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Abstract

Mathematics and music have been lifelong partners since the beginning of time. Rhythm
and time are two fundamental aspects of music which rely solely on counting, an under-
appreciated skill in mathematics, yet recognized by all mathematically-minded people as the
foundation of some of the most important mathematical findings; as John B. Fraleigh would
say, “Never underestimate a theorem that counts something!” However, music recordings have
evolved through the use of technology further than merely possessing the capabilities to quan-
tify and archive the notes that were played in the recording. In the days before digital record-
ings, the only way to ensure better sound quality was by modifications to the recording equip-
ment and acoustical adjustments to the setting of the recording. It is an indisputable fact that
the overwhelming majority of recordings in our modern day are produced using digital tech-
nology. The discovery that sound is quantified by a sum of the disturbances the source of
the perturbations created by changes in air pressure, known as sound waves, preceded the
use of digital technology, but it was this amazing observation that first shaped how mathe-
maticians and scientists utilized mathematical methods in audio engineering. This group of
mathematicians and scientists, known as acousticians, aspire to utilize digital signal process-
ing techniques to reproduce the sound created by a source and enhance the sound quality of
the recording. There are many ways this can be accomplished. However, one of the most im-
portant methods available to acousticians is filtering. Filtering is the process of accentuating
or attenuating certain frequencies in the content of the signal.

The focus of this paper is digital filtration techniques and the fundamental workings of the
mathematical methods that allow these techniques to be possible, as well as the various kinds
of software that utilize these techniques. In addition to detailed explanations of the processes
by which these methods were born, there is also a case study comparing the effect of a piece
of hardware used for filtration with the effect of a digital filter modeled to exhibit the same
behavior and functionality as the analog filter.

This intensive and comprehensive study of digital signal processing and the mathematical
methods acousticians used to create this field of science has been something I have been in-
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terested in for many years since first learning of my passion for mathematics. I am excited to
share my research and data with the science and math community.
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Introduction

There are many scientists and mathematicians who have contributed to the field of acoustics
and audio engineering. However, the man who changed how we understand the behavior of
waveforms is one of the most critically acclaimed mathematicians, and whom acousticians
should show the most gratitude. Jean Baptiste Fourier (1768-1830) was a French scientist and
mathematician who proved that any continuous periodic waveform can be expressed as an
infinite series of sinusoids. His work was the foundation for the analytical understanding of
waveforms in a wide variety of fields in mathematics and science.

One part of this paper is to expound the fundamental methods of Fourier analysis and reveal
how these techniques are incorporated in audio engineering. The majority of the formulations
of the mathematical proofs that contribute to Fourier analysis are well-known; additionally, the
real analysis proofs that greatly influenced our understanding of Fourier analysis are revered
among mathematicians and physicists alike. Much of this paper is devoted to establishing the
methods of signal processing; thus, a majority of the information included conveys how math-

ematics influenced the evolution of signal processing and the production of digital recordings.
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The other part of this paper explores the case study of a digital filter which was created to model
the functionality of an analog filter.

The topic of digital signal processing and the mathematical methods behind this field of
study are enthralling, but like many fields of mathematics, our understanding of digital signal
processing begins with the humblest of origins. The beginning of digital signal processing be-
gan with signal processing. Signal processing began with a disgruntled audience member in
a theater muttering the all too familiar phrase: “I would like this instrument to sound louder,
and this one to sound softer." In other words, a signal was processed aurally by a person ac-
tively judging which elements of the sound should be increased and which ones should be
decreased. Two variables were important in this person’s observations: the magnitude of the
sound and the direction of the sound. This is where we begin our study. We build upon the

mathematical construction which has magnitude and direction: the vector.
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The Construction of Signals

2.1 Core Definitions Regarding Vectors

Before the explanation of how waves are constructed, it is useful to first establish the definition
of several devices used in Euclidean space. These principles are universal in how mathemati-
cians and physicists view the world. Understanding the role of these fundamental concepts is
crucial in beginning to grasp how acousticians formulated methods to qualitatively and quan-

titatively measure waves. We begin with the humblest of origins. The vector.

Definition 2.1.1. A vector is a quantity in mathematics which has a direction as well as a mag-

nitude.
Vectors are used to determine the position of one point in space relative to another.

Example 2.1.2. Taking an example in 2-dimensional Euclidean space, let 7 = (x, y). U has di-

rection x on the x-axis and direction y on the y-axis and magnitude, denoted |V| = v/x2 + y2.

Vectors are not merely some tool mathematicians devised solely to measure linear systems.
Vectors in linear systems are the foundation of important conceptual models which have been

expanded upon to apply to many physical systems. But how can one measure give an accu-
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rate representation of a vastly dynamical system? The answer lies in the construction of a zone
specially formatted for operating on vectors in order to design models of complex dynamical

systems. The root of these systems are vector spaces.

Definition 2.1.3. A vector space over a field F is a set of vectors which satisfies vector addition

and multiplication, scalar multiplication, and the 0 vector must be present.

The axioms of a field are expressed using the following mathematical notation. Let V be a

vector space over the field F, let X,Y,Z € V and let r, s € F be scalars.

1. Commutativity:

X+Y=Y+X.

2. Associativity of vector addition:
X+Y)+Z=X+(Y+Z).

3. Additive identity: For all X,
0+X=X+0=X.

4. Existence of additive inverse: For any X, there exists a -X such that
X+(-X)=0.

5. Associativity of scalar multiplication:
r(sX) = (rs)X.

6. Distributivity of scalar sums:
(r+9)X=rX+sX.

7. Distributivity of vector sums:

rX+Y) =rX+rY.

8. Scalar multiplication identity:

1-X=X.
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The aforementioned vector U = (x, y) was in component form, where x was the x component

and y was the y component. This can also be written as a matrix defined

where x is the x component and y is the y component.
Mathematicians are interested in a special set of vectors. These vectors are ones which are
not copies of the same few vectors, but are a particular set of vectors which can be gathered to

create any vector in the vector space.

Definition 2.1.4. A basis (finite or infinite) is a set of vectors that spans the whole vector space
and is linearly independent. These basis vectors are linearly independent if and only if they

cannot be expressed as
a1171+a2172+---+an17n =0

with ay,..., a, constants which are not all zero.

The significance of a basis can be demonstrated with the following example. Let V = R? be a
vector space, namely the entire x — y plane. Take the vector with coordinates (3,4). This vector

can be written as a sum of its x component and y component:

3,4 =3,0+(0,4

it can be decomposed even further and written in terms of a“unit" x vector and a “unit" y
vector:

(3,4)=3-(1,0)+4-(0,1).
The pair {(1,0), (0,1)} of vectors span R? because any vector can be decomposed this way:

(a,b) = a(1,0)+ b(0,1).
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The expressions of the form a(1,0) + b(0, 1) fill the space R2. This is also true of (1,1) and (0, 1),

where we can write our vector as

3,4=3-(1,D+1-(0,1)

and more generally

(ab)=a-(1,1)+(b-a)-(0,1).

This relates to the matrix

o)

If these linearly independent vectors are in the subspace of a vector space they must also be in
the vector space. Mathematicians have a definition for when these linearly independent vec-

tors are members of all the same subspaces of a vector space.

Definition 2.1.5. The span of a set S vectors in a vector space V is defined to be the intersection

W of all subspaces of V that contain the set S.

In this way any vector 7 in the span can be represented as a finite sum (linear combination)

of basis elements
arbi1+ apbip + -+ + apbin =V 2.11)

where a,..., a, are constants and b;1, ..., b;; are vectors that form the basis.
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2.2 The Relationship Between the Dot Product and a Basis of Vectors

There are other operations on vectors in a field besides scalar multiplication, addition, and
the axioms. A common operation on vectors is known as the dot product. The dot product,
universal notation (), is particularly useful for our purposes in order to understand the link

between vectors and waveforms.

Example 2.2.1. Let 7 and i0 be vectors defined by ¥ = (1,2,3) and i = (4,5,6). The dot product

of these vectors is

U-w=14)+2(5)+3(6)
=4+10+18

=32.

The dot product has many applications in physics and mathematics. Our interest in the dot

product lies in its role in the definition of orthogonality.

Definition 2.2.2. Two vectors 7 and i are orthogonal if and only if their dot product is equal to
0. If these two vectors are orthogonal a widespread notation used to convey this factis 7 L iD.

If two vectors are orthogonal they are positioned apart by an angle of 90° or 7 radians.

Example 2.2.3. Let U and i be vectors defined by U = (x, y) and i = (—y, x). Showing these

vectors are orthogonal is trivial, - i = x(-y) + xy = —xy+xy =0.

Take two vectors @ = (1,0) and b = (0, 1). Clearly these vectors are orthogonal [1(0)+0(1)=0].
However, these vectors form a basis spanning R?, which is significant because any vector can
be constructed with this basis. This means that at discrete points in time any level can be
achieved by multiplying this basis by the desired scalars at that discrete point. This yields a
figure which can represent any discrete sample of data, with time on the x-axis and the level on
the y-axis. Only the orthogonality of these vectors that form the basis allow this construction

to be achieved.
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Orthogonality will be crucial in understanding how the frequency domain is formulated.
However, if we are to impose the principles of orthogonality on functions in the time domain
to create functions in the frequency domain, there are important criteria that these functions
must satisfy for the transformation from the time domain to the frequency domain to be com-
plete. The formulation of this criteria must be revealed, but it is not possible without the use of
the fundamental properties of real numbers and real analysis. The following section is devoted

to establishing the the role of real analysis in signal processing.

2.3 Foundations of Real Analysis and the Connection to Signal
Processing

What is real analysis? Real analysis is the qualitative and quantitative means of analyzing how
functions, series, and sequences on the real number line behave. Real analysis is important
in understanding the construction of the frequency spectrum, the criteria for certain kinds of
functions that can be used as input signals for filtering, the reason for the use of different win-
dowing functions for displaying the graph of the discrete-time Fourier transform (DTFT), and
many other areas in signal processing where acousticians’ utilization of technology may in-
advertently gloss over the finer details of the material provided. We begin with discussing the
cardinal points of real analysis study concerning ordered fields, boundaries of intervals, limits

and continuous functions, and the € — § style proof.

Definition 2.3.1. An ordered field is a set F with elements 0,1 € F, binary operations + and
-, unary operations —, ~!, and relation < on F — {0}, which satisfy the following properties. Let

x,),z€F.
a. (x+y)+z=x+(y+2z) (Associative law for Addition).
b. x+ y=y+ x (Commutative Law for Addition).

c. x+ 0= x (Identity Law for Addition).
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d.

n.

X+ (—x) =0 (Inverses Law For Addition).

(xy)z = z(yz) (Associative Law for Multiplication).

xy = yx (Commutative Law for Multiplication).

x-1 = x (Identity Law for Multiplication).

If x #0, then xx~! = 1 (Inverses Law for Multiplication).

x(y + z) = xy + xz (Distributive Law).

. Precisely one of x < y or x = y or x > y holds (Trichotomy Law).

If x < yand y < z, then x < z (Transitive Law).

If x < y then x + z < y + z (Addition Law for Order).

. If x < yand z> 0, then xz < yz (Multiplication Law for Order).

0 # 1 (Non-Triviality).

15

These properties are necessary to discuss in order to begin understanding real analysis and

the rules which apply to how we manipulate our functions, series, and sequences in order to ar-

rive at sensical conclusions. The reason why we have focused on the ordered field is because the

real numbers are an ordered field. In order to delve further into the properties of the real num-

bers, there are certain principles that apply to the real numbers that aid in our use of functions

for analytical tools to understand fundamental laws in nature. The following definition relates

to an ordered field with boundaries. In signal processing, when using discrete-time samples

of a continuous sound wave, imposing a certain time limit of the sampled signal and choos-

ing specifically sized increments of the discrete samples are two forms of figurative boundaries

which affect the data drawn from the continuous signal. However, in an ordered field such as

the real numbers, boundaries mark the ends of information which could extend ad infinitum.
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However, since the real numbers are uncountable [2, Theorem 8.4.8], the information is still in-
finite within these boundaries. However, establishing boundaries allows for other mathemati-

cal conclusions to be drawn.

Definition 2.3.2. Let F be an ordered field, and let A < F be a set.

1. The set A is bounded above if there is some M € F such that x < M for all x € A. The

number M is called an upper bound of A.

2. The set A is bounded below if there is some P € F such that x = M for all x € A. The

number P is called an lower bound of A.
3. The set A is bounded if it is bounded above and bounded below.

4. Let M € F. The number M is a least upper bound (also known as a supremum) of A if M

is an upper bound of A, and if M < T for all upper bounds T of A.

5. Let P € F. The number P is a greatest lower bound (also known as an infimum) of A if P

is a lower bound of A, and if P = V for all upper bounds V of A.

To quantify the smallest distance a value may approach from another point, a measure of
“arbitrary closeness" must be created. To measure this distance, an arbitrary positive number
is chosen, often denoted with a symbol € or §. The number known as the limit of a function, L,
is the point which output values as these values approach a fixed number. Then, if for any e > 0
we choose, there exists a 6 > 0 such that for all choices of input within this distance § of our
fixed number, c, the value of our function will be within proximity € of L. The conclusion is that

the limit of the function as values in the domain approach the fixed number c is equal to L.

Definition 2.3.3. Let / R be an open interval, let ce I, let f: I —{c} — R be a function and let

L e€R. The number L is the limit of f as x goes to ¢, written

lim f(x) = L,
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if for each € > 0, there is some ¢ > 0 such that x € I — {c} and |x - ¢| < § imply |f(x) — L| <.
If xlg)nc f(x) = L, we also say that f converges to L as x goes to c. If f converges to some real

number as x goes to ¢, we say that lim f(x) exists.
X—>C

Continuous signals in the time domain are the subject of various analyses by acousticians.
So what does it mean for a signal to be continuous, let alone a function? Using our € — § proof
writing style to define what makes a function continuous is our next step to understanding how
functions can be harnessed to create any kind of curve in space. But there are only particular
curves that can be created, specifically continuous curves. We must start with the definition of

a continuous function.

Definition 2.3.4. Let AcRbe aset, and let f: A— R be a function.

1. Let c € A. The function f is continuous at c is for each ¢ > 0, there is some 6§ > 0 such that
x € Aand |x—c| <6 imply |f(x) — f(c)| < €. The function f is discontinuous at c if f is

not continuous at ¢; in that case we also say that f has a discontinuity at c.

2. The function f is continuous if it is continuous at every number in A. The function f is

discontinuous if it is not continuous.

If there is a gap in the curve of a function (such as a piece-wise function) or an asymptote
(vertical or horizontal "barrier" that values approach but never reach) then the function is not
continuous. There is a more stringent condition on continuous functions mathematicians seek
in these functions that bears greater significance than if the function were merely continuous.
The stronger condition is significant because instead of our choice of § depending on c,e and
the function, now our choice of § only depends on € and the function. This is important be-
cause we know that for any point we can choose a point ¢ that will be within the same distance

€ of our point.
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Definition 2.3.5. Let A< Rbeaset,andlet f: A— Rbeafunction. The function f is uniformly

continuous if for each ¢ > 0, there is some § > 0 such that x,y € Aand |x — y| < imply | f(x) —

fl<e.

Observe that the notion of continuity is defined at distinct numbers in the domain of the
function, but mathematicians do not have a concept of "uniformly continuous at a point." The
reason for this is that the idea behind uniform continuity is the same § works for a given e,
regardless of the specific point so long as that point is in the domain of the definition of the
function. For our purposes we will be concerned with bounded, uniformly continuous func-

tions; this fact necessitates stating the following corollary.

Corollary 2.3.6. Let C =R be a closed bounded interval, and let f: C — R be a function. If f is

continuous, then f is bounded.

We have just discussed how a basis can be used to create a graph resembling to shape of
a waveform by boosting the levels of each basis element at the given sample point. In signal
processing it is crucial to know that the function being sampled is uniformly continuous in
order to be able to pick arbitrary sample points of any desired increment; if points that are
picked along the domain and the function is not continuous at these points there will be data
missing in the discrete sample. This will lead to erroneous information. In this way it is crucial
to know that the function is uniformly continuous over the domain is it defined.

Just as any discrete signal form can be created with orthogonal basis elements, and any si-
nusoid can be generated by the summation of sinusoids, any continuous function on a closed
interval can be uniformly approximated on that interval by polynomials to any degree of ac-
curacy. This idea is rooted in a theorem that we will use to show how all these facts are amal-
gamated for the purpose of creating the frequency spectrum. The theorem is called the Weier-
strass Approximation Theorem, and it cannot be stated until a few results and definitions are

given to provide context for the theorem.
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2.4 Continuous Bounded Functions Created Using Polynomials

For a bounded uniformly continuous function f: R — R define for 2 >0

Snfx)= %ﬁf_wf(u)e_(uhx)zdu. (2.4.1)

As a side note we define what it means for a sequence of functions to be uniformly convergent
to another function. The sequence of functions can be thought of as approaching the function
in all values of the domain of the family corresponding to that of the function these values are
approaching. The proof style is similar to proving uniform continuity, except only the choice of

N must depend on €.

Definition 2.4.1. Let A <R be a non-empty set, let { f,l}c:loz1 be a sequence of functions A — R
and let f: A — R be a function. The sequence of functions { fn};’f:l converges uniformly to f
if for each € > 0, there is some N € N such that n € N and n = N imply |f,,(x) — f(x)| < € for all

X € A.

Theorem 2.4.2. Let f: R — R be a bounded uniformly continuous function. Then Sy, f converges

uniformly to f ash — 0.

Proof: Let € > 0. Then by definition of uniform continuity there exists § > 0 such that x, y e R
and |x—y| <6 imply | f(x) - f(y)| < 5. Let M € R and suppose | f (x)| < M for all x € R. We know

M exists because f is bounded. We will show that the Gaussian integral can be computed by
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shell integration (double integration in polar coordinates) where we have

oo ) 2 oo
(f e_xdx) :f dxf eydy
—00
f f e~y )dxdy
2n
f f " rdrde

—an e rdr
0

01
= 27r/ Eesds{Change of variables [s = —r?]}

—00

0
= nf e’ds
—00

sO
=T7e

—0o0

=7’ — ™)

Using the fact that [0 e~V dv = /7, it can be verified easily that

—— _(%)Zdu =1.
il

This implies that we can write

I (k522
f(X)_h\/ﬁf—oof(X)e n ) du.

Now let hy > 0 such that hg < eg]\‘{, then

ISnf @) = fll === If ()= f)le” T du

\/_
€ u—xy2
<= +— If(w) - f(x)le " du
2 h\/ﬁ |x—ul|=6 f f
2M —x
<y 22 e P du
2 h\/ﬁ |x—ul=6
€ 2M 2Mh
e e Vdvs lvle " dv
2 Vrdwizg NP
_€ MR e 2hM
s—+——=|[ ve V=—+ ——
2 dymlo 2 oym

forall0 < h < hg and all x € R.
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Theorem 2.4.3. If f is a continuous real-valued function on |a, b] and if any € > 0 is given, then

there exists a polynomial P on [a, b] such that|f(x) — P(x)| <€ forall x € [a, b].

Proof: We begin by extending f to a bounded uniformly continuous function on R by defin-
ing f(x) = f(@)(x—a+1) on [a-1,a),f(x) = -f(b)(x—b—-1) on (byb+1], and f(x) =0
on R|;z—1 p+1). The notation used in the segment R|;,_; p+1) Means that the values of R are
restricted to only values including a — 1, every number in between a—1and b+ 1, and b + 1.
For the sake of the reader understanding more common notation, [a, b] denotes that a and b
are included in the interval along with numbers in between a and b, where an interval (c, d)
indicates that ¢ and d are not included in the interval but all numbers between ¢ and d are
included. We will proceed accordingly. In particular there exists an R > 0 such that f(x) =0
for |x| > R. Let € > 0. Let M € R such that | f(x)| < M for all x. We know M exists because f is
defined over a bounded interval and is continuous, so by our corollary we know f is bounded.
By the theorem proved above we know there exists an /iy > 0 such that for all x € R we have

1Spf(x) = f(x)| < 5. since f(u) = 0 for |u| > R, we can write

S f(x) = ;fRf(u)e_(u"_;)Zdu
0 h()\/ﬁ -R .

U

On [-37 2R 2R 0] the power series of e”” converges uniformly, so there exists NV such that

€
< —
4RM

1y 1 %(—l)k(u—x)%
hoVm hovm iz k! ho

for all |[x| < R and all |u| < R, since in that case |u — x| < 2R. This implies that

2k
)du ¢
ho

< —
2

Sho f(x) =

(1)(
h\/_ kO

R 1 2k
for all |x| = R. If we put P(x) = h;/ fu )Z - ) ( ) du, then P(x) is a polynomial
VRS ho
in x of degree at most 2N such that |Sp, f (x) — P(x)| < 5 for all |x| < R. This implies that | f (x) —

P(x)| <eforall x € [a, b]. O
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The function Sy, f is the convolution of f with a Gaussian heat kernel. These heat kernels
form an approximate identity. The topic of convolution will be discussed in the Chapter 5.

The significance of the Gaussian is that it corresponds to a random sample of data, where
the majority of samples (representing the average values) of the data are centered around the
peak of the parabolically-shaped curve, and the outliers of the data are located near the ends
of curve and asymptotically approach zero. In our case study we will be analyzing samples of
data sets, which is why establishing a connection between the Gaussian curves and how they
are used in our analysis is important to our study. It is here that we find an overlap between
these continuous function approximations and the summations of sinusoids used to create
waveforms. Soon we will discuss how the convolution of uniformly continuous functions with
Gaussians are infused with the concept of basis elements of vectors spaces and orthogonality
of these basis elements, and how convolution of series of orthogonal waveforms may in turn
be used to create the frequency spectrum. Before we reach that point, we must first reveal how

orthogonality is applied to Fourier series.

2.5 Orthogonality of Fourier Series

We have discussed how a basis of vectors may be used to create different levels of a curve at
discrete points depending on the value of the scalar which corresponds to the amplitude at that
point. Now we will make the connection between these basis vectors and integrals to show how

the orthogonality principle applies to continuous functions which we use in Fourier analysis.

Example 2.5.1. Let U = Zi’f v;€; be a set of basis vectors. This means that the set 7 are linearly
independent and every vector in the vector space is a linear combination of the set. By the

orthogonality principle of basis vectors €; - €; =0 (if i # j).

This may be related to the integral of two functions which are orthogonal.
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Example 2.5.2. Let F: [-m,7] — R be a continuous periodic function defined
F(x) = sin(mx) sin(nx)

where m,neZ.

/4
Suppose that n # m. Then we have f sin(mx) sin(nx)dx. We may use one of the trigono-
-7

metric addition formulas —% [cos((m + n)x) — cos((m — n)x)] = sin(mx) sin(nx). Then we have

T

T
f sin(mx) sin(nx)dx = —%f [cos((m + n)x) —cos((m—n)x)]dx

1 [sin((m+n)x) sin((m-n)x)|»

T2 m+n  m-n -

1 [sin((m+mn)x) sin((m—n)n) sin((m+n)(—m)) sin((m—n)(—mr))
T2 m+n  m-n _( m+n - m-n )

m—n # 0 and m + n = 0 or another integer, therefore we know that sin(kx) = 0 where k € Z.
Therefore these two waveforms sin(mx) and sin(nx) are orthogonal to each other. Now take

the case where m = n. Substitute m for n and we have

T

fsin(mx)sin(mx)dx:f sin®(mx)dx

=7 =7

T1 1
:f ———cos(2mx)dx
2 2

=7

1 1 . 7
=—x— —sin(2mx)

2 im -

/4 /4
=>-0-[-5-0]

2 2
=T.

A similar argument applies to cosines and exponentials.

The application of orthogonality extends to signal processing because when two waves are
orthogonal their dot product will equal 0, and when two waves are equal they will add con-
structively. Intuitively this makes sense, because when the waves are orthogonal they are out of
phase from one another by 90 degrees (7 radians), which means that they behave destructively

and cancel one another. When the waves are of the same frequency they behave constructively
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and their amplitudes add. This is known as Fourier’s trick. There are other forms of this method
that allow us to see how a basis of vectors may have the same principle of orthogonality applied

above.

Example 2.5.3. Consider U = Zgj’f vi€;. Multiply both sides by ¢; and we have

—

€ji-v=¢€j-) v

[
<
>
<

where v; is the amplitude in the €} direction.

We have seen how orthogonality is used to attenuate certain functions and permit certain
functions to be displayed. Before we establish the connection between orthogonality and sam-
pling a signal over the time domain, a definition of Fourier series and Fourier transforms must
be provided. The connection between discrete-time signals and continuous-time signals will
be evident once we have shown how Fourier series and Fourier transforms relate to delta func-

tions through the property of orthogonality.
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Fourier Series and Fourier Transforms

3.1 Definition of Fourier Series and Fourier Transforms

In the context of digital signal processing, the purpose of a Fourier transform is to reconstruct
a signal from the time domain to the frequency domain spectrum. The Fourier transform is a
generalization of the complex Fourier series in the limit as L — oo. The sum of the Fourier series
is changed into an integral by the Fourier transform, which is useful in our study of acoustics
because the sum of frequencies are changed into an integral that may be evaluated over the
entire spectrum of our frequencies. We will introduce definitions of Fourier series and Fourier
transform and discuss the variations of the Fourier transform that are applicable to our study

of acoustics in digital signal processing.

Definition 3.1.1. A Fourier series of a continuous periodic function f is a discrete repre-
sentation of Fourier amplitudes derived using the formula for Fourier coefficients of sines
and cosines. Let f: [-L,L] — R be a continuous, periodic function. We will use the notation

{.Z o f(x)} to denote the Fourier series of f for all x € [-L, L]. We have

{Fofx)}= %ao + ) apcos(nx)+ Y bysin(nx) 3.1.1)

n=1 n=1
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where %ao, an cos(nx), b, sin(nx) are the Fourier amplitudes of the function f forallne N

1 L

ag = —f fx)dx (3.1.2)
LJ-L
1 L

a, = —f f(x)cos(nx)dx (3.1.3)
L)1
1 L

by = —f fx)sin(nx)dx (3.1.4)
L)1

ag, an, by, are the Fourier coefficients of f for all n e N.

Definition 3.1.2. The Fourier transform converts a continuous time function into a frequency

spectrum of Fourier amplitudes.

o

Example 3.1.3. Define frequency as f = 7~

where w = angular velocity and frequency is in units
radians per second. Let f,g: [-L, L] — R. In the limit as L — oo, replace the discrete A, with

the continuous F(k)dk while letting 7 — k. Then change the sum to an integral and we have

F(k) = f Fx)e ik gy, (3.1.5)

fx) :f F(k)e*™ kg (3.1.6)

Equation 3.1.5 is the Fourier transform of f and equation 3.1.6 is the inverse Fourier trans-
form of F. Notice that this form is written without w, and the Fourier transform may be rewrit-

ten as

gw) ={Zf (0]}

I ot (3.1.7)
= \/?f f(t)e dt
T J—00
fO={7 " g1}
__ 1 f * 2(@)e™®" da (3.1.8)
CV2n)-w '

Equation 3.1.7 is the Fourier transform expressed in terms of w and equation 3.1.8 is the

inverse Fourier transform expressed in terms of ¢.
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3.2 Applications of the Fourier transform in Digital Signal processing

We will present an example of a transformation that yields a curve whose behavior is at the core

of digital signal processing.

Example 3.2.1. Let f: R — R be defined by

0, ifr<o0
f(O =4 Aet™ol ifo<t<T (3.2.1)
0, ifT<t

where A, wy, T are constants. A is the amplitude of the signal, wy is the frequency of the sig-
nal, and T is a value of time. We will take the Fourier transform of this function to find out

information about the frequency content of the signal. The first step is to evaluate the integral.
gw)=F(f(1)
= L\/‘Tf(t)e—lwtdt
v2mnJo
A g iw '
=——| e dr
v ano
A T
= —f e
v2amJo
S !
21) \i(wo —w) 0

B (\/I;l_n) (i(wol—w))ei(wo_wﬂ_ (\/I;l_n) (i(wol—w))

i(wo—w)tdt

— A (ei(wo—w)T_l)
V21 i(wo - o)

__ Al [ei(wo—w)T_l]
V271 (wo - w)

We will use Euler’s formula, e’* = cos(x) + i sin(x), to rewrite the previous equation

Al i(wog—w)T
o — 0 -1
8 V27 (o — w) ¢
= —ﬁo_w)[COS((wo —(1)) T) + iSiIl(((U() —w) T) - l]l
= ; [sin((wg—w)T) —icos((wg—w)T) +i]

V27 (wo — )
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We will take the Real and Imaginary parts of this solution and separate them. We are only con-

cerned in the real part of this equation so we may gain information about our frequency.

gw)= ﬁo_w) [sin((wg—w)T) —icos((wyg—w)T) +i] (3.2.2a)

A
R =———si —w)T 3.2.2b
{g()} Vanoe—a) sin((wg — ) T) ( )
S{gw)} = ﬁo—aﬂ[l —cos((wo —w)T)] (3.2.2¢)

Observe that in the case where w = wy we have 9 therefore we must use take the limit of our

real solution as w approaches wy and use L'Hopital’s rule.

A
Van

. sin(w —wy) T
lim .
w— Wy

(w — wo)

We will make a substitution of variables and define x = (w—wy), taking the limit as x approaches
0.

A

V2n

. sin(x)T
lim
x—0

X
AT

V2m
AT

V2
AT

Ner3

sin(x)

x—0 X

Equation 3.2.2b is referred to as a sinc function, and at w = wy the value of the function is 4.

van

wy is known as the center frequency. In order to gain a visualization of this kind of function, the

a graph of a different sinc function curve is provided. Let f: R — R defined

80000007 sin(15x)2
x) = (3.2.3)
f (x2 — 400000072)?

where w( = 20007 is the center frequency. Figure 3.2.1 is a graph of this function with the center

frequency as the only point represented on the x-axis. This family of functions that exhibit
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Figure 3.2.1. Graph of equation 3.2.3.

the same behavior as the curve in Figure 3.2.1 are known as sinc functions. Normalized sinc

functions are of the form

. sin(rm x)
sinc(x) =

(3.2.4)
X

where x # 0. The value at x = 0 is defined to be the limiting value since sinc(0) = 1. These
functions are perfect models of how acousticians may gain information about the frequency of
asignal. Recall that any wave signal, no matter how seemingly complex, may be expressed as an
infinite sum of sine waves. Any number of sine waves of different periods may act destructively
and constructively at various points to create this sinc curve. In equation 3.2.2b the central
peak of the sinc curve gets taller and T is increased and the width of the central curve gets
narrower as T is increased. Looking at a finite sample of a pure tone, e!“°?, the sample time T
of the signal changes the frequency information of signal in the following ways:

1.For a small T a broader frequency spectrum is seen around wy. In this way we have that
f is not precisely defined. This is testament to a smaller amount of time spent sampling the
signal which results in a less defined frequency spectrum.

2.For alarge T a narrower frequency spectrum is seen around wp, which is well defined at

w = wy. In this way longer sampling always gives a better frequency definition.
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3.3 Fourier Operations and Constructing the Frequency Domain

There are three different types of Fourier decompositions that are common in signal process-
ing. We will discuss these Fourier forms in a way which accentuates their common traits, de-
spite the fact that the conventions we are following may not be standard in the methodology
of other mathematicians’ derivations. Steps will be labeled and equations will be numbered to
alleviate laborious book-keeping.

The first case we explore is when a function is periodic with period T. We want to express

this in terms of a sum of periodic functions

00 . 2
fri=3 gneiwn =" n (3.3.1)

n=—oo
Notice in equation 3.3.1 the frequency of the signal ranges over all values of n and f, = 7.

The second case is a general function f(#), which we express as an integral over all possible

oscillations

fo= f gw)-eldw 3.3.2)

w=-00
The third case is a finite set of measurements of f at equal intervals of time. We will express this

as a finite sum of oscillatory terms evaluated at those times

N-1 )
fe=f) =) gne'r
n=0

N, (3.3.3)
= Z gnel N
n=0
Equation 3.3.3 has either w, = ZT” -norty==k- %

In each case we must find the value of the g functions using the value of the f functions.

To accomplish this we will use a delta function depending on whether we are dealing with a
continuous interval or discrete increments. The purpose of the delta function is to make all but
one value of the expression under consideration go to 0. Recall that Fourier’s Trick was derived

in Chapter 2. The same principle may be extended to integrals of a complex exponential as well
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as discrete series of exponentials. This is the connection between orthogonality and the delta

function. Our delta functions are defined as

T

1 (2 ;o

?fie’%(”‘m”dtzén,m (3.3.4)
2

1 [ |

> eI dt=6(w-a) (3.3.5)
—00

1N=L i N-m)

< Y (e iy k) =8mm (3.3.6)
k=0

Equation 3.3.4 was established in Chapter 2 and is commonly referred to as “Fourier’s Trick."
Equation 3.3.5 is the Dirac delta Function, which is an extension to continuous functions over
(—o0,00). Equation 3.3.6 is found by taking the summation of the geometric series for the nth
roots of 1.

We will begin with equation 3.3.1. We multiply both sides by equation 3.3.4 and we have

) ;27
frn=) gne'™™
n=—oo
T fo%) T
lfz fT(l')e_i%”mtdt= Z gn fz ei%”(n—m)tdt
TJ) 1 R

(3.3.7)

o0

= Z 8ndnm

n=-—oo

8m-

By starting with equation 3.3.2, we may arrive at a similar result analogous to equation 3.3.7.

Multiply equation 3.3.2 by equation 3.3.5 and we have

f =f gw)-etdw

w=—00
ifoo ei(“’_“)tdt] dw
27 Ji=—c0 (3.3.8)

%f f(t)ei“tdtzf_ gw)-

:/ gw)-6(w-a)dw

wW=—00

= g(a).
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Now using the latter part of equation 3.3.3 and multiplying both sides by equation 3.3.6 we have

N-1 ox
Jr= Z gnelﬁnk
n=0

1 NZ_I 2mik NZ_I 1 Ni} 2nik )
— fre N m_ gnl— e N mm
N o =0 | NiZo (3.3.9)
N-1
= Z 8n0nm
n=0
= gm_
A summary is provided of the previous derivations.
x , 1 [z .
fro=")Y gue'"'og,= —f fr(te "rtde (3.3.10)
n=-o00 T L‘=—%
oo 3 1 (&) .
f(t)=f gw)e®ldt o glw) = — f(e *tde (3.3.11)
w=—00 27 Jt=-o0
N-1 21 g 1 N-1 2 g
fe=) gne' " o gy=—3 fie V" (3.3.12)
n=0 Nk:o

The fact that equation 3.3.1 reveals that f7(f) may be expressed as an infinite but countable
sum of functions tells us that these fr functions are not the full class of functions, which is
uncountable. In fact, the fr functions which may be represented by a Fourier series are square-
integrable function in an .2 space, a countably-dimensioned Hilbert space. A Hilbert space is
an abstract vector space possessing the structure of an inner product (integral version of the dot
product seen in Chapter 1) that allows length and angle to be measured. We will be concerned
with finite Hilbert spaces for finite sampling of periodic functions.

Additionally, the Fourier transform of equation 3.3.2, being an integral over all frequencies,
applies to the complete set of functions of a real variable, including unbounded ones.

The discrete Fourier transform, equation 3.3.3, involving only finite sums, has the least infor-
mation of all. There it is evident that if one starts with N data points over a continuous function
{fx}, theresultis ending up with N oscillation amplitudes {g,}. Now that we have discussed how
the frequency domain is derived we will move on to discussing how the fast Fourier transform

works. The fast Fourier transform is the means by which acousticians analyze continuous-time
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signals and change the signal from the time domain to the frequency domain for further fre-
quency analysis. Once we understand the fast Fourier transform we may discuss the methods

used for creating a digital filter based on the functionality of an analog filter.
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The fast Fourier Transform

4.1 The Process of the fast Fourier Transform

In the solution of a discrete transformation problem, (equation 3.3.9), we have time data sam-

pled N times on an interval ¢: [0, T]. Let
T
AEN»tkE k-A, fi = f(#), k: [0, N]. (4.1.1)

We want to extract frequency information out of this, but since we only have N data points,

so we may only obtain N frequency points,
2n
wn=n-?,n:[0,N) (4.1.2)
notice that
2m T 2n
wp-txr=m-—=)k-—=)=—kn 4.1.3
nte=( T ) N) N ( )
So we may express f as a finite sum of oscillation terms:

1 N-1 PR 2m
fio=5 2 gne'" =< ) gne' N (4.1.4)
n=0 n=0
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The trick is to invert the sum, which is the same as multiplying by the inverse of the exponent

or dividing by the exponent. Then we have
N-1 o
gn= Y fre WM (4.1.5)
k=0

Initially, this form seems to resemble ¥ = A’ matrix multiplication, with N? steps. The idea
behind the fast Fourier transform is that an N-point transform may be split up into two almost
identical g-point transforms, which is known as radix-2. This leaves 2 - (%)2 = %NZ steps. Do-
ing this repeatedly yields fewer steps (roughly Nlog, N for a large enough N). This is possible
because the e ¥ ¥ terms are really not N? separate terms. Many are repeated multiple times.
The splitting takes place along “even/odd" lines, or more generally mod(2"") arithmetic. In

. i
general, letting e ¥ " = a, we have

gn=fota fita* fot-+a " fyo+aV e g
=lfo+tad’fo+a‘fa+-+a" vl ralfi+a fitatfs+--+a ? fyol (4.1.6)

=fo+bfotD2fit-+b2 "V fyolta-lfi+h fa+b2fs+-+b2 1l

Here we have assumed that N is even, and let b = a? to accentuate how the last step is just two
identical %-point transforms.

This process may be repeated, splitting each sum into two transforms, each of which is %
long. If N is originally a power of 2, this process may be repeated all the way down to 1. The full
Fourier transform is then found by recursively summing pieces, using the same addition steps

at each stage.
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Example 4.1.1. Let N=16.Leta= e~ ", b= a?,c = b?,d = c2. Then we have
gn=fora fi+a* - fo+--+at fiu+a®- fis

=[fo+b- o+ b* fu+ D’ fo+b* fs+b°- fio+ D% fio+ b7 fial

ta-[fi+b- fs+b° fs+b° fr+b* fo+ b i1 +b°- fiz+ b+ fia

=[fot+c- fatc* fa+C fial +b-[fo+c: fo+c* fio+C - fial (4.1.7)

+a-lfi+c fs+* fo+ - fisl+b-[fs+c- fr+c® fii+c®- fis)

=[(fo+d: fo)+c-(fatd- i)l +b-[(fa+d- fi2)+c(fo+d- fia)]

ta-[(fi+d-fo)+c-(fs+d- fi3)l+b-[(fs+d- fi)+c-(f7+d- fi5)]

We have seen how to write a recursive algorithm to add pairs, or pairs of pairs, and so on
and so forth. The question remains: How do we get the numbers in the correct order? Look-
ing at the binary representation of the indices will be helpful, since each level of division and
grouping hinges on the congruences of numbers mod2™. The first division is into evens and

odds, i.e. {0mod2}, {lmod2}. Next we get {0mod4}, {2mod4}, {lmod4}, {3mod4}. These numbers

are represented in binary and reverse binary in Figure 4.1.1.

k Binary Reversed Number
0 0000 0000 0
8 1000 0001 1
4 0100 0010 2
12 1100 0011 3
2 0010 0100 4
10 1010 0101 5
6 0110 0110 6
14 1110 0111 7
1 0001 1000 8
1001 1001 9
5 0101 1010 10
13 1101 1011 11
3 0011 1100 12
11 1011 1101 13
7 0111 1110 14
15 1111 1111 15

Figure 4.1.1. Binary representation and reverse binary representation.
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We will take the numbers in the order we end up adding them, then look at their binary
representations, and finally that binary representation written in reverse order. A glance at Fig-
ure 4.1.1 shows that this is precisely the order in which we want to put the terms. The reason
this works is because of the successive stages of Mod2" decisions that were made in putting
the terms in this order in the first place.

A fast Fourier transform routine generally has two stages. First the f; terms are sorted into
a new order determined by their reversed binary representation. Then, these are recursively
added in pairs with the appropriate coefficients.

The fact that the FFT may be written recursively and will only use the coefficients (e%i'")m
is what makes the routine fast. Now we will discuss how the FFT works with convolution in
digital signal processing and relate how the convolution of uniformly continuous functions
with Gaussians are infused with the concept of basis elements of vector spaces and may be

applied to create Fourier series.
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An Important Property in Signal Processing

5.1 The Definition of Convolution

Convolution is a very important operation in signal processing. Convolution is the means by
which continuous-time signals are combined with other continuous-time signals. The out-
put of these combined signals may be viewed as an integral of the pointwise multiplication
of the two functions as a function spanning the length over the domain of one of the origi-
nal input functions (the bounds of the integration). Convolution is the operation used when a
continuous-time signal is transformed with a window function to display the information from
the time domain to the frequency domain. We will introduce window functions in Chapter 6
and discuss their important role in our case study in Chapter 8. In the next section we will

show that this property applies to discrete-time signals as well.

Definition 5.1.1. Let f, g: R — R be continuous-time functions. Convolution of f and g over

a finite range [0, t] is given by
t
[f =gl Efo f@gt-1)dr, (5.1.1)

where the symbol [ f * g](¢) denotes the convolution of f and g.
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Convolution is often taken over an infinite range,

[f*g](t)zf Fmglt-nde
ey (5.1.2)

=f g f(t—1)dr.

5.2 Convolution property of FFT and DTFT

Convolution is a property which is used regularly in signal processing. We will discuss the prop-
erties of the FFT under convolution and the result of the theorem we state similarly applies to

the DTFT (discrete-time Fourier transform).

Theorem 5.2.1. Let f(t) and g(t) be arbitrary functions of time t with Fourier transforms. Take

£ = FSUFWI0) = f F)e?™ vy 5.2.1)
g(t)=ﬂ,,‘1[G(v)](t):f Gw)eX iV dy, (5.2.2)

where .7, denotes the Fourier transform and %, denotes the inverse Fourier transform. Then

the convolution is

f*ng g fe-1thdt (5.2.3)
=f gt U Fw)e v =gyl dt. (5.2.4)
Interchange the order of integration and we have
f*g:f F(v) f g(t’)e‘z’””"dt’] ity (5.2.5)
:f Fw)Gw)e* Vidy (5.2.6)
=7, Fw)GW)(¢). (5.2.7)

Applying a Fourier transform to each side of the equation, we have

Ff+gl=F1f1.71gl. (5.2.8)
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The convolution theorem also takes alternate forms

FIfgl=FIf1*7gl (5.2.9)
FUZI1Tlgh=Ff*g (5.2.10)
FUZIf1=ZFIg)=fg. (5.2.11)

Theorem 5.2.1 may also be applied to the inverse Fourier transform. Theorem 5.2.1 indicates
that multiplication of two continuous-time signals in the time domain is equivalent to con-
volution of two continuous signals in the frequency domain; likewise, convolution of two
continuous-time signals in the time domain is equivalent to multiplication of two continu-
ous signals in the frequency domain. In a similar manner it can be shown that Theorem 5.2.1
applies to functions of discrete variable sequences as well. Now that we have an understanding
of the methods that form the basis of signal processing, we transition to discussing the finer
details of sampling a continuous-time signal; specifically, we are interested in arriving at a so-
lution for a major issue regarding the discrete-time sampling of a continuous, periodic signal.
The following chapter discusses how sampling a continuous-time signal may go awry and the

appropriate response to this issue that yields a desirable result.
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Details of Periodic Sampling

6.1 A Conundrum Regarding Continuous-Time Sampling

This section discusses how periodic sampling may confuse frequencies of a continuous-time
signal.

If a system is sampled on a time cycle A ¢, then we are interested in cyclic behavior with
periods of integer multiples to this value. Let T=period and let N € Z,,. Then we are interested
in a period such that T = N - A ¢t. Specifically, if we take N data points, each At apart, the
frequencies we observe are

fu= % (6.1.1)

where n=0,1,...,N—1and ¢ is time.

In reality, all we know is that we observe N frequencies, each separated by ﬁ = A f. It may
be the case that 0 — N -1, or —% —0— g — 1, or even possibly No — Ny + N — 1, the point
being that sampling only N times does not permit us to distinguish between two cycles that
differ by Aﬂt in frequency.

One way to observe this is with a graphical representation seen in Figure 6.1.1 depicts the

curves of frequency 1 and 5.
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Figure 6.1.1. sin(t) and sin(5t)

In Figure 6.1.1 we see that sampling at ¢ = 0,1,2,3,4 gives the same values for sin(¢) and
sin(5t). Therefore, at these discrete points in the frequency domain the sampling could not
distinguish between these contributions.

Let us prove this fact algebraically. We may compare the "time arguments” of two oscillations
that differ by N. The phase angle is adjusted to make this occur at ¢ = fy.

Let ¢ be the phase and let f;, be the frequency at a particular positive integer n.

fo-to=fuin-to—¢ 6.1.2)
I =T (6.1.3)
A =T A7 0o—¢ 1.
SO —ﬂ-t (6.1.4)

(p_At 0- 1.

We sample these two oscillations again at # = tp + k- A t. Then we have

n
Jorte= ~; ot nk (6.1.5)
N N
and fray- te—p= )-t0+(n+N)k—A—t-to 6.1.6)
=+ nk+ Nk 6.1.7)

At
=fu- tx+ Nk (6.1.8)
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so the phase angle would be 27 f't, or

270(fpan te— ) =27 f- te + 27+ Nk (6.1.9)

We see that the second oscillation has just gone through a number of complete oscillations, so
it will assume the same values for sine or cosine. In context to these oscillations, the sampling
will not be able to discern the difference between f;, and f;,+ .

It is simple to see that when the sampling frequency is exactly equal to the oscillating fre-
quency the sample results are a facsimile of the sample results of a constant function (f =0, in
the most trivial case).

This means if f = fy + A f, the information that will be displayed in the results of the sam-
pling is the change in the signal relative to what would be observed if f = f;. Another way of
describing this is thatitis only A f that matters, since fj always reverts values to the same value.
This substantiates the reason why f and f + fj are indiscernible to a sampling at frequency fj.

The solution to this problem is picking a sampling rate that is divisible by the number of
increments chosen for frequency in the frequency spectrum, and making sure that the signals
used have frequencies which are less than half the sampling rate. The frequency that is half of
the sampling rate is known as the Nyquist frequency. It is crucial that we discuss the importance
of remedying the problem that is unique to taking the FFT of a continuous-time signal. The

issue we will discuss is one which necessitates the use of windowing functions.

6.2 A Problem with the FFT that Necessitates the use of Windowing
Functions

When an FFT is used to measure the frequency component of a signal, the assumption is that
the analysis is based on a finite set of data. The actual FFT posits that it is a finite data set, a
continuous spectrum that is one period of a periodic signal. The FFT regards a signal in the

time domain or frequency domain as a circular topologies, so the two endpoints of the time
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waveform are regarded as being joined to one another. When the measured signal is periodic
and the sampled time interval is composed of an integer number of periods, the FFT does not
encounter any issues. However, it is often that the measured signal is not an integer number
of periods. Therefore, the finite aspect of the measured signal may yield a truncated waveform
with different characteristics from the original continuous-time signal. In this way, the finite
aspect of the signal may prompt abrupt transitions in the measured signal. These sharp transi-
tions are discontinuities.

When the number of periods in the signal is not an integer, the endpoints are discontinuous.
These discontinuities appear in the FFT as high-frequency components which would normally
be absent in the original signal. These frequencies may be higher than the Nyquist frequency
and are aliased between 0 and half of the sampling rate. This means that the spectrum gener-
ated by the FFT is not the actual spectrum of the original signal and is a jumbled imposter. It
appears as if energy at one frequency bin seeps into other frequency bins. This phenomenon
is known as spectral leakage, which causes the fine spectral lines to spread into wider signals.
Acousticians knew that they had to devise a way to modify the output of the FFT so that these

discontinuities were bypassed.

6.3 Windowing Functions

The negative effects of taking an FFT over a non-integer number of cycles may be resolved by
used a technique called windowing. Windowing reduces the amplitude of the discontinuities
at the boundaries of the frequency content of the signal. Windowing involves multiplying the
continuous-time signal content by a finite-length window with an amplitude that varies, de-
pending on the choice of window, but whose amplitude asymptotically approaches 0 along the
edges of the signal. This causes the endpoints of the wave to connect and creates a continuous

waveform free of sharp transitions.
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There are a few different kinds of window functions that are more suitable than others de-
pending on the signal. One must understand more about the frequency characteristics of win-
dow functions in order to possess the knowledge of how these functions may be applied to the
frequency spectrum properly.

A realistic plot of a window conveys the fact that the frequency characteristic of a window
is a continuous spectrum with a main lobe and two or more side lobes. The main lobe is cen-
tered at each frequency component of the time domain signal and the side lobes approach
zero. The height of the side lobes is indicative of the kind of effect the windowing function has
on frequencies near the main lobes. The side lobe response of a sinusoidal signal with large
amplitude and/or short period may overpower the main lobe response of a nearby sinusoidal
signal with small amplitude and/or large period. In general, the lower side lobes reduce spec-
tral leakage in the measured FFT but increase the bandwidth of the major lobe. The side lobe
slope steepness (known as the roll-off rate) is the asymptotic decay rate of the side lobe peaks.
Thus, increasing the side lobe roll-off rate reduces spectral leakage.

Selecting the window function may appear to be a daunting task. Each window function
has its own behavior whose compatibility with the signal in question depends on the goal of
the user. Each type of problem necessitates the use of different windowing functions based
on the way the input signal convolves with that particular window function in order to create
a processed function that displays the desired frequency information and whose behavior is
suitable for the conditions imposed by the acoustician. Initially it is advised to choose a window
function based on an estimate of the frequency content in the signal. The following should be

taken into consideration:

1. If the signal contains high amplitude and/or short period frequency components that
interfere with the frequency components of a distant frequency of interest, a smoothing

window with a high side lobe roll-off rate is advised.
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2. If the signal contains high amplitude and/or short period frequency components that
interfere with the frequency components of a close frequency of interest, a window func-

tion with a low maximum side lobe level is advised.

3. If the frequency of interest contains two or more signals of close proximity, spectral res-
olution is important. In this circumstance it is best to choose a smoothing window with

a narrow main lobe.

4. If the amplitude exactness of a sole frequency component is more vital than the precise
location of the component in a given frequency bin, a window with a wide main lobe is

advised.

5. It the signal spectrum is broad in frequency content, a uniform window or no window at

all is advised.

6. In general, the Hanning (also known as Hann) window is satisfactory in the vast majority
of cases. It has exceptional frequency resolution is effective in reducing spectral leakage.
If one is incapable estimate the frequency content of a signal but the need for a smooth-

ing window is unavoidable, starting with the Hann window is highly advised.

Note that even if one uses no window, the signal is convolved with a rectangular-shaped win-
dow of a set height, by virtue of the interval in time of the input signal and working with a
signal sampled at discrete points. This convolution has a sine function characteristic spectrum
best known as sinc. For this reason, using no window is often called the uniform or rectangular
window because there is still an effect on the signal reminiscent of applying a window to the
signal.

The Hamming and Hanning window functions have curves which resemble the shape of sinc
curves. Both windows yield a wide peak but low side lobes. However, the Hann window reaches

zero at both endpoints of the signal and eliminates the discontinuities. The Hamming window



6. DETAILS OF PERIODIC SAMPLING 47
only asymptotically approaches zero at these discontinuities, thus the discontinuities are not
completely ameliorated. As a result, the Hamming window cancels the side lobes nearest to the
main lobe more effectively than the Hann window, but it falls short of the mark when tasked
with canceling other lobes. These window functions are helpful for noise measurements in the
case when better frequency resolution than other windows present is desired but moderate side
lobes do not pose an issue. The difference between these windowing functions can be seen in

Figure 6.3.1 and Figure 6.3.2.

4

Hamming

Amplitude

Hanning

Frequency

Figure 6.3.1. FFT of Hann and Hamming Window Functions

For the purposes of our case study we will use the Hann window to display our frequency
information.
We will now move to the subject of filters which will provide us with the information neces-

sary to begin detailing the case study of a digital filter modeled after an analog filter.
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Figure 6.3.2. Comparison of Hann and Hamming Window Functionality
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7
Analog Filters

7.1 Four General Filter Types
There are four general filter types that each have their perks in signal processing.

Definition 7.1.1. A low-pass filter is a filter that permits frequency content below a certain fre-
quency to be displayed in the frequency spectrum and mitigates all frequencies higher than the

designated frequency. The frequency that marks this divide is known as the cut-off frequency.

Definition 7.1.2. A high-pass filter is a filter that permits frequency content above the desig-

nated cut-off frequency and mitigates all frequencies lower than the cut-off frequency.

Definition 7.1.3. A band-pass filter is a filter that permits frequency content between two des-
ignated cut-off frequencies and mitigates all frequencies other than ones in the designated in-

terval.

Definition 7.1.4. A band-stop filter is a filter that permits frequency content on either side of

two designated cut-off frequencies and mitigates all frequencies in the designated interval.

For our purposes we will be interested in low-pass and high-pass filters.
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7.2 Introduction to Analog Filters

Mathematicians fervently seek to establish connections between the causes and effects of nat-
ural phenomena in the world. In fact, the study of mathematics often involves input submit-
ted to a device that returns that input modified slightly or drastically, depending on how the
device operates. In signal processing, mathematicians and physicists have agreed on a com-
monly used term analogous to the concept of an input-output machine driven by empirical

implications provided by teachers in the standard grade school mathematics classroom.

Definition 7.2.1. The system function (or transfer function) of a digital processor, applied to a
continuous wave signal, is a representation of the means by which a mathematical formula is
used to describe how the input of the system, in the form of the continuous-time signal, returns

an output in the form of another new signal.

In the context of digital signal processing applied to the study of Acoustics, mathematicians
and scientists are interested in the means with which they observe how a system function is
modified to suit the standards of audio engineering. In order to optimize the system function,
a sample of amplitude points of the continuous signal are taken which best represent the in-

formation of the analog wave.

Definition 7.2.2. The mathematical method which acousticians modify the display of the sig-
nal information gathered from a pre-existing system function to enhance certain properties of

the signal is called a window function.

We will compare two different filter types which are the most basic and fundamental means
of displaying certain aspects of signal information in signal processing. These two types are
low-pass filters and high-pass filters. We will first derive these filters’ formulas from various
circuit schematics. From these formulas and relations we derive, we see a direct relationship

between the filter-setup functionality in circuitry and signal processing.
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7.3 Derivation of Low-pass and High-pass Filters

RC filter

Consider an RC circuit in series configuration. Let voltage input, V;,, be defined as V;,(¢) =
Voel®! where V; is initial voltage, e is Euler’s constant, j = v/—1, w = angular frequency, and
t is time. The voltage across the capacitor is defined as V¢ = %, where Q is the charge over
the plates of the capacitor and C is the capacitance. The voltage across the resistor is defined
as Vg = I(T)R = RIye/@+¥) where I is the initial current, R is the value of resistance of the

resistor, and ¢ is the phase constant. Q(#) = ]I—Z) e/@i+d) Then we have that

Vin=Vc+ Vg

Voelo! = ic @) | [ R ol @I+9)
Jw

1 )
VWo=1Iy [—C +R|e/? (We must find real solution)
jo

oI = (E) (—_f +R)
I() wC

I() wC

Take the modulus, defined for some complex number, where zePandz=a+b j,as |zel?| =

1z|el? = |z| = Va? + b2

Vo_ [poy L
Iy (wC)?
_ 1
tan((p) = m

Then we will look at the response at various w.

Iy

Vo= —— /@9

joC

1% 1 1 ;
- —01. — —e/@*9) (Take magnitude)
2, _1 W

\/ R+ @C? J

1
Vel =
1 1

+ (wRC)?
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For the Voltage across across the resistor we have

Vg = IpRe/ @+

We will now discuss the quantitative differences between these high-pass and low-pass con-
figurations. Let 7=RC be the time constant of the RC circuit. Then we have that wr = RLC is the
transition frequency between high-pass and low-pass filters. In other words, if w < wr then
we have that |V¢| > |Vg|. If w = w7 then we have that |V¢| = |Vg|. If o > w1 then we have that
Vel < [Vg|. Then we have at a low value of w we have that w RC < 1 and |V¢| > |Vg|, which
implies that tan(¢)) = —= and Z < ¢ < Z. Let us summarize these findings.

At low frequencies, the capacitor has enough time to to enough charge and take on most
of the voltage in the circuit. At low frequencies, the resister does not have much current
(charge/time), so Vg is small. Therefore, low-pass RC filters have V is the output and decreases
from an initial amount and crosses the high-pass filter at the crossover frequency.

For a high w, |Vg| > |Vcl, so tan(¢) < 1 and we have 0 < ¢ < Z. At high frequency, a small time
means a lot of current is running through the circuit, so Vp is large. But at a high frequency, the
capacitor does not have enough time to charge/discharge so there is a low value of V. Thus for
a high-pass RC filter we have V is the output and increases from an initial amount; it crosses
over the low-pass filter at the crossover frequency.

Now that we have been exposed to some of the behavior of low-pass and high-pass filters,

we will discuss the terminology applied to components of signals under filtration.
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7.4 Filter Terminology

We are interested in understanding the visual components of frequency responses in real filters
in order to form a quantitative system to measure these elements. The following definitions are

useful in describing the behavior of filtered frequencies.

Definition 7.4.1. The passband is a frequency band in which signals are transmitted by a filter

without attenuation.
Definition 7.4.2. The stopband is a band of frequencies that are attenuated by a filter.

Definition 7.4.3. The transition-band is a range of frequencies that allows a shift between a

passband and stopband of a filter.

Definition 7.4.4. The gain refers to the amount of maximum amplification of the signal in the

passband.

Definition 7.4.5. The stopband attenuation is the difference in dB between the passband gain

and stopband gain.

Definition 7.4.6. The passband ripple is the maximum fluctuation or variation in the filter’s

frequency magnitude response curve in the passband, measured in dB.

The amount of fluctuations relate to the kind of filter being used, which in turn depends
on how many poles or zeros there are on the frequency-axis. Seeing as we are only using a
Butterworth derived based filter (transfer function with only poles on the frequency-axis) for

our case study, there is no ripple in the passband or the stopband response of this type of filter.

Definition 7.4.7. The stopband ripple is the maximum fluctuation in the frequency response

in the stop band.

The stopband ripple is negligible so long as the stopband attenuation is met, and for our

purposes will be considered negligible for the reason stated following definition 7.4.6.
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Definition 7.4.8. The roll-off rate is the steepness of the slope in the transition band.

The roll-off rate is usually in multiples of 20 dB/decade, where 20 dB/decade=6dB/octave,

where an octave is a doubling in frequency.
Definition 7.4.9. The order is the number of poles in the system function H(s).

Poles are singularities where the function would be undefined and occur when a value would
cause the equation to be some value divided by 0. The higher the order the steeper the roll-off
rate and the shorter the transition band. Poles are only of concern when using another type of
filter, with singularities not confined to the frequency-axis, which indicates a more complicated

system function is in use. For the purposes of our case study we will omit a discussion on poles.
Definition 7.4.10. The cutoff frequency is the edge of the passband.

Definition 7.4.11. The Q factor, or the quality factor, is the sharpness of the peak in a band-
pass filter, it is defined as the center frequency divided by the half-power bandwidth and is a
measure of how close poles are on the jw-axis (imaginary numbers on the y-axis and angular

velocity on the x-axis).

Poles are places where the system function has singularities, meaning where the system
function is not defined. Poles are important in certain areas of digital signal processing, but
for our purposes we will not be discussing how poles play a role in filter design. These defini-

tions will be important in understanding the process for designing our digital filter.



8
Case Study

8.1 Preliminary Measures

Our goal is to create a digital filter which replicates the effects of an analog filter known as
the Enhanced Pultec EQP1-A Equalizer. We will refer to this analog filter as the Manley Pultec
Equalizer for brevity, named after the company Manley Laboratories Incorporated that created
the filter. The process of creating a digital filter facsimile of an obsolete analog filter could be
arduous. However, using technology accessible to modern acousticians, one has the tools nec-
essary to do the job. We must detail the functions of the technology used and the reasons for
selecting the options deemed most suitable for accomplishing our goal.

Acousticians utilize a variety of computer programs to analyze continuous periodic signals
from the time domain to the frequency domain. One of these programs is called Audacity. Au-
dacity is an audio engineering program that may be downloaded online for free. Audacity is a
multi-use platform that allows audio signals to be produced, captured, or analyzed with a great
deal of flexibility for the user. Of the many mathematical methods built into Audacity, one of
the most useful for the purposes of filtering is plotting the frequency spectrum of the signal by

choosing spectrum as the algorithm. This creates a spectrum of frequencies using a discrete-
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time Fourier transform (DTFT). The functionality of the other options of this feature in Audac-
ity will be covered in more depth when deemed appropriate to our discussion of mathematical
methods pertaining to the analysis of the output spectra.

Audacity is also capable of producing chirps, pink noise, frequency sweeps, and tones. For
the purposes of this project, tones were produced and deemed sufficient for the input signal.
However, it was essential that certain parameters were fulfilled in order for the most meaningful
results. The parameters are as follows: Waveform, Frequency (Hz), Amplitude, Duration (time).
For the reader’s convenience, an explanation of these terms is provided.

The ‘Waveform’ of a signal refers to the curve showing the shape of the wave at a given time.
The options for ‘Waveform’ are ‘Sine, Square, Sawtooth, Square (no alias).” These options are
important because each wave serves a different purpose in audio engineering. The ‘Sine’ option
yields a sinusoidal curve that describes a smooth repetitive oscillation. It contains no overtones
so it sounds very “pure" because it is only one frequency. Overtones are musical notes that are
part of the harmonic series above a fundamental note, whose frequency is defined as the low-
est frequency of the periodic waveform. The ‘Square’ option has fixed maximum and minimum
values of identical duration with a vertical line between each alternating maximum and min-
imum value. The curve contains every other overtone. Square waves are unique in that they
have identical peak and root mean square (RMS) levels so their waveforms are displayed as
entirely blue when zooming out of the display window. The ‘Sawtooth’ option has a gradual
upward incline of positive slope followed by a gradual downward incline of negative slope. It
contains all overtones so it sounds “bright" and penetrating. The ‘Square (no alias)’ option is
similar to the Square wave but it does not produce aliasing distortion, which causes the pro-
gram to take a longer time generating the tone.

Aliasing is an effect that causes different signals to become indistinguishable from one an-
other when sampled. Aliasing occurs when the sampling rate of a signal is too slow in compar-

ison to the signal being measured. Signals which only differ in variations at frequencies higher
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than the sampling rate will yield the same sample. Since our sample rate is high enough we
may neglect the any concerns regarding aliasing.

The ‘Frequency’ option refers to the number of cycles the waveform will oscillate per unit
time, often denoted ‘f’ or ‘v.” We will maintain the convention used in the previous chapters
and use the letter ‘f’ to denote frequency. The period, denoted ‘T, is the duration of one cycle,
and is related inversely to frequency. The SI unit of frequency is ‘hertz (Hz);” for example, one
hertz means that the wave repeats once per second.

The ‘Amplitude’ option represents the height of the continuous-time signal. It is a scalar that
multiplies the signal and “scales" all occurrences of the signal by the given factor; we disregard
the trivial case when amplitude is 0.

‘Frequency’ may be chosen at the acoustician’s discretion. ‘Amplitude’ is restricted to a range
from 0 to 1. In this program, ‘Amplitude’ is a fraction of the maximum amplitude. ‘Duration’
has a variety of parameters, some of which are notated by the abbreviation 'hh:mm:ss’ which
corresponds to hours, minutes, and seconds. In addition to having the option of whether
or not to use these standard time units for the length of the sample, there were also other
options that relate time units to samples or frames, depending on the medium of the au-
dio. The options for ‘Duration’ were ‘seconds, hh:mm:ss, dd:hh:mm:ss, hh:mm:ss+hundredths,
hh:mm:ss+milliseconds,hh:mm:ss+samples, samples, hh:mm:ss+film frames (fps), film frames
(24 fps), hh:mm:ss+NTSC drop frames, hh:mm:ss+NTSC non-drop frames, NTSC frames,
hh:mm:ss +PAL frames (25 fps), PAL frames (25 fps), hh:mm:ss+CDDA frames (75 fps), CDDA

frames (75 fps).” The parameters chosen were as follows:

Waveform: Sine
Frequency (Hz): 25,50, 100,200, 400,800, 1600,3200,6400, 12800
Amplitude (0-1): 0.8

Duration: hh:mm:ss + samples
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‘Duration’ was chosen by using the default setting, as was Amplitude.’ The reason for the choice
of the amplitude was arbitrary but not trivial, seeing as an amplitude of 0 would yield no results.
The decision for ‘Duration’ was based on the sample rate of the project; with the whole project
at a sample rate of 44100 Hz and the parameter for ‘Duration’ set to 30 seconds, the duration
for the continuous-time signal was 44100 Hz x 30 seconds = 1323000 samples. This resolves the
issue of taking an FFT over a noninteger period because the number of samples are in incre-
ments which correspond to the frequency of the input signal. A sinusoidal wave was chosen for
the ‘Waveform’ option in order to produce a smooth signal with no overtones. In this way, a sig-
nal whose amplitude in voltage is charted with respect to the time domain may be transformed
into a dB-scale with respect to the frequency domain. Before we proceed, a brief explanation
of logarithms, decibels, and intensity has been provided for the reader’s convenience.

Logarithms are used to compare two signals and establish a ratio between the two.

Example 8.1.1. Take two signals I; and I». In decibels we have
I
x dB = 10log,, | —|. (8.1.1)
I
If I; =100 Hz and I, = 10 Hz then in decibels we have

100
1010g10 W =10 dB (812)

Note that every 10 dB increase multiplies the signal by a factor of 10.

Example 8.1.2. Let D dB =10-log;, (%) Then we have

=lo
10 810 I
101 = I (8.1.3)
I
D
I =1-101

Suppose I} was boosted 3 dB. Then we have I} = I - 1093 = 2[,. Now suppose I; was boosted

8.5dB. Then we have I = I, - 10%% =7.1L,.



8. CASE STUDY 59

Now that we have discussed the settings for the input signal, we will describe the setup of
the equipment. The computer running the input signal using Audacity was connected to the
Manley Pultec Equalizer with a USB cable. The analog filter was connected to was connected
to a speaker system so the different frequencies could be heard qualitatively in order to ensure
precision. Another computer running a more sophisticated audio engineering program called
Pro-Tools was connected to the output and used to record the output signal modified by the fil-
ter with the same duration as the input signal. It is worth noting that although the functionality
and mathematical capabilities of Pro-tools exceed those of Audacity, any audio engineering
program of the same caliber as Audacity would have been suitable for our purposes. Pro-tools
was readily available at the time, so it was the option chosen for the job. Now that we have

discussed the setup of the study, we will elaborate on the way the analog device works.

8.2 Functionality of the Manley Pultec Equalizer

[9, Page 5] shows a diagram of the interface. Each of the controls to the filter are labeled alpha-
betically. Control A is a switch providing the option of whether to select In, denoting input, or
Bypass which bypasses the equalizer section while the amplifier stays connected in the circuit.
This option is not useful to us because there are no other analog elements of this circuit which
the amplification option could be of use. We also wish to gain information from the equalizer
option, so bypassing it would be counterintuitive.

Controls B, C, and D pertain to the functionality of a low pass equalizer. Control B is a knob
which controls the continuous variable boost from 0 dB to +15 dB to the selected cut-off fre-
quency. A continuous variable boost means that all frequencies up to the cut-off are boosted
by the same amount. This knob ranges from 0 to 10. The cut-off frequency is selected using the
knob labeled control C. The options for the cut-off frequencies are ‘20 Hz, 30 Hz, 60 Hz, 90 Hz,
120 Hz.” With a maximum boost, lower frequencies may receive an additional 3 dB. Control D is

a knob which controls the low frequency cut from 0 to +16 dB, reducing frequencies below the
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selected cut-off frequency by the selected amount. The option to cut these low frequencies was
not exercised because modifying the low frequencies other than with a boost would not pro-
vide as much information since there was not much low frequency content in the input signal
below the max for the selection.

Controls E, E and G apply to the functionality of a high-pass filter combined with an equal-
izer. Control E is a knob which controls the bandwidth of the high frequency selected with
control G to boost by a certain amount determined by control E Turning control E counter-
clockwise results in a narrow peak or high Q. Turning control E clockwise is a larger bandwidth,
wider peak or lower Q. Control E ranges from 0 to 10. Control F provides a continuously vari-
able boost from 0 to +20 dB to frequencies within a certain range (determined by Q) of the
center frequency chosen using the select knob labeled control G. Control F ranges from 0 to
10 The quality factor of the high frequency impulse response is altered by control E, so con-
trols E, E and G alone function strictly as an equalizer used to boost frequencies in the neigh-
borhood of one main boosted frequency. The options for the boosted frequencies are ‘1 kHz,
1.5kHz, 2 kHz, 3 kHz, 4 kHz, 5 kHz, 8 kHz, 10 kHz, 12 kHz, 14 kHz, 16 kHz.’ It is important to
note that the bandwidth tends to become slightly narrower with higher frequencies which are
boosted, which is standard for passive equalizers. This is due to the fact that passive equaliz-
ers have equally lengthened increments for each discrete frequency sample point which will
appear narrower at high frequencies when graphed using a logarithmic plot.

Control H provides a continuously variable cut from 0 to -21 dB of the frequencies higher
than the selected cut-off frequency determined by control I. Control H ranges from 0 to 10.
Control I has the options ‘4 kHz, 8 kHz, 12 kHz, 16 kHz, 20 kHz.

Control J is an LED which is red when the power first turns on, indicating that the equalizer
(EQ) is muted until the hardware has been on long enough. Around 20 seconds later when the

LED turns green the EQ will accept audio input.
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8.3 Settings used for the Analog Filter Measurements

The knob for boost for was kept at ‘8.5’ for a +12.75 dB boost for all low-pass measurements and
+17 dB for all high frequency boosts. Separate measurements were taken for each frequency
setting while keeping the other settings of the filter untouched in order to preserve the effects
of each variable completely isolated for the purposes of modeling the digital filter. The mea-
surements for the low-pass filter were ‘20 Hz, 30 Hz, 60 Hz, 90 Hz, 120 Hz.” The measurements
for the high frequencies with Q = 1 were ‘1 kHz, 1.5kHz, 2 kHz, 3 kHz, 4 kHz, 5 kHz, 8 kHz, 10
kHz, 12 kHz, 14 kHz, 16 kHz.” Certain frequencies were set to have a Q factor of ‘10.” These mea-
surements were taken in addition to the measurements having Q = 1, and the measurements
with Q = 10 were ‘1kHz" and ‘4kHz.” The frequencies that were cut that were set to ‘8.5’ and

lowered by -17.85 dB were ‘4 kHz, 8 kHz, 12 kHz, 16 kHz, 20 kHz.

8.4 Intricacies Regarding the Filtered Frequency Selections

The quality factor must be solved for in order to gain more information about the functionality
of the analog filter. The FWHM (full width at half maximum) aids in finding the quality factor.
The quality factor is Q = AL;O, where A fj is the difference between the frequencies at half of
the center frequency. A quality factor of 1 indicates no change in width. In an effort to boost
the central frequency and mitigate those around the central frequency, the quality factor may
be increased in order to narrow the width of the peak of the central frequency and increase the
accuracy of the boost of the desired frequency. The whole purpose of these measurements is
to compare the analog filter with the digital filter, in order to see what adjustments must be
made in order for the quality factor on the digital filter to match with the quality factor of the
analog filter. The window function used by Audacity to modify the spectrum for its discrete-

time Fourier transform (DTFT) was a Hanning window.
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The most important observation of the non-filtered input signal is to note the values of the
peaks of the signal. This is necessary for when it will be time to match the boosted spectrum of
signals with the non-filtered signals so an idea of the mathematical formula can be captured.

The Fourier transform is important in filtering because certain frequencies may be selected
as input and they may be boosted accordingly, while other frequencies besides this frequency
are nearly completely mitigated due to the nature of the sinc function generated when convolv-
ing a finite Fourier sine transform with the Hanning window to create an instrument function.
The instrument function determines the amplitude and the rate of the cut-off of the graph of
the function which resembles a single sinc function, as well as the quality factor. This is ex-
citing, particularly because comparing the frequencies from the non-filtered spectrum of the
aforementioned frequencies and the boosted frequencies, to see how the filter operated, will
reveal how the formula will be created. In other words, the non-filtered frequencies are com-
pared to the filtered frequencies from the Manley Equalizer manual which is used to create an
ideal filter, which will be compared to the results of the data taken from the analog filter.

Let I, A: R — R be functions. We have

a
I1(k) =f cos(2m kx)A(x)dx (8.4.1)

a

where I(k) is the instrument function and A(x) is the apodization (window) function for all

k, a € R. For the Hanning window we have
1 X
Aw =3 |1+ cos (7)] (8.4.2)

and

asinc(2x ak)

Uy

= a[sinc(27w ak) + 0.5sinc(2w ak — ) + 0.5sinc(2w ak + )] (8.4.3)

Equation 8.4.3 is the instrument function of the Hanning window convolved with the sine

Fourier transform, which is the equivalent of a sinc function with side lobes. In making the
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digital filter, this function is used for the purposes of boosting the high frequencies, while a

normal low-pass filter formula is utilized for the low boosted frequencies.

8.5 The Digital Filter Effects Versus the Analog Filter Effects

We chose to focus on the low frequency analysis of the digital filter compared to the analog filter
because there were more variables we could isolate for compared with the high frequency EQ
section and the high frequency cut section of the analog filter. The analog filter data shows that
there are peaks that are more emphasized below the cut-off frequency, which is what we would
expect from our understanding of how the filter should function. However, the levels of the
frequencies are not precisely what we would expect when compared with the ideal digital filter
found by using a curve fit to the Manley Pultec Equalizer curves. In order to model what the
Manley Filter should have done, we consulted a spectra sheet found the Manley Pultec manual
[9, Page 8] that gave amplification factors over the full range of possible input frequencies. To
fit this empirical curve, we chose a Lorentzian peak shape, and adjusted the parameters until it
was well-matched to the spectra sheet graph. The result was the following function:

Let f: R — R be a function defined by

12.75

1+0.1(]—’£)2

flx) = (8.5.1)

where x is the frequency being boosted and f is the cut-off frequency. 12.75 in the numerator
denotes the +12.75 dB boost received by each frequency bin at the lowest frequencies. In this
instance, the Lorentzian is our instrument function.

Below are graphs of each low-pass cut-off frequency and a description of the occurrence of
each peak. For the unprocessed input signal of each graph, the peaks occur at 25 Hz, 50 Hz, 100
Hz, 200 Hz, 400 Hz, 800 Hz, 1600 Hz, 3200 Hz, 6400 Hz, 12800 Hz. However, since the levels are

different for each peak, these points will be included in the analysis.
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Figure 8.5.1.
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Figure 8.5.2.
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Unprocessed input signal peaks Figure 8.5.1:

25Hzat-1.3dB
50 Hz at-1.6 dB
100 Hz at-1.2 dB
200 Hz at-1.6 dB
400 Hz at -1.6 dB
800 Hz at-1.4 dB
1600 Hz at -1.6 dB
3200 Hz at-1.6 dB
6400 Hz at -2.0 dB

12800 Hz at -1.8 dB

Ideal digital filter processed output peaks Figure 8.5.1:

25Hz at9.7dB

50 Hz at 6.2 dB

100 Hz at 2.4 dB

201 Hz at -0.45 dB
400 Hz at -1.28 dB
800 Hz at -1.32 dB
1600 Hz at -1.58 dB
3200 Hz at -1.595 dB
6400 Hz at -1.998 dB

12800 Hz at -1.7996 dB
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Analog filter processed output peaks Figure 8.5.1:

18 Hz at-16 dB

35Hzat-19.1dB

61 Hz at-16.7 dB

100 Hz at-19 dB

135 Hz at-20.7 dB

266 Hz at -20.8 dB

533 Hz at -21 dB

1066 Hz at -21.1 dB

2133 Hz at-21.7 dB

4266 Hz at -21.6 dB

14765 Hz at -19.8 dB

70



8. CASE STUDY

Unprocessed input signal peaks Figure 8.5.2:

25Hzat-1.3dB
50 Hz at-1.6 dB
100 Hz at-1.2 dB
200 Hz at-1.6 dB
400 Hz at -1.6 dB
800 Hz at-1.4 dB
1600 Hz at -1.6 dB
3200 Hz at-1.6 dB
6400 Hz at -2.0 dB

12800 Hz at -1.8 dB

Ideal digital filter processed output peaks Figure 8.5.2:

25Hz at 10.6 dB

50 Hz at 8.38 dB

100 Hz at 4.84 dB
201 Hz at0.72 dB
400 Hz at -0.92 dB
800 Hz at -1.22 dB
1600 Hz at -1.555 dB
3200 Hz at -1.588 dB
6400 Hz at -1.997 dB

12800 Hz at -1.799 dB
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Analog filter processed output peaks Figure 8.5.2:

34 Hz at -18.2 dB
61 Hz at-18.6 dB
100 Hz at -20 dB
135 Hz at -22.9 dB
266 Hz at -26.2 dB
533 Hz at -25.5 dB
1066 Hz at -23.8 dB
2133 Hz at -24.7 dB
4266 Hz at -25.3 dB

14764 Hz at -21.6 dB

Unprocessed input signal peaks Figure 8.5.3:

25Hzat-1.3dB
50 Hz at-1.6 dB
100 Hz at-1.2 dB
200 Hz at-1.6 dB
400 Hz at-1.6 dB
800 Hz at -1.4 dB
1600 Hz at -1.6 dB
3200 Hz at -1.6 dB
6400 Hz at -2.0 dB

12800 Hz at -1.8 dB
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Ideal digital filter processed output peaks Figure 8.5.3:

25Hzat11.23 dB

50 Hz at 10.32 dB
100 Hz at 8.77 dB
201 Hz at4.41 dB
400 Hz at 0.74 dB
800 Hz at -0.72 dB
1600 Hz at -1.42 dB
3200 Hz at -1.555 dB
6400 Hz at -1.988 dB

12800 Hz at -1.797 dB
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Analog filter processed output peaks Figure 8.5.3:

17 Hz at -14 dB
35Hzat-17.5dB
60 Hz at -16 dB

100 Hz at -18.4 dB
137 Hz at -22.2 dB
263 Hz at -28.4 dB
533 Hz at -27.7 dB
1066 Hz at -26.7 dB
2132 Hz at -28.1 dB
4267 Hz at -27.7 dB

14764 Hz at -20.4 dB
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Unprocessed input signal peaks Figure 8.5.4:

25Hzat-1.3dB
50 Hz at-1.6 dB
100 Hz at-1.2 dB
200 Hz at-1.6 dB
400 Hz at -1.6 dB
800 Hz at-1.4 dB
1600 Hz at -1.6 dB
3200 Hz at-1.6 dB
6400 Hz at -2.0 dB

12800 Hz at -1.8 dB

Ideal digital filter processed output peaks Figure 8.5.4:

25Hzat11.35dB

50 Hz at 10.76 dB

100 Hz at 10.14 dB
201 Hz at 6.91 dB

400 Hz at 2.69 dB

800 Hz at 0.032 dB
1600 Hz at -1.21 dB
3200 Hz at -1.4999 dB
6400 Hz at -1.97 dB

12800 Hz at -1.794 dB
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Analog filter processed output peaks Figure 8.5.4:

17 Hz at-14.5 dB
34Hzat-16.9dB
60 Hz at -16.4 dB
100 Hz at -18.9 dB
137 Hz at-22.8 dB
266 Hz at -28.6 dB
533 Hz at -28.7 dB
1066 Hz at -28.5 dB
2132 Hz at-29.5 dB
4266 Hz at -29.2 dB

14764 Hz at -20.1 dB
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Unprocessed input signal peaks Figure 8.5.5:

25Hzat-1.3dB
50 Hz at-1.6 dB
100 Hz at-1.2 dB
200 Hz at-1.6 dB
400 Hz at -1.6 dB
800 Hz at-1.4 dB
1600 Hz at -1.6 dB
3200 Hz at-1.6 dB
6400 Hz at -2.0 dB

12800 Hz at -1.8 dB

Ideal digital filter processed output peaks Figure 8.5.5:

25Hzat11.39dB

50 Hz at 10.93 dB
100 Hz at 10.72 dB
201 Hz at 8.356 dB
400 Hz at 4.439 dB
800 Hz at 0.94 dB
1600 Hz at -0.92 dB
3200 Hz at-1.42 dB
6400 Hz at -1.955 dB

12800 Hz at -1.788 dB
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Analog filter processed output peaks Figure 8.5.5:

16 Hz at -14.8 dB
33 Hzat-16.4dB
62 Hz at -18.3 dB
100 Hz at -21.7 dB
134 Hz at -22.3 dB
267 Hz at -27 dB
533 Hz at -27.7 dB
1065 Hz at -28 dB
2132 Hz at-30.5 dB
4306 Hz at -33.6 dB

14765 Hz at -19.3 dB

The peaks at octaves of one another are expected, but a certain peak at 14764-14765 Hzis preva-
lent in all of the analog processed output spectra and is inexplicable from the data provided.
However, the qualitative effect of this peak on the audio content of the signal is negligible since
this value exceeds the limit of middle-aged adult hearing (20 Hz to 14 kHz).

It is important to note that, in Figure 8.5.1, Figure 8.5.2, Figure 8.5.3, Figure 8.5.4, and Fig-
ure 8.5.5 the reason for lower levels in amplitude of each frequency is due to signal loss char-
acteristic of all passive equalizers. This loss occurs because filters do not amplify the original
signal, they reduce the input signal by greater or lesser amount; as a result the level of the pro-
cessed output signal is reduced. This is why the filtered output signal appears to be weaker than
the unfiltered input signal. Additionally, the noise floor of the analog filter is a certain amount,
estimated to be around -34 dB to -36 dB, which is why the minimum levels of the processed sig-

nal do not approach the minimum levels of the unprocessed signal. Perhaps the most shocking
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observation is that the peaks of the filtered spectra do not align with the peaks of the unfiltered
spectra in the frequency domain, indicating that the analog filter was not precise in which fre-
quencies it boosted. This inconsistency necessitates some explanation.

There are many variables which may affect the functionality of the analog filter and explain
why the peaks of the unfiltered input signal and the input signal processed by the analog filter
do not align in the frequency domain. One reason may be that the THD+Noise (Total Har-
monic Distortion plus Noise) which comes from all sources other than the input source may
contribute various levels to the signal, even though this constitutes very little of the filtered
output signal (allegedly 0.015 percent). However, over time this percentage will increase due to
wear on the internal circuitry of the analog filter. To determine whether or not THD+Noise was
a significant factor would require further testing.

The way which the analog filter stores each frequency bin in contrast to how Pro-Tools stored
each frequency bin and Audacity stored those frequency bins is another possibility explaining
the mismatch of frequency peaks. If either one of these did not align, mainly Pro-Tools and the
analog filter, then there would be a mismatch in frequency bins which would be transcribed to
Audacity once the recordings were exported from Pro-Tools. The general procedure for making

a digital filter designed after an analog filter is summarized below.

1. Record continuous-time input signal using analog filter and receive modified output

spectrum.

2. Create an ideal digital filter transfer function using input signal frequency spectrum
modifications based on the observations of the ideal behavior of the analog filter pro-

vided by a manual.

3. Design digital filter using the formula so that the modified input signal frequency spec-

trum is the same as the modified frequency content of the analog filter.
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Conclusion

The applications of digital signal processing in the study of acoustics is an intricate subject
in which physics, mathematics, computer programming, and musicality conjoin at a juncture
where each one is equally as important in accomplishing the goal of a project. The focus of
this project was on developing an understanding of the methods used for analog-to-digital
conversion and then the filtering the converted signal. This is one particular aspect of digital
signal processing which comprises a large part of modern audio engineering.

The case study revealed how a particular analog filter differs from the ideal digital filter, as
well as the general protocol one would follow to design a digital filter to replicate the effects of
an analog filter. A major component omitted from this study was the successful execution of
a digital filter designed after this analog filter which implemented formulae discussed in the
study. In order to do this, extensive knowledge of the use of digital signal processing software
and knowledge of computer programming applicable to audio engineering is required. In ad-
dition to the knowledge required to execute designing this replica, more data must be recorded
with an exhaustive number of settings on the analog filter to gain a more complete picture

of the filter’s functionality. Another area which was not explored was the optimization of this
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digital filter design, which would require more data to be recorded using a greater degree of
precision for measurements.

Major accomplishments of this project were gaining an understanding of the evolution of
signal processing and the mechanics behind the mathematical methods which are essential in
signal processing of any kind. After establishing the fundamentals of signal processing, the ob-
jective of this project was to expound on how certain practices are vital to remedying problems
encountered in editing audio engineering projects. This paper provides the general informa-
tion of digital signal processing and certain important aspects of this field which are necessary
in guiding a more in depth examination of the methods used in audio engineering software.
This paper has presented a comprehensive approach to learning the rudimentary techniques of
digital signal processing methods and the functionality of audio engineering software, enabling
the reader to lead more advanced investigations of the mathematical and scientific methods

involved in the study of acoustics.
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