
Bard College Bard College

Bard Digital Commons Bard Digital Commons

Senior Projects Spring 2023 Bard Undergraduate Senior Projects

Spring 2023

Compiling Quantum Programs Compiling Quantum Programs

Li-Heng Henry Chang
Bard College

Follow this and additional works at: https://digitalcommons.bard.edu/senproj_s2023

 Part of the Programming Languages and Compilers Commons, and the Quantum Physics Commons

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Recommended Citation Recommended Citation
Chang, Li-Heng Henry, "Compiling Quantum Programs" (2023). Senior Projects Spring 2023. 302.
https://digitalcommons.bard.edu/senproj_s2023/302

This Open Access is brought to you for free and open
access by the Bard Undergraduate Senior Projects at
Bard Digital Commons. It has been accepted for
inclusion in Senior Projects Spring 2023 by an
authorized administrator of Bard Digital Commons. For
more information, please contact
digitalcommons@bard.edu.

http://www.bard.edu/
http://www.bard.edu/
https://digitalcommons.bard.edu/
https://digitalcommons.bard.edu/senproj_s2023
https://digitalcommons.bard.edu/undergrad
https://digitalcommons.bard.edu/senproj_s2023?utm_source=digitalcommons.bard.edu%2Fsenproj_s2023%2F302&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=digitalcommons.bard.edu%2Fsenproj_s2023%2F302&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/206?utm_source=digitalcommons.bard.edu%2Fsenproj_s2023%2F302&utm_medium=PDF&utm_campaign=PDFCoverPages
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://digitalcommons.bard.edu/senproj_s2023/302?utm_source=digitalcommons.bard.edu%2Fsenproj_s2023%2F302&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@bard.edu
http://www.bard.edu/
http://www.bard.edu/

Compiling Quantum Programs

A Senior Project submitted to
The Division of Science, Mathematics, and Computing

of
Bard College

by
Li-Heng Henry Chang 張立恆

Annandale-on-Hudson, New York
May, 2023

ii

Abstract

This thesis introduces the quantum compilation problem and develops a prototypical compiler.
The problem of quantum compiling is, in essence, converting high-level human expressions of
quantum programs into low-level hardware executable code. Compilers that target different
hardware platforms enable portable code that can be used to benchmark hardware performance,
reduce programming work and speed up development. Because quantum systems are subjected
to phenomena such as noise, no-cloning and decoherence, the challenge of quantum compiling
is tied to the optimization of program runtimes and the lengths of compiled sequences. For
near-term intermediate scale quantum (NISQ) computers with limited hardware resources and
without error correction, a well-designed compiler that optimizes hardware usage and circuit
fidelity is necessary to running applications and tests. To give an introduction to the problem
of quantum compiling, this thesis reviews the universality proof for quantum computation and
the Solovay-Kitaev theorem, which are both foundational to the topic. A compilation scheme
with two components, one following the universality proof and one inspired by the Solovay-
Kitaev theorem, is implemented to demonstrate an approach that solves the quantum compiling
problem. Finally, I survey state-of-the-art compilation techniques and discuss how to extend
this thesis toward building a practical compiler that will be a part of the broader software stack.

iii

iv

Contents

Abstract iii

Dedication vii

Acknowledgments ix

1 Introduction 1
1.1 Prerequisites . 2

2 Quantum Computation (QC) 3
2.1 Quantum Advantage, Quantum Weirdness, and the Roadmap to Useful Quantum

Computing . 3

3 The Gate Model of Quantum Computing 5
3.1 Single-Qubit States . 5
3.2 Multi-Qubit States . 7
3.3 State Evolution and Quantum Computation . 8

3.3.1 Single-Qubit Gates . 8
3.3.2 Quantum Circuit Diagrams . 9
3.3.3 Multi-Qubit Gates . 10
3.3.4 Quantum Circuit and Quantum Computation 11
3.3.5 Controlled Operations . 13

3.4 Postulate of Quantum Mechanics . 16

4 Quantum Compilation 19
4.1 What is Quantum Compilation? . 20
4.2 Note on Math for Quantum Compiling . 24

v

vi CONTENTS

4.3 Approximating Quantum Circuits . 24
4.4 Universal Quantum Computation . 26

4.4.1 Proof of Statement 1: 2-level Systems are Universal 27
4.4.2 Single-qubit and CNOT Gates are Universal. 29
4.4.3 Proof for Statement 3 . 32

4.5 Universal Decomposition . 33
4.6 The Solovay-Kitaev theorem . 33

4.6.1 Useful Definitions . 33
4.6.2 Outline of Proof . 34
4.6.3 Shrinking Lemma . 35
4.6.4 Translation Step . 35
4.6.5 Proof of Solovay-Kitaev theorem . 37
4.6.6 Proof of the Shrinking Lemma . 37

4.7 The Solovay-Kitaev Algorithm . 38
4.7.1 Basic Approximation . 39
4.7.2 Group Commutator Decomposition . 40

5 Experiments 43
5.1 Notes on Implementation . 43
5.2 Compilation of Notable Gates . 44
5.3 Complexity Analysis . 45

5.3.1 Universal Decomposition . 45
5.3.2 Solovay-Kitaev algorithm . 45
5.3.3 UDSK Compiler . 48

5.4 Environment . 49

6 Challenges towards Practical Quantum Compilation 51
6.1 Software Stack . 51
6.2 Overview of Quantum Compilation and Synthesis 52

Dedication

I dedicate this senior project to my parents who support me selflessly.

vii

viii

Acknowledgments

I am extremely grateful to my advisor Prof. Paul Cadden-Zimansky for mentoring the quan-
tum computing reading group that I initiated and having his door always open to my endless
questions. This is how my curiosity continues to grow in the area of quantum computing. I am
thankful to my advisor Prof. Sven Anderson for giving honest and sharp feedback along with
some fun banters, Prof. Harold Haggard for providing an overloading amount of insights on
math and quantum theories, my advisor Prof. Keith O’Hara for being always supportive, and
lastly Prof. Valerie Barr for listening to my questions attentively.

ix

x

1
Introduction

This thesis introduces the core problem of quantum compilation and demonstrate a prototypical

compiler as a solution. The main chapters summarize the fundamentals of quantum compiling,

implement a hardware-independent compiler, and survey state-of-the-art quantum compiling

schemes. In the end, we briefly discuss how this work can be extended to build a practical

compiler. Chapter 2, “Quantum Computation (QC),” reviews the paradigm of quantum com-

puting, and how it is different from classical computing. This provides relevant background

and motivation for quantum compilation. Chapter 3, “The Gate Model of Quantum Comput-

ing,” introduces the mathematical formalism that is used to describe the necessary background

of the quantum computing paradigm. All the prerequisites to quantum compiling are intro-

duced in this chapter. Chapter 4, “Quantum Compilation,” is the main chapter that reviews

two important concepts behind quantum compiling: universal quantum computation and the

Solovay-Kitaev theorem. Universal quantum computation connects unit (single- and two-qubit)

operations with arbitrary quantum programs. Solovay-Kitaev is a fundamental theorem that

shows quantum compiling can be done efficiently and so opens up research in the area. We

will build a quantum compiler by applying both universal quantum computation and a Solovay-

Kitaev-inspired algorithm. In Chapter 5, “Experiments,” the compilation performance of our

compiler implementation will be discussed. We will see that, for practical application on NISQ

1

2 INTRODUCTION

devices, our prototypical compiler is incomplete and too inefficient. In Chapter 6, “Challenges

towards Practical Quantum Compilation”, we will survey recent compilation techniques as well

as discuss how our compiler can be extended for NISQ and realistic applications.

1.1 Prerequisites

This thesis builds on top of and assumes that the readers are familiar with the following topics:

• Elementary Linear Algebra

• Basic Probability Theory

• Boolean Algebra

• Complexity Analysis and Big-O Notation

• Data Structures and Algorithms

2
Quantum Computation (QC)

The problem of quantum compilation stems from solving the larger problem of realizing quantum

computers and quantum algorithms. This chapter will introduce the role and importance of

quantum compilation in relation to the broader context of quantum computing, which is a

drastically different paradigm than classical computing. Quantum computing (QC) is known to

have an advantage over classical computing in solving specific sets of problems such as prime

factoring. What quantum properties allow quantum computation to have an advantage over

classical computing? What makes quantum computation unique? This chapter will attempt to

address these fundamental questions at a high level. To characterize these quantum properties

and apply them to algorithmic design, we need a framework to describe their behaviors. For

this purpose, the quantum circuit model of quantum computation will be introduced in the next

chapter. To enhance cohesive understanding, an overview of quantum mechanics, the operating

principles behind quantum computing, will also be given.

2.1 Quantum Advantage, Quantum Weirdness, and the Roadmap to Use-
ful Quantum Computing

Richard Feynman pointed out that classical computers cannot efficiently simulate a general

quantum evolution, but other quantum mechanical systems can [6]. This observation has led to

a series of discoveries on the so-called quantum supremacy, problems that can be solved expo-

3

4 CHAPTER 2. QUANTUM COMPUTATION (QC)

nentially faster with quantum computation than with classical computers. These computational

advantages of quantum computers are generally attributed to the natural phenomena of super-

position and entanglement. In quantum mechanics, superposition allows a single qubit (short

for “quantum bit”) state to exist continuously between 0 and 1, so a quantum state can encode

infinitely more information than can a discrete classical bit. However, to access the information

of a quantum state one must perform a measurement that collapses the state to a binary out-

come and destroys most information, so the extra information provided by superposition can

be taken advantage of only in certain cases. One of the known cases is entanglement, which is

the phenomenon where qubit states are correlated in a multi-qubit system. Their correlation

provides more information than the individual qubits do independently. This extra informa-

tion is accessible by measurement, helps infer state properties, and thus provides computational

advantage [12]. The opposite of an entangled state is a product or separable state, and it has

been shown that any product state can be decomposed and efficiently simulated by classical

computers with a small overhead. Hence, quantum computers have no advantage in computing

product states over classical ones [22].

Currently, most efforts to realize a useful quantum computer are focused on developing ro-

bust and scalable hardware. At the moment, there is a variety of Near-term Intermediate Scale

Quantum (NISQ) computing hardware platforms being developed. However, NISQ quantum

machines do not have enough resources to abstract away their physical conditions and act as if

they are “virtual.” To give programmers the expressive power to articulate quantum algorithms

relative to tight NISQ hardware constraints, we will need to create and enhance programming

languages and compilation techniques [18]. Thus, the research for implementation, optimiza-

tion, mapping, and resource management on functionalities between algorithms and devices is

important to the NISQ era. A portable and efficient compiler will help with benchmarking and

the evolution of QC hardware advancement.

3
The Gate Model of Quantum Computing

In order to describe quantum computation, we need a concise language. The linear algebraic

formalism of quantum mechanics is a powerful tool that describes the evolution of a quantum

state over time and is used at the core of the Gate Model of Quantum Computing, with a

small number of modifications, to describe quantum computation. This chapter will start by

introducing quantum states and then operations that change states through evolution.

This chapter provides the background and notation reference for later chapters. The reader

can skip this chapter if already familiar with the content and jump back for reminders. The

main reference for this chapter is the classic textbook Quantum Computation and Quantum

Information by Nielsen and Chuang [22]. There are also wonderful resources that the readers

can refer to for an introduction to quantum computation [10,14,19,27].

3.1 Single-Qubit States

In classical physics that describes the macroscopic world, a bit can take on two possible values,

0 and 1. The number 0 is often used to represent a state of low electrical voltage 0V and 1 a

state of high voltage 5V. By doing so, we can keep track of the state of capacitors, switches, and

electrical components in computers.

When looking at the microscopic world of atoms, electrons, and photons, the state of a physical

system is described by quantum mechanics. In this framework, the smallest unit of information

5

6 CHAPTER 3. THE GATE MODEL OF QUANTUM COMPUTING

to keep track of a quantum state is a “quantum bit” or “qubit”. For example, a qubit is

used to describe the polarization of a photon or the spin of an electron. We use the Dirac

notation |0⟩ and |1⟩ to represent physically distinguishable states. While a classical state can

be either 0 or 1, a quantum state can be in a superposition, or linear combination, of states

|ψ⟩ = a |0⟩+ b |1⟩. In quantum mechanics, a physical system that can exist in any superposition

of n distinguishable states is called an n-level system, so a qubit is a two-level system. In the

linear algebra language, the special states |0⟩ and |1⟩ are called the computational basis states

that form an orthonormal basis

|0⟩ →
[
1
0

]
, |1⟩ →

[
0
1

]
.

Mathematically, a single-qubit state |ψ⟩ = a |0⟩+b |1⟩ can be described by two complex numbers

such that they are normalized |a|2 + |b|2 = 1.

|ψ⟩ → a

[
1
0

]
+ b

[
0
1

]
=

[
a
b

]
In the context of an electron, this means that if we measure its spin, we have a |a|2 probability

of measuring the |0⟩ state and |b|2 probability of measuring the |1⟩ state. For this reason,

a and b are called the “probability amplitudes” of state |ψ⟩. The normalization condition

ensures that the probabilities of measurement outcomes add up to one. For electron spin, the

computational basis state |0⟩ and |1⟩ represent it pointing upwards and downwards respectively.

However, in general, the two computational basis states can be mapped to arbitrary states of

an experimenter’s choice.

As a mental model, it is helpful to think of |0⟩ and |1⟩ as electron spin. However, in general,

they can be mapped to arbitrary physical states depending on the experimental setup. For ease

of computational thinking and algorithm design, we abstract away the details of what physically

makes a qubit and are only interested in the qubit as a mathematical object. We leave the

physical details to material scientists and quantum hardware vendors. For this reason, this

section provides a brief discussion of the physics of qubits to give context for understanding, but

for the most part, we will discuss the mathematical and computational aspects of a qubit.

3.2. MULTI-QUBIT STATES 7

There are multiple useful representations of qubits. Since |a|2 + |b|2 = 1, we can rewrite

|ψ⟩ = a |0⟩ + b |1⟩ as |ψ⟩ = eiγ
(
cos θ2 |0⟩+ eiφ sin θ

2 |1⟩
)
. This parameterizes |ψ⟩ in terms of two

angles θ and ϕ that define a point on the unit R3 sphere. This is called a Bloch Sphere

that provides a useful way of visualizing a single-qubit state, as shown in Figure 3.1.1. The

γ parameter is called the global phase. It is often ignored in the context of single-qubit states

because it has no contribution to the probability of measurement outcomes if one takes the norm

of the probability amplitudes.

Figure 3.1.1: The Bloch Sphere Visualization of a single-qubit state.

3.2 Multi-Qubit States

By the linear algebra formalism of quantum mechanics in Section 3.4, we can describe an n-qubit

state by taking the tensor product of individual qubits. For example, two single-qubit states

8 CHAPTER 3. THE GATE MODEL OF QUANTUM COMPUTING

can be combined as

|ba⟩ = |b⟩ ⊗ |a⟩ =

 b0 ×
[
a0
a1

]
b1 ×

[
a0
a1

]
 =

b0a0
b0a1
b1a0
b1a1

If we apply this to the single-qubit computational basis state, we can get the computational

basis states for two-qubit systems.

|0⟩⊗ |0⟩ = |00⟩ →

1
0
0
0

 , |0⟩⊗ |1⟩ = |01⟩ →

0
1
0
0

 , |1⟩⊗ |0⟩ = |10⟩ →

0
0
1
0

 , |1⟩⊗ |1⟩ = |11⟩ →

0
0
0
1

 .
A general two-qubit state |ψ⟩ is a linear combination of these basis states |ψ⟩ = a00 |00⟩ +

a01 |01⟩+ a10 |10⟩+ a11 |11⟩, where all coefficients are complex and the normalization condition

applies |ψ⟩ = |a00|2 + |a01|2 + |a10|2 + |a11|2. Here tensor product combined two 2-level systems

into a 4-level system, described by 4 complex numbers. Since the state space is the number

vectors in the basis, the state space for n = 2 qubits is now 2n = 4. A general n-qubit state

describes a 2n-level system and the state space has dimension 2n that grows exponentially to

the number of qubits.

3.3 State Evolution and Quantum Computation

The changes of a quantum state over time can be described by the language of quantum com-

putation, the quantum circuit model, which contains wires to carry around and quantum

gates to manipulate quantum information. This section provides a brief introduction to ele-

mentary quantum gates and simple circuits that describes quantum computation, and therefore

quantum algorithms. These topics are fundamental to quantum computation that provide the

necessary background and context for quantum compilation.

3.3.1 Single-Qubit Gates

Since our smallest unit of information is a qubit, the atomic operation is a single-qubit gate.

For example, the NOT gate X exchanges the amplitudes of the computational basis states.

X

[
α
β

]
=

[
β
α

]

3.3. STATE EVOLUTION AND QUANTUM COMPUTATION 9

Using linear algebra, we can find that the X gate operator can be characterized by

X ≡
[
0 1
1 0

]
.

Some other notable single-qubit gates are the Hadamard Gate H, the Z-gate Z, and the T(or

π/8)-gate T .

H =
1√
2

[
1 1
1 −1

]
, Z =

[
1 0
0 −1

]
, T =

[
1 0
0 exp

(
iπ
4

)] .
Since a single-qubit operation maps a single-qubit state to another, we can use a 2x2 matrix

to describe them. However, quantum mechanics also requires the normalization condition that

the probability of all measurement outcomes sums up to 1. This requires that any quantum

gate U to be unitary, so that U †U = I, where U† is the transposed complex conjugate of U ,

also known as the adjoint of U . It turns out that the unitary constraint is the only constraint

on quantum gates.

Thus, single-qubit gates are 2x2 unitary matrices U2x2 belonging to the two-dimensional uni-

tary group U(2). Using the unitary constraint, single-qubit gates, in their most general form,

can be expressed with four real parameters α, β, γ, and δ:

U(α, β, γ, δ) = eiα
[
e−iβ/2 0

0 eiβ/2

] [
cos γ2 − sin γ

2
sin γ

2 cos γ2

] [
e−iδ/2 0

0 eiδ/2

]
Often the global phase factor α is unimportant, and removing it gives the nice property for

U to have determinant one. The group of unitary matrices with determinant one is the special

unitary group, with the two-dimensional group denoted as SU(2). For convenience, we often

ignore the global phase factor and restrict ourselves to SU(2) when looking at single-qubit gates.

3.3.2 Quantum Circuit Diagrams

The matrix representation of a quantum gate has multiple elements and can have much informa-

tion to read off. Conceptually, it is often easier to express quantum gates in a circuit diagram to

show their functionality (the matrix and circuit diagram representation are equivalent and can

be converted from one to another but convenient for different purposes). A quantum circuit is

composed of wires and gates. Typically, wires lie horizontally, with each representing the state

10 CHAPTER 3. THE GATE MODEL OF QUANTUM COMPUTING

of a qubit. Information passes from left to right on the wire over time. Gates are blocks marked

with symbols. Some examples of single-qubit gates put into a circuit diagram are displayed in

Figure 3.3.1.

Figure 3.3.1: Circuit diagrams of single-qubit gates.

3.3.3 Multi-Qubit Gates

The most commonly seen and prototypical multi-qubit gate is the controlled-NOT or CNOT

gate, which provides a function similar to conditionals in classical computing. Its circuit repre-

sentation is in Figure 3.3.2, where the ⊕ operator is a binary add. The CNOT gate UCN takes

two input qubits named the control bit and the target bit. The target bit flips if the control bit

is 1; otherwise, it is left unchanged. The basis states are switched as follows:

|ψ⟩ =

a00
a01
a10
a11

 , UCN |ψ⟩ =

a00
a01
a11
a10

Note that here the CNOT gate is unitary U †

CNUCN = I.

In general, an n-qubit operation is a 2n × 2n unitary matrix. However, we can also obtain

them by taking the tensor product of single-qubit gates. For example, if we have H acting on

qubit one |q0⟩ and X acting on qubit one |q1⟩, the corresponding two-qubit gate is represented

by the matrix X ⊗H:

X |q1⟩ ⊗H |q0⟩ = (X ⊗H) |q1q0⟩ ,

where the tensor product can be expanded by

X ⊗H =

[
0 1
1 0

]
⊗H =

[
0×H 1×H
1×H 0×H

]
=

1√
2

0 0 1 1
0 0 1 −1
1 1 0 0
1 −1 0 0

 .

3.3. STATE EVOLUTION AND QUANTUM COMPUTATION 11

Figure 3.3.2: Circuit diagram and matrix representation of the CNOT gate.

There are many more multi-qubit gates. However, later in Section 4.4 we will show that CNOT

gates and single-qubit gates form a universal gate set, meaning that they can approximate any

quantum operation up to an arbitrary precision. For compilation purposes, we are interested

in universal gate sets, so we will focus on introducing CNOT and single-qubit gates. Readers

interested in other multi-qubit gates can refer to [1].

3.3.4 Quantum Circuit and Quantum Computation

We have shown the circuit diagram for single-qubit operations. In general, a quantum circuit is

useful in terms of visualizing a quantum algorithm and its functionalities. Note that the same

algorithm can have multiple representations, for instance, Figure 3.3.3 shows that a SWAP

operation can be represented by three CNOT gates. A rather complete circuit example is shown

in Figure 3.3.4. This is the circuit of Grover’s algorithm [25], the quantum search algorithm

that provides at most a quadratic speedup over the classical solution for unstructured search.

In this circuit, the two-qubit state starts in the computational basis |00⟩, goes through a series

of single- and two-qubit operations, and is measured along the computational basis in the end,

with the measurement outcomes sent into a classical channel c2.

We introduce quantum circuits here as an illustration tool that is helpful in terms of visualizing

quantum algorithms, their functionalities, and their compositions, but we won’t go into every

12 CHAPTER 3. THE GATE MODEL OF QUANTUM COMPUTING

Figure 3.3.3: Two representations of the SWAP gate.

Figure 3.3.4: The circuit diagram of Grover’s algorithm from [25].

operation in the circuit. For a more detailed introduction to quantum circuits and algorithms,

see sections 1.3 and 1.4 of [22].

In our thesis, when we say “compile an algorithm into a circuit,” the “circuit” refers to

the part of the circuit before measurement that is made up of quantum wires and gates and

excludes the classical channel. Whether the circuit refers to the full circuit or the one without

the measurement-related portions is context-dependent. The reader should be aware of this

distinction.

A useful metric of a quantum circuit is its gate depth l, defined as the maximum number of

gates on each qubit in the circuit. For instance, the number of gates on qubits q0 and q1 in the

circuit diagram of Grover’s Search algorithm in Figure 3.3.4 is both 6 (the initial states |0⟩ and

measurement operators are excluded), so the gate depth is l = 6.

3.3. STATE EVOLUTION AND QUANTUM COMPUTATION 13

Figure 3.3.5: The counterpart gate of a CNOT gate that flips the target bit if the control bit is
0.

3.3.5 Controlled Operations

Controlled operations are important in computation because they provide conditionals such as

IF A THEN B. They are also crucial to the proof for universal quantum computation that will

be introduced in Section 4.4.

The most fundamental controlled operation in quantum computation is the controlled-NOT

(CNOT) gate we have seen earlier. It flips the target bit based on the control bit, and so has

the matrix representation

CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

and circuit diagram as shown in Figure 3.3.2. Note that CNOT is a permutation matrix that

flips the 3rd and 4th element of a vector on which it acts. Controlled operations often show

up in the form of a permutation matrix. The CNOT gate has a counterpart gate that flips the

target gate conditioned on the control bit being 0 instead of 1. It can be implemented with a

CNOT and two NOT gates, as shown in Figure 3.3.5.

It is useful to have a controlled-U operation. That is, when the control bit is 1, the operation

U is applied to the target bit; otherwise the target bit is left unchanged. A CNOT is a special

case of a controlled-U where U = X. A controlled-U operation is denoted in a circuit as in

Figure 3.3.6.

So far we have introduced two-qubit controlled gates, but we can have a controlled operation

on n-qubits. An example is the Tiffoli gate, or the controlled-controlled-not (CCNOT) gate,

14 CHAPTER 3. THE GATE MODEL OF QUANTUM COMPUTING

Figure 3.3.6: The circuit symbol of a controlled-U operation.

Figure 3.3.7: Tiffoli gate and its truth table. Referenced from [22] figure 1.14.

that acts on a three-qubit state, with two qubits being the control bits and the last one the

target bit. The target bit is flipped only if both of the control bits are 1. The truth table and

circuit representation of the Tiffoli gate are in Figure 3.3.7.

The most general form of a controlled operation Cn(U) on n-qubits is one that has a unitary

operation U acting on k qubits and conditioned on n − k qubits, as denoted in Figure 3.3.9.

The Tiffoli, or controlled CNOT gate, is C3(X) gate with k = 1 conditioned on 2 qubits, for

instance. A general Cn(U) can be implemented following the example in Figure 3.3.8. Notice

that in this example we use Tiffoli gates to implement the fully controlled condition, and then

add a controlled-U operation to the last working and target bit. Since a Tiffoli gate can be

implemented with only O(1) CNOT and single-qubit operations as shown in Figure 3.3.7, a

general controlled Cn(U) can be implemented with O(n) CNOT and single-qubit operations

taking the same approach as in Figure 3.3.8. A fully controlled gate is one where k = 1,

meaning that a single qubit operation is conditioned on the values of all the other qubits.

3.3. STATE EVOLUTION AND QUANTUM COMPUTATION 15

Figure 3.3.8: Circuit implementation of the Cn(U) operation. Referenced from [22] figure 4.10.

Figure 3.3.9: The circuit of a general controlled operation Cn(U), where U is a gate that acts
on k qubits for n = 4 and k = 3. Referenced from [22] figure 4.7.

16 CHAPTER 3. THE GATE MODEL OF QUANTUM COMPUTING

The definitions above for various controlled operations will become useful when we introduce

Universal Quantum Computation in section 4.4.

3.4 Postulate of Quantum Mechanics

Quantum Mechanics is essentially a set of mathematical postulates that describe the behaviors of

the microscopic world of atoms, electrons, and photons over time. As far as we know, physicists

have been unable to in any way violate Quantum Mechanics, which is the operating principle

behind quantum computation! Here we will introduce the postulates of quantum mechanics

to help the reader understand the unusual paradigm it has and better make sense of quantum

computation. Quantum mechanics is known to be unintuitive and difficult to understand, but

that comes from the application of the set of its postulates to physical contexts; the postulates

themselves are a simple set of rules that should not scare away the reader. We take all four

postulates of Quantum Mechanics from [20] and create connections by providing examples in

quantum computation.

Postulate 1: Associated with any physical system is a complex vector (Hilbert)

space known as the state space of the system. If the system is isolated, then the

system is completely described by its state vector, which is a unit vector in the

system’s state space.

Postulate 1 corresponds to our example of a state vector |ψ⟩ =

[
a
b

]
, where ⟨ψ|ψ⟩ =[

a2 b2
] [a
b

]
= |a|2 + |b|2 = 1. Complex vector space says that the probability amplitudes are

complex numbers, and the unit vector condition is equivalent to the normalization condition.

Postulate 2: The evolution of an isolated quantum system is described by a unitary

matrix acting on the state space of the system. That is, the state |ψ⟩ of the system

at a time t1 is related to the state |ψ′⟩ at a later time t2 by a unitary matrix,

U : |ψ′⟩ = U |ψ⟩. That matrix U may depend on the times t1 and t2, but does not

depend on the states |ψ⟩ and |ψ′⟩.

3.4. POSTULATE OF QUANTUM MECHANICS 17

From postulate 2, we can show why being unitary is a condition of quantum gates. If we have

a state evolution described by U , then the state vector |ψ′⟩ = U |ψ⟩ of the state at t2 should

still satisfy the normalization condition and remain a unit vector, so ⟨ψ′|ψ′⟩ = ⟨ψ|U †U |ψ⟩ =

1 = ⟨ψ|ψ⟩. It turns out that this “norm preserving” property of operators on complex vectors

is unitary. Since |ψ⟩ is any complex vector with ⟨ψ|ψ⟩ = 1, it must be the case that U †U = I in

order for ⟨ψ|U †U |ψ⟩ = ⟨ψ|ψ⟩.

Postulate 3: Quantum measurements are described by a collection {Mm} of mea-

surement operators. Each Mm is a matrix acting on the state space of the system

being measured. The index m takes values corresponding to the measurement out-

comes that may occur in the experiment. If the state of the quantum system is |ψ⟩

immediately before the measurement then the probability that result m occurs is

given by p(m) = ⟨ψ|M †
mMm |ψ⟩, and the state of the system after the measurement,

often called the posterior state, is

Mm|ψ⟩√〈
ψ
∣∣∣M †

mMm

∣∣∣ψ〉
(It’s worth noting that: (a) the denominator is just the square root of the probability

p(m); and (b) this is a properly normalized quantum state.) The measurement

operators satisfy the completeness relation,
∑

mM
†
mMm = I

For a single qubit, the measurement operators along the computational basis are

M0 = |0⟩ ⟨0| =
[
1 0
0 0

]
and M1 = |1⟩ ⟨1| =

[
0 0
0 1

]
(3.4.1)

Measuring a state |ψ⟩ with M0, the probability of getting back |0⟩ is

p(0) = ⟨ψ|M †
0M0 |ψ⟩ =

[
a∗ b∗

] [1 0
0 0

] [
1 0
0 0

] [
a
b

]
= |a|2

with the posterior state being

M0 |ψ⟩√
|a|2

=
|0⟩ ⟨0|ψ⟩

|a|
=
a |0⟩
|a|

.

18 CHAPTER 3. THE GATE MODEL OF QUANTUM COMPUTING

Similarly, the probability of getting back |1⟩

p(1) = ⟨ψ|M †
1M1 |ψ⟩ =

[
a∗ b∗

] [0 0
0 1

] [
0 0
0 1

] [
a
b

]
= |b|2

with the posterior state being

M1 |ψ⟩√
|b|2

=
|1⟩ ⟨1|ψ⟩

|b|
=
b |1⟩
|b|

.

It is worth noting that here the measurement operators are NOT unitary! They are a special

type of operator that is treated differently. The focus of this thesis will be on the operators that

describe state evolution in postulate 2.

Postulate 4: The state space of a composite physical system is the tensor product

of the state spaces of the component physical systems. Moreover, if we have systems

numbered 1 through n, and system number j is prepared in the state |ψj⟩, then the

joint state of the total system is just the tensor product of the individual states,

|ψ1⟩ ⊗ |ψ2⟩ ⊗ . . .⊗ |ψn⟩.

Postulate 4 connects with Section 3.2. The important consequence here of the tensor product

is that the size of the composite vector space is the product of the sizes of its component vector

spaces, so the size grows exponentially with the number of qubits. It requires a number of

parameters exponential to the number of qubits in order to describe a quantum state, whereas,

in classical computing, we only need a binary string of length n to describe a computational

state with n bits. This is why we say Hilbert space is large! The state space size difference

between n qubits and n bits is one of the reasons quantum computers are more powerful than

classical computers. At a high-level, quantum computation evolves a state over this complex

vector space (larger than the state space of its classical counterpart) to search through different

parameters.

4
Quantum Compilation

From the perspective of an application designer or programmer, we want programs and pro-

gramming languages to be intuitive, expressive, and concise in terms of algorithmic thinking,

thus at a high level of abstraction. However, quantum hardware usually only provides a limited

instruction set that is made up of small transformations at a lower level of abstraction. Thus,

a translation from high-level programs to low-level hardware instructions is required to create

executable programs. This translation process is called compilation, and the algorithm that

performs compilation is called a compiler. In classical computing, a compiler converts high-level

programming language into low-level assembly or machine code. Similarly, a quantum compiler,

takes the input of an algorithm U and hardware instruction set G, and outputs a sequence S

that approximates U using instructions from G.

To utilize hardware resources and satisfy performance needs, modern compilers have evolved

to be large and complicated. Since physical qubits easily decohere under the influence of envi-

ronmental noise, we care that the compiler generates an efficient output sequence S as short as

possible, so that the program finishes execution before noise affects the outcome of computation.

In general, the design of a compiler needs to consider hardware topology (qubit connectivity),

decoherence time, and fidelity (1 - error) constraints. For the same high-level programs to run on

different hardware platforms, compilers can have the same frontend that translates a high-level

19

20 CHAPTER 4. QUANTUM COMPILATION

language into intermediate representations (IRs) and multiple back ends that convert IRs into

machine instructions supported by different hardware. For all the above design considerations,

compilers often involve multiple sub-pieces that handle conversion to intermediate representa-

tions, optimization and more. These topics are beyond the scope of this thesis but will be briefly

discussed in the final chapter.

The goal of this chapter is to provide clarity about the foundational compilation concepts

that are ubiquitous across quantum compilers, meanwhile ignoring the complications of creat-

ing a fully realistic compiler. This chapter will build a simple quantum compiler using two

pieces —Universal Decomposition and the Solovay-Kitaev algorithm—and introduce the theory

behind them. Universal Decomposition highlights the role of linear algebraic decomposition in

quantum compilers; the Solovay-Kitaev algorithm highlights the importance of approximation

in quantum compilers as well as how better approximations are generated from an initial rough

approximation. As we shall see, the compiler built in this thesis is conceptually important, but

too inefficient for practical purposes. In Chapter 6, we provide a perspective on how the compiler

concepts used in this thesis can be extended to create practical programs, review state-of-the-art

compilation methodologies and discuss compiler design in the NISQ era.

4.1 What is Quantum Compilation?

To build a quantum compiler, we first need a good understanding of the compilation problem.

The core of quantum compiling is solving the problem of implementing an arbitrary unitary

transformation on a quantum machine. Mathematically, a quantum algorithm is a unitary

transform U on a quantum state |ψ⟩ that produces a computed state |ψ′⟩ = U |ψ⟩. The compi-

lation problem is posed as follows: Given a limited discrete set of gates G provided by physical

hardware. How can we realize U using G?

A simple example would be that the algorithm or target gate U = Rx(
3π
5) is a rotation of 3π

5

radians around the x-axis of the Bloch Sphere and the hardware instruction G = {Rx(π4), Rx(
π
3)}

set includes operators that give rotation around the x-axis by smaller angles. For this specific

4.1. WHAT IS QUANTUM COMPILATION? 21

example, one possible compilation is:

Rx(
3π

5
) = Rx(

36π

60
) ≈ Rx(

π

4
)Rx(

π

3
) = Rx(

35π

60
)

Here the compiled sequence Rx(
π
4)Rx(

π
3) has two operators from G and thus a length l = 2. This

quantity l is an important metric for compilation since we want our compiled program to be

short and efficient. The formal definition of gate depth l for a quantum program is the maximum

gate count on a single qubit in its quantum circuit. One can visualize gate depth easily from a

circuit diagram that can be found in Section 3.3.4. Here we see that the approximation is off

by 36π
60 − 35π

60 = π
36 radians rotation around the Bloch x-axis. How does the approximation error

change the probability of measurement outcome that we can observe? Here’s where quantifying

error with vector and matrix norms comes in handy, as we shall see in Section 4.3 “Approximating

Quantum Circuits”.

Along with the discussion of error, we make a distinction between what we mean by decom-

position and compilation. Decomposition refers to the perfect translation of a gate from a

single matrix representation U into a product of other matrices
∏
iMi, where ||U −

∏
iMi|| = 0.

In this case, Mi are matrices that serve as an intermediate-level representation that will be

further decomposed or compiled. On the other hand, compilation is the approximation of a

single matrix representation U using a product of other matrices
∏
iMi, where ||U−

∏
iMi|| < ϵ

and Mi ∈ G is from a small discrete set of matrices that represent the gates G available from

hardware.

Another example compilation from [28] involving multiple qubits is shown in the following

circuit diagram in Figure 4.1.1. Here the instruction set is G = {H,T,CNOT} that involves

the Hadamard, T , and CNOT gate, and the target gate U is the Tiffoli gate on the left-hand

side of the figure. On the right-hand side of the figure is the compiled circuit, with a gate

depth of 12 (since some operations can be performed in parallel). Here the compilation is a full

decomposition, and the approximation error is ϵ = 0.

Gate depth is one measure of circuit complexity. However, circuit complexity and quality can

also be measured by the counts of gates that take longer to execute and are more prone to error

22 CHAPTER 4. QUANTUM COMPILATION

Figure 4.1.1: The optimal decomposition of the Tiffoli Gate using 6 CNOT gates.

than other gates. Because CNOT is ubiquitous across quantum circuits, proportional to gate

depth, and costly compared to other gates, CNOT count is another useful measure for circuit

complexity. In the example of Tiffoli compilation into H and T in Figure 4.1.1, the CNOT count

is 6, which is exactly half the gate depth.

From the above design concerns, compilers have optimization targets such as minimizing

CNOT count, circuit depth, and error rate. However, without the help of error correction, exe-

cutable programs on NISQ devices are subjected to decoherence time, connectivity, and fidelity

constraints. These requirements motivate compilers to take into account hardware resources

and limitations as well as take advantage of optimization methods to minimize circuit depth or

maximize fidelity. These methods are important for a working compiler but are too detailed

for this chapter to cover. For now, we will neglect them and focus on the abstract framework

of treating compilation as a matrix decomposition and approximation problem, which is at the

heart of quantum compilation.

The assumption that we make about hardware is that it will be able to provide us a small

and discrete gate set G, that is usually limited to one- or two-qubit operations at the hardware

level because of physical and fabrication constraints. In short, compilation lies in the challenge

of using a small discrete gate set of 2-level and 4-level unitary operations to cover the full space

of general D-level unitary operations. In general, D can be large, and the compilation problem

has been shown to be NP-hard. It is often computationally less expensive to rewrite U as a

4.1. WHAT IS QUANTUM COMPILATION? 23

product of d-level (d < D) matrices (which can be thought of as d × d matrices) with linear

algebraic decompositions, and then compile each d-level matrix to hardware instructions G.

Analogous to the classical universal gates set { NAND } or {AND, NOT, OR} that can be

combined to compute any classical function, the property that G can compute any quantum

function is called universal, and such G is called a universal gate set. This section will show

that such a universal gate set G exists as well as introduce an implementation that compiles any

arbitrary U with G. We will call this compilation scheme UDSK since it has two components

Universal Decomposition and Solovay-Kitaev algorithm. As we will see later in this section,

UDSK produces a compiled sequence with a length that grows exponentially in the number of

qubits involved in the algorithm. Although UDSK is too inefficient for practical applications, we

introduce it here as a conceptual appetizer to quantum compilation because its two components

are fundamental to the topic.

Universal Decomposition breaks up U as a combination of CNOT and single-qubit operations.

In other words, the CNOT and some single-qubit operations together form a universal set for

quantum computation. This is a great step forward since hardware operations are usually single-

qubit or two-qubit operations! A significant difference between classical and quantum compi-

lation is that the set of unitary operators U in quantum computation is continuous. However,

the hardware provides only a discrete set of operations, so we can approximate any arbitrary

single-qubit unitary U down to only a given precision such that the corresponding error ϵ is

acceptable. We want to know whether such an approximation exists and whether it can be done

efficiently. Fortunately, the Solovay-Kitaev theorem provides the theoretical ground to show

that, for certain gate sets, it is guaranteed that we can find a compiled sequence with a length

that is polylogarithmic (efficient) in the error. A compilation scheme inspired by the theorem

[5] has also been developed to implement a Solovay-Kitaev algorithm that can approximate any

single-qubit unitary U with a hardware gate set G to within an error tolerance ϵ.

Geared with Universal Decomposition and the Solovay-Kitaev theorem, we have an inefficient,

yet fully functional compilation scheme that can approximate any quantum operation U with a

24 CHAPTER 4. QUANTUM COMPILATION

given hardware gate set G. This chapter will walk the readers through the theories behind and the

implementations of Universal Decomposition and the Solovay-Kitaev algorithm, in the hope of

providing a concrete layout of how quantum compilation works conceptually and algorithmically.

4.2 Note on Math for Quantum Compiling

The core theories behind quantum computation that will be introduced later in Chapter 4 are

universal quantum computation and the Solovay-Kitaev theorem, which build on top of the

prerequisites:

• Linear algebraic formalism of quantum circuit model

• The behaviors, identities, and decomposition of single-qubit gates

• Decomposition of D-level unitary matrices into a product of d-level unitary matrices where

d < D.

• Group theory, Special Unitary Group (2) and Lie Algebra

If the reader is unfamiliar with the math foundation behind quantum computation and compi-

lation, Chapter 4 provides the necessary background for all prerequisites except the last one,

which goes beyond the scope of this thesis.

4.3 Approximating Quantum Circuits

Since we will be generating a matrix A, the output of a compiler, to approximate our target

unitary matrix U , we want to know how good our approximation is. The linear algebra formalism

includes vector and matrix norms that come in handy for us to measure the difference between

A and U . There are many useful metrics to measure the quality of matrix approximation, and

we will introduce two commonly used ones here: the maximum vector norm and the spectral

matrix norm (also commonly known as the l-2 norm) [30].

The maximum vector norm is defined as

E(U,A) ≡ max
|ψ⟩

∥(U −A)|ψ⟩∥.

4.3. APPROXIMATING QUANTUM CIRCUITS 25

It is an intuitive choice that relates to physical quantities. Suppose we act U and A on a state

|ψ⟩ and make measurements along the computational basis. Let PU and PA be the probabilities

of measurement outcomes if U and A are performed. Their difference can be described by

|PU − PA| = |⟨ψ|U †MU |ψ⟩ − ⟨ψ|A†MA|ψ⟩|.

Relating the difference between the probability of measurement outcomes to the maximum vector

norm using the Cauchy-Schwarz inequality, we see that the error is an upper bound to possible

measurement differences if the state were to be acted on by U and A. Let |∆⟩ ≡ (U −A)|ψ⟩.

|PU − PA| = |⟨ψ|U †M |∆⟩+ ⟨∆|MA|ψ⟩|

≤ |⟨ψ|U †M |∆⟩|+ |⟨∆|MA|ψ⟩|

≤ ∥|∆⟩∥+ ∥|∆⟩∥

≤ 2E(U,A).

Thus, if E(U,A) is small, then measurement outcomes on a state acted on by U and A will

produce similar probabilities. If we choose a tolerance ∆ = |PU − PA| that probabilities of

different measurement outcomes obtained from the approximate circuit A have to be within,

then we know we have to find A such that ∆
2 ≥ E(U,A). The maximum vector norm is useful in

quantifying error and directly connects with the physical meaning of differences in probabilities

of measurement outcomes.

Another useful measure for matrix approximation is the spectral norm, defined as ∥D∥ =√
λmax (D†D). If we define D = A − U , then the spectral norm can be a measure of approxi-

mation error ϵ = ∥D∥ by definition of matrix norms. The meaning of spectral norm is rather

abstract. A way to look at it is to see that since D†D is Hermitian, it can be thought of as

an observable that also describes the value of the difference between A and U . The maximum

eigenvalue λmax

(
D†D

)
is the maximum possible expectation value that we can extract if we were

to measure the error on any quantum state. This interpretation of the spectral norm is rather

descriptive and needs further rigor to be verified, so take it with a grain of salt. With that said,

the spectral norm is a still useful mathematical quantity to characterize approximation error.

26 CHAPTER 4. QUANTUM COMPILATION

4.4 Universal Quantum Computation

Since we have the goal of approximating any arbitrary U up to an error ϵ, we would like to know

if a hardware gate set G has the property to achieve this goal. A set of gates is universal for

quantum computation if any unitary matrix can be approximated to arbitrary accuracy by a

quantum circuit built with only those gates. In other words, a universal gate set can compute

any quantum algorithm to any desired tolerance level.

Since we want to run any arbitrary program, It is of interest for hardware to provide a universal

instruction set, and so compilation is focused on compiling programs to a universal gate set. The

immediate question is whether such a gate set exists. It has been shown that there are plenty

of them. For example, 1) the standard gate set: Hadamard, phase, controlled-NOT, and π/8

gates, and 2) Hadamard, phase, controlled-NOT, and the Tiffoli gate are both universal gate

sets. We refer to the fact that there exists a universal gate set as the universality of quantum

computation.

This section shows the universality of quantum computation, which follows from combining

the proofs of the three statements below:

• Statement 1: An arbitrary unitary operator U of d dimensions may be expressed exactly

as a product of 2-level unitary operators. An n-qubit system may be written as a product

of O(4n) two-level unitary matrices.

• Statement 2: Single qubit and CNOT gates together can be used to implement an arbitrary

two-level unitary operation on the state space of n qubits.

• Statement 3: Hadamard and the π/8 gate can be used to approximate any single-qubit

unitary operation to arbitrary accuracy.

We will prove that each statement is true (other versions of proof can be found in [1] and

Section 4.5 of [22]). The first two statements of the universality proof are important because,

in practice, hardware instruction sets usually provide single-qubit or two-qubit (CNOT) gates,

and we want to combine these single- and two-qubit operations to approximate multi-qubit

4.4. UNIVERSAL QUANTUM COMPUTATION 27

operations that represent a quantum algorithm. Since we are interested in hardware-gate-set

independent compiling and the last statement is specific to the standard gate set, we will leave

the last out for further reading in section 4.5.3 of [22]. Instead, we will apply the Solovay-

Kitaev theorem, which is gate set independent, to replace the role of the last statement. The

universality proof can also be implemented to become a crude compiler, and incorporating the

Solovay-Kitaev algorithm allows the compilation to be hardware gate set independent.

4.4.1 Proof of Statement 1: 2-level Systems are Universal

Statement 1 essentially says that 2-level systems are universal. The construction for Statement

1 effectively breaks down a multi-qubit operation into a series of single-qubit operations that

are represented by 2-level unitaries. Consider a unitary matrix U which acts on a d-dimensional

Hilbert space and represents a quantum algorithm. In this section, we explain how U may be

decomposed into a product of two-level unitary matrices; that is, unitary matrices which act

non-trivially only on two-or-fewer vector components.

U =
∏
i

Ai, where Ai are 2-level unitaries.

The approach is matrix reduction with algebra, applied iteratively. Suppose in U there are

neighboring elements a and b in the first row at the ith and (i+1)th position such that ab ̸= 0.

We multiply it by a 2-level unitary matrix Ai such that we eliminate the element at the (i+1)th

element. [
. . . a b 0 . . . 0
.

]
Ai =

[
. . . c 0 0 . . . 0
.

]
To see that we can always find such a two-level unitary matrix Ai given a, b, and c, we choose

Ai to be acting on elements (i, i+1) with non-trivial unitary 2× 2 submatrix A′, where we can

simplify the condition on Ai to be:

[
a b

]
A′ =

[
c 0

]
In general, a 2-level special unitary matrix can be expressed using three parameters θ, λ, and µ.

A′ =

[
cos θeiλ sin θeiµ

− sin θe−iµ cos θe−iλ

]

28 CHAPTER 4. QUANTUM COMPILATION

Suppose ab ̸= 0 and substitute in the parameters, we get{
a cos θeiλ − b sin θeiµ = c
a sin θe−iµ + b cos θe−iλ = 0

Solving them, we get

θ = arctan

(∣∣∣∣ ba
∣∣∣∣) ;λ = − arg(a);µ = π + arg(b)

Note the special case ab = 0 that would give undefined values. If b = 0, we don’t have to

do anything since there is nothing to eliminate. If a = 0 and b ̸= 0, we switch the ith and

(i + 1)th column by taking U ′ = X and continue. This moves non-zero elements to the left in

the first row. The above procedure guarantees us to find the 2-level unitary Ai that eliminates

one element at a time.

Now we apply this procedure repeatedly. Let U = U0 for ease of indexing. The first step

U0Ad−1 = U1 gives us a matrix U1 with the dth element being 0. Repeating d − 1 times

Ui−1Ad−i = Ui for i = 1...(d− 1) with the final step Ud−2A1 = Ud−1, we will be able to reduce

all elements in the first row to until only the first element is non-zero. Expanding all steps, we

have Ud−1 = (Ud−2)A1 = (Ud−3A2)A1 = ... = U0Ad−1...A2A1. Since U and Ai’s are unitary, it

is guaranteed that Ud−1 is also unitary. Since Ud−1 have only the first element non-zero in the

first row and also U †
d−1Ud−1 = I, the first column of Ud−1 will all be zeros except for the first

element. The unitariness of Ud−1 guarantees that the first diagonal element is one. In short, the

reduction of the 1st row through Ud−1 = U0Ad−1...A2A1 produces a (d − 1)-level matrix Ud−1

in the form
1 0 ... 0
0 ∗ ∗ ∗
... ∗ ∗ ∗
0 ∗ ∗ ∗

Let’s call the elimination for the first row E1 = Ad−1...A2A1 producing a first-row-eliminated

matrix Ur1, such that Ud−1 = U0E1 ≡ Ur1. We repeat row reduction Uri = Ur(i−1)Ei for

i = 1...(d− 2). We will have all non-diagonal elements zero and diagonal elements one up until

the (d − 2)th row and column. After all the row reductions, the 4 special non-trivial elements

will be in the bottom right corner, forming a 2x2 unitary matrix. Call this final eliminated

4.4. UNIVERSAL QUANTUM COMPUTATION 29

matrix Af . The following relation connects the elimination of all rows:

U0E1E2...Ed−2 = Af .

For a matrix U with d = 4, the elimination process looks like:
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

→

1 0 0 0
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗

→

1 0 0 0
0 1 0 0
0 0 ∗ ∗
0 0 ∗ ∗

Now if we multiply the conjugates of the elimination matrices to the right side of the equation,

we can express our target matrix U = U0 as a product of Af and Ei’s.

U = U0 = AfE
†
d−2E

†
d−3 . . . E

†
1

Since Ei’s are products of two-level matrices, U is now expressed as a product of two-level

matrices, and we have shown Statement 1 to be true. Note that each Ei is a product of (d− i)

two-level unitaries, so in total, we can express U as a product of 1+[2+3+...+(d−2)+(d−1)] =

d(d−1)
2 → O(d2) = O(4n) two-level unitaries.

4.4.2 Single-qubit and CNOT Gates are Universal.

Statement 1 says that 2-level unitaries are universal. Statement 2 says that single-qubit and

CNOT gates can implement any arbitrary 2-level unitary matrix. Combining Statement 1 and

Statement 2, we have that single-qubit and CNOT gates are universal. Now let us see why

Statement 2 is needed and how it is true.

From the proof of Statement 1, we have a decomposition of our 2n-dimensional target matrix

U on an n qubit quantum computer into two-level matrices Ai that act on the pairs of basis

states with (i, i + 1). Let A′
i be the 2x2 unitary submatrix of Ai; then A′

i can be thought

of as a single-qubit gate. Thinking from the perspective of the circuit model and single-qubit

operations provided by hardware, operations on the ith and (i+1)th state are not straightforward

to execute. Instead, acting on a pair of states that differ only on the ith bit is; that is, as simple

as acting A′ on the ith qubit among all n qubits. For example, the binary strings 000 and 001

30 CHAPTER 4. QUANTUM COMPILATION

can be mapped to the bases |000⟩ and |001⟩ that represent the 3rd qubit in a 3 qubit quantum

computer when the 1st and 2nd qubits are in the |00⟩ state. The idea is that if we have two

binary strings representing basis states differing in exactly one bit, say the jth bit, we can apply

a fully controlled-A′ operation on the jth qubit, conditioned on all the other qubits being the

same. Effectively, this means that we can apply a single-qubit operation, or a 2-level unitary, in

a n-qubit state space, affecting only the jth qubit while leaving others unchanged. This is an

operation that is straightforward for hardware to execute.

Gray coding can transform the basis such that (i, i + 1) becomes
(
i, i⊕ 2k

)
, where ⊕ means

binary add. Gray code is a sequence of codes that connect two binary strings s and t such that

neighbors in the sequence differ in exactly one bit (s = i and t = i + 1 in our case). For any

n-qubit quantum computer with 2n basis states indexed 0, 1, 2..., 2n − 1, we can find their Gray

code through the binary-reflected Gray code permutation [8], given by

πi = i⊕ ⌊i/2⌋, where i = 0, 1, 2..., 2n − 1.

For example, the Gray code for n = 3 is (0, 1, 3, 2, 6, 7, 5, 4), which in binary, is (000, 001, 011,

010, 110, 111, 011, 010). Note that each neighboring string only differs in one bit as desired.

An example shows how Gray code is applied with fully controlled-NOT operations to perform

basis transformation then introduce the general framework in the matrix notation. Suppose our

goal is to implement the two-level unitary transformation

A =

a 0 0 0 0 0 0 c
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
b 0 0 0 0 0 0 d

Here, a, b, c and d are any complex numbers such that A′ ≡
[
a c
b d

]
is a unitary matrix .

4.4. UNIVERSAL QUANTUM COMPUTATION 31

Now A acts only on states |000⟩ and |111⟩, whose binary strings can be connected by the

following Gray code:
A B C
0 0 0
0 0 1
0 1 1
1 1 1

From the Gray code table, we can create the desired circuit, shown in Figure 4.4.1. The first

two gates shift basis so that |000⟩ gets swapped with |011⟩. Then, the operation A′ is applied

to the first qubit that differs in the states |011⟩ and |111⟩, conditioned on the second and third

qubits being in the state |11⟩. Finally, we invert the basis transformation, so that |011⟩ becomes

|000⟩ again.

Figure 4.4.1: Circuit implementing the two-level unitary operation. This is also Figure 4.16
from [22].

From this example, we see that a two-level unitary A can be expressed as a circuit that

consists of 2(n− 1) → O(n) fully controlled-NOT operations plus a fully controlled single-qubit

A′ operation. In Section 3.3.5, we showed that a general controlled operation Cn(A′) can be

implemented with O(n) CNOT and single-qubit operations. Here our fully controlled operations

are Cn(A′) in the case where k = 1, so each of them can also be implemented with O(n) CNOT

and single-qubit gates. It follows that a two-level unitary A can be implemented with O(n2)

CNOT and single-qubit gates. Since our target gate U can be expressed as a product of O(4n)

two-level unitaries, it can be implemented with O(4nn2) CNOT and single-qubit gates. This is

quite inefficient!

To see how the decomposition of U into CNOT and single-qubit operations can be done more

generally, we start with the matrix formulation. Consider the permutation matrix P ∈ U(2n),

where Pij = δi,πj , that permutes the ith element of a vector with permutation πj . The expression

32 CHAPTER 4. QUANTUM COMPILATION

P †ÃiP simultaneously permutes rows and columns of matrix Ãi with permutation π. If Ãi was

a two-level matrix acting on states (i, i+1), then Ai = P †ÃiP will be a two-level matrix acting

on states (πi, πi+1)—exactly what we wanted.

Our objective is to express U =
∏
iAi as a product of two-level matrices Ai acting on states

differing in one bit. Using our permutation, we have U =
∏
iAi =

∏
i(P

†ÃiP) = P †(
∏
i Ãi)P .

If we define D = PUP †, and apply two-level decomposition D =
∏
i Ãi as in Statement 1, then

we will have obtained our desired decomposition of U =
∏
iAi into two-level unitary matrices

Ai = P †ÃiP acting on states differing in one bit.

Here we introduced the Gray code permutation matrix P . Its function is the same as the

fully controlled-NOT gates in Figure 4.4.1—to perform basis transformation, but represented

with a matrix. From Figure 4.4.1, any two-level unitary acting on states differing in one bit

can be implemented with fully controlled gates which, in turn, can be implemented by CNOT

gates and single-qubit gates. Thus, combined with Statement 1 we have shown that CNOT and

single-qubit gates are universal.

4.4.3 Proof for Statement 3

Using Statements 1 and 2, if we are given CNOT gates, the compilation problem has been reduced

to the problem of implementing an arbitrary single-qubit gate given a native single-qubit gate

set G. This is what we will need to show to prove Statement 3. There are documented gate-

set-specific proofs of Statement 3. Interested readers can find the universality of Hadamard +

phase + CNOT +π/8 gates in section 4.5.3 of [22] and the universality of rotation gates around

the Bloch basis in [7] for instance. However, this thesis is interested in gate set independent

compilation, so we will replace the role of Statement 3 to compile single-qubit gates with the

Solovay-Kitaev algorithm.

4.5. UNIVERSAL DECOMPOSITION 33

4.5 Universal Decomposition

Universal Decomposition refers to the algorithm that applies Statement 1 and 2 to decompose

an arbitrary matrix U . The proofs of Statement 1 and Statement 2 are constructive, so we can

simply use their procedures as our algorithm to decompose any arbitrary unitary matrix U

into CNOT gates and single-qubit gates. We mainly follow the implementation of [7], but the

procedures are also described in [15] and [1]. The function of Statement 3 in the compiler will

be replaced by the Solovay-Kitaev algorithm.

4.6 The Solovay-Kitaev theorem

The Solovay-Kitaev theorem states that for any unitary gate U on a single qubit, and given

any precision ϵ > 0, it is possible to approximate U to the precision using Θ(logc(1/ϵ)) gates

from a fixed finite set G, where c is a small constant approximately equal to 2. It is known

that c cannot be smaller than 1, but what value it takes between 1 and 2 is an open problem

[38]. The Solovay-Kitaev theorem guarantees that we can find an efficient compiled sequence

for a single-qubit gate U to a desired approximation ϵ! We will give a high-level overview of the

proof of the Solovay-Kitaev theorem. For steps of the proof that require understanding of Lie

Algebra and Lie Group theory, we will simply state their result and leave reference to details

for interested readers. This Section mainly references [23] and appendix 3 of [22].

4.6.1 Useful Definitions

Here we introduce some useful definitions to help us state the Solovay-Kitaev theorem precisely

and walk through why the theorem is true. Since we are introducing the Solovay-Kitaev theorem

in the context of compiling single-qubit gates into hardware gates, which are all 2-level unitaries,

we can represent our compiled program as a sequence of gates from the hardware gate set. We

say that a word of length l from G is a product g1g2 . . . gl ∈ SU(2), where gi ∈ G for each i.

Define Gl to be the set of all words of length at most l, and ⟨G⟩ to be the set of all words of

finite length.

34 CHAPTER 4. QUANTUM COMPILATION

Similar to Section 4.3, we need a distance measure to quantify the approximation quality. Here

we follow [22] and use the trace distance, defined as D(U, V) ≡ tr|U−V |, where |X| ≡
√
X†X.

The reason for choosing this distance is that it is helpful to think of elements in SU(2) as points

in space, and around the identity D(U, I) is a good approximation to the Euclidean distance.

We are interested in finding gate sets that are universal—gates that cover the operator space

within an error. In group theory terminology, we want to find a group that is dense. A subset

S of SU(2) is said to be dense in SU(2) if for any U ∈ SU(2) and ϵ > 0 there exists an element

s ∈ S such that D(s, U) < ϵ. Suppose S and W are subsets of SU(2). Then S is said to form

an ϵ-net for W , where ϵ > 0 if every point in W is within a distance ϵ of some point in S. For

compilation, we are interested in how quickly Gl covers SU(2) as l increases. In other words,

given l, how small an ϵ is Gl an ϵ-net of SU(2)? The Solovay-Kitaev theorem states that ϵ gets

small rapidly as l is increased. However, it builds on the assumption that ⟨G⟩ is dense. Formally

stated, the Solovay-Kitaev theorem is,

Let G be a finite set of elements in SU(2) containing their inverses, such that ⟨G⟩ is

dense in SU(2). Let ϵ > 0 be given. Then Gl is an ϵ-net in SU(2) for l = O (logc(1/ϵ)),

where c is some constant.

4.6.2 Outline of Proof

The high-level overview of the Solovay-Kitaev theorem involves two main pieces: the shrinking

lemma that guarantees a longer Gl sequence generates denser dense nets around the identity

and the translation step that applies shrinking lemma iteratively to increase sequence length

with better approximation from an initial crude approximation Gl0 . The two main pieces are

visualized in Figure 4.6.2 and 4.6.1, which are helpful in terms of getting an intuitive feeling of

how the proof works.

4.6. THE SOLOVAY-KITAEV THEOREM 35

4.6.3 Shrinking Lemma

Formally stated, the shrinking lemma says that there exists a universal constant ϵ0 such that

for any G and ϵ ≤ ϵ0, we have:

Gl is an ϵ2-net for Sϵ =⇒ G5l is an sϵ
3-net for S√

sϵ3
, for some constant s.

Effectively, the shrinking lemma says that by scaling the length of a sequence Gl by a

factor of five, we are guaranteed an exponentially denser net. Notice that the parame-

ters are mapped as follows after applying the shrinking lemma: (l, ϵ2, ϵ) 7→ (5l, sϵ3,
√
sϵ3).

Thus, if we apply the shrinking lemma iteratively k times on an initial set of parameters

(l0, ϵ
2
0, ϵ0) 7→ (5kl0, (sϵ0)

3k/s2, (sϵ0)
(3
2
)k/s). This result give us the iterated shrinking lemma

for some integer k:

Gl0 is an ϵ20-net for Sϵ0 =⇒ Glk is an ϵ2k-net for Sϵk , where lk = 5kl0 and εk = (sε0)
(3/2)k /s.

Since ⟨G⟩ is dense in SU(2), we make l0 sufficiently large such that Gl0 is an ϵ20-net for SU(2).

It follows from the iterated shrinking lemma that we can cover the entire operator space around

the identity within an error as arbitrarily small as ϵk, as long as we increase the sequence length

lk. Let’s see how the translation step applies the shrinking lemma iteratively to cover the entire

operator space, instead of only around the identity.

4.6.4 Translation Step

Suppose we have U0 ∈ Gl0 , an ϵ(0)2-approximation to U (this will always be true if we choose

sufficiently large l0 since G is dense). Define ∆1 ≡ UU †
0 to represent the “difference” between U

and U0. It follows that ∆1 ∈ Sϵ1 by ∥∆1 − I∥ =
∥∥∥(U − U0)U

†
0

∥∥∥ = ∥U − U0∥ < ϵ20 < ϵ1, where

ϵ1 is the universal constant from the shrinking lemma. Now we apply the iterated shrinking

lemma with k = 1 to approximate ∆1, the leftover difference. The lemma says that there exists

an approximation U1 ∈ Gl1 such that ∥∆1 − U1∥ =
∥∥∥UU †

0 − U1

∥∥∥ = ∥U − U1U0∥ < ϵ21. Notice

that U1 ∈ Gl1 is a l1 = 5l0 sequence. By adding 5l0 gates (U1) to the initial l0 gates (U0), we

36 CHAPTER 4. QUANTUM COMPILATION

have improved our approximation from ϵ1 (or ϵ
2
0) to ϵ

2
1. We call this process the translation step,

which can be visualized in 4.6.1.

Figure 4.6.1: The translation step used in the proof of the Solovay-Kitaev theorem. To approx-
imate a single-qubit gate U we first approximate to within a distance ϵ(0)2 using l0 gates from
G. Then we improve the approximation by adding 5l0 more gates, for a total accuracy better
than ϵ(1)2, and continue on this way, quickly converging to U .

Figure 4.6.2: The main idea of the shrinking lemma. Taking group commutators of elements U1

and U2 dense in ϵ-net fills in a denser ϵ2-net.

4.6. THE SOLOVAY-KITAEV THEOREM 37

4.6.5 Proof of Solovay-Kitaev theorem

From our initial approximation, we repeat the translation step on the leftover difference until

our error is small enough. Following the same technique, define ∆2 ≡ ∆1U
†
1 = UU †

0U
†
1 . Then

∥∆2 − I∥ =
∥∥∥(U − U1U0)U

†
0U

†
1

∥∥∥ = ∥U − U1U0∥ < ϵ21 < ϵ2, and so ∆2 ∈ Sϵ2 . Again, we apply the

iterated shrinking lemma with k = 2 to obtain U2 ∈ Gl2 such that ∥∆2 − U2∥ =
∥∥∥UU †

0U
†
1 − U2

∥∥∥ =

∥U − U2U1U0∥ < ϵ22. Continuing k steps this will result in Uk ∈ Glk such that

∥U − UkUk−1 · · ·U0∥ < ε2k

Each Ui ∈ Gli , where li = 5il0. Thus, our overall approximation sequence has L gates, where

L =

k∑
m=0

lm =

k∑
m=0

5ml0 =
5k+1 − 1

4
l0 <

5

4
5kl0,

and is up to accuracy ϵ2k. To find the value of k, we set ϵ2k =
(
(sϵ0)

(3/2)k /s
)2

= ϵ and solve for

k: (
3

2

)k
=

log
(
1/s2ϵ

)
2 log (1/sϵ0)

Note that we can always choose ϵ0 slightly smaller so that the obtained value of k is an integer.

Let c = log 5/ log(3/2) ≈ 3.97 so that 5k =
(
3
2

)kc
. Then

L <
5

4
5kl0 =

5

4

(
3

2

)kc
l0 =

5

4

(
log
(
1/s2ϵ

)
2 log (1/sϵ0)

)c
l0

Hence, for any U ∈ SU(2) there is a sequence of L = O (logc(1/ϵ)) gates that approximates

U to accuracy ϵ, and we have shown the Solovay-Kitaev theorem.

4.6.6 Proof of the Shrinking Lemma

We have only used the result of the Shrinking Lemma but not proved it. To fully understand the

proof of the shrinking lemma requires a good knowledge of Lie Group and Lie Algebra that goes

beyond the scope of this thesis, but a good high-level description from Harrow [9] of how they

work is as follows (the group commutator of unitary gates V and W is [V,W]gp = VWV †W †):

38 CHAPTER 4. QUANTUM COMPILATION

Specifically, near the identity the group commutator (which is easily expressible with

strings of matrices) approaches the algebra commutator (which is easily calculable),

and by moving back and forth between these two ways of looking at operators we

can express precise matrices near the identity as strings of less precise matrices that

are farther from the identity” [9].

Figure 4.6.2 also offers a geometric view of how the shrinking lemma works. The main function

of the shrinking lemma is that for each iteration it is applied, we increase the length of the

approximation sequence by a factor of 5, meanwhile decreasing the error exponentially.

l1 → 5l0

ϵ1 → ϵ
2/3
0

We are guaranteed to get better approx U2 ≈ U with a longer sequence by the property of

group commutators of first approximations U1 and U0. Why this works requires an understand-

ing of Lie Algebra and Lie Group theory, and is explained in [23] and appendix 3 of [22].

4.7 The Solovay-Kitaev Algorithm

Although the Solovay-Kitaev theorem says that we can find an efficient compilation, it does not

tell us how to find it. Dawson and Nielsen noticed that the proof of the Solovay-Kitaev theorem

shares a similar structure with a recursive program. They recursively apply the properties of

group commutators that are used in the proof to develop a Solovay-Kitaev algorithm [5]. This

section will be an implementation guide that introduces the conceptual pieces and algorithmic

steps of the Solovay-Kitaev algorithm while skipping the details of why it is proven to work. Ref-

erences to details will be provided for interested readers. We will also discuss the complexity of

the Solovay-Kitaev algorithm. An implementation will be run and analyzed in the Experiments

Section. For now, let us start with the pseudo-code of the Solovay-Kitaev theorem:

4.7. THE SOLOVAY-KITAEV ALGORITHM 39

Function Solovay-Kitaev (Gate U , depth d)

If (d == 0)

Return BasicApproximation(U)

Else

Set Ud−1 = Solovay-Kitaev(U, d− 1)

WVW †V † = GCDecompose(UU †
d−1)

Set Vd−1 = Solovay-Kitaev(V, d− 1)

Set Wd−1 = Solovay-Kitaev(W,d− 1)

Return Ud = Vd−1Wd−1V
†
d−1W

†
d−1Ud−1

As we see from the pseudo-code, the function Solovay-Kiteav theorem calls itself. This means

that it is a recursive algorithm. The interesting parts are then the other portions of the non-

recursive code that do most of the heavy lifting: Basic Approximation and GCDecompose. We

follow the method described in [5], and we will summarize how both steps are implemented.

Before we go into the details, notice the subtleties of the inputs of the Solovay-Kitaev function

interface. For a general quantum compiler program the inputs are: the gate set available from

hardware G, the target gate that describes a quantum program U , and a tolerable error ϵ.

Notice that G and ϵ are not explicitly stated in the Solovay-Kitaev pseudo code. G is implied

in BasicApproximation through a preprocessing step and ϵ is implied together by the recursive

depth d and also the BasicApproximation. We use the spectral norm introduced in 4.3 to

evaluate the error between the approximation A and the target matrix U .

∥D∥ =
√
λmax (D†D), where D ≡ U −A

4.7.1 Basic Approximation

BasicApproximation corresponds to the translation step in the Solovay-Kitaev theorem. The

goal is to find an initial crude approximation U0 ≈ U within an error ϵ0 using l0 gates from G.

A compilation problem typically asks for an error ϵ tolerable by the program as input. As we

40 CHAPTER 4. QUANTUM COMPILATION

shall see, ϵ can also be implied with the input d and a choice of l0. Given the gate set G, we can

find a relation between ϵ0 and l0 for SU(2):

l0 ≥ O

(
3

log |G|
log (1/ϵ0)

)
,

so instead we can use l0 as a parameter to control the initial error. We can enumerate all gate

sequences of length ≤ l0 from G, and we are guaranteed by the theorem to find an approximation

U0 ≈ U to any gate U within error ϵ0, which can be quantified but will not be done explicitly

here. The tolerable error ϵ is related to the initial error ϵ0 through the shrinking lemma, and so

we are guaranteed a small ϵ as long as we apply the shrinking lemma sufficient times.

The implementation of BasicApproximation is a lookup table of gate sequences with length

≤ l0. The table stores a total of (|G|1+|G|2+|G|3+...+|G|l0) = |G|l0+1−1 sequences, each resulting

in a product of a 2x2 unitary matrix. Since a 2x2 unitary matrix can be parameterized by 3 real

numbers, we can use a KDTree [35], which is efficient for querying neighbors in n-dimensional

data, as our lookup table. KDTree provides an average query complexity of O(log
(
|G|l0+1

)
).

Practically, once we have chosen l0, this query time becomes a constant O(c) for a specific gate

set.

4.7.2 Group Commutator Decomposition

GCDecompose, corresponding to the shrinking lemma in the theorem, is a procedure of

decomposing a precise unitary matrix into a product of less precise balanced group commu-

tators. Through the decomposition, the length of the compiled sequence is increased but

improvements in the approximation are guaranteed. Each decomposition decreases the er-

ror by ϵd ≡ capprox ϵ
3/2
d−1, for some small constant capprox. The algorithmic procedures of

GCDecompose(U) involve trivial math and rotations of matrices around the Bloch Sphere. Why

the group commutator decomposition works is highly mathematical. We will skip the details for

both the algorithmic steps as well as the proof. Interested readers can refer to section 4.1 of [5].

Examining the pseudo-code of the Solovay-Kitaev theorem, we observe that at each recurrence:

the error ϵ reduces exponentially by property of balanced group commentator near the identity,

4.7. THE SOLOVAY-KITAEV ALGORITHM 41

the gate depth l increases fivefold through group commutator decomposition, and the runtime

t is triple the runtime of the previous recurrence (since the function calls itself three times). In

mathematical language, we have:

ϵd = capprox ϵ
3/2
d−1

ld = 5ld−1

td ≤ 3td−1 + const.

By recursive relations, we can establish the complexity bounds for the error, gate depth, and

runtime for the Solovay-Kitave algorithm by:

ϵd =
1

c2approx

(
ϵ0c

2
approx

)(3
2)

d

ld = O
(
5d
)

td = O
(
3d
)

In this chapter, we have gone through Universal Decomposition and Solovay-Kitaev algorithm

as well as how they can be combined to make a working compiler that we name UDSK. We have

discussed their function and complexity, but have not shown how they work in practice. In the

following chapter, Chapter 5, “Experiments”, we will give an overview of an implementation of

the UDSK compiler, including Universal Decomposition and the Solovay-Kitaev algorithm, and

demonstrate examples of compilation results using USDK.

42 CHAPTER 4. QUANTUM COMPILATION

5
Experiments

The previous chapter provided all the conceptual foundations required to build a quantum com-

piler. Specifically, the compiler UDSK that combines Universal Decomposition and the Solovay-

Kitaev algorithm is introduced. To verify that our assumptions and analysis about USDK hold,

I implemented the UDSK compiler (code along with explanation and example files can be found

online at the GitHub repository https://github.com/Hazarre/quantum-compilation). In

this chapter, we will discuss the implementation of the UDSK compiler, run compilation exam-

ples on it, and analyze its complexity.

5.1 Notes on Implementation

The UDSK compiler implementation can be found in the UDSKcompiler.ipynb file in the

project repository. I modified and combined the solution from [7] for Universal Decomposition

and the SolovayKitaevSynthesis interface from Qiskit [24] for the Solovay-Kitaev algorithm. We

build our UDSK compiler on [7] and [24] for ease of implementation and generating circuit dia-

grams. However, the SolovayKitaevSynthesis interface follows Qiskit conventions and is rather

difficult to unpack. For conceptual clarity and ease of analysis, another version of the Solovay-

Kitaev algorithm and Universal Decomposition are separately implemented from scratch in the

SKalgo.ipynb and the UD.ipynb file.

43

https://github.com/Hazarre/quantum-compilation

44 CHAPTER 5. EXPERIMENTS

A subtlety in our implementation is that Universal Decomposition breaks a general unitary

matrix into a product of two-level unitaries—that can be represented with fully controlled

gates—but does not further break the fully controlled gates into CNOT plus single-qubit gates

as was described in the previous chapter. Breaking down fully controlled gates into CNOT and

single-qubit gates can be implemented with a not-so-interesting fixed routine shown in Figure

3.3.8. We leave it out for simplicity.

5.2 Compilation of Notable Gates

Here, an example of compilations of notable gates into G gates will be illustrated to showcase

the function of UDSK. If not otherwise specified, it is implied that the hardware gate set G =

{H,T} contains the Hadamard and T -gate. Note that we have discussed the parameters, initial

approximation length l0 and d recursive depth, in the context of the Solovay-Kitaev theorem.

These parameters will be analyzed separately. Choosing l0 and d also allows us to bound error

ϵ. However, quantifying error requires math that goes beyond this thesis.

The compiled circuit of when the target gate U is the Swap gate can be found in Figure 5.2.1

and when U is the Tiffoli gate in Figure 5.2.2. From gate identities, the sequenceHTTTTH = X

is a quantum NOT gate. Then the two compiled circuits are exactly equivalent to the circuits

of the Swap gate in Figure 3.3.3 that exchanges the coefficients of two qubits and the Tiffoli

gate that flips the target bit if the other two control bits are both one. These results verify the

correctness of the UDSK compiler.

Figure 5.2.1: Compiling the Swap gate into H and T gates.

5.3. COMPLEXITY ANALYSIS 45

Figure 5.2.2: Compiling the Tiffoli gate into H and T gates.

5.3 Complexity Analysis

5.3.1 Universal Decomposition

Universal Decomposition is executed for randomly generated unitary matrices acting on n-qubit

state space, for various n. The results are plotted in Figure 5.3.1, with an average compiled

sequence length L = .44 · 4n = O(4n) and average runtime of T ≈ 6 · 10−7 · 11n = O(11n). The

result confirms the analysis in Section 4.4.1 that Universal Decomposition decomposes arbitrary

unitaries acting on n-qubit state space into a product of O(4n) two-level unitaries. In principle,

the runtime is also O(4n), since computing each two-level unitary matrix takes the same fixed

row reduction procedure. How we obtained O(11n) requires further analysis.

5.3.2 Solovay-Kitaev algorithm

In Section 4.7, we discussed that the recursive depth d and the initial approximation length

l0 can implicitly control the quality of the approximation. The parameter l0 is used in Basic

Approximation so it will be analyzed separately from the full Solovay-Kitaev algorithm. I run

BasicApproximation on a randomly generated single-qubit U with l0 ranging from 1 to 23.

Name the output approximation A. The error ϵ0 = |U − A| will be recorded using the spectral

norm. Additionally, the average initialization time to generate the KDTree lookup table and

the average query to look up an item from the KDTree are also recorded. The result is shown

in Figure 5.3.2. All lines are plotted with the vertical axis log scaled. The data points follow

a straight line for initialization time, average error, and average query time, so they are all

exponential to l0. Here we can see that the best-fit line for the error has a negative slope so it

46 CHAPTER 5. EXPERIMENTS

Figure 5.3.1: The Average Compiled Sequence Length and Average Runtime of Universal De-
composition versus the number of qubits n that defines the size of the unitary operator state
space. Dots indicate data points and curves the best fit lines.

decreases exponentially as l0 grows. This is consistent with our analysis of the relation between

the initial approximation error ϵ0 and the initial approximation sequence length l0

l0 ≥ O

(
3

log |G|
log (1/ϵ0)

)
.

From Section 4.7, the complexities of error, runtime, and compiled sequence length for the

Solovay-Kitaev algorithm are as follows:

ϵd =
1

c2approx

(
ϵ0c

2
approx

)(3
2)

d

td = O
(
3d
)

ld = O
(
5d
)

I ran the Solovay-Kitaev algorithm with l0 = 22 fixed and d ranging from 1 to 10 on randomly

generated single-qubit unitary matrices. The experimental results are displayed in Figure 5.3.3.

The runtime and compiled sequence length obtained from the experiment are td ≈ O(3.28d) and

ld ≈ O(5d) respectively. These results are consistent with the analysis in Section 4.7. The error

5.3. COMPLEXITY ANALYSIS 47

Figure 5.3.2: The log plot of average initialization time, query time, and error over the initial
approximation length l0 (in the plot this is L) of Basic Approximation. Although the initializa-
tion is expensive, since it only needs to be done once, we are rather interested in the complexity
of each query and error in terms of l0.

Figure 5.3.3: The log plot of average error ϵd, runtime td, and output compiled sequence length
ld over the recursive depth d of the Solovay-Kitaev algorithm.

48 CHAPTER 5. EXPERIMENTS

also has a decreasing trend as desired. However, the experimental result is rather messy so we

cannot be certain about the shape it takes. From analysis, we expect the error to be C
3
2

d

, where

C is some constant, meaning the log plot of the error over d should yield some exponential over

d. It is hard to see this from the figure. Potentially, collecting data points for d ≥ 10 (which is

computationally expensive) can help us verify this curve.

The most compelling reason behind the error that fluctuates instead of going downwards with

respect to the recursion depth is because we use the SolovayKitaevSynthesis interface from Qiskit

transpiler as our algorithm to approximation single-qubit gates. SolovayKitaevSynthesis returns

an approximation that can be off by a global phase factor. The global phase factor difference

results in a large error, but once removed, leaves out a good approximation with a small error.

We can see this in the qiskitSK.ipynb file. Combining UDSK with our implementation of

the Solovay-Kitaev algorithm may be able to resolve the issue. Other possible reasons for the

messiness in the error data points may stem from incorrect implementation or error propagation

during matrix arithmetic, which can add up linearly or multiply exponentially to the length

of the compiled sequence. In short, the messiness in the error data points requires further

investigation.

5.3.3 UDSK Compiler

In the UDSK compiler, Universal Decomposition decomposes n-qubit unitary into O(4n) 2-level

unitaries, each is then fed into the Solovay-Kitaev algorithm to be decomposed into sequences

of hardware gates. Therefore, the complexities of the runtime and compiled sequence length of

the UDSK compiler are,

TUDSK = TUDTSK = O(4n3d)

LUDSK = LUDLSK = O(4n5d).

The complexity of the error requires an intricate analysis but is not the focus of this thesis.

A crude approximation can be obtained by the multiplication ϵSK · 4n.

5.4. ENVIRONMENT 49

5.4 Environment

All the experiments are run on a Lenovo T490 laptop with the following specification:

• RAM: 16 Gb

• Architecture: x86 64

• Core(s): 4

• CPU(s): 8

• Model Intel(R) Core(TM) i5-8365U CPU @ 1.60GHz

Programs are implemented in Python language, with dependencies on the following packages:

• numpy (1.23.3) for matrix operations

• scipy.stats for generating random unitary matrix

• qiskit (0.42.0) for circuit diagram generation and SolovayKitaevSynthesis

The consistency between analysis and experiments confirms the correctness of our implemen-

tation. The small error also verifies that our UDSK compiler can approximate a general unitary

to arbitrary precision. However, deviations from expectations and messy data points prompt

further examination into the runtime for the Universal Decomposition and the error for the

Solovay-Kitaev algorithm. Detailed analyses on these topics are good future directions.

50 CHAPTER 5. EXPERIMENTS

6
Challenges towards Practical Quantum Com-
pilation

Up to this point we have built a prototypical compiler that can compile any arbitrary quantum

gate into hardware gates. However, for a fully functional quantum computer to read a program

and execute its functions, a larger ecosystem of tool chains called the software stack is needed

to convert application programs into hardware control signals. These toolchains transform

programs into lower levels of abstraction and include many compilers. We will put our UDSK

compiler into the context of the software stack, and touch on pieces other than UDSK that are

required to execute a program on an actual quantum computer.

6.1 Software Stack

Translating a quantum program into hardware control signals for execution typically involve

many steps to lower abstraction one layer at a time. Each layer of abstraction is notated by

some intermediate representation (IR), for example, the quantum assembly language (QASM)

[3]. These IRs are useful in exposing specific configurations while remaining hardware agnostic.

The division of the layers of abstraction to designated functions is called the architecture of a

quantum device, and the pieces of software that regulate the architecture is the software stack.

51

52 CHAPTER 6. CHALLENGES TOWARDS PRACTICAL QUANTUM COMPILATION

There are no standardized ways of dividing the layers of abstraction. However, it is typically

broken down into five or six layers, each with a designated purpose, as is introduced in quantum

programming and compilation literature [2, 11, 17]. We follow Jones [13] and break up the

architecture into five layers: the Application (5), Logical (4), Quantum Error Correction (3),

Virtual (2), and Physical (1) layer. There is a compiler in between each layer to convert to a

less abstract layer one level at a time.

The Physical layer contains hardware gates and qubits that are noisy and have connectivity

constraints. Since each hardware qubit is noisy, decoheres, and loses its state quickly, we use a

large number of them to simulate a virtual qubit that is almost noiseless, has a longer lifetime,

and conforms to our mathematical model. This forms the Virtual Layer. To reduce the overall

aggregate error of the entire quantum computing system, error correction is performed at the

Quantum Error Correction Layer to produce logical qubits that are seemingly noiseless and

hardware-independent. Above the Logical Layer, a programmer can treat a quantum computer

as a “clean” mathematical model. Typically a quantum program is written at the Logical Layer

to create an application.

The UDSK compiler presented in Chapter 4 is a high-level compiler that takes the position

between the Application and Logical layers only! There are lower-level compilers between all

other layers that incorporate error correction and consider hardware constraints. In short, much

work is to be done for a quantum program to run on actual hardware. We will survey recent

compilation methodologies in the next section to demonstrate how UDSK can be extended to

become more powerful and compile to layers beyond the Logical layer.

6.2 Overview of Quantum Compilation and Synthesis

The UDSK compiler that we built is prototypical, incomplete, and not scalable to a quantum

computer with a large number of qubits. With the design challenges for NISQ and the broader

context of the software stack introduced, we want to show more advanced techniques that create

rather realistic solutions and provide a perspective into how this thesis can be extended. The

6.2. OVERVIEW OF QUANTUM COMPILATION AND SYNTHESIS 53

following will be a survey of recent quantum compilation literature. The field evolves quickly

with the development of quantum devices so the survey is brief and in no way comprehensive.

(Note that in literature, synthesis often refers to the lowest level of compilation that targets

hardware gates. However, it is often also used interchangeably with compilation, depending on

the context. Here we use the more general meaning of referring to compilation.)

Quantum compilation is built on the foundation of linear algebra decomposition methods in

complex vector space. Conventional fixed compilation routines are derived from mathematical

decompositions. For example, gate identities can be used as replacement rules that are applied

iterating over gates in a circuit. General decomposition rules are also developed. Barenco et al.

[1] proved that an arbitrary quantum circuit for a n qubit quantum computer can be expressed

by compositions of a set of single-qubit and CNOT gates, resulting with a O(n24n). This is the

universality proof in Chapter 4.4 shown for the first time. Other more advanced fixed routines

yield shorter compiled circuit lengths.

Particularly useful are decomposition methods stemming from the Cartan Decomposition from

Lie group theory. One of them is the Cosine-Sine-Decomposition (CSD) [31]. An application

instance of the CSD is Tucci [33] which uses CSD to construct a binary tree whose product is

the approximation gate sequence. The other one is the KAK decomposition. Vatan [36] shows

that KAK decomposition produces optimal compiled circuit depth for two-qubit operations with

respect to the family of CNOT, y-rotations, z-rotations, and phase gates. Since KAK is optimal,

advanced compilers often decompose the target matrix into two-qubit operations and then feed

them into KAK as a final step. A good introduction to KAK can be found in Tucci [34],

where the decomposition is proven constructively with only linear algebra, as opposed to the

conventional derivation through Lie Group Theory and Lie Algebra. Aside from KAK, a great

routine to reduce dimensions is the Quantum Shannon Decomposition (QSD) [29], which breaks

an n-qubit unitary into four (n− 1)-qubit unitaries and three multi-controlled rotations.

Fixed routine methods typically are not aware of hardware topology and suffer from long

execution times for quantum computers with a larger number of qubits. Computational methods

54 CHAPTER 6. CHALLENGES TOWARDS PRACTICAL QUANTUM COMPILATION

such as search and heuristics are adopted to improve topology awareness and scalability to

compile for NISQ and large quantum devices. QSearch [4] minimizes error-prone CNOT counts

while accounting for connectivity of NISQ superconducting devices using an A-star-inspired

algorithm. SABRE [16] is a SWAP-based BidiREctional heuristic search algorithm that solves

the qubit mapping problem on NISQ devices with arbitrary connections between physical qubits.

More recently, machine learning are used for quantum compiling. Swaddle [32] uses two

neural networks, trained on a generated data set, to decompose a three-qubit system. However,

in their formulation, the size of the neural network scales 2n to the number of qubits, so their

solution is not scalable to a machine with a large number of qubits. Moro [21] proposes a

deep reinforcement learning method that learns a general strategy to approximate single-qubit

unitaries via a single precompilation procedure. By doing so, the overall execution time is

reduced, potentially allowing real-time operations. Both Swaddle and Moro’s methods provide

better execution times and small errors but are not aware of hardware topology.

The most successful and complete compilers combine a multitude of search, optimization and

transformation rules to meet the design criteria. QFAST [37] includes search and numerical

optimization to perform topology-aware quantum synthesis, trading off optimality for increased

compilation speed that scales up to seven qubits. Rakyta and Zimboras [26] approximate a

general unitary through optimization over continuous variables and iterations of adaptive circuit

compression, which is achieved by sequential removal of controlled two-qubit gates from the

initial circuit. They obtained lower CNOT counts than QFAST [37], QSEARCH [4], and the

Qiskit transpiler [12].

In conclusion, hardware topology, error correction, scalability and optimization all have to be

considered to built a practical compiler. Topology awareness and optimization are especially

important to utilize the tight hardware resources on NISQ devices. These are important features

that will need to be added to our USDK compiler for it to create code executable on hardware.

Bibliography

[1] Adriano Barenco, Charles H. Bennett, Richard Cleve, David P. DiVincenzo, Norman Margolus, Peter Shor,
Tycho Sleator, John A. Smolin, and Harald Weinfurter, Elementary gates for quantum computation, Physical
Review A 52 (1995nov), no. 5, 3457–3467.

[2] Frederic T Chong, Diana Franklin, and Margaret Martonosi, Programming languages and compiler design
for realistic quantum hardware, Nature 549 (September 2017), no. 7671, 180–187 (en).

[3] Andrew W. Cross, Lev S. Bishop, John A. Smolin, and Jay M. Gambetta, Open quantum assembly language,
2017.

[4] Marc G. Davis, Ethan Smith, Ana Tudor, Koushik Sen, Irfan Siddiqi, and Costin Iancu, Towards optimal
topology aware quantum circuit synthesis, 2020 ieee international conference on quantum computing and
engineering (qce), 2020, pp. 223–234.

[5] Christopher M. Dawson and Michael A. Nielsen, The solovay-kitaev algorithm, 2005.

[6] Artur Ekert, Quantum interferometers as quantum computers, Physica Scripta 1998 (1998jan), no. T76, 218.

[7] Dmytro Fedoriaka, Decomposition of unitary matrix into quantum gates (201906).

[8] F. Gray, Pulse code communication, Google Patents, 1953. US Patent 2,632,058.

[9] A. Harrow, Quantum compiling, Massachusetts Institute of Technology, Department of Physics, 2001.

[10] Jack D Hidary, Quantum computing: An applied approach, 1st ed., Springer Nature, Cham, Switzerland,
2019.

[11] Thomas Häner, Damian S Steiger, Krysta Svore, and Matthias Troyer, A software methodology for compiling
quantum programs, Quantum Science and Technology 3 (2018feb), no. 2, 020501.

[12] IBM, Qiskit: An open-source framework for quantum computing, 2021.

[13] N. Cody Jones, Rodney Van Meter, Austin G. Fowler, Peter L. McMahon, Jungsang Kim, Thaddeus D. Ladd,
and Yoshihisa Yamamoto, Layered architecture for quantum computing, Phys. Rev. X 2 (2012Jul), 031007.

[14] Phillip Kaye, Raymond Laflamme, and Michele Mosca, An introduction to quantum computing, Oxford Uni-
versity Press, London, England, 2006 (en).

[15] Chi-Kwong Li, Rebecca Roberts, and Xiaoyan Yin, Decomposition of unitary matrices and quantum gates,
arXiv, 2012.

[16] Gushu Li, Yufei Ding, and Yuan Xie, Tackling the qubit mapping problem for nisq-era quantum devices, CoRR
abs/1809.02573 (2018), available at 1809.02573.

55

1809.02573

56 BIBLIOGRAPHY

[17] Marco Maronese, Lorenzo Moro, Lorenzo Rocutto, and Enrico Prati, Quantum compiling, 2021.

[18] Margaret Martonosi and Martin Roetteler, Next steps in quantum computing: Computer science’s role, CoRR
abs/1903.10541 (2019), available at 1903.10541.

[19] Andy Matuschak and Michael Nielsen, 1970.

[20] , Quantum mechanics distilled, 1970.

[21] Lorenzo Moro, Matteo G. A. Paris, Marcello Restelli, and Enrico Prati, Quantum compiling by deep rein-
forcement learning, Communications Physics 4 (2021aug), no. 1.

[22] Michael A. Nielsen and Isaac L. Chuang, Quantum computation and quantum information, Cambridge Uni-
versity Press, 2000.

[23] Maris Ozols, The solovay-kitaev theorem, Essay at University of Waterloo (2009).

[24] IBM Qiskit, Solovaykitaevsynthesis.

[25] IBM Quantum, Grover’s algorithm, 2023.

[26] Péter Rakyta and Zoltán Zimborás, Efficient quantum gate decomposition via adaptive circuit compression,
2022.

[27] Eleanor G Rieffel and Wolfgang H Polak, Quantum computing, Scientific and Engineering Computation, MIT
Press, London, England, 2014.

[28] Vivek V. Shende and Igor L. Markov, On the cnot-cost of toffoli gates (2008).

[29] V.V. Shende, S.S. Bullock, and I.L. Markov, Synthesis of quantum-logic circuits, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 25 (2006jun), no. 6, 1000–1010.

[30] Gilbert Strang, Introduction to linear algebra, Wellesley-Cambridge Press, 2003.

[31] Brian D. Sutton, Computing the complete cs decomposition, 2008.

[32] Michael Swaddle, Lyle Noakes, Harry Smallbone, Liam Salter, and Jingbo Wang, Generating three-qubit
quantum circuits with neural networks, Physics Letters A 381 (2017oct), no. 39, 3391–3395.

[33] Robert R. Tucci, A rudimentary quantum compiler(2cnd ed.), 1999.

[34] , An introduction to cartan’s kak decomposition for qc programmers, arXiv, 2005.

[35] SciPy v1.10.1 Manual, Kdtree.

[36] Farrokh Vatan and Colin Williams, Optimal quantum circuits for general two-qubit gates, Physical Review A
69 (2004mar), no. 3.

[37] Ed Younis, Koushik Sen, Katherine Yelick, and Costin Iancu, Qfast: Conflating search and numerical opti-
mization for scalable quantum circuit synthesis, arXiv, 2021.

[38] Kitaev A Yu, Quantum computations: algorithms and error correction, UMN, 1997.

1903.10541

	Compiling Quantum Programs
	Recommended Citation

	Abstract
	Dedication
	Acknowledgments
	Introduction
	Prerequisites

	Quantum Computation (QC)
	Quantum Advantage, Quantum Weirdness, and the Roadmap to Useful Quantum Computing

	The Gate Model of Quantum Computing
	Single-Qubit States
	Multi-Qubit States
	State Evolution and Quantum Computation
	Single-Qubit Gates
	Quantum Circuit Diagrams
	Multi-Qubit Gates
	Quantum Circuit and Quantum Computation
	Controlled Operations

	Postulate of Quantum Mechanics

	Quantum Compilation
	What is Quantum Compilation?
	Note on Math for Quantum Compiling
	Approximating Quantum Circuits
	Universal Quantum Computation
	Proof of Statement 1: 2-level Systems are Universal
	Single-qubit and CNOT Gates are Universal.
	Proof for Statement 3

	Universal Decomposition
	The Solovay-Kitaev theorem
	Useful Definitions
	Outline of Proof
	Shrinking Lemma
	Translation Step
	Proof of Solovay-Kitaev theorem
	Proof of the Shrinking Lemma

	The Solovay-Kitaev Algorithm
	Basic Approximation
	Group Commutator Decomposition

	Experiments
	Notes on Implementation
	Compilation of Notable Gates
	Complexity Analysis
	Universal Decomposition
	Solovay-Kitaev algorithm
	UDSK Compiler

	Environment

	Challenges towards Practical Quantum Compilation
	Software Stack
	Overview of Quantum Compilation and Synthesis

