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Abstract

The Centerpoint Theorem states that for any set S of points in Rd, there exists a point c such
that any hyperplane goes through that point divides the set. For any half-space containing the
point c, the amount of points in that half-space is no bigger than 1

d+1 of the whole set. This can
be related to how close can any hyperplane containing the point c comes to equipartitioning for
a given shape S. For a function from unit circle to real number, it has a Fourier interpretation.
Using Fourier analysis on the Torus, I will try to find a multi centerpoint theorem for many points
in the plane such that any hyperplanes go through those points are close to equipartitioning a
given shape.
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1
Introduction

In this chapter, we are going to introduce the Centerpoint Theorem and the basic setup of the

problem that I am working on. The Centerpoint Theorem states that for any set S of points in

Rd, there exists a point such that any hyperplane goes through that point divides the set into

two half space, |H+ ∩S| ≥ |S|
d+1 for any half-space containing c. This can be related to how close

can any line containing c comes to equipartitioning for a given shape S. My problem is a multi

centerpoint Question. I am trying to find out how close can any two lines on a plane with a single

mass come to equipartition the mass and try to find the upper bound for those centerpoints.

Section 1.1 is an elaborations of two different perspectives of the Centerpoint Theorem, the

discrete version and the continuous version. Section 1.2 gives an overview of what I am working

on.
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1.1 Centerpoint Theorem

In statistics and computational geometry, the notion of centerpoint is a generalization of the

median to data in higher-dimensional Euclidean space. If a median is on a line, there is at least

half of the points on one side of the median like the one showed in the picture below. In the

problem that I am working on, the centerpoint is exactly the same as a median or a geometric

median.

Figure 1.1.1. Median

Theorem 1.1.1. (Centerpoint Theorem). Given a set of points in d-dimensional space, a cen-

terpoint of the set is a point such that any hyperplane that goes through that point divides the

set of points into two roughly equal subsets: each closed half-space contains at least a 1
d+1 of the

points. Conversely, if there is such a point exists in the space, then it’s the centerpoint.

In the optimal case, each hyperplane that goes through the centerpoint is able to divide

the whole space into two equal half spaces, which is called equipartition. In this situation, the

centerpoint is working as a median. Under equipartition, the two half-spaces should have the

same measure. For discrete cases, the same measure just means the two half spaces have the same

amount of points. For continuous cases, instead of looking at points, we are going to view it as

areas that are divided by hyperplane within the spaces. In this case, measure can be calculated

by integrating the density function of the space. Now we are going to discuss the two different

versions of Centerpoint Theorem.
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1.1.1 Centerpoint Theorem Discrete Version

As it’s the discrete version, we are going to consider all elements in the space as points and

measure just means the numbers of points in the space. Let’s call set A as a point set and set S

as a subset of Rd. Then, we define µ(S) = |S ∩A| for any subset S. H+ and H− are the closed

half-spaces and the amount of points in half space can be expressed as µ(H+) = |H+ ∩ S|

Question 1. Does there exist some centerpoint c such that each half spaces created by the

hyperplanes passing through it have exactly half amount of the points in the whole space S such

that µ(H+ ∩ S) = µ(H− ∩ S) = 1
2µ(S)? Why 1

d+1 is the optimal?

In other words, the first question means under what kind of situation can any hyperplane

passes through point c comes to equipartition shape S. The answer is only when the shape

is symmetrical and the hyperplane pass through the centerpoint is able to divide the whole

shape into two equal half spaces. In general, for non-equipartition cases, we are able to have the

following inequality |H+ ∩ S| ≥ |S|
d+1 by the centerpoint theorem, and in Figure 1.1.2a it can be

concluded the smaller part of the subset always has at least one point which is exactly 1
3 of the

points in this 2 dimensional case. This figure 1.1.2a also illustrates 1
d+1 is the optimal case. Also

if we rotate the line about the point, this property won’t change. In Figure 1.1.2b, the red point

is the centerpoint and there are two lines across the space. For each space contain the red point,

it always has more than |S|
d+1 amount of points.

(a) Centerpoint Theorem Discrete 1

(b) Centerpoint Theorem Discrete 2

Figure 1.1.2. Centerpoint Theorem Discrete Version
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1.1.2 Centerpoint Theorem Continuous Version

Now we are going to talk about the continuous version. In this version, instead of looking at

points we are going to take it as the areas that are divided by lines within the space.

Let h : R2 → [0,+∞) be a function such that
∫∫

R2 h(x, y)dA < +∞. x, y is the coordinates in

the two dimensional space A. Such an h is called a density function. Given the density function,

the measure is defined by the following definition.

Definition 1.1.1. (Measure). For any measure for the line contain c such that µ(S) =∫∫
S h(x, y)dA =

∫∫
S∩A h(x, y)dA, and this double integral equals to the common area of S and

A, for some S ⊆ R2.

As a result, for the measure of half spaces it can be expressed as µ(H+) =
∫∫
H+ h(x, y)dA,

and for µ(R2), we have µ(R2) =
∫∫

R2 h(x, y)dA =
∫∫
A 1dA. It equals to the area of A and less

than positive infinity.

Question 2. How close can you come to equipartition for non centrally symmetric shapes?

As we are looking at non centrally symmetric shapes, we know it’s impossible for hyperplanes

to perfectly divide the whole space into two equal half spaces. Now we are going to show how

the centerpoint theorem can be rephrased into closeness of equipartition. Then, we have this

inequality |µ(H+)− µ(Rd)
2 | ≤ αµ(Rd) and we are trying to find this α.

As we are looking at half spaces, we know each half space has at least µ(Rd)
d+1 of area. Then, we

have these two inequality µ(H+) ≥ µ(Rd)
d+1 and µ(H−) ≥ µ(Rd)

d+1 . Then, we have µ(H+)− µ(Rd)
2 ≥

µ(Rd)
d+1 −

µ(Rd)
2 . It’s lower bound for µ(H+)− µ(Rd)

2 . Now we are going to find the upper bound for

it. As µ(H+)− µ(Rd)
2 = µ(Rd)− µ(H−)− µ(Rd)

2 = µ(Rd)
2 − µ(H−). As we know µ(H−) ≥ µ(Rd)

d+1 ,

then µ(Rd)
2 −µ(H−) ≤ µ(Rd)

2 − µ(Rd)
d+1 . Thus, we have − (d−1)

2(d+1)µ(Rd) ≤ µ(H+)− µ(Rd)
2 ≤ (d−1)

2(d+1)µ(Rd)

As a result, |µ(H+)− µ(Rd)
2 | ≤

d−1
2(d+1)µ(S) and α = d−1

2(d+1) is the optimal constant. It represents

the value as close as possible for each hyperplane to come to equipartition for non centrally

symmetric shapes.
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As my problem is a 2 dimensional case, so d = 2.

Lemma 1.1.1. (Centerpoint Theorem for 2 dimensional half spaces). Give a measure µ, there

exists some point c in R2 such that for every half space whose boundary line contain c, |µ(H+)−
µ(R2)

2 | ≤
1
6µ(R2). Conversely, if there exists some c such that |µ(H+) − µ(R2)

2 | ≤
1
6µ(R2) for

every half-space whose boundary line contains c, then c is a centerpoint.

Definition 1.1.2. Let f be a continuous map from S1 to R, then we define fc(θ) = µ(H+(θ))

for all c ∈ R2. This function represents the amount of area in the half space H+(θ) and the area

depends on the amount of rotation of the lines.

Figure 1.1.3. Half Spaces

In Figure 1.1.3, θ represents the angle the horizontal line passing through c rotates. Look

at a horizontal line passing through c. We are going to call that line H(0), H+(0) as the top

half-space and H−(0) as the bottom half-space. H(θ) represents rotating H(0) by θ counter

clcok-wise about point c. Also it can be discovered that if we rotate the line counter clock-wise

by π, we will get H−(θ) such that H+(θ + π) = H−(θ).

We have an equivalent interpretation for the Centerpoint Theorem in terms of angle θ when

d = 2. For all c in R2, we have fc(θ) = µ(H+(θ)). There exists some c in R2 such that |fc(θ)−
µ(R2)

2 | ≤
µ(R2)

6 and it’s true for all θ. Then, we can express the centerpoint theorem as follows: c

is a centerpoint if and only if |fc(θ)− µ(R2)
2 | ≤

µ(R2)
6 .
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1.2 My problem: A Multi Centerpoint analogue of the centerpoint
Theorem

For my problem, I’m looking for a multi-centerpoint theorem and there is only a single mass

on the plane so it’s a 2 dimensional case. Like the function for the single point case, there is a

function for multiple points case. For all c1, c2 in R2, we have a continuous map f(c1,c2)(θ1, θ2) :

S1 × S1 → R or with another experssion f(c1,c2)(θ1, θ2) : T 2 → R, f(c1,c2)(θ1, θ2) = µ(H+
1 (θ) ∩

H+
2 (θ2)). I am going to find out do there exist points c1, c2 in R2 such that for every line H1

passing through c1 and any line H2 passing through c2, is it true that

|f(c1,c2)(θ1, θ2)−
µ(R2)

4
| ≤ αµ(R2) (1.2.1)

for all θ1, θ2? What is the optimal α for this inequality? Or in other words, how close do any

two lines passing through these respective points come to equipartitioning µ(R2)?

As shown in Figure 1.2.1, there will be two lines H1 and H2 each contain c1 and c2 across the

whole space and I will look at their common region and do Fourier Analysis on f(c1,c2). I will

try to eliminate as many coefficients as possible in order to find the upper bound for α and the

technique I am going to apply in finding α is Parseval’s Identity. In the next chapter, I will fully

discuss Fourier Analysis on the Torus.

Figure 1.2.1. Setup



2
Fourier Analysis on the Torus

In this chapter, we are going to develop the the basic Fourier analysis on the Torus and the

following propositions and theorems are the tools we are going to use.

Definition 2.0.1. S1 is the unit circle. S1 = {eiα : 0 ≤ α ≤ 2π} = {z ∈ C∗ : |z| = 1} = {z ∈

C∗ : zz̄ = 1}.

2.1 Hermitian Inner Product

Definition 2.1.1. A Hermitian inner product on a complex vector space V is a complex-valued

bilinear form on V which is antilinear in the second slot, and is positive definite.

Remark 2.1.1. Hermitian Inner Product has the following properties, where z̄ denotes the

conjugate of z

1. 〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉

〈u+ v, w〉 = 〈w, u+ v〉 = 〈w, u〉+ 〈w, v〉 = 〈w, u〉+ 〈w, v〉 = 〈u,w〉+ 〈v, w〉

2. 〈u, v + w〉 = 〈u, v〉+ 〈u,w〉

〈u, v + w〉 = 〈v + w, u〉 = 〈v, u〉+ 〈w, u〉 = 〈v, u〉+ 〈w, u〉 = 〈u, v〉+ 〈u,w〉

3. Linearity on the left: 〈αu, v〉 = α〈u, v〉
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4. 〈u, αv〉 = ᾱ〈u, v〉

Conjugate linearity on the right: 〈u, αv〉 = 〈αv, u〉 = α〈v, u〉 = ᾱ〈u, v〉

5. 〈u, v〉 = 〈v, u〉

6. 〈u, u〉 > 0

7. 〈u, u〉 = 0, if and only if u = 0.

For the discussion of Fourier analysis: in all cases, the complex vector space is all continuous

functions from G to C, where G is either the unit circle, S1, the torus, T 2 = S1 × S1, or the

real numbers R and they all satisfy the property stated above. For function on the unit circle,

it’s defined as 〈f, φn〉 = 1
2π

∫ π
−π f(θ)e−inθdθ. We will further discuess this function later in this

chapter.

Proposition 2.1.1. Let f be a continuous function from S1 to C, then ‖f‖2 <∞

The L2 norm of f is ‖f‖2 = 〈f, f〉
1
2 =

( ∫
S1 |f(z)|2dz

) 1
2 for some z ∈ S1, with an interval

[−π, π]. Hence, ‖f‖2 <∞.

We will talk about the L2 convergence of Fourier Series later in this chapter 2.4.

2.2 Character theory of S1

Proposition 2.2.1. S1 is a group under complex multiplication.

S1 is set defined as S1 = {eiα : 0 ≤ α ≤ 2π} = {z ∈ C∗ : |z| = 1} = {z ∈ C∗ : zz̄ = 1}.

In order to show S1 is a group under complex multiplication, we need to show these three

properties:

1. S1 is closed under multiplication

2. Associativity

3. The identity 1 ∈ S1
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4. If z ∈ S1, then its multiplicative inverse z−1 ∈ S1

Proof. (1). Let eiθ, eiφ ∈ S1. Then, by multiplication we have eiθ · eiφ = ei(θ+φ). Let z = eiθ and

w = eiφ. As we know |z| = |w| = 1, then we have |zw| = |z||w|. As a result, we have zw ∈ φ.

Thus, S1 closed under multiplication.

(2). Let eiθ, eiφ ∈ S1. Then, we have eiθ · eiφ = ei(θ+φ) = eiφ · eiθ. Hence, it’s associative.

(3). Let z ∈ C. Then, we have |z| = 1. Hence, the identity 1 ∈ S1.

(4). Let z ∈ C. Then, we have |z| = 1. As z is the identity, we have |1z | = 1. |z| · |1z | = 1. Thus,

if z ∈ S1, then its multiplicative inverse z−1 ∈ S1.

From the four steps above, we know S1 is a group under complex multiplication.

2.2.1 The character theory of the circle group S1 and Torus Group T 2

Definition 2.2.1. The Character group of an arbitrary group G. The character group of group

G is notified as Ch(G) and it’s a set of all continuous homomorphisms from G to S1.

Proposition 2.2.2. Ch(G) is a group under multiplication of functions.

In order to prove Ch(G) is a group under multiplication of functions, we need to show it in

different three steps:

1. Associativity

2. identity

3. inverse

Proof. (1). Let f, g, h ∈ Ch(G). Then, we have ((f · g) · h)(a) = ((f(a) · g(a)) · h(a) = f(a) ·

(g(a) · h(a)) = (f · (g · h))(a). Hence, we proved its associativity.

(2). Let g ∈ Ch(G) such that g(a) = 1 and 1 ∈ Ch(G). Then, if we have f ∈ Ch(G), then we

have (f · g)(a) = f(a) · 1 = f(a) = 1 · f(a) = (g · f)(a). As a result, g is the identity.

(3) Let f ∈ Ch(G) and let f−1(a) = f(a)−1. We also need to show f−1 is homomorphism

f−1(ab) = f(ab)−1 = (f(a)f(b))−1 = f(a)−1f(b)−1 = f−1(a)f−1(b).

As a result, we prove Ch(G) is a group under multiplication of functions.
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We will now characterize the character group when G = R, S1, and T 2.

Theorem 2.2.1. Every group homomorphism of S1 are the continuous homomorphisms of the

form z 7→ zn for some n ∈ Z. In other words, φ : S1 → C∗, φn(z) = zn and φn(eiθ) = einθ for

some n ∈ Z. Vice versa: φn(z) = zn is a continuous homoromorphism for every integer n. This

thoerem can also be know as Ch(S1) ∼= Z.

In order to prove this theorem, we need the result of Ch(R) ∼= R to prove it.

Proof. Ch(R) ∼= R. Ch(R) means all continuous homomorphism from R to S1. In other words,

consider (R,+), if f : R → S1 is a continuous homomorphism, then f is given by the formula

f(x) = eiαx, where α is any real number.

Suppose r ∈ Ch(R). By definition, r is a continuous homomorphism from R to S1. Claim:

r(x) = e2πiαx, where r(1) = e2πiα. Then, we have r(m) = e2πiαm for some m ∈ R. Also

n · r( 1
n) = e2πiα and then r( 1

n) = e
2πiα
n for some n ∈ R. By multiplying them, we have r(mn ) =

e2πiα
m
n ,∀mn ∈ Q. Since Q is dense in R and r is continuous, we have r(x) = e2πiαx for all x ∈ R.

As a result, Ch(R) ∼= R.

Ch(S1) ∼= Z. Ch(S1) means all continuous homomorphism from S1 to S1. In other words, if

ψ : R→ S1 → S1 is a continuous homomorphism and it’s consist of two continuous homorphism,

then there exists α ∈ R such that ψ(x) = e2πiαx for all x ∈ R.

This theorem is based on Ch(R) ∼= R. Suppose φ : S1 → S1. Let ψ be a continuous homo-

morphism from R to S1 and ψ can be decomposed into two separate functions. ψ = φ ◦ r. The

first one is what we used in the first theorem, r is a continuous homomorphism from R to S1.

The second one is what we just defined φ : S1 → S1. By Ch(R) ∼= R, we know there exists

α ∈ R such that ψ(x) = e2πiαx. However, we know ψ(x) = ψ(x+ 1) as e2πiαx = e2πiα(x+1). Thus,

e2πiα = 1 and we know α ∈ Z. Then, ψ(x) = φ(e2πix) = e2πiαx = (e2πix)α. Let e2πiαx = y , then

we can conclude φ(y) = yα.

Hence, we proved Theorem 2.2.1.
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Now we are going to prove the case for the Torus by using Theorem 2.2.1.

Theorem 2.2.2. Ch(T 2) ∼= Z2. Ch(T 2) = {φ(n1,n2) | (n1, n2)} ∈ Z2}, where φ(n1,n2) is a

continuous homomorphism from T 2 to S1.

Proof. Suppose φ ∈ Ch(T 2). By definition, φ is a continuous homomorphism from T 2 to

S1 which also means φ is a continuous homomorphism from S1 × S1 to S1. As S1 × S1 =

{(z1, z1)|z1, z2 ∈ S1} and (z1, z2) = (z1, 1) · (1, z2), by homomorphism we have φ(z1, z2) =

φ(z1, 1) ·φ(1, z2). Define φ1 a continuous homomorphism from S1 to S1. Then, we have φ1(z1) =

φ(z1, 1). φ1(z1w1) = φ(z1w1, 1) = φ1((z1, 1) · (w1, 1)) = φ1(z1, 1)φ1(w1, 1) = φ1(z1)φ1(w1). Thus,

we have φ(z1, 1) = zn1
1 , for some n1 ∈ Z and φ(1, z2) = zn2

2 , for some n2 ∈ Z. Then, we have

φ(z, 1)φ(1, z2) = zn1
1 · z

n2
2 . Conversely, define φ : S1×S1 → S1. Then, φ(n1,n2)(z1, z2) = zn1

1 · z
n2
2 .

Then, this is a homomorphism. Hence, Ch(T 2) ∼= Z2.

We will now show that the collection of functions of Ch(S1) and Ch(T 2) are essential in

decomposing arbitrary functions f : S1 → C and f : S1 × S1 → C (respecively for Torus).

Namely, they form an orthonomral basis for the space V above in the sense of series with L2

convergence.

First, we show that they are orthonormal under the hermitian inner product as metioned in

definition 2.1.1.

2.3 Fourier Series for Torus

Proposition 2.3.1. Orthonormality of characters, 〈φn, φm〉 =

{
1, n = m

0, n 6= m

Proof. Let V be the set of continuous function {f : S1 → C} . We know basis for V is Ch(S1) ∼=

Z by theorem 2.2.1. As we know 〈f, g〉 = 1
2π

∫ π
−π f(x)g(x)dz = 1

2π

∫ π
−π f(eiθ)g(eiθ)dθ by definition

2.1. Hence, for 〈φn, φm〉 = 1
2π

∫ π
−π e

inθe−imθdθ = 1
2π

∫ π
−π e

i(n−m)θdθ = 1
2π ·

1
(n−m)ie

i(n−m)θ
]π
−π. As

a result, it has two different cases, when n 6= m, it equals to 0, by periodicity and when n = m,

it equals to 1.
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Definition 2.3.1. Fourier Coefficients. Fourier Coefficients are the weights (the scaling factor

in front of each term of) the Fourier sinusoidal (functions). Suppose that f could be written as

an infinite linear combination. Then, it’s coefficients Cn = 1
2π

∫ π
−π f(θ)e−inθdθ. We will prove it

in Proposition 2.3.2.

Definition 2.3.2. Fourier Series. Let fc be a continuous function from S1 to R. Then, fc has a

Fourier decomposition such that fc =
∑

n∈ZCne
inθ.

Proposition 2.3.2. If the Fourier Series fc =
∑

n∈ZCnφn, then its coefficients Cn = 〈f, φn〉 =

1
2π

∫ π
−π f(θ)e−inθdθ

Proof. As f =
∑

n∈Z anφn and 〈f, g〉 = 1
2π

∫ π
−π f(x)g(x)dz, then by taking the inner product we

have Cn = 〈f, φn〉 = 〈f, einθ〉 = 1
2π

∫ π
−π f(x)e−inxdx by φn = einθ. As a result, if f =

∑
n∈Z anφn,

it’s coefficient Cn = 〈f, φn〉 = 1
2π

∫ π
−π f(θ)e−inθdθ.

Now we are trying to find the Fourier Coefficient for the Torus case.

Proposition 2.3.3. If the Fourier Series f(c1,c2) =
∑

m,n∈ZC(m,n)φmφn, then its coefficients

C(m,n) = 〈f(c1,c2), φmφn〉 = 1
4π2

∫ π
−π
∫ π
−π f(c1,c2)(θ1, θ2)e

−imθ1e−inθ2dθ1dθ2.

Proof. It’s the case for Torus. As f(c1,c2) =
∑

m,n∈ZC(m,n)φmφn and 〈f, g〉 = 1
2π

∫ π
−π f(x)g(x)dz,

then by taking the inner product we have C(m,n) = 〈f(c1,c2), φmφn〉 = 〈f(c1,c2), eimθeinθ〉 =

1
4π2

∫ π
−π
∫ π
−π f(c1,c2)(θ1, θ2)e

−imθ1e−inθ2dθ1dθ2. As a result, if f(c1,c2) =
∑

m,n∈ZC(m,n)φmφn, its

coefficient C(m,n) = 1
4π2

∫ π
−π
∫ π
−π f(c1,c2)(θ1, θ2)e

−imθ1e−inθ2dθ1dθ2.

If f is in V , then f is actually equal to its Fourier series in the L2 sense in general. And likewise

for the Torus f(c1,c2). This is the importance of the character group.
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2.4 L2 convergence of Fourier Series

This section is directly related to the next section 2.5.

Theorem 2.4.1. Let f : S1 → C is continuous, then Fourier series for f converges to f and

also in L2; i.e.,

lim
N→∞

∫ 2π

0
‖f − FN‖22 = 0

Proposition 2.4.1. ‖f −
∑N

n=−N anφn‖2 converges to 0, as N →∞.

We know f =
∑

n∈Z anφn. For gn → g, it uses the L2 norm: limn→∞ ‖gn − g‖2 = 0

2.5 Parseval’s identity

Theorem 2.5.1. Parseval’s identity is about the sum of the squares of the Fourier coefficients

of a function is equal to the integral of the square of the function. ||f ||22 = 1
2π

∫ π
−π |f(x)|2dx =∑∞

−∞ |Cn|2. The Fourier coefficients is given by Cn = 1
2π

∫ π
−π f(θ)e−inθdθ

Proof. ∫ 2π

0
|f(reiθ)|2dθ =

∫ 2π

0
f(reiθ)f(reiθ)dθ (2.5.1)

=

∫ 2π

0

∑
m

amr
me−imθ

∑
n

anr
neinθ dθ (2.5.2)

=
∑
m,n

amanr
m+n

∫ 2π

0
eiθ(m−n)dθ (2.5.3)

=
∑
m,n

amanr
m+n2πδmn (2.5.4)

= 2π
∑
n

ananr
n+n (2.5.5)

= 2π
∑
n

|an|2r2n (2.5.6)

There is also another way of proving just by using the he orthonormality of characters.

||f ||22 = 〈f, f〉 = 1
2π

∫ π
−π f(x)f(x)dx =

∑∞
−∞ |Cn|2

For the Parseval’s identity of the Torus, we have ||f(c1,c2)||22 = 〈f(c1,c2), f(c1,c2)〉 =

1
2π

∫ π
−π f(c1,c2)(x)f(c1,c2)(x)dx =

∑∞
−∞ |C(m,n)|2



3
Applying Fourier Analysis on the problem

As we have talked about A Multi Centerpoint analogue of the centerpoint Theorem in subsection

1.2, I am going to specifically talk about how Fourier Analysis is applied on my problem.

3.1 f(c1,c2)(θ)

Firstly, let’s go over the single centerpoint case. For each c in R2, define fc : S1 → R by fc(θ) =

µ(H+(θ)) and fc a continuous map. As we have seen, the centerpoint theorem is equivalent to

the existence of some c in R2 such that |fc(θ) − µ(R2)
2 | ≤

µ(R2)
6 for all θ. Then, we can express

the centerpoint theorem for the single centerpoint as follows: c is a centerpoint if and only if

|fc(θ)−
µ(R2)

2
| ≤ µ(R2)

6
. (3.1.1)

Now let’s go over the multicenterpoint case. For each c1, c2 in R2, define fc1,c2(θ1, θ2) : S1 ×

S1 → R by fc1,c2(θ1, θ2) = µ(H+
1 (θ)∩H+

2 (θ2)) and similar to the case of single centerpoint case

fc1,c2 is also a continuous map. There are two different kinds of expression for this continuous

map fc1,c2(θ1, θ2) : S1 × S1 → R or fc1,c2(θ1, θ2) : T 2 → R as S1 × S1 is a torus. As we

have seen, the centerpoint theorem is equivalent to the existence of some c1, c2 in R2 such that

|fc1,c2(θ1, θ2)− µ(R2)
4 | ≤ αµ(R2) for all θ. Then, we can express the centerpoint theorem for the
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multicenterpoint as follows: c1 and c2 are centerpoints if and only if

|fc1,c2(θ1, θ2)−
µ(R2)

4
| ≤ αµ(R2). (3.1.2)

As any two lines passing through those two points in the whole plane, in the optimal case,

there are two lines are going to cut the whole plane into four equal quarters. For the single

centerpoint case, I am trying to show how close can the line passes through the centerpoint is

able to divide the whole plane into two closed equal half spaces. For the multicenterpoint case,

I am trying to find how close can the two lines pass through the two centerpoints are able to

divide the whole place into four closed equal quarters spaces. As a result, we have this inequality

3.1.2 and I am trying to find the optimal α for this inequality.

3.2 Fourier Decomposition

As we know for a continuous map from S1 to R, it has a Fourier decompostion. Likewise the same

for a continuous map from S1 × S1 to R, it also has a Fourier decomposition. I will try to use

Fourier Analysis to find out how close can the multicenterpoint case come to equipartitioning. For

the single centerpoint case, fc : S1 → R is a continuous map so it has a Fourier decomposition.

Then, we have fc(θ) =
∑∞
−∞Cne

inθ. Since fc is real-valued, then we know fc and it’s conjugate

are equal. Thus, we have fc(θ) = fc(θ) which also means Cm = C−m.

Proposition 3.2.1. If fc(θ) = fc(θ), then Cm = C−m.

Proof. As we know if fc(θ) is real-valued, then fc(θ) = fc(θ). Then, we have Cm =

1
2π

∫ 2π
0 fc(θ)e

−imθdθ = 1
2π

∫ 2π
0 fc(θ)e−imθ = 1

2π

∫ 2π
0 fc(θ)e

imθ = C−m. Hence, if fc(θ) = fc(θ),

then Cm = C−m.

Similarly, it’s the same for f(c1,c2)(θ1, θ2). If f(c1,c2)(θ1, θ2) = f(c1,c2)(θ1, θ2), then C(m,n) =

C(−m,−n).

As a result, under absolute value both positive and negative coefficient need to be considered.

Likewise |fc(θ)− µ(R2)
2 | have a Fourier decomposition such that |fc(θ)− µ(R2)

2 | = |
∑∞
−∞Cne

inθ|.
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In order to compute the Fourier coefficient, we need to use the idea of Parseval’s identity and

we are computing the minimum α what we mention in chapter 1 by using the L2 norm. Before

talking about how to calculate the Fourier coefficient, there is a question that why calculating

Fourier coefficient is significant in finding those points. In order to answer this question, I am

going to prove this following lemma.

Lemma 3.2.1. Fourier character of full equipartition.A point c for which any line passes through

it equipartitions the whole plane if and only if all the Fourier coefficients of fc, Cn = 0 for all

n 6= 0.

The reason for why n 6= 0 is C0 = µ(R2)
2 which means there are half amount of points are

eliminated. The computation for why C0 = µ(R2)
2 is in chapter 4.

Proof. Suppose Cn = 0, for all n 6= 0, then as the line pass through the point equipartitions we

have ||fc(θ) − µ(R2)
2 ||

2
2 = 0. Then, we have ‖fc(θ) − µ(R2)

2 ‖
2
2 =

∑
n6=0 |Cn|2 = 0. Since we know

C0 = µ(R2)
2 , then ‖fc(θ) − µ(R2)

2 ‖
2
2 = ‖fc(θ) − C0‖22 = 0. Hence, we have fc(θ) = µ(R2)

2 and it

implies µ(H+(θ)) = µ(R2)
2 for all θ. As a result, any line passes through c equipartitions, if and

only if Cn = 0 for all n 6= 0.

As a result, by applying parseval’s identity, we have ||fc(θ) − µ(R2)
2 ||

2
2 = ||

∑
n6=0Cne

inθ||22 =∑
n6=0 |Cn|2.

For the multicenterpoint case, f(c1,c2) : S1 × S1 → R, f(c1,c2)(θ) =
∑

m,n 6=0C(m,n)e
inθeimθ.

Similar to the single point case lemma 3.2.1 also works for the multicenterpoint case such that

any two lines passing through respective points equipartitions if and only if C(m,n) = 0 for

all (m,n) 6= (0, 0). The reason why C(0,0) can’t be included will be showed in the next chap-

ter by calculation. By applying Parseval’s identity, we are able to annihilate some cofficients,

||
∑

m6=0,n 6=0C(m,n)e
inθ1eimθ2 ||22 =

∑
n6=0,m 6=0 |C(m,n)|2. Then, we are able to find a bound on

‖f(c1,c2) −
µ(R2)

4 ‖2.

The full calculation of Fourier coefficients is in the next chapter.



4
Calculation of Fourier Coefficients

In the last chapter, I explained we are going to use the Parseval’s Identity to annihilate some

coefficients in order to get a bound on ‖f(c1,c2)(θ1, θ2) −
µ(R2)

4 ‖
2
2. In this chapter, I am going

to demonstrate my calculations by firstly showing the one Centerpoint cases, then the two

Centerpoints cases. In the end, it will reach the conclusion for the optimal upper bound that I

find for the two centerpoints cases.

Before talking about calculations, there are several things that need clarification for techniques

I used in calculation.

Question 1. Why is fc(θ) + fc(θ + π) = µ(R2)?

As we discussed in Chapter 1, that µ(H+(θ + π)) = µ(H−(θ)). If we rotate the line anti-

clockwise by π, its original closed half space will match with the rest of the whole plane. As

a result, µ(H+(θ)) + µ(H−(θ)) = µ(R2). Also as fc(θ) = µ(H+(θ)) which we discusses in the

first chapter, then we have fc(θ) + fc(θ + π) = µ(R2). It’s exactly the same case for the two

centerpoint cases f(c1,c2)(θ1, θ2),

f(c1,c2)(θ1, θ2) + f(c1,c2)(θ1, θ2 + π) + f(c1,c2)(θ1 + π, θ2) + f(c1,c2)(θ1 + π, θ2 + π) = µ(R2).

As we know f(c1,c2)(θ1, θ2) = µ(H+
1 (θ) ∩ H+

2 (θ2)) and if we rotate H1 anti-clockwise by π,

we will get µ(H+
1 (θ + π) ∩ H+

2 (θ2)) and it equals to f(c1,c2)(θ1 + π, θ2). Then, if we combine
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f(c1,c2)(θ1 + π, θ2) with f(c1,c2)(θ1, θ2), we will get f(θ1, θ2) + f(θ1 + π, θ2) = µ(H+
2 (θ2)) which

is the region in figure 4.0.2. Hence, figure 4.0.1 shows the situation before rotation and figure

4.0.2 shows the situation after rotation. Similarly for f(c1,c2)(θ1 +π, θ2 +π)+f(c1,c2)(θ1, θ2 +π) =

µ(H+
1 (θ)∩H+

2 (θ2 +π)) +µ(H+
1 (θ+π)∩H+

2 (θ2 +π)) = µ(H−2 (θ2)). As µ(H+
2 (θ2) +µ(H−2 (θ2) =

µ(R2). Thus we have f(c1,c2)(θ1, θ2)+f(c1,c2)(θ1, θ2+π)+f(c1,c2)(θ1+π, θ2)+f(c1,c2)(θ1+π, θ2+π) =

µ(R2).

Figure 4.0.1. Rotation of line 1

Figure 4.0.2. Rotation of line 2
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4.1 One Centerpoint cases

We mentioned this one in Chapter 3.

Here is the calculation for C0. Let n = 0.

C0 =
1

2π

∫ 2π

0
fc(θ)dθ (4.1.1)

=
1

2π
[

∫ π

0
fc(θ)dθ +

∫ 2π

π
fc(θ)dθ] (4.1.2)

=
1

2π
[

∫ π

0
fc(θ)dθ +

∫ π

0
fc(θ + π)dθ] (4.1.3)

=
1

2π
[

∫ π

0
[fc(θ) + fc(θ + π)]dθ] (4.1.4)

=
1

2π
µ(R2) · π (4.1.5)

=
1

2
µ(R2) (4.1.6)

As a result, C0 = 1
2µ(R2). For this case, we eliminate half amount of points in the whole plane.

Now let’s look at the even coefficient. C2n, for n 6= 0.

C2n =
1

2π

∫ 2π

0
fc(θ)e

−2inθdθ (4.1.7)

=
1

2π
[

∫ π

0
fc(θ)e

−2inθdθ +

∫ 2π

π
fc(θ)e

−2inθdθ] (4.1.8)

=
1

2π
[

∫ π

0
fc(θ)e

−2inθdθ +

∫ π

o
fc(θ + π)e−2in(θ+π)dθ] (4.1.9)

=
1

2π
[

∫ π

0
fc(θ)e

−2inθdθ +

∫ π

0
fc(θ + π)e−2inθdθ] (4.1.10)

=
1

2π
[

∫ π

0
[fc(θ) + f(θ + π)]e−2inθdθ] (4.1.11)

=
µ(R2)

2π

∫ π

0
e−2inθdθ = 0 (4.1.12)

As e−2inθ is a periodic function and we are evaluating at π and 0, we have 2nπ and 2n0 = 0

in the antiderivative. Also we have proved C−n = Cn in proposition 3.2.1 which we proved in

last chapter, then we have C2n = 0, for all n 6= 0.
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Now let’s discuss the case for C1 and we need another theorem in order to calculate it.

Theorem 4.1.1. For any mass µ on R2, there exists some c in R2 such that C1 = 0 in the

Fourier expansion of fc. [1]

For my case, the theorem states above can also be applied on my problem. Hence, we are able

to know that there exist some points such that C1 = 0.

Now we reach the question that what does the existence of some c with C1 = 0 and C2n = 0

imply ?

Based on this following lemma, we are able to find an upper bound on ‖fc(θ)− µ(R2)
2 ‖2.

Lemma 4.1.1. For any mass µ on R2, there exists some c in R2 such that [1]

‖fc(θ)−
µ(R2)

2
‖2 ≤

√
1

3
− 2

π2
− 1

3 · 22
µ(R2).

Base on the inequality we have:

‖fc(θ)−
µ(R2)

2
‖2 ≤

√
1

3
− 2

π2
− 1

3 · 22
µ(R2) =

√
1

4
− 2

π2
µ(R2) =

√
π2 − 8

4π2
µ(R2) (4.1.13)

Proof. As we know ‖fc−µ(R2)‖22 =
∑

n∈Z |Cn|2, then we can use the fact which we have already

calculated and proved to find the upper bound. In last chapter, we proved C−n = Cn which also

implies |C−n| = |Cn|. Then, we have
∑

n∈Z |Cn|2 = 2 ·
∑∞

n=1 |Cn|2. Also as we have shown that

C2n = 0 which means all even coefficient equal to 0, then we have
∑

n∈Z |Cn|2 = 2 ·
∑∞

n=1 |Cn|2 =

2 ·
∑∞

n>1(odd) |Cn|2. From Prof. Simon’s paper, I get this inequality |Cn| ≤ µ(R2)
π·|n| [1]. Then, we

have
∑

n∈Z |Cn|2 ≤ 2 ·
∑∞

n>1(odd)
(µ(R2))2

π2·n2 ≤ 2(µ(R2))2

π2

∑∞
n>1(odd)

1
n2 . As

∑∞
n=1

1
n2 = π2

6 and from

the calculation of
∑∞

n(even)
1
n2 =

∑∞
k=1

1
4k2

= π2

24 , we have
∑∞

n(odd)
1
n2 = π2

6 −
π2

24 = π2

8 . As a

result, we have
∑

n∈Z |Cn|2 ≤
2(µ(R2))2

π2

∑∞
n>1(odd)

1
n2 = 2(µ(R2))2

π2 · (π2

8 − 1). The reason for why

we need to minus 1 from π2

8 is C1 = 0. As a result, we have
∑

n∈Z |Cn|2 ≤ (14 −
2
π2 ) · (µ(R2))2.

Thus, we proved the lemma that ‖fc − µ(R2)‖2 ≤
√

1
4 −

2
π2µ(R2).
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4.2 Two Centerpoints cases

We mentioned this one in Chapter 3.

Let m = 0 and n = 0. C(0,0), for all (θ1, θ2) ∈ [0, 2π]× [0, 2π].

c(0,0) =
1

4π2

∫ 2π

0

∫ 2π

0
f(c1,c2)(θ1, θ2)dθ1dθ2 (4.2.1)

=
1

4π2

∫ π

0

∫ π

o
f(c1,c2)(θ1, θ2) + f(c1,c2)(θ1 + π, θ2)

(4.2.2)

+ f(c1,c2)(θ1, θ2 + π) + f(c1,c2)(θ1 + π, θ2 + π)dθ1dθ2
(4.2.3)

=
1

4π2
µ(R2) · π (4.2.4)

=
µ(R2)

4
(4.2.5)

As a result, C(0,0) = µ(R2)
4 . In this case, we are able to eliminate 1

4 of the points in the whole

Space.

Now let’s look at the even coefficients C(2m,2n), for all (θ1, θ2) ∈ [0, 2π]× [0, 2π] and n,m 6= 0.

C(2m,2n) =
1

4π2

∫ 2π

0

∫ 2π

0
f(c1,c2)(θ1, θ2)e

−2imθe−2inθdθ1dθ2 (4.2.6)

=
1

4π2

∫ π

0

∫ π

0
f(c1,c2)(θ1, θ2)e

−i2mθ1e−i2nθ2

(4.2.7)

+ f(c1,c2)(θ1 + π, θ2)e
−i2m(θ1+π)e−i2nθ2

(4.2.8)

+ f(c1,c2)(θ1, θ2 + π)e−i2m(θ1)e−i2n(θ2+π)

(4.2.9)

+ f(c1,c2)(θ1 + π, θ2 + π)e−i2m(θ1+π)e−i2n(θ2+π)dθ1dθ2
(4.2.10)

=
µ(R2)

4π2

∫ π

0
e−i2mθ1dθ1 ·

∫ π

0
e−i2nθ2dθ2 = 0

(4.2.11)

As e−2inθ and e−2imθ are periodic functions and we are evaluating at π and 0, we have 2nπ,

2n0 = 0, 2mπ and 2m0 = 0 in the antiderivative. Also we have proved C(m,n) = C(−m,−n) in

proposition 3.2.1 which we proved in last chapter, then we have C(2m,2n) = 0, for m,n 6= 0.



4. CALCULATION OF FOURIER COEFFICIENTS 22

Now let’s look at C(m,2n) for all (θ1, θ2) ∈ [0, 2π]× [0, 2π].

C(m,2n) =
1

4π2

∫ 2π

0

∫ 2π

0
f(c1,c2)(θ1, θ2)e

−imθe−2inθdθ1dθ2 (4.2.12)

=
1

4π2

∫ π

0

∫ π

0
f(θ1, θ2)e

−imθ1e−i2nθ2

(4.2.13)

− f(c1,c2)(θ1 + π, θ2)e
−im(θ1+π)e−i2nθ2

(4.2.14)

+ f(c1,c2)(θ1, θ2 + π)e−im(θ1)e−i2n(θ2+π)

(4.2.15)

− f(c1,c2)(θ1 + π, θ2 + π)e−im(θ1+π)e−i2n(θ2+π)dθ1dθ2
(4.2.16)

=
1

4π2

∫ π

0

∫ π

0
(f(θ1, θ2) (4.2.17)

− f(c1,c2)(θ1 + π, θ2) + f(c1,c2)(θ1, θ2 + π)

(4.2.18)

− f(c1,c2)(θ1 + π, θ2 + π))e−imθ1e−i2nθ2dθ1dθ2
(4.2.19)

Now let’s look at C(2m,n) For all (θ1, θ2) ∈ [0, 2π]× [0, 2π].

C(2m,n) =
1

4π2

∫ 2π

0

∫ 2π

0
f(c1,c2)(θ1, θ2)e

−i2mθe−inθdθ1dθ2 (4.2.20)

=
1

4π2

∫ π

0

∫ π

0
f(c1,c2)(θ1, θ2)e

−i2mθ1e−inθ2

(4.2.21)

+ f(c1,c2)(θ1 + π, θ2)e
−i2m(θ1+π)e−inθ2

(4.2.22)

− f(c1,c2)(θ1, θ2 + π)e−i2m(θ1)e−in(θ2+π)

(4.2.23)

− f(c1,c2)(θ1 + π, θ2 + π)e−i2m(θ1+π)e−in(θ2+π)dθ1dθ2
(4.2.24)

=
1

4π2

∫ π

0

∫ π

0
(f(c1,c2)(θ1, θ2) (4.2.25)

+ f(c1,c2)(θ1 + π, θ2)− f(c1,c2)(θ1, θ2 + π)

(4.2.26)

− f(c1,c2)(θ1 + π, θ2 + π))e−i2mθ1e−inθ2dθ1dθ2
(4.2.27)
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Based on the calculation of C(m,2n) and C(2m,n), we are unable to eliminate any points from

these two coefficients.

For the case of C(0,1) = C(1,0), based on theorem 4.1.1 we should have a similar result to

the one centerpoint case. As a result, we know there should be some c1, c2 ∈ R2 such that

C(0,1) = C(1,0) = 0 in the Fourier expansion of f(c1,c2).

4.3 Conclusion

Based on the calculation we have for the two centerpoints Case, we know for some c1, c2 in R2

such that C(1,0) = C(0,1) = 0, C(2m,2n) = 0, for m,n 6= 0 and C(0,0) = µ(R2)
4 .

Similar to the procedure for the one centerpoint case, we have ‖f(c1,c2)(θ1, θ2) −
µ(R2)

4 ‖
2
2 =

2 ·
∑∞

m 6=0 |C(m,0)|2 + 2 ·
∑∞

n6=0 |C(0,n)|2 + 2 ·
∑∞

m,n 6=0 |C(m,n)|2 and it should has an upper bound.

These are the conjecture on Fourier coefficients for the two centerpoints case based on one

centerpoint case:

|c(m,0)| ≤
µ(R2)
|m|·π for m 6= 0

|c(0,n)| ≤
µ(R2)
|n|·π for n 6= 0

|c(m,n)| ≤
µ(R2)
|nm|·π for m,n 6= 0

Then, we have this inequality:

‖(c1,c2)(θ1, θ2)−
µ(R2)

4 ‖
2
2 ≤

2(µ(R2))2

π2 · (
∑∞

m 6=0
1
m2 +

∑∞
n6=0

1
n2 +

∑∞
m,n 6=0

1
m2n2 ).

I tried to find an upper bound by doing the similar procedure given in the one centerpoint

case. However, there is not enough time to reach the final result.
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