
Bard College Bard College

Bard Digital Commons Bard Digital Commons

Senior Projects Spring 2023 Bard Undergraduate Senior Projects

Spring 2023

Parking Garage Functions Parking Garage Functions

Felicia Elizabeth Flores
Bard College

Follow this and additional works at: https://digitalcommons.bard.edu/senproj_s2023

 Part of the Discrete Mathematics and Combinatorics Commons

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Recommended Citation Recommended Citation
Flores, Felicia Elizabeth, "Parking Garage Functions" (2023). Senior Projects Spring 2023. 262.
https://digitalcommons.bard.edu/senproj_s2023/262

This Open Access is brought to you for free and open
access by the Bard Undergraduate Senior Projects at
Bard Digital Commons. It has been accepted for
inclusion in Senior Projects Spring 2023 by an
authorized administrator of Bard Digital Commons.
For more information, please contact
digitalcommons@bard.edu.

http://www.bard.edu/
http://www.bard.edu/
https://digitalcommons.bard.edu/
https://digitalcommons.bard.edu/senproj_s2023
https://digitalcommons.bard.edu/undergrad
https://digitalcommons.bard.edu/senproj_s2023?utm_source=digitalcommons.bard.edu%2Fsenproj_s2023%2F262&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/178?utm_source=digitalcommons.bard.edu%2Fsenproj_s2023%2F262&utm_medium=PDF&utm_campaign=PDFCoverPages
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://digitalcommons.bard.edu/senproj_s2023/262?utm_source=digitalcommons.bard.edu%2Fsenproj_s2023%2F262&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@bard.edu
http://www.bard.edu/
http://www.bard.edu/

Parking Garage Functions

A Senior Project submitted to
The Division of Science, Mathematics, and Computing

of
Bard College

by
Felicia Elizabeth Flores

Annandale-on-Hudson, New York
May, 2023

ii

Abstract

This project is about a generalization of parking functions called parking garage functions.
Parking functions have been well studied, but the concept of parking garage functions is new and
introduced in the project. Parking garage functions are sequences that represent the parking
garage level preferences of cars which lead to all cars parking on a level after a systematic
placement. We found a recursive formula for the number of sequences that are a parking garage
function. We also found a closed formula for a subset of parking garage functions, descending
parking garage functions, via a bijection between descending parking garage functions and Dyck
paths which are paths on a rectangular grid which only take right and upward steps starting at
the origin and remain under a positively sloped diagonal that goes through the origin.

iii

iv

Contents

Abstract iii

Dedication vii

Acknowledgments ix

1 Introduction 1

2 Lattice Paths and Lattice Words 5

2.1 Lattice Paths . 5

2.2 Lattice Words and Counting . 7

2.3 Lattice Paths at Zero and Lattice Words Bijection 8

3 Dyck Paths and Dyck Words 13

3.1 Dyck Paths and Counting . 13

3.2 Dyck Words . 14

3.3 Dyck Paths and Dyck Words Bijection . 16

4 Parking Functions 19

4.1 Parking Functions and Counting . 19

4.2 Descending Parking Functions and Dyck Words Bijection 24

5 Parking Garage Functions 27

5.1 Introduction to Parking Garage Functions . 27

5.2 Python Code Leading to Discovery . 35

5.3 Descending Parking Garage Functions and Dyck Words Bijection 38

v

vi CONTENTS

6 Future Work 43

Bibliography 45

Dedication

I dedicate this project to the undergraduates in the Bard College Mathematics Program that
are women or people of color. It isn’t impossible to be a mathematics major at Bard. You
just have to work hard in your classes and even harder to find your confidence! In addition, do
yourself a favor and build a group of math friends that believe in you even when you struggle
to like I had with Darrion Thornburgh, Jen Lara, Hannah Kaufmann, and Julia Crager ♡♡♡♡
I also dedicate this project to my father who came to the United States as an undocumented

immigrant from Peru for instilling in me the grit necessary to persevere in a field that has more
failure than success.

vii

viii

Acknowledgments

I acknowledged my advisor, Lauren Rose, for foremost pushing me to be a mathematics major,
but also for overall shaping me into the mathematician I am today. She taught me how to
navigate being a women in the classroom, on a research team, as a presenter at a conference, as
a tutor, as a math enrichment program director, and as a leader of an AWM student chapter.
Without her, I would have struggled to overcome my imposter syndrome.

I also acknowledge Pamela Harris for inspiring the project topic and Alejandro Morales for
his indispensable resource sharing and them both for their encouragement!
Lastly, I acknowledge Vegim Osmani to whom I got engaged to shortly before this project

was due for all the ways in which he supports the family and I during demanding times in my
mathematical career.

ix

x

1
Introduction

The journey of this senior project began when I attended MathFest 2022 in Philadelphia. On

August 5th, I attended an invited address by Pamela Harris entitled ”Parking Functions: Choose

Your Own Adventure”. She is an Associate Professor in the Department of Mathematical

Sciences at the University of Wisconsin at Milwaukee. Her talk was very accessible and visually

enticing! As a double major in mathematics and studio arts the latter made me drawn to the

material. She went through all the projects she had done with students in the past along with

mentioning unsolved problems. I also appreciated seeing an invited address given so confidently

by not only a member of Lathisms: Latinxs and Hispanics in the Mathematical Sciences, but

the president and co-founder. I introduced myself to Pamela and began researching.

Parking functions are sequences that represent the parking space preferences of n cars for

n spaces along a one-way street which lead to all n cars claiming a space after parking in a

systematic way. Such a set of sequences has already been counted by both a recursive formula

and closed formula.

My first motivating question was: How many sequences yield n− 1 cars parking or n− 2 cars

parking or n− 3 cars parking all the way to 1 car parking out of the n cars? Progress was being

made. Then during a Discrete Math Workshop at Smith College on November 19th, 2023, I met

Alejandro Morales. He is an assistant professor in the Department Mathematics and Statistics

1

2 INTRODUCTION

at the University of Massachusetts, Amherst. As a collaborator and co-author with Pamela

Harris along with being a researcher in the field of enumerative and algebraic combinatorics, he

proved to be a great resource! He ended up finding and sending me a paper, [9], that answered

my motivating question.

Determined to work on an unsolved problem, I returned to the paper that coincided with

Pamela’s original invited address, [6]. One of the unsolved problems mentioned had to do with

parking multiple cars in a single spot. This idea then took on the name clown functions which

are sequences that represent the clown car preferences of kn clowns for n cars with capacity

k along a one-way sidewalk which lead to all kn clowns in a car after a systematic placement.

However, I wanted to find a more direct connection with one-way streets for parking functions.

This is how I ended up coming up with the new concept of parking garage functions.

Parking garage functions are sequences that represent the parking garage level preferences

of kn cars for n levels with capacity k which lead to all kn cars parking on a level after a

systematic placement with only upward movement. My new motivating question became: How

many parking garage functions are there for a certain amount of levels at a certain capacity?

I wrote a python code to output testing results to input into the On-line Encyclopedia of

Integer Sequences. The result I got from OEIS gave a recursive formula for a scenario that can

be interpreted as parking garage functions. In addition, I found that parking functions have

numerous bijections. One was with Dyck paths and a variation of parking functions, descending

parking functions. This led me to discover that there was a bijection between Dyck paths and

descending parking garage functions. That was the only closed formula we have found so far

that is close to answering my motivating question.

In Chapter 2, we introduce lattice paths on a rectangular grid of points in Z2 that only travel in

steps to the right or upwards. We also introduce lattice words which are words over the alphabet

{X,Y } and prove a closed formula for the number of lattice words with a certain amount for

X’S and certain number of Y ’s. Then we will introduce a slight variation of lattice paths called

lattice paths at zero. Next, we prove a bijection between lattice paths at zero and lattice words.

INTRODUCTION 3

In Chapter 3, we introduce Dyck paths which are lattice paths at zero under a positively

sloped diagonal that goes through the origin. We give a closed formula for the number of Dyck

paths with a certain final coordinate. We also introduce Dyck words which are lattice words

with an added restriction on all prefixes. Next, we prove a bijection between Dyck paths and

Dyck words.

In Chapter 4, we introduce sequences of natural numbers that represent the preferred parking

space out of a one-way street for a certain amount of cars. Parking functions are the sequences

which lead to all cars parking in all parking spaces available on a street given a systematic

way of parking. In addition, we give the known recursive and closed formulas for the number

of parking functions given a certain number of cars. Then we will introduce a slight variation

of parking functions called descending parking functions. Next, we provide an argument for a

bijection between descending parking functions and Dyck words.

In Chapter 5, we introduce a new concept called parking garage functions which are a gener-

alization of parking functions. Parking garage functions are the sequences which lead to all cars

parking in all parking spaces available on each level in a parking garage given a systematic way

of parking. We developed python code which outputs a sequence. This led us to paper from

1977, [5], which gives us a recursive formula for a scenario that can be interpreted as parking

garage functions. Then we will introduce a slight variation of parking garage functions called

descending parking garage functions. Finally, we provide an argument for a bijection between

descending parking garage functions and Dyck words.

4 INTRODUCTION

2
Lattice Paths and Lattice Words

In this chapter, we introduce lattice paths on a rectangular grid of points in Z2 that only travel in

steps to the right or upwards. We also introduce lattice words which are words over the alphabet

{X,Y } and prove a closed formula for the number of lattice words with a certain amount for

X’S and certain number of Y ’s. Then we will introduce a slight variation of lattice paths called

lattice paths at zero. Next, we prove a bijection between lattice paths at zero and lattice words.

2.1 Lattice Paths

In this section, we introduce lattice paths on a rectangular grid of points in Z2 that only travel

in steps to the right or upwards.

The following definition is modified from [10].

Definition 2.1.1. [10] Let k ∈ N and m,n ∈ N ∪ {0}. A sequence of lattice points

P = {(x0, y0), (x1, y1), . . . , (xk = m+ x0, yk = n+ y0)} ∈ Z2

is an (m,n)-lattice path if P satisfies the following for each i = 1, 2, . . . , k:

(xi, yi) = (xi−1, yi−1 + 1) or (xi−1 + 1, yi−1).

Let LP(m,n) denote the set of (m,n)-lattice paths. △

The following is an example of a (2, 3)-lattice path.

5

6 CHAPTER 2. LATTICE PATHS AND LATTICE WORDS

Figure 2.1.1: An example of a (2, 3)-lattice path.

Example 2.1.2. Consider the following path illustrated by Figure 2.1.1:

{(−1,−1), (−1, 0), (0, 0), (1, 0), (1, 1), (1, 2)}.

Observe that

(−1, 0) = (−1,−1 + 1), and

(0, 0) = (−1 + 1, 0), and

(1, 0) = (0 + 1, 0), and

(1, 1) = (1, 0 + 1), and

(1, 2) = (1, 1 + 1).

So, all the adjacent pairs of coordinates adhere to the restrictions in Definition 2.1.1.

Also, (1, 2) = (2 +−1, 3 +−1).

Thus, the path is a (2, 3)-lattice path. ♢

The following is an example of a path on a lattice that is not a (2, 2)-lattice path.

Example 2.1.3. Consider the following path on a lattice illustrated by Figure 2.1.2:

{(−1,−1), (−1, 0), (0, 0), (0,−1), (1,−1), (1, 0), (1, 1)}.

Observe that (0,−1) = (0, 0− 1).

2.2. LATTICE WORDS AND COUNTING 7

Figure 2.1.2: An example of a path on a lattice that is not a (2, 2)-lattice path. The flawed
coordinate is emphasized by the color red.

So, not all of the adjacent pairs of coordinates adhere to the restrictions in Definition 2.1.1.

Thus, the path is not a (2, 2)-lattice path. ♢

2.2 Lattice Words and Counting

In this section, we also introduce lattice words which are words over the alphabet {X,Y } and

prove a closed formula for the number of lattice words with a certain amount for X’S and certain

number of Y ’s.

We define two functions that output the number of X’s in a word or the number of Y ’s in a

word.

Definition 2.2.1. Let L be a word over the alphabet {X,Y }. Let X(L) denote the number of

X’s in L and Y (L) denote the number of Y’s in L. △

The following definition is modified from [4].

Definition 2.2.2. [4] Let m,n ∈ N. Let L be a m + n length word over the alphabet {X,Y }.

If X(L) = m and Y (L) = n we call L an (m,n)-lattice word. Let LW(m,n) denote the set of

(m,n)-lattice words. △

The following is an example of a (3, 2)-lattice word.

8 CHAPTER 2. LATTICE PATHS AND LATTICE WORDS

Example 2.2.3. Consider the following 3 + 2 = 5 length word over the alphabet {X,Y }:

L = XXXY Y .

Observe that X(L) = 3 and Y (L) = 2.

Thus, L is a (3, 2)-lattice word. ♢

The following is an example of a lattice word that is not a (3, 2)-lattice word.

Example 2.2.4. Consider the following 3 + 2 = 5 length word over the alphabet {X,Y }:

XXY Y Y . Denoted this word as L.

Observe that X(L) = 2 and Y (L) = 3.

Thus, L is not a (3, 2)-lattice word. Instead, it is a (2, 3)-lattice word. ♢

The following theorem is given in [10] without a proof. We provide one here.

Theorem 2.2.5. [10] Let m,n ∈ N. So, |LW(m,n)| =
(
m+n
m

)
.

Proof. Let m,n ∈ N. Let LW = a1a2 . . . am+n. Since m of the ai’s are a X and n of the ai’s

are a Y , it follows that m of the ai’s can be selected out of the m+n total number of ai’s to be

X’s while the rest are Y ’s in
(
m+n
m

)
different ways. So, |LW(m,n)| =

(
m+n
m

)
.

2.3 Lattice Paths at Zero and Lattice Words Bijection

In this section, we introduce a slight variation of lattice paths called lattice paths at zero. Next,

we prove a bijection between lattice paths at zero and lattice words.

By Definition 2.1.1, two elements of LP(m,n) can have a path with the same shape because

their starting points differ. An example of such a case is illustrated in Figure 2.3.1.

As we will see later that lattice words only capture the shape of a lattice path. So, a bijection

is only possible between the two if the starting point of the (m,n)-lattice paths considered is

fixed. Thus, the following definition modifies the Definition 2.1.1.

Definition 2.3.1. Let m,n ∈ N. an (m,n)-lattice path, denoted P , where

P = {(x0 = 0, y0 = 0), (x1, y1), . . . , (xm+n = m, ym+n = n)} ∈ (N ∪ {0})2

2.3. LATTICE PATHS AT ZERO AND LATTICE WORDS BIJECTION 9

Figure 2.3.1: Observe that (a), (b) ∈ LP(2,3).

is an (m,n)-lattice path at zero. Let LPZ(m,n) denote the set of (m,n)-lattice paths at

zero. △

Now observe that, in reference to Figure 2.3.1, (a) ∈ LPZ(2,3) and (b) /∈ LPZ(2,3).

The following theorem is widely accepted, but a proof is lacking in the literature. We provide

one here.

Theorem 2.3.2. Let m,n ∈ N. There is a bijection between LPZ(m,n) and LW(m,n).

Proof. Let m,n ∈ N. Let F : LPZ(m,n) −→ LW(m,n) be a function defined by F ({(x0 = 0, y0 =

0), (x1, y1), . . . , (xm+n = m, ym+n = n)}) = a1a2 . . . am+n where

ai =

{
X if (xi, yi) = (xi−1 + 1, yi−1)

Y if (xi, yi) = (xi−1, yi−1 + 1).

Note that a1a2 . . . am+n is an (m,n)-lattice word since from (0, 0) to (m,n) there must be m

adjacent pairs of coordinates where (xi, yi) = (xi−1+1, yi−1) and there must be n adjacent pairs

of coordinates where (xi, yi) = (xi−1, yi−1+1). So, there are m number of X’s and n number of

Y ’s in a1a2 . . . am+n. So, a1a2 . . . am+n ∈ LW(m,n).

First, we prove F is injective.

Let LPZ = {(x0 = 0, y0 = 0), (x1, y1), . . . , (xm+n, ym+n)}, LPZ ′ = {(x′0 = 0, y′0 =

0), (x′1, y
′
1), . . . , (x

′
m+n, y

′
m+n)} ∈ LPZ(m,n).

Assume F (LPZ) = F (LPZ ′) = a1, a2 . . . am+n.

By construction (x0, y0) = (0, 0) = (x′0, y
′
0).

10 CHAPTER 2. LATTICE PATHS AND LATTICE WORDS

This is our base cases.

Let z ∈ {1, 2 . . . ,m+ n− 1}. Assume (xz, yz) = (x′z, y
′
z).

There are now two cases.

For case one, assume az+1 = X. So, by F it follows that (xz+1, yz+1) = (xz + 1, yz) and

(x′z+1, y
′
z+1) = (x′z + 1, y′z). Since (xz, yz) = (x′z, y

′
z) then (xz+1, yz+1) = (xz + 1, yz) = (x′z +

1, y′z) = (x′z+1, y
′
z+1).

For case two, assume az+1 = Y . So, by F it follows that (xz+1, yz+1) = (xz, yz + 1) and

(x′z+1, y
′
z+1) = (x′z, y

′
z + 1). Since (xz, yz) = (x′z, y

′
z) then (xz+1, yz+1) = (xz, yz + 1) = (x′z, y

′
z +

1) = (x′z+1, y
′
z+1).

Thus, by the principle of mathematical induction, for all z ∈ {1, . . . ,m + n} it is true that

(xz, yz) = (x′z, y
′
z).

So, LPZ = LPZ ′.

Therefore, F is injective.

Now, we will prove F is surjective.

Let LW = a1a2 . . . am+n ∈ LW(m,n).

Construct an (m,n)-lattice path LPZ = {(x0 = 0, y0 = 0), (x1, y1), . . . , (xm+n, ym+n)} where

(xi, yi) =

{
(xi−1 + 1, yi−1) if ai = X

(xi−1, yi−1 + 1) if ai = Y

Note that {(x0 = 0, y0 = 0), (x1, y1), . . . , (xm+n, ym+n)} is an (m,n)-lattice paths at zero

since a1a2 . . . am+n must have m number of X’s and n number of Y ’s. So, from (0, 0) to

(m,n) there must be m adjacent pairs of coordinates where (xi, yi) = (xi−1 + 1, yi−1) and there

must be n adjacent pairs of coordinates where (xi, yi) = (xi−1, yi−1 + 1). So, {(x0 = 0, y0 =

0), (x1, y1), . . . , (xm+n, ym+n)} ∈ LPZ(m,n).

Now we compute F (LPZ) = a′1a
′
2 . . . a

′
m+n.

There are now two cases.

For case one ai = X. Then, by construction of LPZ, (xi, yi) = (xi−1 + 1, yi−1). Next, by F ,

a′i = X. So, ai = a′i.

2.3. LATTICE PATHS AT ZERO AND LATTICE WORDS BIJECTION 11

Figure 2.3.2: An example illustrating Theorem 2.3.2 using a (2, 2)-lattice path at zero and a
(2, 2)-lattice word.

For case two ai = Y . Then, by construction of LPZ, (xi, yi) = (xi−1, yi−1 + 1). Next, by F ,

a′i = Y . So, ai = a′i.

Thus, F (LPZ) = a′1a
′
2 . . . a

′
m+n = a1a2 . . . am+n = LW .

Therefore, F is surjective.

Hence, there is a bijection between LPZ(m,n) and LW(m,n).

In Figure 2.3.2, we give an example illustrating Theorem 2.3.2 using a (2, 2)-lattice path at

zero and a (2, 2)-lattice word.

12 CHAPTER 2. LATTICE PATHS AND LATTICE WORDS

3
Dyck Paths and Dyck Words

In this chapter, we introduce Dyck paths which are lattice paths at zero under a positively sloped

diagonal that goes through the origin. We give a closed formula for the number of Dyck paths

with a certain final coordinate. We also introduce Dyck words which are lattice words with

an added restriction on all prefixes. Next, we prove a bijection between Dyck paths and Dyck

words.

3.1 Dyck Paths and Counting

In this section, we introduce Dyck paths which are lattice paths at zero under a positively sloped

diagonal that goes through the origin. We give a closed formula for the number of Dyck paths

with a certain final coordinate.

The following definition is modified from [10].

Definition 3.1.1. [10] Let n, k, x, y ∈ N. If an (n, kn)-lattice path at zero denoted P lies in the

domain y ≤ k ·x, we call P an (n, kn)-Dyck path. Let DP(n,kn) denote the set of (n, kn)-Dyck

paths. △

The following is an example of a (2, 4)-Dyck path.

Example 3.1.2. Consider the following (2, 4)-lattice path at zero illustrated by 3.1.1:

{(0, 0), (1, 0), (1, 1), (1, 2), (2, 2), (2, 3), (2, 4)}.

13

14 CHAPTER 3. DYCK PATHS AND DYCK WORDS

Figure 3.1.1: Example of a (2, 4)-Dyck path.

The (2, 4)-lattice path at zero lies in the domain y ≤ 2 · x as illustrated by 3.1.1.

Hence, the (2, 4)-lattice path at zero is a (2, 4)-Dyck path. ♢

The following is an example of a (2, 4)-lattice path at zero that is not a (2, 4)-Dyck path.

Example 3.1.3. Consider the following (2, 4)-lattice path at zero illustrated by 3.1.2:

{(0, 0), (1, 0), (1, 1), (1, 2), (1, 3), (2, 3), (2, 4)}.

The (2, 4)-lattice path at zero does not lie in the domain y ≤ 2 · x as illustrated by 3.1.2.

Hence, the (2, 4)-lattice path at zero is not a (2, 4)-Dyck path. ♢

Remark 3.1.4. [10] Let Cn denote the nth Catalan number which is 1
n+1

(
2n
n

)
. Then DP(n,n) =

Cn. ♢

The following proposition is proved in [10].

Proposition 3.1.5. [10] Let n, k ∈ N. Then |DP(n,kn)| = 1
kn+1

(
(k+1)n

n

)
.

3.2 Dyck Words

In this section, we introduce Dyck words which are lattice words with an added restriction on

all prefixes.

3.2. DYCK WORDS 15

Figure 3.1.2: An example of a (2, 4)-lattice path at zero that is not a (2, 4)-Dyck path. The
flawed coordinate is emphasized by the color red.

The following definition is modified from [4].

Definition 3.2.1. Let n, k ∈ N. An (n, kn)-Dyck word is an (n, kn)-lattice word that has

no prefix, denoted Dp, where k ·X(Dp) < Y (Dp). Let DW(n,kn) denote the set of (n, kn)-Dyck

words. △

The following is an example of a (2, 2 · 2)-Dyck word.

Example 3.2.2. Consider the following (2, 2 · 2)-lattice word: XY Y XY Y .

Observe that

2 ·X(X) ≮ Y (X), and

2 ·X(XY) ≮ Y (XY), and

2 ·X(XY Y) ≮ Y (XY Y), and

2 ·X(XY Y X) ≮ Y (XY Y X), and

2 ·X(XY Y XY) ≮ Y (XY Y XY).

Thus, XY Y XY Y is a (2, 2 · 2)-Dyck word. ♢

16 CHAPTER 3. DYCK PATHS AND DYCK WORDS

Figure 3.3.1: An example illustrating Theorem 3.3.1 using a (2, 2 · 2)-Dyck path at zero and a
(2, 2 · 2)-Dyck word.

The following is an example of a (2, 2 · 2)-lattice word that is not a (2, 2 · 2)-Dyck word.

Example 3.2.3. Consider the following (2, 2 · 2)-lattice word: XY Y Y XY .

Observe that 2 ·X(XY Y Y) < Y (XY Y Y).

Thus, XY Y Y XY is not a (2, 2 · 2)-Dyck word. ♢

3.3 Dyck Paths and Dyck Words Bijection

In this section, we prove a bijection between Dyck paths and Dyck words.

The following theorem is widely accepted, but a proof is lacking in the literature.

Theorem 3.3.1. Let n, k ∈ N. There is a bijection between DP(n,kn) and DW(n,kn).

Proof. Similar to the proof for Theorem 2.3.2.

In Figure 3.3.1, we give an example illustrating Theorem 3.3.1 using a (2, 2 ·2)-Dyck path and

a (2, 2 · 2)-Dyck word.

By definition of bijection, the next corollary follows.

Corollary 3.3.2. Let m,n ∈ N. Then |DP(n,kn)| = |DW(n,kn)|.

Proof. Let n, k ∈ N. By Theorem 3.3.1, there is a bijection between DP(n,kn) and DW(n,kn).

By definition of bijection, |DP(n,kn)| = |DW(n,kn)|.

The next corollary follows.

3.3. DYCK PATHS AND DYCK WORDS BIJECTION 17

Corollary 3.3.3. Let n, k ∈ N. Then |DW(n,kn)| = 1
kn+1

(
(k+1)n

n

)
.

Proof. By Corollary 3.3.2, |DP(n,kn)| = |DW(n,kn)|. By Theorem 3.1.5, |DP(n,kn)| =

1
kn+1

(
(k+1)n

n

)
. Thus, |DW(n,kn)| = |DP(n,kn)| = 1

kn+1

(
(k+1)n

n

)
.

18 CHAPTER 3. DYCK PATHS AND DYCK WORDS

4
Parking Functions

In this chapter we introduce sequences of natural numbers that represent the preferred parking

space out of a one-way street for a certain amount of cars. Parking functions are the sequences

which lead to all cars parking in all parking spaces available on a street given a systematic

way of parking. In addition, we give the known recursive and closed formulas for the number

of parking functions given a certain number of cars. Then we will introduce a slight variation

of parking functions called descending parking functions. Next, we provide an argument for a

bijection between descending parking functions and Dyck words.

4.1 Parking Functions and Counting

In this section, we build up to a formal definition of a parking function. In addition, we give

the known recursive and closed formulas for the number of parking functions given a certain

number of cars.

The folowing set up and definitions are modified from [1,2].

Remark 4.1.1. For n ∈ N, let [n] = {1, . . . , n}. ♢

Consider n parking spaces on a one-way street arranged in a line numbered 1 to n from west

to east as illustrated in Figure 4.1.1.

Suppose there are n ∈ N cars, denoted c1, c2, c3, . . . , cn, as illustrated in Figure 4.1.2.

19

20 CHAPTER 4. PARKING FUNCTIONS

Figure 4.1.1: n parking spaces on a one-way street arranged in a line numbered 1 to n from west
to east.

Figure 4.1.2: n cars denoted c1, c2, c3, . . . , cn.

For all i ∈ [n], each car ci has a non-distinct parking space preference, denoted ai ∈ [n]. This

leads us to the following definition.

Definition 4.1.2. Let n ∈ N. Let A = (a1, a2, a3, . . . , an) ∈ [n]n. Then A is an n-parking

space preference sequence. Let PSPSn be the set of n-parking space preference sequences.

△

A closed formula is given for the number of n-parking space preference sequences, but a formal

proof is lacking in literature. We provide one here.

Proposition 4.1.3. Let n ∈ N. Then |PSPSn| = nn.

Proof. Let n ∈ N. Observe that by Definition 4.1.2, PSPSn = [n]n. So, |PSPSn| = |[n]n|.

Thus, |PSPSn| = |[n]n| = nn.

Parking Rules: For all i ∈ [n] and in increasing order, car ci starts at parking space 1 and

drives toward its preferred parking space ai. If ai is unoccupied, then ci parks. Otherwise,

ci proceeds forward until it reaches the next available parking space. If every parking space

numbered from ai up to and including n is taken, then ci is unable to park. Figure 4.1.3

illustrates the scene before parking attempts commence.

4.1. PARKING FUNCTIONS AND COUNTING 21

Figure 4.1.3: The scene before parking attempts commence.

Remark 4.1.4. Let n ∈ N. Let A = (a1, a2, a3, . . . , an) be an n-parking space preference

sequence. From the parking rules it is evident that if parking space i ∈ [n] is occupied after all

cars have parked then there must exist some aj ∈ A where j ∈ [n] such that aj ≤ i. ♢

We are now ready to define a parking function.

Definition 4.1.5. Let n ∈ N. Let A = (a1, a2, a3, . . . , an) be an n-parking space preference

sequence. Let B = (b1, b2, b3, . . . , bn) be a permutation of A where b1 ≤ b2 ≤ b3 ≤ . . . ≤ bn. If

bi ≤ i for all i ∈ [n] then A is an n-parking function. Let PFn denote the set of n-parking

functions. △

The following is an example of a 3-parking function.

Example 4.1.6. Consider the following 3-parking space preference sequence: A = (2, 2, 1). Ob-

serve that B = (b1 = 1, b2 = 2, b3 = 2) is a permutation of A where b1 ≤ b2 ≤ b3. Furthermore,

b1 = 1 ≤ 1, and

b2 = 2 ≤ 2, and

b3 = 2 ≤ 3.

Hence, A is a 3-parking function. ♢

The following steps demonstrate why (2, 2, 1) is a 3-parking function visually:

1. Observe that car c1 prefers parking space 2 as given by (2, 2, 1). Parking space 2

is available so c1 parks in space 2 as illustrated by Figure 4.1.4.

2. Observe that car c2 also prefers parking space 2 as given by (2, 2, 1). Parking space

2 is not available so c2 must continue forward to find the next empty space to park

in which is 3 as illustrated by Figure 4.1.5.

22 CHAPTER 4. PARKING FUNCTIONS

Figure 4.1.4: c1 parks in space 2.

Figure 4.1.5: c2 parks in space 3.

3. Observe that car c3 prefers parking space 1 as given by (2, 2, 1). Parking space 1

is available so c3 parks in space 1 as illustrated by Figure 4.1.6.

The following is an example of a 3-parking space preference sequence that is not a 3-parking

function.

Example 4.1.7. Consider the following 3-parking space preference sequence: A = (3, 1, 3). Ob-

serve that B = (b1 = 1, b2 = 3, b3 = 2) is a permutation of A where b1 ≤ b2 ≤ b3. Furthermore,

b2 = 3 ̸≤ 2.

Hence, A is not a 3-parking function. ♢

The following steps demonstrate why (3, 1, 3) is not a 3-parking function visually:

Figure 4.1.6: c3 parks in space 1.

4.1. PARKING FUNCTIONS AND COUNTING 23

Figure 4.1.7: c1 parks in space 3.

Figure 4.1.8: c2 parks in space 1.

1. Observe that c1 prefers parking space 3 as given by (3, 1, 3). Parking space 3 is

available so c1 parks in space 3 as illustrated by Figure 4.1.7.

2. Observe that c2 prefers parking space 1 as given by (3, 1, 3). Parking space 1 is

available so c2 parks in space 1 as illustrated by Figure 4.1.8.

3. Observe that c3 also prefers parking space 3 as given by (3, 1, 3). Parking space 3

is not available so c3 must continue forward to find an empty space to park in, but

falls off the edge before doing so as illustrated by Figure 4.1.9.

Let n ∈ N. Recursive and closed formulas for the number of n-parking functions are known.

The following theorem gives a recursive formula for the number of n-parking functions. A

thorough explanation can be found in [7].

Theorem 4.1.8. Let n ∈ N. Then,

|PFn| =
n∑

i=1

i

(
n− 1

i− 1

)
|PFi−1| · |PFn−i|.

Figure 4.1.9: c3 doesn’t park.

24 CHAPTER 4. PARKING FUNCTIONS

The next theorem gives a closed formula for the number of n-parking functions. A thorough

explanation can be found in [8].

Theorem 4.1.9. Let n ∈ N. Then, |PFn| = (n+ 1)n–1.

4.2 Descending Parking Functions and Dyck Words Bijection

In this section, we introduce a slight variation of parking functions called descending parking

functions. Next, we provide an argument for a bijection between descending parking functions

and Dyck words.

We now define descending parking functions.

Definition 4.2.1. Let n ∈ N. Let A = (a1, a2, a3, . . . , an) be an n-parking function. If a1 ≥

a2 ≥ a3 ≥ . . . ≥ an, then A is an n-descending parking function. Let DPFn be the set of

n-parking functions. △

The following theorem is often claimed and explained, such as in [3], but without proof.

Theorem 4.2.2. Let n, k ∈ N. There is a bijection between DW(n,n) and DPFn.

We will demonstrate the proof of this theorem by defining two functions and using an example

to support them being inverses of one another. The example can then be generalized, but we

will not include the details here.

We will use the following function as part our first function.

Definition 4.2.3. Let n ∈ N. Let P be an n-descending parking function. Let i ∈ [n]. Let

N(P, i) denote the number of elements in P equal to i. △

We now define our first function where the input is an n-descending parking functions and

the output is an (n, n)-Dyck word.

Definition 4.2.4. Let n ∈ N. Let F : DPFn −→ DW(n,n) be a function defined by F (P =

(p0, p1, . . . , pn−1)) = XbnXbn−1Xbn−2X . . .Xb1) where bi is an N(P, i)-length word over the

alphabet {Y }. △

4.2. DESCENDING PARKING FUNCTIONS AND DYCK WORDS BIJECTION 25

We now define a second function where the input is an (n, n)-Dyck word and the output is an

n-descending parking function.

Recall from Definition 2.2.1 that if L is a word over the alphabet {X,Y }, then X(L) denotes

the number of X’s in L.

Definition 4.2.5. Let n ∈ N. Let G : DW(n,n) −→ DPFn be a function defined by

G(a0a1 . . . an+n−1) = (p0, p1, . . . , pn+n−1) where

pi =

{
empty if ai = X

n+ 1−X(ai) if ai = Y .

△

We now demonstrate how these two functions are inverses through two examples.

Let n ∈ N. Let P ∈ DPFn. The first is an example of how G(F (P)) = P .

Example 4.2.6. Consider the following 3-descending parking function: P = (2, 2, 1). Observe

that F ((2, 2, 1)) = XXY Y XY . Furthermore, G(XXY Y XY) = (2, 2, 1).

Hence, G(F (P)) = P . ♢

Let n ∈ N. Let A ∈ DW(n,n). The following is an example of how F (G(A)) = A.

Example 4.2.7. Consider the following (3, 3)-Dyck word: A = XYXXY Y . Observe that

G(XYXXY Y) = (3, 1, 1). Furthermore, F ((3, 1, 1)) = XYXXY Y .

Hence, F (G(A)) = A. ♢

By definition of bijection, the next corollary follows.

Corollary 4.2.8. Let n ∈ N. Then |DPFn| = |DW(n,n)|.

Proof. Let n ∈ N. By Theorem 4.2.2, there is a bijection between DPFn and DW(n,n). By

definition of bijection, |DPFn| = |DW(n,n)|.

The next corollary follows.

Corollary 4.2.9. Let n ∈ N. Then |DPFn| = 1
n+1

(
2n
n

)
.

26 CHAPTER 4. PARKING FUNCTIONS

Proof. By Corollary 4.2.8, |DPFn| = |DW(n,n)|. By Corollary 3.3.3, |DW(n,n)| = 1
n+1

(
2n
n

)
.

Thus, |DPFn| = |DW(n,n)| = 1
n+1

(
2n
n

)
.

5
Parking Garage Functions

In this chapter we introduce a new concept called parking garage functions which are a general-

ization of parking functions. Parking garage functions are the sequences which lead to all cars

parking in all parking spaces available on each level in a parking garage given a systematic way

of parking. We developed python code which outputs a sequence. This led us to paper from

1977, [5], which gives us a recursive formula for a scenario that can be interpreted as parking

garage functions. Then we will introduce a slight variation of parking garage functions called

descending parking garage functions. Finally, we provide an argument for a bijection between

descending parking garage functions and Dyck words.

5.1 Introduction to Parking Garage Functions

In this section, we build up to a formal definition of a parking garage function.

The folowing set up and definitions are modified from that of parking functions in Section 4.1.

Remark 5.1.1. For n, k ∈ N, let [kn] = {1, . . . , kn}. ♢

Consider n parking garage levels with capacity k in an upwardly one-way parking garage

numbered 1 to n from bottom to top as illustrated in Figure 5.1.1.

Suppose there are kn ∈ N cars, denoted c1, c2, c3, . . . , ckn, as illustrated in Figure 5.1.2.

27

28 CHAPTER 5. PARKING GARAGE FUNCTIONS

Figure 5.1.1: n parking garage levels with capacity k in an upwardly one-way parking garage
numbered 1 to n from bottom to top.

Figure 5.1.2: kn cars denoted c1, c2, c3, . . . , ckn.

5.1. INTRODUCTION TO PARKING GARAGE FUNCTIONS 29

For all i ∈ [kn], each car ci has a non-distinct parking garage level preference, denoted ai ∈ [n].

This leads us to the following definition.

Definition 5.1.2. Let n ∈ N. Let A = (a1, a2, a3, . . . , akn) ∈ [n]kn. Then A is an (n, kn)-

parking garage level preference sequence. Let PGLPS(n,kn) be the set of (n, kn)-parking

garage level preference sequences. △

The following is a closed formula for the number of (n, kn)-parking garage level preference

sequences.

Proposition 5.1.3. Let n ∈ N. Then |PGLPS(n,kn)| = nkn.

Proof. Let n ∈ N. Observe that by Definition 5.1.2, PGLPS(n,kn) = [n]kn. So,

|PGLPS(n,kn)| = |[n]kn|. Thus, |PGLPS(n,kn)| = |[n]kn| = nkn.

Parking Rules: For all i ∈ [kn] and in increasing order, car ci starts at parking garage level

1 and drives upwards to its preferred parking garage level ai. If ai is not at full capacity, k, then

ci parks. Otherwise, ci proceeds upwards until it reaches the next parking garage level not at

full capacity, k. If every parking garage level numbered from ai up to and including n is at full

capacity, k, then ci is unable to park. Figure 5.1.3 illustrates the scene before parking attempts

commence.

Remark 5.1.4. Let n, k ∈ N. Let A = (a1, a2, a3, . . . , akn) be an (n, kn)-parking garage level

preference sequence. From the parking rules it is evident that if parking garage level i ∈ [n] has

a car parked on it after all cars have parked then there must exist some aj ∈ A where j ∈ [kn]

such that aj ≤ ⌈ i
k⌉. ♢

We are now ready to define a parking garage function.

Definition 5.1.5. Let n ∈ N. Let A = (a1, a2, a3, . . . , akn) be an (n, kn)-parking garage level

preference sequence. Let B = (b1, b2, b3, . . . , bkn) be a permutation of A where b1 ≤ b2 ≤ b3 ≤

. . . ≤ bkn. If bi ≤ ⌈ i
k⌉ for all i ∈ [kn] then A is an (n, kn)-parking garage function. Let

PGF(n,kn) denote the set of (n, kn)-parking garage functions. △

30 CHAPTER 5. PARKING GARAGE FUNCTIONS

Figure 5.1.3: The scene before parking attempts commence.

Remark 5.1.6. n-parking functions are the same as (n, kn)-parking garage function where

k = 1. ♢

The following is an example of a (2, 3 · 2)-parking garage function.

Example 5.1.7. Consider the following (2, 3 · 2)-parking garage level preference sequence: A =

(2, 2, 1, 1, 1, 1). Observe that B = (b1 = 1, b2 = 1, b3 = 1, b4 = 1, b5 = 2, b6 = 2) is a permutation

of A where b1 ≤ b2 ≤ b3 ≤ b4 ≤ b5 ≤ b6. Furthermore,

b1 = 1 ≤ 1 =

⌈
1

3

⌉
, and

b2 = 1 ≤ 1 =

⌈
2

3

⌉
, and

b3 = 1 ≤ 1 =

⌈
3

3

⌉
, and

b4 = 1 ≤ 2 =

⌈
4

3

⌉
, and

b5 = 2 ≤ 2 =

⌈
5

3

⌉
, and

b6 = 2 ≤ 2 =

⌈
6

3

⌉
.

Hence, A is a (2, 3 · 2)-parking garage function. ♢

5.1. INTRODUCTION TO PARKING GARAGE FUNCTIONS 31

Figure 5.1.4: c1 parks on level 2.

Figure 5.1.5: c2 parks on level 2.

The following steps demonstrate why (2, 2, 1, 1, 1, 1) is a (2, 3 · 2)-parking garage function

visually:

1. Observe that car c1 prefers parking garage level 2 as given by (2, 2, 1, 1, 1, 1). Park-

ing garage level 2 is not at full capacity so c1 parks on level 2 as illustrated by

Figure 5.1.4.

2. Observe that car c2 prefers parking garage level 2 as given by (2, 2, 1, 1, 1, 1). Park-

ing garage level 2 is not at full capacity so c2 parks on level 2 as illustrated by

Figure 5.1.5.

3. Observe that car c3 prefers parking garage level 1 as given by (2, 2, 1, 1, 1, 1). Park-

ing garage level 1 is not at full capacity so c3 parks on level 1 as illustrated by

Figure 5.1.6.

4. Observe that car c4 prefers parking garage level 1 as given by (2, 2, 1, 1, 1, 1). Park-

ing garage level 1 is not at full capacity so c4 parks on level 1 as illustrated by

Figure 5.1.7.

32 CHAPTER 5. PARKING GARAGE FUNCTIONS

Figure 5.1.6: c3 parks on level 1.

Figure 5.1.7: c4 parks on level 1.

5. Observe that car c5 prefers parking garage level 1 as given by (2, 2, 1, 1, 1, 1). Park-

ing garage level 1 is not at full capacity so c5 parks on level 1 as illustrated by

Figure 5.1.8.

6. Observe that car c6 also prefers parking garage level 1 as given by (2, 2, 1, 1, 1, 1).

Parking garage level 1 is at full capacity so c5 must continue upward to find the

next level not at full capacity to park on which is 2 as illustrated by Figure 5.1.9.

Figure 5.1.8: c5 parks on level 1.

5.1. INTRODUCTION TO PARKING GARAGE FUNCTIONS 33

Figure 5.1.9: c6 parks on level 2.

Figure 5.1.10: c1 parks on level 2.

The following is an example of a (2, 3 · 2)-parking garage level preference sequence that is not

a (2, 3 · 2)-parking garage function.

Example 5.1.8. Consider the following (2, 3 · 2)-parking garage level preference sequence: A =

(2, 2, 2, 1, 1, 2). Observe that B = (b1 = 1, b2 = 1, b3 = 2, b4 = 2, b5 = 2, b6 = 2) is a permutation

of A where b1 ≤ b2 ≤ b3 ≤ b4 ≤ b5 ≤ b6.

Furthermore, b3 = 2 ̸≤ 1 =
⌈
3
3

⌉
.

Hence, A is not a (2, 3 · 2)-parking garage function. ♢

The following steps demonstrate why (2, 2, 2, 1, 1, 2) is not a (2, 3 · 2)-parking garage function

visually:

1. Observe that car c1 prefers parking garage level 2 as given by (2, 2, 2, 1, 1, 2). Park-

ing garage level 2 is not at full capacity so c1 parks on level 2 as illustrated by

Figure 5.1.10.

34 CHAPTER 5. PARKING GARAGE FUNCTIONS

Figure 5.1.11: c2 parks on level 2.

Figure 5.1.12: c3 parks on level 2.

2. Observe that car c2 prefers parking garage level 2 as given by (2, 2, 2, 1, 1, 2). Park-

ing garage level 2 is not at full capacity so c2 parks on level 2 as illustrated by

Figure 5.1.11.

3. Observe that car c3 prefers parking garage level 2 as given by (2, 2, 2, 1, 1, 2). Park-

ing garage level 2 is not at full capacity so c3 parks on level 2 as illustrated by

Figure 5.1.12.

4. Observe that car c4 prefers parking garage level 1 as given by (2, 2, 2, 1, 1, 2). Park-

ing garage level 1 is not at full capacity so c4 parks on level 1 as illustrated by

Figure 5.1.13.

5. Observe that car c5 prefers parking garage level 1 as given by (2, 2, 2, 1, 1, 2). Park-

ing garage level 1 is not at full capacity so c5 parks on level 1 as illustrated by

Figure 5.1.14.

5.2. PYTHON CODE LEADING TO DISCOVERY 35

Figure 5.1.13: c4 parks on level 1.

Figure 5.1.14: c5 parks on level 1.

6. Observe that car c6 prefers parking garage level 2 as given by (2, 2, 2, 1, 1, 2). Park-

ing garage level 2 is at full capacity so c6 must continue upward to find the next

level not at full capacity to park on, but falls off the top level before doing so as

illustrated by Figure 5.1.9.

5.2 Python Code Leading to Discovery

In this section, a python code with three functions including a main will be given. The main

created a sequence that when input into the the On-line Encyclopedia of Integer Sequences, had

a match with a sequence in a paper from 1977, [5]. Such paper gives us a recursive formula for

a scenario that can be interpreted as parking garage functions.

The following is the python code:

import itertools

#Input: pf ((n,cn)-parking garage level preference sequence), c (capacity of

each level) and n (number of levels).

36 CHAPTER 5. PARKING GARAGE FUNCTIONS

Figure 5.1.15: c6 doesn’t park.

#Output: Number of parked cars yielded by the (n,cn)-parking garage level

preference sequence.

def num_of_Parked_Cars(pf , c, n):

take list pf and sort in ascending order

new_pf = sorted(pf)

create list of possible preferences

levels = [j for j in range(1, n + 1)]

start counter for parked cars

parked_Cars = 0

j = 0

compare every nth group of c to n

for i in range(0, c * n, c):

x = 0

while x < c:

if new_pf[i + x] < levels[j] or new_pf[i + x] == levels[j]:

parked_Cars = parked_Cars + 1

else:

break;

x = x + 1

j = j + 1

return number of parked cars

return parked_Cars

#Input: k_f (capacity of each level) and n_f (number of levels).

#Output: Cardinality of the set of (n_f ,k_f \cdot n_f)-parking garage functions.

def num_of_Parking_Garage_Functions(k_f ,n_f):

number of levels

n = int(n_f)

print(’Levels =’, n)

capacity of each level

k = int(k_f)

print(’Capacity =’, k)

number of cars is kn

print(’Number of cars =’, k * n)

create list of possible preferences

levels = [j for j in range(1, n + 1)]

create list of lists of possible preferences for each car

somelists = []

for v in range(1, k * n + 1):

somelists.append(levels)

5.2. PYTHON CODE LEADING TO DISCOVERY 37

counter for number of parking garage functions out of all preference

vectors

valid_pgf = 0

evaluate each element of cartesian product (every possible combination of

values) from somelists for being a

parking garage function or not

i = 0

for v in itertools.product(*somelists):

#if i % 100000 == 0:

#print(i)

v_lis = list(v)

parked_Cars = num_of_Parked_Cars(v_lis , k, n)

if k * n == parked_Cars:

valid_pgf = valid_pgf + 1

i += 1

Return number of valid parking garage functions

return valid_pgf

#Test for the number of:

#(1,4 \cdot 1)-parking garage functions ,

#(2,4 \cdot 2)-parking garage functions ,

#(3,4 \cdot 3)-parking garage functions ,

#(4,4 \cdot 4)-parking garage functions

#and (5,4 \cdot 5)-parking garage functions.

for i in range(1,5):

valid_pgf = num_of_Parking_Garage_Functions(4,i)

print(valid_pgf)

The output of the main function is:

1

11

378

27213

3378680

38 CHAPTER 5. PARKING GARAGE FUNCTIONS

This would mean that

|PGF(1,4·1)| = 1, and

|PGF(2,4·2)| = 11, and

|PGF(3,4·3)| = 378, and

|PGF(4,4·4)| = 27213, and

|PGF(5,4·5)| = 3378680.

We then get a match with a sequence in a paper from 1977, [5], when we input

1, 11, 378, 27213, 3378680 into the On-line Encyclopedia of Integer Sequences as illustrated in

5.2.1.

In [5], there is a brief discussion on transforming their problem to a parking problem where the

balls in their paper are interpreted as cars and the cells with a standard capacity are interpreted

as a parking lot with each row having a standard capacity. For this paper, we reimagine the

cells with a standard capacity as a parking garage with each level having a standard capacity.

This leads us to modifying a lemma in [5] to the following theorem. The following theorem

gives a recursive formula for the number of (n, kn)-parking garage functions.

Theorem 5.2.1. Let n, k ∈ N. Then,

|PGFk,n| =
n∑

i=1

i

(
kn− 1

ki− 1

)
|PGFk,ki−1| · |PGFk,k(n−i)|.

5.3 Descending Parking Garage Functions and Dyck Words Bijection

In this section, we introduce a slight variation of parking garage functions called descending

parking garage functions. Next, we provide an argument for a bijection between descending

parking garage functions and Dyck words.

We now define descending parking garage functions.

5.3. DESCENDING PARKING GARAGE FUNCTIONS AND DYCKWORDS BIJECTION39

Figure 5.2.1: Match on OEIS.

40 CHAPTER 5. PARKING GARAGE FUNCTIONS

Definition 5.3.1. Let n, k ∈ N. Let A = (a1, a2, a3, . . . , akn) be an (n, kn)-parking garage

function. If a1 ≥ a2 ≥ a3 ≥ . . . ≥ akn, then A is an (n, kn)-descending parking garage

function. Let DPGF(n,kn) be the set of (n, kn)-parking garage functions. △

The following theorem was first conjectured since their is a bijection between descending

parking functions and Dyck words.

Theorem 5.3.2. Let n, k ∈ N. There is a bijection between DW(n,n) and DPGF(n,kn).

We will demonstrate the proof of this theorem by defining two functions and using an example

to support them being inverses of one another. The example can then be generalized, but we

will not include the details here.

We will use the following function as part our first function.

Definition 5.3.3. Let n, k ∈ N. Let P be an (n, kn)-descending parking garage function. Let

i ∈ [n]. Let Ng(P, i) denote the number of elements in P equal to i. △

We now define our first function where the input is an (n, kn)-descending parking garage

functions and the output is an (n, kn)-Dyck word.

Definition 5.3.4. Let n, k ∈ N. Let Fg : DPGF(n,kn) −→ DW(n,kn) be a function defined by

Fg(P = (p0, p1, . . . , pkn−1)) = XbnXbn−1Xbn−2X . . .Xb1) where bi is an Ng(P, i)-length word

over the alphabet {Y }. △

We now define a second function where the input is an (n, kn)-Dyck word and the output is

an (n, kn)-descending parking garage function.

Recall from Definition 2.2.1 that if L is a word over the alphabet {X,Y }, then X(L) denotes

the number of X’s in L.

Definition 5.3.5. Let n, k ∈ N. Let Gg : DW(n,kn) −→ DPGF(n,kn) be a function defined by

Gg(a0a1 . . . akn+n−1) = (p0, p1, . . . , pkn+n−1) where

pi =

{
empty if ai = X

n+ 1−X(ai) if ai = Y .

△

5.3. DESCENDING PARKING GARAGE FUNCTIONS AND DYCKWORDS BIJECTION41

We now demonstrate how these two functions are inverses through two examples.

Let n, k ∈ N. Let P ∈ DPGF(n,kn). The first is an example of how Gg(Fg(P)) = P .

Example 5.3.6. Consider the following (2, 3 · 2)-descending parking garage function: P =

(2, 2, 1, 1, 1, 1). Observe that Fg((2, 2, 1, 1, 1, 1)) = XY Y XY Y Y Y . Furthermore, Gg(XY Y XY Y Y Y) =

(2, 2, 1, 1, 1, 1).

Hence, Gg(Fg(P)) = P . ♢

Let n, k ∈ N. Let A ∈ DW(n,kn). The following is an example of how Fg(Gg(A)) = A.

Example 5.3.7. Consider the following (2, 3 · 2)-Dyck word: A = XY Y Y XY Y Y . Observe

that Gg(XY Y Y XY Y Y) = (2, 2, 2, 1, 1, 1). Furthermore, Fg((2, 2, 2, 1, 1, 1)) = XY Y Y XY Y Y .

Hence, Fg(Gg(A)) = A. ♢

By definition of bijection, the next corollary follows.

Corollary 5.3.8. Let n, k ∈ N. Then |DPGF(n,kn)| = |DW(n,kn)|.

Proof. Let n, k ∈ N. By Theorem 5.3.2, there is a bijection between DPGF(n,kn) and DW(n,kn).

By definition of bijection, |DPGF(n,kn)| = |DW(n,kn)|.

The next corollary follows.

Corollary 5.3.9. Let n, k ∈ N. Then |DPGF(n,kn)| = 1
kn+1

(
(k+1)n

n

)
.

Proof. By Corollary 5.3.8, |DPGF(n,kn)| = |DW(n,kn)|. By Corollary 3.3.3, |DW(n,kn)| =

1
kn+1

(
(k+1)n

n

)
. Thus, |DPGF(n,kn)| = |DW(n,kn)| = 1

kn+1

(
(k+1)n

n

)
.

42 CHAPTER 5. PARKING GARAGE FUNCTIONS

6
Future Work

Suggestions for future work include attempting to take results known for parking functions and

adapt them to parking garage functions, which is just a new concept that is a generalization of

parking functions. In particular, we would like to find a closed formula for |PGF(n,kn)|. More

projects ideas include:

1. Can we find the closed formula of defective parking garage functions?

2. There exists research on k-naples parking functions which allow for cars to be able

to move backwards by k parking spaces. What can be said about k-naples parking

garage functions?

3. k-naples parking functions also have a bijection with lattice paths. Is there a

bijection between k-naples parking garage functions and a certain type of lattice

path?

4. There is also a bijection between parking functions and binary trees as well as

triangulations of convex polygons. Is their a bijection between parking garage

functions and certain graphs or triangulations of polygons?

43

44 CHAPTER 6. FUTURE WORK

Bibliography

[1] Alex Christensen and Pamela E. Harris and Zakiya Jones and Marissa Loving and Andrés
Ramos Rodŕıguez and Joseph Rennie and Gordon Rojas Kirby, A generalization of parking
functions allowing backward movement, The Electronic Journal of Combinatorics 27 (2020).

[2] Ayomikun Adeniran and Steve Butler and Galen Dorpalen-Barry and Pamela E. Harris and
Cyrus Hettle and Qingzhong Liang and Jeremy L. Martin and Hayan Nam, Enumerating
Parking Completions Using Join and Split, The Electronic Journal of Combinatorics 27
(2020).

[3] Drew Armstrong and Nicholas A. Loehr and Gregory S. Warrington, RATIONAL PARK-
ING FUNCTIONS AND CATALAN NUMBERS, Annals of Combinatorics 20 (2016), 21–
58.

[4] Francine Blanchet-Sadri and Kun Chen and Kenneth Hawes, Dyck Words, Lattice Paths,
and Abelian Borders, International Journal of Foundations of Computer Science 33 (2022),
203-226.

[5] Ian F. Blake and Alan G. Konheim, Big Buckets Are (Are Not) Better!, Journal of the
Association for Computing Machinery 24 (1977), 591-606.

[6] Joshua Carlson and Alex Christensen and Zakiya Jones and and Andrés Ramos Rodŕıguez,
Parking Functions: Choose Your Own Adventure, The College Mathematics Journal 52
(2021).

[7] Kimberly P. Hadaway and Pamela E. Harris, Honk! Honk!, Part 1: An Introduction to
Parking Functions, Girls’ Angle Bulletin 14 (December 2020/January 2021), no. 2, 15-20.

[8] , Honk! Honk!, Part 2: An Introduction to Parking Functions, Girls’ Angle Bulletin
14 (February/March 2021), no. 3, 14-20.

[9] Peter J. Cameron and Daniel Johannsen and Thomas Prellberg and Pascal Schweitzer,
Counting Defective Parking Functions, The Electronic Journal of Combinatorics 15 (2008).

45

46 Bibliography

[10] Yukiko Fukukawa, COUNTING GENERALIZED DYCK PATHS, arXiv: Combinatorics
(2013).

	Parking Garage Functions
	Recommended Citation

	Abstract
	Dedication
	Acknowledgments
	Introduction
	Lattice Paths and Lattice Words
	Lattice Paths
	Lattice Words and Counting
	Lattice Paths at Zero and Lattice Words Bijection

	Dyck Paths and Dyck Words
	Dyck Paths and Counting
	Dyck Words
	Dyck Paths and Dyck Words Bijection

	Parking Functions
	Parking Functions and Counting
	Descending Parking Functions and Dyck Words Bijection

	Parking Garage Functions
	Introduction to Parking Garage Functions
	Python Code Leading to Discovery
	Descending Parking Garage Functions and Dyck Words Bijection

	Future Work
	Bibliography

