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Abstract

A mixed spline is a piecewise polynomial with varying degrees of smoothness. In this project, we
characterize a basis for mixed splines over subdivisions of the reals based on a characterization
for integer spline bases. We use our new characterization to find bases for modules of splines
with boundary conditions with particular differentiability requirements on their boundaries and
compare various aspects of the two.
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1
Introduction

A polynomial spline is a continuous piece wise polynomial function defined over an interval in

R. Splines have been studied extensively due to their applications in data interpolation and

computer graphics.

In this project we study modules of splines with boundary conditions and different differentiabil-

ity requirements over R[x] on intervals in R. Our main goal is to find a basis for these modules.

Upon determining the module basis, we prove that the elements exist using results from [3]. We

then give a corollary giving a module basis for sets of Cr,p splines on intervals in R. We consider

this newfound module basis for Cr,p splines and compare it to a known basis for Cr,0 splines.

We also prove results for the leading terms of the elements of our module basis.

In chapter 2, we remind the reader of some basic number theory and abstract algebra con-

cepts.

In chapter 3, we define and introduce polynomial splines, divided sub-intervals, Cr,p splines

and mixed splines. We study the set of all mixed splines, CM (I), and determine it is a module

over R[x]. We then relay a known basis for Cr,0 splines which we compare to later. We end the

chapter by introducing a polynomial Q and showing that it can be used to determine when a
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basis for CM (I) has been found.

In chapter 4, we introduce and explore the concept of splines on graphs and prove the case

where a spline on a graph corresponds to a CM spline.

In chapter 5, we define and introduce integer splines. We study integer splines on n−cycles

before discussing flow-up classes. These flow-up classes are sets of splines on graphs which have

some number of leading zeroes. We discuss a basis for integer splines which uses particular ele-

ments of these flow-up classes. This basis inspires our own basis for the module of CM splines.

We finish out the chapter with key results proving the existence of particular elements of the

flow-up classes on n−cycle graphs.

In chapter 6, we give an explicit basis for the module of CM splines and prove the existence of

its basis elements. We discuss the form of this basis and its relationship to previously known

bases for modules of integer splines. We then give a corollary for modules of Cr,p splines and

lastly we prove the degrees of the leading terms of the basis elements.

In chapter 7, we compare our basis found in chapter 6 to the known basis for modules of

Cr,0 splines discussed in chapter 3. We compare the two bases as well as the matrices formed

from the basis elements. We prove a relationships between these two matrices. We compare the

sum of the degrees of the basis elements found using the method in chapter 3 and the leading

terms of the elements found using the method in chapter 6, proving that they are equal.
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Preliminaries

The purpose of this chapter is to remind the reader to some concepts from abstract algebra.

These will be important in understanding the spaces we work over. We also define two key

concepts from number theory, those being GCD and LCM. Lastly, we include the generalized

Chinese remainder Theorem which will later be used to show the existence of key splines.

2.1 Abstract Algebra

Definition 2.1.1. Let k be a field. Then k[x] is the set of all polynomials in x with coefficients

in k.

Definition 2.1.2. The leading term of a polynomial f in x is the highest degree term with

a non-zero coefficient.

Definition 2.1.3. A commutative ring R, is a ring in which the binary operation of multi-

plication in R is commutative.

Definition 2.1.4. A zero-divisor is a nonzero element a of a commutative ring R such that

there is a nonzero element b ∈ R such that ab = 0.

Definition 2.1.5. A Ring with unity is a Ring R, which contains an element, usually denoted

1 such that for any element r ∈ R r1 = 1r = r.
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Definition 2.1.6. An integral domain is a commutative ring with unity and no zero-divisors.

Theorem 2.1.7. Let R be a commutative ring, then if R is an integral domain, R[x] is an

integral domain.

Proof. By construction R[x] is a ring, however we must also show that R[x] is commutative

with unity and contains no zero-divisors. R is commutative by construction and therefore so is

R[x]. Let an element 1 ∈ R be the unity element of R. Then let there exist f ∈ R[x] such that

f(x) = 1 is the unity element of R[x] satisfying our first two requirements. next we suppose

f(x) = a1x
b1 + ...an−1x

bn−1 + anx
b
n + a0 (2.1.1)

g(x) = c1x
d1 + ...cm−1x

dm−1 + cmxdm + c0 (2.1.2)

where cman are non-zero, ci, bj ∈ R, and anX
bn and cmXdm are the leading terms of f and g

respectively. Then f · g has leading coefficient ancm. R is an integral domain and so ancm 6= 0.

Therefore for all f, g ∈ R[x], f · g 6= 0. Thus R[x] has no zero divisors and must be an integral

domain.

Definition 2.1.8. A module over a ring R, also called an R-Module is a set M with a

binary operation, written as addition, and an operator of R on M , written as multiplication.

In addition R and M must satisfy the following:

M is closed under addition and scalar multiplication.

M is an abelian group under addition.

For all a ∈ R and all f, g ∈M,a(f + g) = af + ag.

For all a, b ∈ R and all f ∈M, (a + b)f = af + bf.

For all a, b ∈ R and all f ∈M, (ab)f = a(bf).

If 1 is the multiplicative identity in R, 1f = f for all f ∈M.

Definition 2.1.9. A module M is finitely generated if there exists a finite number of elements

g1, g2, ..., gn in M such that g1, g2, ..., gn span M.
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Definition 2.1.10. A subset G ⊂M is called a module basis for M if M is finitely generated

by G and each g ∈ G is linearly independent.

We next outline a few concepts from real algebraic geometry that we will rely on in later

chapters. The following definitions for greatest common divisor and least common multiple

come from [6].

Definition 2.1.11. Let p and q be polynomials with integer coefficients. The greatest common

divisor of p and q is a polynomial g ∈ R[x] such that g is a divisor of both p and q, and any

divisor of both p and q is a divisor of g.

Definition 2.1.12. Let p and q be polynomials with integer coefficients. The least common

multiple of p and q is a polynomial such that g is a multiple of both p and q, and any multiple

of both p and q is a multiple of g.

The following theorem is the Generalized Chinese Remainder theorem.

Theorem 2.1.13. The system of congruences

x ≡ a1 mod m1

x ≡ a1 mod m2

...

x ≡ a1 mod mn

has a solution if and only if (mi,mj)|ai− aj for all pairs of integers (i, j), where 1 ≤ i < j ≤ n.

If a solution exists, then it is unique module [m1,m2, ...,mn].

The proof of this theorem can be found in chapter 2 of [1].
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3
Polynomial Splines

This chapter will focus on polynomial splines in one variable with boundary conditions.These

splines serve as our main object of study for which we develop results for in later chapters. We

begin by defining polynomial splines and what it means for them to have boundary conditions.

We then explore two types of polynomial splines with boundary conditions, Cr,p splines and the

more general CM splines. We prove that the set of all CM splines forms a finitely generated

module, the basis for which we prove later. Lastly, we end the chapter by defining some better

notation for ease of use.

We begin with the definition of a polynomial spline.

Definition 3.0.1. Let I = I1 ∪ I2 ∪ ... ∪ In ⊂ R where

I1 = (−∞, a1], I2 = [a1, a2], ..., In−1 = [an−2, an−1], In = [an−1,∞) and a1 < a2 < ... < an−1. A

polynomial spline over I is a continuous function F : R→ R such that

F |Ij = fj

where fj ∈ R[x] for all j ∈ {1, ..., n}.

We write the spline F as the n − tuple F = (f1, f2, ..., fn) where fj ∈ R[x] is defined on the

sub-interval Ij .

For ease of notation we define the intervals we will be working over.
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Figure 3.0.1. The subdivided interval I(−3,−1,0,1,3).

Definition 3.0.2. I(a0,a1,...,an) = (−∞, a0]∪[a1, a2]∪[a2, a3]∪...∪[an−1, an]∪[an,∞), a subdivided

interval of R.

Figure 3.0.1 serves to illustrate this definition.

3.1 Cr splines

When considering polynomial splines we often care about how ”smoothly” the polynomials meet

at the a′is. To this end define Cr polynomial splines to be polynomial splines which are r times

differentiable. At the end of this section we show that sets of such splines form a module.

Definition 3.1.1. Let I be a subdivided interval. Then, the set of all splines which are Cr over

I is Cr(I).

The following theorem tells us that Cr(I) is a finitely generated module. This will be used to

prove the same for CM (I).

Theorem 3.1.2. theorem 3.0.20 from [5]. Let I = I1 ∪ I2 ∪ ... ∪ In where I1 = (−∞, a1], I2 =

[a1, a2], ..., In−1 = [an−2, an−1], In = [an−1,∞). Then Cr(I) is a finitely generated module over

R[x]
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3.2 Splines with boundary conditions

In this project we focus on polynomial splines with boundary conditions. These are polynomial

splines defined over I(a0,...,an) which the spline is equal to the function 0 on the intervals (−∞, a0]

and [an,∞).

Definition 3.2.1. A polynomial spline with boundary conditions F is a polynomial spline

defined over some I(a0,...,an) and on which F (x) = 0 for all x ∈ (−∞, a0] ∪ [an,∞). We write

the polynomial spline with boundary conditions F as F = (f1, f2, ..., fn) where F = fi on the

sub-interval [ai−1, ai] where i ∈ {1, ..., n}.

Example 3.2.2. Consider the spline with boundary conditions

F = (x(x + 4)(x + 2)3, (x− 2)3(x + 2)3, (x− 2)3(x + 1)(x− 4)) defined over

I = (−∞,−4] ∪ [−4,−2] ∪ [−2, 2] ∪ [2, 4] ∪ [4,∞). We can see the graph of F in the xy−plane

in 3.3.1.

3.3 Cr,p splines

Next we will introduce the set of all splines which are Cr splines on the interior of a subdivided

interval I and Cp on it’s boundaries. A Cr,p spline is a spline,F defined over the subdivided

interval I = I0, ..., In+1 where F is r times differentiable on I1∪ ...∪In and p times differentiable

on I0 and In+1.

Definition 3.3.1. A Cr,p polynomial spline over I, where I = I0, ..., In+1 is a polynomial spline

with boundary conditions with p continuous derivatives over I0 and In+1 and r continuous

derivatives everywhere else in I.

A spline is Cr,p according to the following theorem
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Theorem 3.3.2. Let I be defined on n intervals and let F = (f1, ..., fn) be a spline over I. Then

F is Cr if and only if

f1 ≡ 0 mod (x− a0)
p+1

fn ≡ 0 mod (x− an)p+1

fi ≡ fi+1 mod (x− ai)
r+1

for all 1 < i < n. Where x− ai is a linear polynomial defining the boundary x− ai = 0 between

Ii and Ii+1.

Example 3.3.3. Consider the previous spline with boundary conditions //F = (x(x + 4)(x +

2)3, (x−2)3(x+2)3, (x−2)3(x+1)(x−4)) on //I = (−∞,−4]∪ [−4,−2]∪ [−2, 2]∪ [2, 4]∪ [4,∞).

We can see the following equations hold

x(x + 4)(x + 2)3 ≡ 0 mod (x + 4)

(x− 2)3(x + 1)(x− 4)) ≡ 0 mod (x− 4)

x(x + 4)(x + 2)3 ≡ (x− 2)3(x + 2)3 mod (x + 2)3

(x− 2)3(x + 2)3 ≡ (x− 2)3(x + 1)(x− 4) mod (x− 2)3

Thus by 3.3.2 F is C2,0.

3.4 Mixed splines

In the previous section we considered splines with two degrees of differentiability, however we

find it can be useful to consider varying degrees of differentiabilty over the subdivided interval.

To that end we explore and develop results for mixed splines which have such varying degrees

of differentiabilty. We note that these mixed splines will also be Cr,p for particular values of r

and p.

Definition 3.4.1. Let I = I(a1,...,an). A mixed spline or CM spline over I is a polynomial

spline with boundary conditions which has ri continuous derivatives at ai for 0 ≤ i ≤ n. Where

M = (r1, ..., rn) and the ri ∈ N ∪ {0}.
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Figure 3.3.1. The graph of a polynomial spline with boundary conditions which is C2,0

We next give our defining equations. These are the set of equations which a spline must satisfy

in order to be a CM spline.

Definition 3.4.2. Let M = (r0, ..., rn) and let I = I(a0,...,an). Then let a spline F =

(f1, f2, ..., fn). The defining equations are as follows:

fi ≡ fi+1 mod (x− ai)
ri+1

f0 ≡ 0 mod (x− a0)
r0+1

fn ≡ 0 mod (x− a0)
rn+1

for all 1 ≤ i ≤ n− 1.

We now show that a spline satisfying these equations fits the definition for being a mixed

spline.

Theorem 3.4.3. Let F = (f1, ..., fn) be a spline. Let M = (r0, ..., rn) and let I = I(a0,...,an).

The spline F is CM over I if and only if the defining equations are true.
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Proof. Assume F is CM over I. Then the following comes from the definition of CM .

fi(ai) = fi+1(ai)

f ′i(ai) = f ′i+1(ai)

...

f
(ri)
i (ai) = f

(ri)
i+1 (ai)

f1(a0) = 0

f ′1(a0) = 0

...

f
(r0)
1 = 0

fn(an) = 0

f ′n(an) = 0

...

f (rn)
n = 0
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for all 1 ≤ i ≤ n− 1. This is equivalent to saying

(x− ai)|fi − fi+1

(x− ai)|f ′i − f ′i+1

...

(x− ai)|f (ri)
i − f

(ri)
i+1

(x− a0)|f1

(x− a0)|f ′1
...

(x− a0)|f r0
1

(x− an)|fn

(x− an)|f ′n
...

(x− an)|f rn
n

and that can be rewritten as simply

fi ≡ fi+1 mod (x− ai)
ri+1

f0 ≡ 0 mod (x− a0)
r0+1

fn ≡ 0 mod (x− a0)
rn+1

. So the defining equations are true. Otherwise if we assume that the defining equations are true

then F is CM over I because it is ri times differentiable at the point ai for all 0 ≤ i ≤ n.

In order to prove our main result of a basis for CM (I) we show that the set of all CM

polynomial splines over a given I is a finitely generated module over R[x].

Definition 3.4.4. Let I be a subdivided interval. Then the set of all polynomials splines that

are CM over I is CM (I).
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Proposition 3.4.5. CM (I) is a finitely generated module over R[x].

Proof. We will show CM (I) is a finitely generated module by showing that it is a submodule of

R[x]n.

Let F = (f0, ..., fn+1), B = (b0, ..., Bn+1) be elements of CM (I) and let p ∈ R[x]. For ease of

notation throughout this proof let `i = (x− ai)
ri+1.

First it is clear that CM (I) is non-empty because (0, 0, ..., 0) ∈ CM (I).

Let r′ be the smallest element of r such that r′ ≤ ri for all ri ∈M . We observe that

CM (I) ⊂ Cr′(I). Suppose that F = (f0, ..., fn+1 is in CM (I). Then by the definition of Cr

f
(j)
i (ai) = f

(j)
i+1(ai)

for all i = 0, 1, ..., n + 1, j = 0, 1, ..., r′, ...ri. Since r′ ≤ ri by definition, f ∈ Cr′(I). Thus

CM (I) ⊂ Cr ′(I). By 3.1.2 Cr′ ⊂ R[x]n. Thus CM (I) ⊂ R[x]n.

Next we show CM (I) is closed under subtraction. We recall F,B ∈ CM (I), we know that

f0, fn+1, b0, bn+1 = 0 and that

fi ≡ fi+1 mod (x− ai)
ri

bi ≡ bi+1 mod (x− ai)
ri

for all i ∈ {0, ..., n}.

We can see that F −B = (f0 − b0, ..., fn+1 − bn+1). It is then easy to see that

fi − bi ≡ fi+1 − bi+1 mod (x− ai)
ri

and thus F −B is CM and thus F −B ∈ CM (I).

Lastly we show that CM (I) is closed under scalar multiplication. F ∈ CM (I) and so we know

that

fi ≡ fi+1 mod `rii

for all i ∈ {0, ..., n}.

Let c ∈ R. We can see cF = (cf0, ..., cfn+1). Then consider that

cfi ≡ cfi+1 mod c(x− ai)
ri = (x− ai)

ri mod (x− ai)
ri
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for all i ∈ {0, ..., n}. Thus cF is CM on I and so cF ∈ CM (I). Therefore CM (I) is a submodule

of R[x]n and so is a finitely generated module over R[x] by Proposition 2.2.12 in [5].

The next few definitions serve to ease our discussion of these splines. For simplicity we define

some cleaner notation for the linear polynomials defining the boundaries of our sub-intervals.

Definition 3.4.6. Let I = I(a0,...,an). Then `i represents the linear polynomial x− ai = 0.

We also define the degree of the leading term of a spline to be the LT degree.

Definition 3.4.7. Let F = (f1, ..., fn) be a polynomial spline. Then the LT degree of F or

LT (F ) is the degree of the polynomial f1.

3.5 Previous Results

In this section we list a few important results from previous work on Polynomial Splines. First, a

module basis for Cr,0 polynomial splines which we will use for comparison later. We then adapt

some useful results for determining if a set of polynomial splines form a basis.

Theorem 3.5.1. Let

g0(ai) = (x− a0)((x− an)xr − (x− ai)
r+1)

and

gn(ai) = (x− an)((x− a0)x
r − (x− ai)

r+1).



16 3. POLYNOMIAL SPLINES

The vectors

B1 = {g0(a1), gn(a1), ..., gn(a1)}

B2 = {g0(a2), g0(a2), gn(a2), ..., gn(a2)}

...

B2 = {g0(ai), ..., g0(ai), gn(ai), ..., gn(ai)}

...

Bn−1 = {g0(an−1), ..., g0(an−1), gn(an−1)}

Bn = {(x− a0)(x− an), (x− a0)(x− an), ..., (x− a0)(x− an)}

form a basis B = (B1, B2, ..., Bn) for Cr,0(I).

Here it becomes important to define a polynomial Q which will be integral in proving whether

or not we have found a basis for CM (I).

Definition 3.5.2. Let I = I(a0,...,an). Then the polynomial Q is defined as

Q = (
∏

1≤i≤n−1
`ri+1
i ) ∗ (

∏
i∈{0,n}

`ri+1
i )

We write Q this way to easily draw a distinction between in the interior and exterior edges of

I. This will be particularly useful when considering a basis for Cr,p splines.

We include an important result regarding Cr splines from [4]. A more general form of this

theorem will be used to prove our results.

Theorem 3.5.3. Theorem 2.3 from [4] The set of splines F = {B1, ..., Bn} in Cr(I) form a

basis over R if and only if det[B1, ..., Bn] = cQ, for some nonzero real constant c.

This was proved by [4] over more general regions. We prove it below for the CM case, and to

that end we also adapt proposition 2.2 from [4] for the CM case which will be used to show the

desired res of theorem 3.5.5.

Proposition 3.5.4. Modification of Proposition 2.2 from [4]. Let {B1, ..., Bn} ∈ CM (I). Then

Q divides det[B1, ..., Bn].
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Proof. Let Bi = (b1i, ..., bni). Then

det[B1, ..., Bn] =

∣∣∣∣∣∣∣∣∣
f1,i ... f1n
f2,i ... f2n

... ...
...

fn1 ... fnn

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
f1,i − f2i ... f1n − f2i

f2,i ... f2n
... ...

...
fn1 ... fnn

∣∣∣∣∣∣∣∣∣ . For each i, `ri+1
i divides f1i−f2i

by definition of CM (I), and so `ri+1
i divides det[B1, ..., Bn]. The `′is are distinct by construction

and so are pairwise relatively prime. Therefore, Q must divide det[B1, ..., Bn].

Proposition 3.5.5. Modification of Theorem 2.3 from [4]. Let det[B1, ..., Bn] = cQ for some

nonzero real constant c and let {B1, ..., Bn} in CM (I). {B1, ..., Bn} in CM (I) form a basis over

R[x].

Proof. Suppose det[B1, ..., Bn] = Q. Then {B1, ..., Bn} must be linearly independent over R[x].

For any v ≡ Q[b1, b2, ..., bn]T ∈ QR[x]n, for all i ≤ n, let

xi =
det[B1, .., Bi−1, Q[b1, b2, ..., bn]T , Bi+1, ..., Bn]

det[B1, ..., Bn]

=
Qdet[B1, .., Bi−1, [b1, b2, ..., bn]T , Bi+1, ..., Bn]

Q

= det[B1, .., Bi−1, [b1, b2, ..., bn]T , Bi+1, ..., Bn]

Thus, xiR[x] for all i. Let x = [x1, ..., xn]T . By Cramer’s rule, [B1, ..., Bn]x = v, so

v ∈ span(B1, ..., Bn), the module generated by B1, ..., Bn. Since our choice of v ∈ QR[x]n was

arbitrary, QR[x]n ⊂ span(B1, ..., Bn). Let B ∈ CM (I) − {0}. Then QB ∈ span(B1, ..., Bn), so

QB =
∑n

i=1 biBi for some {bi} in R[x]. Then

biQ = bi(det[B1...Bn])

= det[B1...Bi−1biBiBi+1...Bn]

= det[B1...Bi−1
∑

bjBjBi+1...Bn]

= det[B1...Bi−1QBBi+1...Bn]

= Qdet[B1...Bi−1BBi+1...Bn].

By proposition 3.5.4, Q|det[B1...Bi−1BBi+1...Bn]. Thus, we can write

det[B1...Bi−1BBi+1] = QP for some P ∈ R[x], and thus,
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Qdet[B1...Bi−1BBi+1...Bn] = QQP.

Thus, we can see

biQ = QQP.

Therefore Q|bi. Then B =
∑

(bi/Q)Bi ∈ span(B1, ..., Bn). Therefore {B1, ..., Bn} spans CM (I).

Therefore [B1, ..., Bn] forms a basis for CM (I).



4
Mixed Splines on Cycle Graphs

The following chapter explores and introduces the concept of a spline on a graph. We then give

a method for obtaining a CM spline by first finding a spline on a specially constructed cycle

graph. Being able to do so will allow us to access key results proving the existence of particular

splines in chapter 5 which will serve as basis elements in chapter 6.

Example 4.0.1. Consider the following polynomial spline:

F =

{
f1 = −x : x ≤ 0
f2 = x2 : x ≥ 0

Then clearly F = (−x, x2) is a spline over I = (−∞, 0] ∪ [0,∞) as f1(0) = f2(0). Figures 4.0.1

and 4.0.2 depict two visual representations of F .

We will now discuss how we can visualize a mixed spline as a vertex labeling. We do this so

we can use some previous results about splines on cycle graphs.

Definition 4.0.2. Let G be a graph with edge set E = {e1, e2, ..., ek} and vertex set V =

{v1, v2, ..., vn}. Let `i be a polynomial label on edge ei and A = {`1, `2, ..., `k} be the set of edge

labels. then (G,A) is an edge labelled graph.

Definition 4.0.3. A polynomial spline on (G,A) is an vertex labelling (f1, f2, ..., fn) ∈ R[x],

such that for any two vertices i, j ∈ V connected by edge ek, we have fi ≡ fj mod `k.
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Figure 4.0.1. The polynomial spline F = (−x, x2)

Figure 4.0.2. A second representation of the polynomial spline F = (−x, x2)
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v1

v2v3

a1

a2

a3

f1

f2f3

a1

a2

a3

Figure 4.0.3. An edge-labeled graph (left) and a graphical representation of a generalized polynomial
spline on the edge-labeled graph (right).

Figure 4.0.3 illustrates this definition.

These graphical interpretations allow us to find splines over given intervals. By considering

particular splines on cycle graphs we are able to get mixed splines. We do this by only considering

splines on cycle graphs where the first vertex is labeled 0.

Theorem 4.0.4. Let (G,A) be an n+1−cycle graph with A = {`r0+1
0 , `r1+1

1 , ..., `rn+1
n }. Then let

B = (0, b1, b2, ..., bn) be a polynomial spline on (G,A). B′ = (b1, b2, ..., bn) is in CM (I(a0,a1,...,an))

spline where M = (r0, r1, ..., rn).

Proof. B = (0, b1, b2, ..., bn) is a polynomial spline on (G,A) and so by definition the following

is true:

0 ≡ b1 mod `r0+1
0

b1 ≡ b2 mod `r1+1
1

...

bn−1 ≡ bn mod `
rn−1+1
n−1

bn ≡ 0 mod `rn+1
n

then by Theorem 3.4.3 these defining equations tell us B′ ∈ CM (I(a0,a1,...,an)).

We outline an example of a C(1,2,1) spline over I(−1,0,1) found on a 3-cycle graph.
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v1

v2v3

(x + 1)2

x3

(x− 1)2

Figure 4.0.4. An edge weighted 3−cycle graph.

0

x3(x + 1)2x3(x− 1)2

(x + 1)2

x3

(x− 1)2

Figure 4.0.5. A polynomial spline on G

Example 4.0.5. Let (G,A) be the graph in figure 4.0.4 with A = {(x+1)2, x3, (x−1)2} . Then

F = (0, f2, f3) is a polynomial spline on (G,A) provided the following equations hold.

0 ≡ f2 mod (x + 1)2

f2 ≡ f3 mod x3

f3 ≡ 0 mod (x− 1)2

One solution is (0, f2, f3) = (0, x3(x + 1)2, x3(x − 1)2) shown in figure 4.0.5. Then by Theorem

4.0.4 we find that B′ = (x3(x + 1)2, x3(x − 1)2) is a C(1,2,1) spline over I(−1,0,1). The graph of

which is seen in figure 4.0.6.
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Figure 4.0.6. The C(1,2,1) spline B′ = (x3(x + 1)2, x3(x− 1)2) over I(−1,0,1).
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5
Integer Splines

In the following section we explore generalized integer splines. These splines exist on graphs

with integer edge labels. We begin by laying out some basic definitions before discussing flow-up

classes. The elements of these flow-up classes are used in a basis for integer splines. Lastly, we

recount some important results proving the existence of particular elements of flow-up classes

on graphs, and use this to prove the existence of CM splines that will be used to form our basis

in chapter 6.

Definition 5.0.1. Let G be an edge-weighted graph with vertex set V = {v1, v2, ..., vn}, edge set

E = {e1, e2, ..., em} and polynomial edge weights A = {x−a1, x−a2, ..., x−am}. A generalized

integer spline is a vertex labelling (f1, ..., fn) ∈ Zn such that if vi and vj are connected by an

edge ek, then fi ≡ fj mod ak.

The following figure illustrates definition 5.0.1. Note: We limit the labelling of vertices to

integers and elements of the edge weight set A to the natural numbers.

The results we seek to extend for polynomial splines has been proven for n−cycle splines as

defined below.
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v3

v2v1

a2

a1

a3

f3

f2f1

a2

a1

a3

Figure 5.0.1. An edge-labeled graph (left) and a graphical representation of a generalized integer spline
(right).

24 16

265

8

10 7

19

Figure 5.0.2. A 4− cycle spline.

Definition 5.0.2. Let A = {a1, .., an} be the ordered set of edge-labels on an n−cycle graph

with ordered vertices {v1, ..., vn}. If the following conditions are satisfied

f1 ≡ f2 mod a1 (5.0.1)

f2 ≡ f3 mod a2 (5.0.2)

... (5.0.3)

fn−1 ≡ fn mod an−1 (5.0.4)

fn ≡ f1 mod an. (5.0.5)

then F = (f1, f2, ..., fn) is an n-cycle spline.

Example 5.0.3. Figure 5.0.2 represents a 4− cycle spline, F = (24, 16, 26, 5).

5.1 Flow-Up Class

We now discuss a method developed for integer splines on n−cycle graphs. We call this method

the Flow-up Class method due to its relationship to the Flow-up classes. We begin by defining

a flow-up class and giving an outline of the results for integer splines.
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Figure 5.1.1. Elements of the Flow-up classes F0, F1 and F2 on (G,A).

Definition 5.1.1. Fix the edge labels on (G,A). For 0 ≤ i < n, let the flow-up class Fi be the

set of splines on (G,A) where the first i components are 0 and the i+1st component is non-zero.

Note Fn = {0}.

Example 5.1.2. Fix the edges on the 3 − cycle (G,A), where A = {3, 7, 10}. Let the integer

splines B0 = (1, 1, 1), B1 = (0, 3, 70), B2 = (0, 0, 70). Clearly B0 is in the flow-up class F0, B1 is

in F1 and B2 is in F2. Figure 5.1.1 illustrates these elements of different flow-up classes.

We now define a minimal element of a flow-up class.

Definition 5.1.3. A minimal element of a flow-up class is an element such that the leading

element is the smallest value possible.

The following theorem tells us when we have a minimal element.

Theorem 5.1.4. ([3], Theorem 4.5) Fix the edge labels on (G,A), where A = {`1, `2, ..., `n}.

Let 1in1 and let F = (0, ..., 0, fi+1, fi+2, ..., fn) be an element in the flow-up class Fi on (G,A).

Then, the leading element, fi+1, is a multiple of [`i, (`i+1, ..., `n)] and fi+1 = [`i, (`i+1, ..., `n)] is

the smallest value that satisfies the vk edge conditions.

An important result of [1] was that a careful selection of elements of these flow-up classes

along with the all 1 vector resulted in a basis for splines on n−cycle graphs. Unfortunately the

proof of which was omitted by [1].

This inspired us to consider if such a basis might exists for mixed splines. For that to be

possible we much first have that such elements exist for polynomial splines.
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v1 v2

v3v4

x3

(x + 1)2 (x− 1)2

(x− 2)3

Figure 5.1.2. A 4−cycle graph on which we find minimal elements.

Their existence was proved by [3] on cycle graphs by the following theorems. This we will be

useful as we have previously shown we can can get mixed splines from splines on cycle graphs,

and we recall those splines on cycle graphs had a leading zero.

The first theorem guarantees that our flow-up classes are not empty.

Theorem 5.1.5. Theorem 4.3 in [3]. Fix an n−cycle with edge labels (G,A). Let n ≥ 3 and

1 ≤ i < n. There exists an element of the flow-up class Fi, Bi on (G,A).

Lastly we show the minimal elements exist in the flow-up classes.

Theorem 5.1.6. Theorem 4.6 in [3]. Fix an n−cycle with edge labels (G,A). Fix n ≥ 3 and

2 ≤ i < n. There exists a minimal element of the flow-up class Fi, Bi = (0, ..., 0, fi+1, ..., fn) on

(G,A).

The following example illustrates Theorem 5.1.6 for CM splines on a 4−cycle graph.

Example 5.1.7. Let (G,A) be the edge labeled 4−cycle graph in figure 5.1.2. We find the

minimal elements Bi of the form we expect on (G,A) for 1 ≤ i < 4.

B1 = (0, x3, x3 + x2 − 2x + 1, 2x3 − 5x2 + 10x− 7)

B2 = (0, 0, (x− 1)2, x3 − 52 + 10x− 7)

B3 = (0, 0, 0, (x− 2)3(x + 1)2)
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Current Research

In this chapter, we present the main result of our research of mixed splines. We prove that if

we take a set of mixed splines from distinct flow-up classes with minimal leading terms, they

will form a basis for CM (I). We give an example to illustrate the construction of such a basis.

We show that for any CM (I) we can find such a basis. We then give corollaries about bases for

Cr,p(I), and finally prove a result relating CM (I) to the leading term degrees of its basis.

We now prove that given a vector M ∈ (N ∪ {0})n and an interval I ∈ R we can determine a

basis for CM (I).

Theorem 6.0.1. Let I = I(a0,...,an,an+1). Let B = (B0, B1, ..., Bn−1) be a set of CM splines such

that

B0 = (`r0+1
0 , f0,2, f0,3, ..., f0,n)

Bi = (0, ..., `ri+1
i , fi,i+2, fi,i+3, ..., fi,n)

Bn−1 = (0, 0, ..., 0, (`
rn−1

n−1 )`rn+1
n )

for some f ′i,js where each Bi has i leading zeros for 1 ≤ i ≤ n− 2. Then B is a basis for CM (I).

Proof. Consider the matrix M = [B0, B1, ..., Bn−1] then
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M=


[`r0+1
0 , (`r1+1

1 , .., `rn+1
n )] 0 ... 0 0

f0,2 [`r1+1
1 , (`r2+1

2 , .., `rn+1
n )] ... 0 0

...
...

...
...

...

f0,n−2 f1,n−2 ... [`
rn−2+1
n−2 , (`

rn−1+1
n−1 , `rn+1

n )] 0

f0,n−1 f1,n−1 ... fn−2,n−1 [`
rn−1+1
n−1 , `rn+1

n ]



By definition each ai is unique and so is each `i. Thus, (`i, `j) = 1 for any 0 ≤ i < j ≤ n. Thus

we can simplify the diagonals of M such that

M=


[`r0+1
0 , 1] 0 ... 0 0

f0,2 [`r1+1
1 , 1] ... 0 0

...
...

...
...

...

f0,n−2 f1,n−2 ... [`
rn−2+1
n−2 , 1] 0

f0,n−1 f1,n−1 ... fn−2,n−1 [`
rn−1+1
n−1 , `rn+1

n ]

.

M is upper triangular and so we can easily calculate the determinant to be the product of the

diagonals.

detM =
n∏

i=0

`ri+1
i

Which is equal to the polynomial Q. By 3.5.4, B is a basis for CM (I).

We consider a small example of finding a basis this way.

Example 6.0.2. Let M = (1, 2, 3) and let I = I(−1,0,1). Consider the set B = (B0, B1). where

B0 = ((x + 1)2, (x + 1)2(x− 1)3)

B1 = (0, x3(x− 1)4)

We can see that B0 is a minimal element of the flow-up class F0 by theorem 5.1.4, which satisfies

(x + 1)2 ≡ 0 mod (x + 1)2

(x + 1)2 ≡ (x + 1)2(x− 1)3 mod x3

(x + 1)2(x− 1)4 ≡ 0 mod (x− 1)4
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and is thus a CM spline.

We can also see that B1 is a minimal element of the flow-up class F1 by theorem 5.1.4, which

satisfies

0 ≡ 0 mod (x + 1)2

0 ≡ x3(x− 1)4 mod x3

x3(x− 1)4 ≡ 0 mod (x− 1)4

by Theorem 6.0.1 B is a basis for CM (I).

We next show that such basis elements exist as to satisfy Theorem 6.0.1.

Theorem 6.0.3. Let I = I(a0,...,an,an+1). There exists B = (B0, B1, ..., Bn−1) CM splines over I

such that

B0 = (`r0+1
0 , f0,2, f0,3, ..., f0,n)

Bi = (0, ..., fi,i+1, fi,i+2, fi,i+3, ..., fi,n)

Bn−1 = (0, 0, ..., 0, (`
rn−1

n−1 )`rn+1
n )

where fi,i+1 = `ri+1
i for 1 ≤ i ≤ n− 2. The elements of B exist.

Proof. Let (G,A) be an n+ 1−cycle where A = {`r0+1
0 , ..., `rn+1

n }. Then by Theorem 5.1.6 there

exists the set of splines G = (G1, G2, ..., Gn) on (G,A) such that

Gi = (0..., `ri+1
i , gi+2,2, ..., gn,n)

where Gi has i leading zeros for 1 ≤ i < n + 1. Let B = (B0, B1, ..., Bn−1) where Bi = Gi+1

with the first element removed, by Theorem 4.0.4 these splines exist and are CM over I. Thus

we have found a set that satisfies the conditions of Theorem 6.0.1.

Thanks to Theorem 6.0.1 we can easily arrive at a basis for all Cr,p(I) splines.
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Corollary 6.0.4. Let I = I(a0,...,an,an+1). Let B = (B0, B1, ..., Bn−1) be a set of Cr,p splines such

that

B0 = (`p+1
0 , f0,2, f0,3, ..., f0,n)

Bi = (0, ..., fi,i+1, fi,i+2, fi,i+3, ..., fi,n)

Bn−1 = (0, 0, ..., 0, (`r+1
n−1)`

p+1
n )

where fi,i = `r+1
i for 1 ≤ i ≤ n− 2. Then B is a basis for Cr,p(I).

Proof. Let M = (p, r, r..., r, p), then by Theorem 6.0.1 B is a basis for Cr,p(I).

We also make note of the LT’s of the basis.

Theorem 6.0.5. Let I = I(a0,...,an). Then there exists a basis for CM (I) with LT degrees r0 +

1, r1 + 1, ..., rn−2 + 1, (rn−1 + 1) + (rn + 1).

Proof. This follows directly from the basis found in Theorem 6.0.1.

Using the basis found in example 6.0.2 we can see these LT’s.

Example 6.0.6. Consider the basis B = (((x + 1)2, (x + 1)2(x − 1)3), (0, x3(x − 1)4)) for

C(1,2,3)(I(−1,0,1)). We can easily see

LT (((x + 1)2, (x + 1)2(x− 1)3)) = 2 = 1 + 1

and

LT ((0, x3(x− 1)4)) = 7 = (2 + 1) + (3 + 1)

as expected.
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Comparison of Bases

This chapter will examine the relationship between a pre-existing basis for Cr,0(I) and our new

one. First we will consider an example of finding both bases for a set of C3,0 splines. Then, we

will show that the determinants of the matrices with the basis vectors as columns are equal,

and that the sum of the degree’s of the basis from Theorem 3.5.1 is equal to the sum of the LT

degrees of the basis from Theorem 6.0.1.

Example 7.0.1. Let I = I(−2,−1,0,1) and let r = 3. We will now construct a basis using two

different methods. By Theorem 3.5.1 we know B = (B1, B2, B3) where

B1 = ((x + 2)((x− 1)x3 − (x + 1)4), (x− 1)((x + 2)x3 − (x + 1)4, (x− 1)((x + 2)x3 − (x + 1)4))

B2 = ((x + 2)((x− 1)x3 − (x)4), (x + 2)((x− 1)x3 − (x)4), (x− 1)((x + 2)x3 − (x)4))

B3 = ((x + 2)(x− 1), (x + 2)(x− 1), (x + 2)(x− 1))
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forms a basis for C3,0(I).

We now find a second basis with our new method and get that B′ = (B′0, B
′
1, B

′
2) where

B′0 = ((x + 2), (x + 1)4 + x + 2,−19x4 + (x + 1)4 + x + 2)

B′1 = (0, (x + 1)4,−16x4 + (x + 1)4)

B′2 = (0, 0, x4(x− 1))

also forms a basis for C3,0(I) by Theorem 6.0.1.

Considering both of these basis we compare the derivatives of the matrices [B1, B2, B3] and

[B′0, B
′
1, B

′
2]. We then determine a relationship between the two.

Example 7.0.2. Consider the bases found in example 7.0.1. We consider the derivatives of the

matrices [B1, B2, B3] and [B′0, B
′
1, B

′
2].

det[B1, B2, B3] =

det

(x + 2)((x− 1)x3 − (x + 1)4) (x + 2)((x− 1)x3 − x4) (x + 2)(x− 1)
(x− 1)((x + 2)x3 − (x + 1)4) (x + 2)((x− 1)x3 − x4) (x + 2)(x− 1)
(x− 1)((x + 2)x3 − (x + 1)4) (x− 1)((x + 2)x3 − x4) (x + 2)(x− 1)



= 9x10 + 45x9 + 72x8 + 18x7 − 63x6 − 63x5 − 18x4.

det[B′0, B
′
1, B

′
2] =

det

 (x + 2) 0 0
(x + 1)4 + x + 2 (x + 1)4 0

−19x4 + (x + 1)4 + x + 2 −16x4 + (x + 1)4 x4(x− 1)



= (x+2)(x+1)4x4(x−1) = x10+5x9+8x8+2x7−7x6−7x5−2x4. We note that det[B1, B2, B3] =

9 det[B′0, B
′
1, B

′
2].

Theorem 7.0.3. Let I = I(a0,...,an) and fix r ∈ N. Then let B be a basis of Cr,0(I) found

using Theorem 3.5.1, and let B′ be a basis of Cr,0(I) using our new method. Then, det[B] =

(a0 − an)n−1 det[B′].
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Proof. We showed in the proof of Theorem 6.0.1 that det[B′] =
∏n

i=0 `
ri+1
i for the general case.

Recalling that we are in the case where M = (0, r, r, ..., r, 0) we obtain

det[B′] = (`0)(`n)
n−1∏
i=1

`r+1
i . (7.0.1)

We then obtain det[B] from Lemma 3.3 in [2] which tells us

det[B] = (a0 − an)n−1(`0)(`n)
n−1∏
i=1

`r+1
i . (7.0.2)

Thus, we have

det[B] = (a0 − an)n−1(`0)(`n)

n−1∏
i=1

`r+1
i = (a0 − an)n−1 det[B′]. (7.0.3)

We are also able to come up with a result relating the LT’s of our basis to the degree of the

basis elements of the old basis.

Theorem 7.0.4. Let I = I(a0,...,an) and fix r ∈ N. Then let B = (B1, B2, ..., Bn) be a basis of

Cr,0(I) found using Theorem 3.5.1, and let B′ = (B′0, B
′
1, ..., B

′
n−1) be a basis of Cr,0(I) using

our new method. Then,
∑n

i=1 deg(Bi) =
∑n−1

i=0 (B′i).

Proof. The first thing we note, is that by Theorem 4.1 from [2] we know

n∑
i=1

deg(Bi) = 2 + (n− 1)(r + 1).

We then calculate the sum of the degrees for our new basis. Our basis B′ was carefully chosen

so that LT (B′i) = r + 1 for 0 ≤ i ≤ n− 2 and LT (B′n−1) = 2 therefore

n−1∑
i=0

LT (B′i) =
n−2∑
i=0

LT (B′i) + LT (B′n−1) = (n− 1)(r + 1) + 2.

Thus, (n− 1)(r + 1) + 2 =
∑n

i=1 deg(Bi) =
∑n−1

i=0 (B′i).
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