPs also require a solution to maximize an objective function. 4

There are CSPs with discrete or continuous variables. Discrete CSPs can have finite or infinite

domains. Boolean CSPs are examples of the former group where the variables can either take true

or false values. They include instances which are known to be NP-complete. Many scheduling

problems are instances of the latter type of CSPs. With infinite domains, a constraint language
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must be employed in order to express the variable constraints. CSPs with continuous variables

are commonly studied in operations research, including the problem of scheduling experiments

on the Hubble Space Telescope [10].

We can also differentiate constraint satisfaction problems based on the type of their constraints.

The varieties comprise of unary, binary and higher-order constraints depending on whether they

relate one, two or more than two variables, respectively.

Example 2.0.1. 3-satisfiability (called 3-SAT or 3CNFSAT) is an example of a boolean con-

straint satisfaction problem that is known to be NP-complete [9]. The goal of this problem is to

determine the satisfiability of a formula in conjunctive normal form (CNF) where each clause

has at most three literals. For example, (x1 ∨¬x2 ∨¬x4)∧ (x2 ∨x3 ∨x5)∧ (x4 ∨¬x6) is a 3-SAT

expression. It has 3 clauses, each with no more than 3 literals. We can rewrite this 3-SAT in-

stance into constraints of form 〈(xi1 , xi2 , xin), R〉 where R is a relation over the given expression.

Thus we obtain a set C containing the following constraints:

c1 = 〈(x1, x2, x4), {(1, 0, 0), (1, 0, 1), (1, 1, 1), (1, 1, 0), (0, 1, 0), (0, 0, 0), (0, 0, 1)}〉

c2 = 〈(x2, x3, x5), {(1, 0, 0), (1, 0, 1), (1, 1, 1), (1, 1, 0), (0, 1, 0), (0, 1, 1), (0, 0, 1)}〉

c3 = 〈(x4, x6), {(1, 0), (0, 0), (1, 1)}〉.

Notice, each of these constraints contain all possible variable assignments except for the ones

that make a given clause false. A solution to this problem is an assignment of truth values from

D = {0 (false), 1 (true)} to our variable set X = {x1, . . . , x6} so that all the constraints above

are satisfied and thus force the Boolean expression to evaluate to true. ♦
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CSPs and Algebras

3.1 Definitions

Definition 3.1.1. In universal algebra, an algebra is a structure which consists of a set of

elements A together with a collection of operations on A. An k-ary operation on A is a function

that takes k elements from A and returns one element of A. Algebras with one basic operation

are usually expressed by their Cayley tables. 4

Example. The projection algebra Un is a binary algebra (A, ∗) on the underlying set A =

{0, 1, . . . , n} defined by x ∗ y = x for all x, y ∈ A. The Cayley table for the algebra U2 looks as

following: ♦

Figure 3.1.1. Cayley Table for U2.

Definition 3.1.2. A binary algebra A with an operator ∗ is idempotent if for all x ∈ A we have

x ∗ x = x. 4
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Definition 3.1.3. Let A be an algebra. Then B is a subalgebra of A, denoted by B ≤ A if

B ⊆ A and every fundamental operation of B is the restriction of the corresponding operation

of A, i.e., for each function symbol f , fB is fA restricted to B. 4

Definition 3.1.4. Let A be an algebra. Then a subpower of A is a subalgebra of An. By Sub(A)

we denote the class of subpowers of A. 4

Definition 3.1.5. Let A be a finite algebra and let the set of all subsets of An (relations) for

some n be denoted as RA. Then all the constraint relations can be expressed as relations from

RA. For a set of relations Γ ∈ RA, CSP (Γ) is a problem in which all constraint relations come

from Γ. This problem is referred to as a nonuniform CSP and the set Γ is called a constraint

language. Notice, in CSP (Γ) an instance is a pair (V,C) where V is the set of variables and

C the set of constraints. Each constraint ci ∈ C is a pair 〈si, Ri〉, where si = (v1, . . . , vn) is a

variable tuple and Ri ∈ Γ is an n-ary constraint relation. The solution of CSP (Γ) is a mapping

ϕ : V → A s.t. for every ci ∈ C, ϕ(si) ∈ Ri. 4

Definition 3.1.6. Let F denote the set of operations on an algebra A. Then CSP (A) can be

expressed as a class of nonuniform CSPs as follows CSP (A) = {CSP (Γ) | Γ ≤ Sub(A)}. 4

Example. The 3-coloring problem is an example of a CSP over the projection algebra U3,

where U3 consists of the underlying set {0, 1, 2}. 3 coloring is known to be NP-complete. Given

a graph G(V,E), where V is a set of vertices (or variables in the language of CSPs) and E a

set of edges, the coloring problem asks whether there exists an assignment of 3 colors to the

vertices c : V → {0, 1, 2} such that no two adjacent vertices have the same color: ∀(u, v) ∈ E,

c(u) 6= c(v).

I.e. consider graph G with V = {v1, . . . , v5} and E = {e1, . . . , e5} shown in Figure 3.1.2:

For each edge we will have a constraint of form ce = 〈(vn, vm), Rk〉, where vn, vm ∈ V and

Rk represents a constraint relation consisting of tuples tij = (xi, xj) where xi, xj ∈ {0, 1, 2}.

Consider the following set of constraints:

C =
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Figure 3.1.2. Graph G with five vertices and 6 edges.

{〈(v1, v2), {(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)}〉,

〈(v1, v5), {(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)}〉,

〈(v1, v4), {(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)}〉,

〈(v2, v3), {(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)}〉,

〈(v3, v4), {(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)}〉,

〈(v3, v5), {(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)}〉}.

The solution to this problem is an assignment of {v1, v2, . . . , v5} to {0, 1, 2} that is complete and

does not violate any constraint c in C.

Consider an assignment f such that f(v1) = 0, f(v2) = 1, f(v3) = 0, f(v4) = 2 and f(v5) = 1.

Notice, f does not violate any of the constraints. Thus G is tri-colorable. The 3-coloring of G

yielded by this assignment is visualized below in Figure 3.1.3. We assign the values 0,1,2 to

colors green, red and blue, respectively.

Figure 3.1.3. Instance of 3-coloring for Graph G.
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♦

3.2 Background

In 1999, Feder and Vardi conjectured that the class of all CSPs exhibits P/NP-complete di-

chotomy [5]. If a CSP is not NP-complete, then it is tractable. It is still unknown whether the

class of NP-complete problems is distinct from the class of P problems.
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Proof of The Dichotomy Conjecture

There have been many advances to prove the P/NP-complete dichotomy theorem for all algebras.

Peter E. Jeavons et al. observed that polymorphisms (higher order symmetries of constraint

languages) are of great importance to the study of CSPs.

4.1 Definitions

Definition 4.1.1. A polymorphism of a relation R over an algebra A is an operation

f(x1, . . . , xn) on A such that for any a1, . . . , ak ∈ R, f(a1, . . . , an) ∈ R. In this case, we

say that R is invariant with respect to f . Thus, a polymorphism of a constraint language Γ is

an operation which is a polymorphism of every R ∈ Γ. 4

Definition 4.1.2. A k-ary weak near-unanimity operation (WNU) is a polymorphism

w(x1, . . . , xk) over A such that for any x, y ∈ A we have w(y, x, . . . , x) = · · · = w(x, . . . , x, y) =

z. 4

Definition 4.1.3. A k-ary near-unanimity operation (NU) is a polymorphism u(x1, . . . , xk) over

A such that for any x, y ∈ A we have u(y, x, . . . , x) = · · · = u(x, . . . , x, y) = x. 4

Notice, a near-unanimity term is an instance of a weak near-unanimity operation, however with

a stronger condition.
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4.2 Background

In his paper “A dichotomy theorem for nonuniform CSPs” (2017), Bulatov states that by Def-

inition (3.1), tractability of CSP (A) can be understood as the existence of a polynomial time

algorithm for each CSP (Γ) from this class or a uniform polynomial time algorithm for all of

the problems. He shows that these notions of tractability are equivalent. He also proves that for

any constraint language Γ over a finite set of problems, CSP (Γ) is either solvable in polynomial

time or is NP-complete.

Ultimately, he states this result in a stronger form and shows that for an idempotent, finite

algebra A the following are equivalent:

1. CSP (A) is solvable in polynomial time,

2. A has a weak near-unanimity term,

3. every algebra from HS(A) (which is a set of all quotient algebras of all subalgebras of A)

has a nontrivial term operation of form f(x1, . . . , xn = xi) for some n, k ∈ N, which is not

a projection.

Otherwise, CSP (A) is NP-complete. Bulatov presents a polynomial time algorithm for solving

CSPs which returns a solution if one exists.

In 2017, the same result was obtained by Dimitriy Zhuk in his independent work “A Proof

of CSP Dichotomy Conjecture” [4]. The author introduces an algorithm that solves a CSP in

polynomial time for constraint languages with a weak near unanimity polymorphism and, using

this result, proceeds to confirm the dichotomy conjecture.
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Definition 5.0.0. In graph theory a directed path is a path in which the edges are all oriented

in the same direction. For example, a path x→ y → z is a directed path. 4

Definition 5.0.1. A Cayley graph is a diagram which encodes the structure of an algebra. We

differentiate between a right and a left Cayley graph. Let A be an algebra with binary operations

{∗, /}.

The right Cayley(A) is a graph where each element of A is assigned a vertex and there is an

edge between x and y in A labeled a if x ∗ a = y or x/a = y.

Similarly, the left Cayley(A) is a graph where each element of A is assigned a vertex and there

is an edge between x and y in A such that a ∗ x = y or a/x = y. 4

Each Cayley(A) is path connected if there exists a directed path from each vertex to another

vertex. If both right Cayley(A) and left Cayley(A) are path connected, then we say that A is

path connected. Cayley(A) is weakly connected if there exists an undirected path between any

pair of vertices. Analogously, if both right and left Cayley(A) are weakly-connected, then we

describe A as weakly-connected. Otherwise, A is said to be disconnected.
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Example. The following Figure 5.0.1 presents the Cayley table and Cayley graph for an algebra,

which we will later refer to as the Tait quandle. Observe, right Cayley(A) is exactly same as

left Cayley(A), therefore we speak of one Cayley(Tait) graph. Notice, Cayley(Tait) is path-

connected, and therefore Tait is path-connected. ♦

Figure 5.0.1. Cayley table and graph for the Tait quandle.

In his paper on the dichotomy result for idempotent right quasigroups, Prof. McGrail demon-

strates that if an algebra A has a U2 in its variety, then it is NP-complete (Lemma 13). He

proves this by arguing that due to U2 being NP-complete by its unary factor, there exists an

NP-complete CSP over A. Hence A is also NP-complete.

Lemma 5.0.1. If an algebra A has a projection algebra U2 or T2 which is a transpose (twisted

version) of U2 in its variety, then A is NP-complete [2].

Proof. McGrail proves this by showing that there is a subpower R ≤ An such that there exists

a homomorphism h : R → U2. Since U2 is known to be NP-complete by its unary factor, then

there exists an NP-complete CSP over R which is also a CSP over A. Hence CSP(A) is NP-

compete and therefore A is also NP-complete. This is certainly true for T2 as well, since the

3-SAT problem is also a problem over the transpose of U2.
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5.1 Weak Near-Unanimity Terms

Definition 5.1.1. Let A be an algebra with binary operations and let t(x1, . . . , xk) be a k-nary

operation of A. Let ‘◦’ denote any operator in A. Using recursion on the number of instances

of operators in the term t, denoted as n, we define the notion of the leftmost variable in t as

follows:

Base case: n = 0. We have t(x1, . . . , xk) = xi for some i ∈ 〈1, k〉. Then xi is the leftmost variable

in t.

For any n ≥ 1 we have:

t(x1, . . . , xk) = r(x1, x2, . . . , xk) ◦i s(x1, x2, . . . , xk) where r and s are some k-nary operations of

A. Let the leftmost variable of t be the leftmost variable of r. 4

Definition 5.1.2. Let A be an algebra with binary operations and let t(x1, . . . , xk) be a k-nary

operation of A. Let ‘◦’ denote any operator in A. Using recursion on the number of instances

of operators in the term t, denoted as n, we define the notion of the rightmost variable in t as

follows:

Base case: n = 0. We have t(x1, . . . , xk) = xi for some i ∈ 〈1, k〉. Then xi is the rightmost

variable in t.

For any n ≥ 1 we have:

t(x1, . . . , xk) = r(x1, x2, . . . , xk) ◦i s(x1, x2, . . . , xk) where r and s are some k-nary operations of

A. Let the rightmost variable of t be the rightmost variable of s. 4

These two definitions will be used in Theorem (5.2.1) and Theorem (5.3.1) in the next two

sections.

5.2 Existence of a Near-Unanimity Term Implies Path-connectedness

Theorem 5.2.1. Let u(x1, . . . , xk) be a k-ary near-unanimity operation over an algebra A with

binary operations. Then both left and right Cayley(A) are path-connected. Thus A is path-

connected.
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Proof. We will prove the path-connectedness of the right Cayley(A) and then left Cayley(A)

respectively.

Case 1: Let xi denote the leftmost variable in the near-unanimity operation u. We know that

∀x, y ∈ A, u(x, x, . . . , y) = u(x, x, . . . , y, x) = · · · = u(y, x, x, . . . , x) = x. We consider the

instance in which we place y at the position of the i-th variable: t(. . . , y, . . .) = x. Notice, this

term starts with y and ends with x. Thus, for every pair (x, y) ∈ A there exists a path from

y to x and by analogy from x to y in right Cayley(A). We conclude that right Cayley(A) is

path-connected.

Case 2: Let xi denote the rightmost variable in the near-unanimity operation u. We know

that ∀x, y ∈ A, u(x, x, . . . , y) = u(x, x, . . . , y, x) = · · · = u(y, x, x, . . . , x) = x. We consider the

instance in which we place y at the position of the i-th variable: t(. . . , y, . . .) = x. Notice, this

term starts with y and ends with x. Thus, for every pair (x, y) ∈ A there exists a path from y

to x and analogically from x to y in left Cayley(A). We conclude that left Cayley(A) is path-

connected.

Thus we have shown that A is path-connected.

We observe that if an algebra A has a near-unanimity term, then by Bulatov [3] and Zhuk [4] it

is tractable and its Cayley graph is path-connected. It is worth mentioning that we are not sure

whether this is true in the opposite direction. Given an algebra A with path-connected Cayley

graphs, we do not know whether A is tractable or if it has a near-unanimity term.

The existence of a near-unanimity term is a very strong condition for an algebra and therefore,

in the next chapter, we consider a broader group of polymorphisms that contains near-unanimity

terms. Thus, we proceed to explore what the existence of a weak near-unanimity term implies

about the structure of an algebra’s Cayley graph.
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Figure 5.2.1. Path connectedness with paths of length n from y to x and x to y where a1, . . . , an, b1, . . . bn ∈
{x, y} and s1, . . . , sn−1, v1, . . . , vn−1 ∈ A.

5.3 Weak connectedness for Weak Near-Unanimity terms

Theorem 5.3.1. Let w(x1, . . . , xk) be a k-ary weak near-unanimity operation over an algebra

A with binary operations. Then both right and left Cayley(A) are weakly-connected. Thus A is

weakly-connected.

Proof. We will prove the weak-connectedness of the right Cayley(A) and then left Cayley(A)

respectively.

Case 1: Let xi denote the leftmost variable in the weak near-unanimity operation u. From def-

inition of a WNU we have ∀x, y ∈ A, w(x, x, ..., y) = w(x, x, . . . , y, x) = · · · = w(y, x, . . . , x) = z

for some z ∈ A. We consider instances of the term in which we substitute xi with y and x

respectively. We have t(. . . , y, . . .) = t(. . . , x, . . .) = z. Notice, the former is a path from y to

z and the latter is a path from x to z. Note, both paths are of equal length. Since there is an
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undirected path for each pair of elements in A, right Cayley(A) is weakly-connected.

Case 2: Let xi denote the rightmost variable in the weak near-unanimity operation u. From def-

inition of a WNU we have ∀x, y ∈ A, w(x, x, ..., y) = w(x, x, . . . , y, x) = · · · = w(y, x, . . . , x) = z

for some z ∈ A. We consider instances of the term in which we substitute xi with y and x

respectively. We have t(. . . , y, . . .) = t(. . . , x, . . .) = z. The former is a path from y to z and the

latter is a path from x to z. Note, both paths are of equal length. Since there is an undirected

path for each pair of elements in A, left Cayley(A) is weakly-connected.

Thus we have shown that A is weakly-connected.

Figure 5.3.1. Weak connectedness with paths of length n from x and y to a common z where
a1, . . . , an, b1, . . . , bn ∈ {x, y} and z, s1, . . . , sn−1, v1, . . . , vn−1 ∈ A.

We observe that if an algebra A has a weak near-unanimity term, then it is tractable and both its

Cayley graphs are weakly-connected. On top of the weak-connectedness, we also get a stronger

restriction on the structure of the Cayley graphs. We know that for any pair of vertices there

are paths of equal length from those vertices to some common vertex.
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Example. Consider a binary algebra B defined by the Cayley table in 5.3.2.

Figure 5.3.2. Algebra B with 3 elements and a binary operation ∗.

In Figure 5.3.3 we build a Cayley graph for B and notice that both left and right Cayley(B)

are exactly the same. We observe that B is weakly-connected and that for each pair x, y ∈ B

there exists a path of length 1 to some common vertex z. In this example, (0, 1) both go to 2,

(1, 2) both have a path to 2, and (0, 2) also go to a common vertex 2. In the trivial cases (0, 0)

both go to 0, (1, 1) go to 1 and (2, 2) go to 2. We do not know whether this algebra is tractable,

but since it does not contain the projection algebra U2 we suspect it is solvable in polynomial

time. ♦

Figure 5.3.3. Right and left Cayley(B).
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5.4 Definition of V-connectedness

In the last section we observe that the existence of a WNU polymorphism in an algebra puts

some strong restrictions on the type of connectedness in the algebra’s Cayley graph. We try to

relax some of these restrictions and introduce a broader notion of ”V-connectedness”.

Definition 5.4.1. For an algebra A, we say Cayley(A) is V-connected if for all x and for all y

in A there exists z in A such that there are paths from x to z and y to z. These paths need not

be of the same length. 4

Figure 5.4.1. V-connectivity: path of length n from x to z and path of length k from y to z where
a1, . . . , an, b1, . . . , bk ∈ {x, y} and z, s1, . . . , sn−1, v1, . . . , vn−1 ∈ A.

Example. Consider a binary algebra C defined by the following Cayley table:

In Figure 5.4.3 we build Cayley graphs for C. We observe that both right and left Cayley(C)
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Figure 5.4.2. Algebra C with 6 elements and a binary operation ∗.

are V-connected (but not path-connected). In both Cayley graphs for every x, y ∈ C there is

a path from x and from y to some common vertex z ∈ C. The lengths of these paths can be

different. For example, in right Cayley(C), for the pair (2, 3), there is path of length two from

the vertex 2 to 5 and there is a path of length one from 3 to 5.

♦

Figure 5.4.3. From left to right: Right and Left Cayley(C).
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6
P/NP-Complete Dichotomy for Idempotent, Right
Quasigroups

According to Prof. McGrail’s work “CSPs and Connectedness: P/NP-Complete Dichotomy for

Idempotent, Right Quasigroups” [2] it follows that we can fully characterize these algebras,

along with their tractability, in terms of connectedness in their right Cayley graphs. This is due

to the fact that they possess right-cancellation properties. Thanks to this result we are able

to comprehend these algebras better as connectedness provides us with a visualization of the

problem.

It has been shown that the existence of a ternary Malcev term [6] in an algebra implies that the

algebra is tractable. This paper [2] introduces another term-based test for tractability for right,

idempotent quasigroups, namely the binary Merling term. This new term determines the P/NP

dichotomy for this group of algebras. Moreover, it turns out that the existence of a Merling term

determines a strong notion of connectedness in the right Cayley graph of these algebras. In the

end, the authors provide the readers with a notion of a Merling condition, a first order formula,

that axiomatizes the P/NP dichotomy for involuntory quandles, a subclass of right, idempotent

quasigroups.
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6.1 Definitions

Definition 6.1.1. An idempotent, right quasigroup Q [2] consists of a set Q along with two

binary basic operations ∗, / : Q2 → Q that satisfy the following axioms:

1. Idempotence: ∀x ∈ Q, x ∗ x = x,

2. Right Cancellation I: ∀x, y ∈ Q, (x ∗ y)/y = x,

3. Right Cancellation II: ∀x, y ∈ Q, (x/y) ∗ y = x.

Notice, Un is an idempotent, right quasigroup where the operations ∗, / are identical. Also, Un

is known to be NP-complete for n ≥ 2 since it admits the NP-complete 3-SAT problem. 4

Definition 6.1.2. Let A be an algebra. A Mal’cev term for A is a ternary term p(x, y, z) such

that p(x, y, y) = x and p(x, x, y) = y in A. It has been proven by Andrei Bulatov and Victor

Dalmau [6] that if A has a Mal’cev term, then A is tractable. 4

Definition 6.1.3. Let Q be an idempotent, right quasigroup. Then a binary term m(x,y) in Q

is a Merling term [2] if for all x, y in Q, m(x, y) = y but m(x, y) = x in U2 which means that

m(x, y) begins with x. 4

Definition 6.1.4. Let Q be an idempotent, right quasigroup.

(i) Q is locally path-connected if every subalgebra Q′ ≤ Q is path-connected.

(ii) Q is totally path-connected if for all n ∈ N and Q′ ≤ Qn, Q′ is locally path-connected.

(iii) Q is uniformly path-connected if it has a Merling term. [2]

4

Definition 6.1.5. Let A be an algebra and let F be a set of binary operations. Then A with

generators X is free over a class of algebras with binary operations F if for every every algebra

B in that class and any function f : X → B there exists a unique F -homomorphism g : A→ B

such that g agrees with f on X. 4
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Definition 6.1.6. A quandle Q consists of a set Q together with two binary operations ∗, / :

Q2 → Q that satisfy the following axioms:

1. Idempotence: ∀x ∈ Q, x ∗ x = x,

2. Right Cancellation I: ∀x, y ∈ Q, (x ∗ y)/y = x,

3. Right Cancellation II: ∀x, y ∈ Q, (x/y) ∗ y = x,

4. Right Self-Distributivity: ∀x, y, z ∈ Q, ((x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z)).

The first-order theory of quandles was first introduced by David Joyce in his work “A classi-

fying invariant of knots; the knot quandle” [7]. It is based on the “crossover algebra” of three-

dimensional knots. Quandles form a subclass of right, idempotent quasigroups so all the results

that apply to the larger group of algebras also apply to quandles. 4

Definition 6.1.7. An quandle Q with binary operations {∗, /} satisfies the Merling condition

if: Q |= ∀xy(x ∗ y = x =⇒ x = y).

It was shown that if Q satisfies the Merling Condition, then Qn also satisfies it for any n ∈ N. 4

Definition 6.1.8. An involuntary quandle Q consists of a set Q together with a binary operation

∗ : Q2 → Q that satisfies the following axioms:

1. Idempotence: ∀x ∈ Q, x ∗ x = x,

2. Right Cancellation: ∀x, y ∈ Q, (x ∗ y) ∗ y = x,

3. Right Self-Distributivity: ∀x, y, z ∈ Q, ((x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z)).

Notice, an involuntary quandle is a quandle where the operation ∗ is equivalent to /. 4

6.2 Background

In the paper “CSPs and Connectedness: P/NP-Complete Dichotomy for Idempotent, Right

Quasigroups” [2], the authors showed that an idempotent right quasigroup Q has a Merling

term if and only if it has a Malcev term. Notice, m(x, y) = y is a path from x to y in Q. Thus,
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if Q is uniformly connected, then it is tractable and Cayley(Q) is path-connected.

They also demonstrated that Q is totally path-connected if and only if it has a Merling term.

They let F (2, Q) be the free term algebra on two generators over Q. It follows that F (2, Q) is a

subpower of Q. First they let Q be totally path-connected. This means that its subpowers also

have to be path-connected. Hence there is a path in the right Cayley graph from x to y for the

generators x, y ∈ F (2, Q). This path corresponds to a sequence of translations by binary terms in

F (2, Q) from which the authors build the Merling term m(x, y) which is also a Merling term in

Q. In the next step, they let Q be an idempotent, right quasigroup with a Merling term m(x, y).

Since all the algebras in the variety of Q must satisfy m(x, y) = y it follows that for all n ∈ N

R ≤ Qn has to inherit this Merling term. Thus each subpower R of Q is locally path-connected

and thus Q is totally path-connected.

For the converse, the authors proved that if Q is not totally path-connected, then U2 is in

its variety. They extended the result to all algebras and showed that if any algebra A has U2 in

its variety, then it is NP-complete.

Finally, they demonstrated the Dichotomy Theorem for right, idempotent quasigroups which

states that if an idempotent, right quasigroup Q is not NP-complete, then it must be tractable.

Equivalently, Q is NP-complete if and only if Q is not totally path-connected.

Then the authors proceeded to demonstrate that if a finite quandle Q does not satisfy the

Merling condition, then U2 must be a subalgebra of Q. In the following step, they prove that

the Merling condition axiomatizes the P/NP dichotomy for finite, involuntary quandles. Thus,

if a finite, involuntary quandle does not satisfy the Merling condition then U2 is a subalgebra

of Q thus Q is NP-complete. Otherwise, they show that Q must be totally path-connected and
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therefore tractable.

6.3 Tractability Phrased in Terms of V-connectedness for Right,
Idempotent Quasigroups

In this section we present our results regarding tractability of right, idempotent quasigroups

with regard to the notion of V-connectedness that was introduced in Chapter 5.

Definition 6.3.1. Let Q be an idempotent, right quasigroup. Q is totally V-connected if for all

n ∈ N and Q′ ≤ Qn, Q′ is V-connected. 4

Theorem 6.3.1. A right, idempotent quasigroup Q is totally V-connected iff it is tractable.

Lemma 6.3.2. If Q is V-connected, then it is path-connected in its Cayley graph.

Proof. Suppose Q is V-connected. This means that ∀x∀y ∈ Q ∃z ∈ Q such that there are paths

from x to z and y to z. Thus there is a path of length n from y to z and so we have a sequence

of operations starting from y and ending at z that has form: ((. . . (y ◦1 v1) ◦2 v2) ◦3 . . .) ◦n vn = z

where v1, . . . vn ∈ Q. Given right-cancellation, there must exist a sequence of term operations

from z to y: ((. . . (z ◦ n
′vn) ◦′n−1 vn−1) ◦′n−2 . . .) ◦′1 v1 = y where by ◦′k we denote the operation

‘∗’ if ◦k = /, and the operation ‘/’ if ◦k = ∗. Since there exists a path from x to z and z to y,

we conclude that there exists a path from x to y for any x, y ∈ Q. Hence Q is path-connected

in its Cayley graph.

Proof. Let Q be totally V-connected right, idempotent quasigroup. Since Q is totally V-

connected, so is F (2, Q) (since as mentioned in Lemma 6.3.3, it is a subpower of Q). Then

let A be a subpower of Q and let a, b ∈ A. Consider the function on {x, y} that sends x to

a and y to b. Notice, since F (2, Q) is a subpower of Q then all the axioms in Q also hold for

the free term algebra and therefore F (2, Q) must also be an idempotent, right quasigroup. So,

since F (2, Q) is V-connected, then by Lemma 6.3.2 it has to be path-connected. Hence, there

exists z1, z2, . . . , zn ∈ F (2, Q) where ((x ∗ z1) ∗ z2) ∗ · · · ∗ zn = y. Recall, freeness says there is
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a unique homomorphism H : F (2, Q) → A that sends x to a and y to b. Consider b = H(y) =

H(((x∗z1)∗z2)∗· · ·∗zn) = ((H(x)∗H(z1))∗H(z2))∗· · ·∗H(zn) = ((a∗H(z1))∗H(z2))∗· · ·∗H(zn)

which is a path in right Cayley(A) from a to b. Thus A is (right) path-connected. With regard

to the dichotomy result from the previous chapter, since all subpowers of Q are path-connected,

then we conclude that Q is totally path-connected. Thus Q has to be tractable.

Now let Q be tractable. Then, by Chapter 5, we know it has a Merling term and therefore

it is totally path-connected. Since it is totally path-connected then it follows that it is totally

V-connected.



7
Quay Algebras and Results

In the last chapter we found a more relaxed notion of connectivity, as compared to path-

connectivity, which was still be able to determine the tractability of some algebras. In particular,

with V-connectedness we were able to phrase tractability for right, idempotent quasigroups. In

the next step, we want to investigate whether there exists a larger universe of algebras for which

we could translate the P/NP dichotomy into the notion of V-connectivity. That being said, we

will examine Quay algebras which contain all finite, involuntary quandles but do not necessarily

have right-cancellation properties.

7.1 Definitions

Definition 7.0.1. A Quay algebra Q [2] consists of a set Q along with a binary operation

∗ : Q2 → Q that satisfies the following axioms:

1. ∀x ∈ Q, x ∗ x = x,

2. ∀x, y, z ∈ Q, (((x ∗ z) ∗ y) ∗ z) = x ∗ (y ∗ z).

All involuntary quandles and semilattices (see definition below) belong to Quay algebras. 4

Definition 7.0.2. A semilattice S is an algebraic structure with a set S and a binary operation

∗, which satisfies the following axioms:
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1. ∀x ∈ S, x ∗ x = x,

2. ∀x, y ∈ S, (x ∗ y = y ∗ x),

3. ∀x, y, z ∈ S, ((x ∗ y) ∗ z) = x ∗ (y ∗ z).

It has been shown by Jeavons, Cohen and Gyssens in their work “Closure properties of con-

straints” that all semilattices are tractable. 4

7.2 Results

7.2.1 Quay algebras and V-connectedness

Theorem 7.2.1. Let Q be a Quay algebra and let F (2, Q) denote the the free term algebra

on two generators over Q. If F (2, Q) is left (right) V-connected, then Q is totally left (right)

V-connected.

Proof. Let Q be a Quay algebra. Suppose that F (2, Q) is V-connected. Let A be a subalgebra

of Q and let a, b ∈ Q. Consider the function on {x, y} that sends x to a and y to b. Since F (2, Q)

is V-connected then there must exists some z ∈ F (2, Q) such that there is a path from x to z and

y to z. Hence for some n, k ∈ N we have v1, v2, . . . , vn ∈ F (2, Q) and w1, w2, . . . , wk ∈ F (2, Q)

such that (((x ∗ v1) ∗ v2) ∗ . . .) ∗ vn = z and (((y ∗ w1) ∗ w2) ∗ . . .) ∗ wk = z. Recall, freeness

says there is a unique homomorphism H : F (2, Q) → A that sends x to a and y to b. Consider

H(z) = H((((x ∗ v1) ∗ v2) ∗ . . .) ∗ vn) = ((H(x) ∗H(v1)) ∗H(v2)) ∗ · · · ∗H(vn) = ((a ∗H(v1)) ∗

H(v2)) ∗ · · · ∗ H(vn) which is a path in Cayley(A) from a to some H(z) ∈ A. Similarly, we

have H(z) = H((((y ∗ w1) ∗ w2) ∗ . . .) ∗ wk) = ((H(y) ∗ H(w1)) ∗ H(w2)) ∗ · · · ∗ H(wk) =

((b ∗ H(w1)) ∗ H(w2)) ∗ · · · ∗ H(wk) which is a path in Cayley(A) from b to H(z) ∈ A. Since

there is a path from a to H(z) and a path from b to H(z) in Cayley(A), then we conclude that

A is V-connected. Thus we have shown that all subpowers of Q are V-connected, so Q is totally

V-connected.

Conjecture 7.2.2. Let Q be a Quay algebra. If F (2, Q) is V-connected in both its left and right

Cayley graph then Q is tractable. Otherwise it is NP-complete.
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We believe that the sufficient condition to determine the tractability of a Quay algebra Q is its

total V-connectedness in both right and left Cayley(F (2, Q)). We have computed free term al-

gebras on two generators over many examples of Quay algebras. We found that as long they did

not have the unary algebra U2 or T2 as a subalgebra, both their left and right Cayley(F (2, Q))

were V-connected. We present some of the examples below and explain the process of deriving

F (2, A) for a finite, binary algebra A.

7.2.2 Procedure of deriving the free term algebra on two generators over a finite, binary
algebra

Let A be a finite, binary algebra. We let x, y be our two generators. In order to compute F (2, A)

we have to first derive all the identities on two generators in A. We check all possible, unique

terms containing x and y, taking the placement of parentheses into account. We start with ex-

pressions of length 2 and keep increasing their length until we find no new identities - we stop

when all the larger terms can be simplified to the one of the previously found identities.

In the next step, we gradually create a Cayley table for F (2, A). We keep the head row and head

column the same and we fill them out with unique terms consisting of x and y which increase

in length as we progress. We start by placing x and then y in the head row and column. Then

we fill the empty grids in the table by computing (x ∗ x), (x ∗ y), (y ∗ x) and (y ∗ y) using the

identities that we derived in the previous step. If any of the above evaluate to terms that are

not yet present in our head row or head column, then we proceed to add them to the head row

and column (we add x ∗ y and y ∗ x in case both are not defined yet) and compute the resulted

new, empty grids in the table. This process continues until we obtain no new terms inside our

table (we reach closure).

Example. The Lopsided quandle L is a quandle with a binary operations ∗, / (where ∗ = /)

defined by the following Cayley table in Figure 7.2.1:

We start by listing all the identities on two generators that exist in L. We have:
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Figure 7.2.1. Cayley Table for the Lopsided quandle

1. ∀x ∈ L, x ∗ x = x

2. ∀x, y ∈ L, x ∗ (x ∗ y) = x

3. ∀x, y ∈ L, x ∗ (y ∗ x) = x ∗ y

4. ∀x, y ∈ L, (x ∗ y) ∗ x = x ∗ y

5. ∀x, y ∈ L, (x ∗ y) ∗ y = x

6. ∀x, y ∈ L, (x ∗ y) ∗ (y ∗ x) = x

One can verify that these hold by assigning any elements of L to x and y.

Then we proceed to build a Cayley table for F (2, L).

Step 1 : We add x and y to the head column and head row and compute the empty grids inside

the table. We check our list of identities and since x ∗ y and y ∗ x cannot be simplified, we fill

the blanks with those terms. See Figure 7.2.2

Step 2 : Since x∗y nor y ∗x are not present in the current head row and column, then we expand

our rows and columns by those terms. Then, analogically, we evaluate the newly formed empty

grids. We use the following identities to simplify the new terms generated by multiplying the

columns by the rows (starting from first column to last):

• (x ∗ y) ∗ x = x ∗ y by Identity #4
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Figure 7.2.2. Step 1 of building Cayley Table for F (2, L).

• (y ∗ x) ∗ x = y by Identity #5

• (x ∗ y) ∗ y = x by Identity #5

• (y ∗ x) ∗ y = y ∗ x by Identity #4

• x ∗ (x ∗ y) = x using Identity #2

• y ∗ (x ∗ y) = x using Identity #3

• (x ∗ y) ∗ (x ∗ y) = x ∗ y using Identity #1

• (y ∗ x) ∗ (x ∗ y) = x ∗ y using Identity #6

• x ∗ (y ∗ x) = x ∗ y using Identity #3

• y ∗ (y ∗ x) = y using Identity #2

• (x ∗ y) ∗ (y ∗ x) = x using Identity #6

• (y ∗ x) ∗ (y ∗ x) = y ∗ x using Identity #1

This step is shown in Figure 7.2.3.

Step 3: We observe that there are no new terms in the table. This means that we have reached

closure and therefore obtained the final Cayley table for F (2, L).

Now we can build a Cayley graph for F (2, L) using the generated Cayley table. In order to
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Figure 7.2.3. Step 2 of building Cayley Table for F (2, L).

better visualize the graph, we will assign integers 0, 1, 2, 3 to the terms x, y, (x ∗ y) and (y ∗ x),

respectively. The simplified Cayley table for F (2, L) is shown in Figure 7.2.4 and its left and

right Cayley graphs can be seen in Figure 7.2.5 and Figure 7.2.6, respectively. Observe, the initial

Lopsided quandle is disconnected in its right Cayley graph since the vertex 2 forms a discon-

nected component. Thus, L has to be NP-complete. Notice, F (2, Q) is path-connected (which

means it is also V-connected) in its left Cayley graph but disconnected in its right Cayley graph.

♦
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Figure 7.2.4. Simplified Cayley Table for F (2, L).

7.2.3 Examples for Quay algebras

In order to obtain examples of Quay algebras we used the program Mace4 [15] which searches for

finite models conforming to user-provided formulas and assumptions. First, we decided to restrict

our search to Quay algebras of size 3 which are neither involuntary quandles nor semilattices.

To do so, we inputted the following constraints into the program:

all x (x ∗ x = x).

all x all y all z (((x ∗ z) ∗ y) ∗ z = x ∗ (y ∗ z)).

exists x exists y ((x ∗ y) ∗ y 6= x).

exists x exists y (x ∗ y 6= y ∗ x).

The first two assumptions are axioms for a Quay algebra. The next two make sure that we do not

get quandles and semilattices by removing right-cancellability and commutativity, respectively.

We included 2 examples below along with their free algebras over two generators.

Example. In Figure 7.2.7 we have the algebra T3 which is the transpose of projection algebra

U3. We generate F (2, T3) in Figure 7.2.8. We observe that it is equivalent to T2. We have shown

the right and left Cayley graph of F (2, T3) in Figure 7.2.9. Notice, F (2, T3) is path-connected

in the right Cayley graph, but disconnected in the left Cayley graph.
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Figure 7.2.5. Left Cayley(F (2, L)).

♦

Example. In Figure 7.2.10 we have an algebra Q1 which contains U2 as subalgebra. We gen-

erate F (2, Q1) in Figure 7.2.11. We have shown right and left Cayley graphs of F (2, Q1) in

Figure 7.2.12. Notice, F (2, Q1) is V-connected in its right, but disconnected in its left Cayley

graph.

♦

Then, we searched for an example of a semilattice of size 3 that has no right-cancellation. We

inserted the following assumptions into the Mace4 program:

all x (x ∗ x = x).

all x all y (x ∗ y = y ∗ x).

all x all y all z ((x ∗ y) ∗ z = x ∗ (y ∗ z)).

exists x exists y ((x ∗ y) ∗ y! = x).

Example. We show one of the found algebras, a semilattice S in Figure 7.2.13. It turns out

that F (2, S) is identical as S itself. In Figure 7.2.14 we show left and right Cayley graphs of S

which happen to be identical to each other. Notice, Cayley(F (2, S)) which is same as Cayley(S)

is not path-connected but it is V-connected.
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Figure 7.2.6. Right Cayley(F (2, L)).

Figure 7.2.7. Quay algebra T3.

♦

From these examples we can observe that when a Quay algebra Q contains Un or Tn, at least

one (left or right) Cayley(F (2, Q)) is disconnected. We also noticed that S, which is tractable

due to being a semilattice, has a V-connected and not path-connected Cayley(F (2, S)). Thus

we conclude that total path-connectedness does not determine the P/NP dichotomy for Quay

algebras since it is too strong a requirement. However, perhaps the weaker notion of total V-

connectedness is able to determine tractability for this group of algebras.
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Figure 7.2.8. F (2, T3) = T2.

Figure 7.2.9. Right and Left Cayley(F (2, T3)) = Cayley(T2).

Figure 7.2.10. Quay algebra Q1.
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Figure 7.2.11. F (2, Q1).

Figure 7.2.12. Right and Left Cayley(F (2, Q1)).
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Figure 7.2.13. Semilattice S.

Figure 7.2.14. Right and Left Cayley(S) (identical).
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Conclusion

8.1 Results

In Prof. McGrail’s work [2] we saw that the P/NP dichotomy of finite CSPs proved by Bulatov

[3] and Zhuk [4] can be phrased in terms of connectedness in the right Cayley graph for right,

idempotent quasigroups. Prof. McGrail has shown that total path-connectivity is equivalent to

tractability in this group of algebras. As part of this senior thesis we examine Quay algebras

in order to answer the question as to whether there exists a larger universe of algebras for

which the dichotomy could be expressed by some notion of connectedness. As we investigate

weak near-unanimity terms and their implication on the structure of Cayley graphs for algebras,

we introduce the idea of V-connectedness. While much weaker than path-connectedness, this

notion of connectivity still provides a Cayley graph with enough restriction on its structure so

that the algebra could be potentially tractable. In fact, in Chapter 6., we demonstrate that

total V-connectedness in the right Cayley graph can determine the P/NP dichotomy for right,

idempotent quasigroups. In the following chapter we prove that for a Quay algebra Q it is

sufficient to show that its free term algebra over 2 generators is V-connected to demonstrate

that Q is totally V-connected. We then introduce a conjecture in which we propose that total V-

connectivity in both the left and right Cayley graph of a Quay algebra A implies its tractability.

Otherwise, we believe A is NP-complete. The examples of Quay algebras that we provide at
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the end of this chapter strengthen our assumption. What is also worth mentioning, is that the

structure of the Cayley graph of the free term algebra over the semilattice S shows that total

path-connectedness fails to determine the dichotomy for this group of algebras as it is too strong.

8.2 Future work

As for future research, it would be valuable to examine other algebras and investigate the

relationship between connectedness and tractability for them. For example, one could look

into binary algebras with a single operator along with axioms of idempotence and right self-

distributivity.

Another way to extend the project would perhaps be to create a program that would be able

to produce a weak near-unanimity term for a tractable algebra. Bulatov [3] has demonstrated

that there exists a weak near-unanimity isomorphism for every tractable algebra, however, the

problem of generating one given such an algebra is not trivial.
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