
Bard College Bard College

Bard Digital Commons Bard Digital Commons

Senior Projects Spring 2023 Bard Undergraduate Senior Projects

Spring 2023

Discussion of Game Design and Construction of a Videogame Discussion of Game Design and Construction of a Videogame

Utilizing PCG, CA, and ABM Utilizing PCG, CA, and ABM

Angel Obergh
Bard College

Follow this and additional works at: https://digitalcommons.bard.edu/senproj_s2023

 Part of the Computer Sciences Commons

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Recommended Citation Recommended Citation
Obergh, Angel, "Discussion of Game Design and Construction of a Videogame Utilizing PCG, CA, and
ABM" (2023). Senior Projects Spring 2023. 254.
https://digitalcommons.bard.edu/senproj_s2023/254

This Open Access is brought to you for free and open
access by the Bard Undergraduate Senior Projects at
Bard Digital Commons. It has been accepted for inclusion
in Senior Projects Spring 2023 by an authorized
administrator of Bard Digital Commons. For more
information, please contact digitalcommons@bard.edu.

http://www.bard.edu/
http://www.bard.edu/
https://digitalcommons.bard.edu/
https://digitalcommons.bard.edu/senproj_s2023
https://digitalcommons.bard.edu/undergrad
https://digitalcommons.bard.edu/senproj_s2023?utm_source=digitalcommons.bard.edu%2Fsenproj_s2023%2F254&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.bard.edu%2Fsenproj_s2023%2F254&utm_medium=PDF&utm_campaign=PDFCoverPages
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://digitalcommons.bard.edu/senproj_s2023/254?utm_source=digitalcommons.bard.edu%2Fsenproj_s2023%2F254&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@bard.edu
http://www.bard.edu/
http://www.bard.edu/

Discussion of Game Design and Construction of a Videogame Utilizing PCG, CA, and ABM

Senior Project Submitted to

The Division of Science, Math, and Computing of Bard College

by

Angel Obergh

Annandale-on-Hudson, New York

May 2023

Dedication:

This dedication goes to everyone that never lost faith in my journey.

Acknowledgements:

Above all, I want to acknowledge God who is a strong presence in my life.

I want to acknowledge my Sproj Advisor Bob who allowed me to work on a personal project that

was in my field of interest. I am thankful that I could base my project on what I envision myself

doing post-college rather than something that I am not interested in. While building this project

was hard, Bob was there every step of the way and helped me when I was lost.

I want to acknowledge my best friend Allan Raposo who despite being miles away from me was

always the closest friend I could ask for. For years, you have actively shown me that you care

about me and my future. You never gave up on me and always found ways to help me. I hope you

know that I am incredibly grateful that you are part of my life and I hope that I have equally

given you as much as you have to me. Te quiero manito.

I equally want to acknowledge my mother, father and all my siblings Paloma, Leda, and Alondra

because they are huge video game nerds who played video games with me my entire life. My

favorite memories with them are playing Kirby and Zelda while making up stories and seeing

each other play through the game. My interest in building games in the future is linked to them as

they were always a support system and evidence that videogames are more than just games.

I also would like to acknowledge Keith O’ Hara. During my freshman year when I didn’t think I

was cut out to be a Computer Science major, Keith was my professor. He told me that I should

stick to it, at least to the end of that semester and if I didn’t like it, I could go onto some other

major. You had more faith in me than I did to myself, and I grabbed that with me tightly and

promised myself to push through even if I didn’t think I would ever make it. I thank you for your

kind words, quality teaching, and faith that you provided me with.

I am eternally grateful for my friend, mentor, best friend and soulmate Mey Colindres who has

taken a huge part of life. I became the luckiest kid at Bard when you became part of my life. Te

amo!

Big gratefulness and love to Quincy who always lit me up with his genuineness and love. I thank

you for being one of the most caring humans I have ever met.

I want to thank the faculty at Bard college for supporting me and never giving up. Special thanks

to Jane Smith who was my first ever college professor. Thanks to Mirelva for helping me navigate

the best and worst moments at Bard. Thank you coach Adam and Tyler for preparing me for the

real world, as a student and an athlete. Thank you to you and the long list of faculty I can’t quite

include because it is too long!

I am innately grateful for my friends, colleagues, and everyone that made my college experience

a better one. Big gratitude to the Frisbee gang, my volleyball squad, the Code Blue *Basketball*

and BAB! Love y’all!

Lastly, I would like to acknowledge my beloved OEI Community and every faculty member in this

department. Since day until now, they have adamantly worked in making me feel supported,

included, and appreciated. They have done far more than this, making my college experience the

best experience I could ever ask for. I will be forever indebted to all these individuals and their

countless contributions and investments to me. Thank you Claudette, Wailly, Danny, Kim, Kelsey,

Jessica, Khan, and many more!

Table of Contents

Introduction………………………………………………………………………………………..1

Chapter 1
Game Design in RPGs and Rougelike Genres

1.1 History of RPGS and Roguelike Games………………………………………………5
1.2 Procedural Content Generation…..……………………………………………………8

1.2.1 Procedural Content Generation Vs. Handhame Game Design……………...9
1.2.2 PCG and Roguelike Genre in Spelunky………………………………………...10

1.3 Cellular Automata…………..………………………………………………………..14
1.3.1 Example, Game of Life…………………………………………………….15
1.3.2 Necessary aspects for Level Design using CA-PCG………………………17

1.4 Agent Based Modeling………..……………………………………………………..18
1.4.1 Benefits of using ABM…………………………………………………….18
1.4.2 Downsides of using ABM………………………………………………….19

1.5 Biggest Takeaways to Level Design a Rougelike Game Using PCG………………..21

Chapter 2
Creation of Bubu

2.1 Chosen Technology………………………………………………………………..…25
2.1.1 Plastic SCM | Version Control……………………………………………..26

2.2 Game Bubu and Game Design Approach…………………………………………...27
2.2.1 Implementation of Cellular Automata for the Creation of an Island………29

2.3 CA-PCG in Unity…………………………………………………………………….31
2.4 Discussion……………………………………………………………………………35

Conclusion……………………………………………………………………………………….36
Works Cited..……...……………………………………………………………………………..38

List of Figures:

Figure 1: Intro game Akalabeth…………………………………………………………………..5

Figure 2: Nethack generated level……………………………………………………………...…6

Figure 3: Spelunky Gameplay……………………………………………………………...…….11

Figure 4: Continuous path visual for Spelunky……………………………………………..…....12

Figure 5: Common neighborhood templates for CA…………………………………………….14

Figure 6: Applying rules to cells in GOL………………………………………………………..16

Figure 7: Screenshot of Trello…………………………………………………………...………27

Figure 8: Screenshot of game Bubu’s UI……………………………………………...…………28

Figure 9: Screenshots of the randomly generated islands using CA-PCG in Bubu…...…………30

Figure 10: Screenshot of Unity’s autotile component in Tilamps…………………….…………33

1

Introduction

As Computers have become stronger, faster and more efficient, the creation of games

have become way more flexible, unique, and representative of their genres. This is because it

became much easier to focus on a game design/gameplay that provided an unique experience to

the player rather than using limited resources and space to create them. Thanks to this, concepts

like Procedural Content Generation have been used to concentrate interactively rather than

conservation of resources. There are now a lot of ways to create, explore and develop levels in

video games. Modern Rougelike and mini RPGs games are some genres that have benefited from

this openness to just build without limitations. New creative games like Hades, Spelunky,

Terraria, and many others provide a fulfilling experience to its audience. For this reason, it has

become my interest to explore the process of designing these types of games while

simultaneously building one utilizing Procedural Content Generation (PCG), Cellular Automata

(CA), and Agent Based Modeling (ABM). The focus of this project is to research the intricacies

and styles of these concepts and laterally build a game, Bubu, to explore all the benefits and

disadvantages of level designing through random computation in relation to these genres– and

others. This project will go over each of these concepts and explain how they will be utilized to

build this game. Moreover, I will question how these concepts facilitated (or made harder) the

creation of Bubu while explaining how they benefit games in general.

2

This is a quick overview of all covered topics:

Chapter I:

History of RPGS and Roguelike Games: Quick overview of what RPGs and Rougelike

genres are in video games, when they were built and popular games that currently are

under this umbrella.

Procedural Content Generation: This goes over what is PCG, how it’s typically used

and how it can be implemented in games. Moreover, its relationship to roguelike games,

how they benefit and what are some challenges you can face when using this algorithm as

opposed to designing a game manually.

Cellular Automata: History and overview of what CA is, quick go-through of The

Game of Life, and how to build your own CA.

General Overview of ABM: Explains what is it Agent Based Model and the benefits and

withdrawals of using this model.

Biggest Takeaways to Level Design a Rougelike Game Using PCG: Analysis of what

seems to make PCGs game great games despite being built on randomness.

Chapter II:

Chosen Technology: The tools that I have decided to use to build this game using these

concepts. This goes over some of the useful components Unity has as a gaming engine, as

well as the benefits of using C# strongly typed language and object oriented.

3

Game Bubu and Game Design Approach: Goes over some of Unity's components used

for the game Bubu and explains how they allowed the creation of PCGs (Especially

Unity’s Tilemap system.)

Discussion: Consider roguelike games, how indie developers were successful in their

creation of these games and how it's linked to the way they work in relation to their

audience.

Conclusion Future Work: Goes over the things I learned while building this project and

potential future work moving forward.

4

CHAPTER I: Game Design in RPGs and Rougelike
Genres

5

1.1
History of CRPG and Roguelike Games:

“There are many genres of computer game, but none offer its cocktail of thrilling combat,

tactics, strategy, character development, branching storylines, fantastic worlds to explore, and

personal enrichment. It just doesn’t get any better than quality CRPG” (Barton and Stacks).

Computer role-playing games (CRPGs) and roguelike games both came to life in the early days

of computer gaming, with their development dating back to the 1970s and 1980s. CRPGs were

influenced by tabletop role-playing games like Dungeons & Dragons which were popular at the

time while Rougelike games adapted practices efficiently to generate levels. One of the first

commercial CRPG is widely considered to be Akalabeth: World of Doom, which was created by

Richard Garriott in 1979.

Figure 1: Intro image of the game Akalabeth.
[Source: https://www.indieretronews.com/2022/11/akalabeth-world-of-doom-classic-lord.html]

6

Over time, CRPGs evolved to include more complex narratives, larger game worlds, and a

greater emphasis on character development and customization. Some of the most influential

CRPGs of the 1990s and 2000s include Ultima, Baldur's Gate, and Fallout, all with unique

mechanics and great success.

Roguelike games, on the other hand, originated from the game Rogue which was

developed in 1980, primarily by Michael Toy and Glenn Wichman. Rogue was a

dungeon-crawler game that emphasized on procedurally generated levels and permadeath

(meaning that when the player's character died, they had to start all over.) Rogue spawned a

subgenre of games that came to be known as "roguelikes," which were composed of turn-based

gameplay, randomly generated levels, and permadeath. Some of the most well-known roguelike

games include NetHack, Angband, and Dungeon Crawl Stone Soup.

Figure 2: Image of a Nethack generated level. [Source https://snapcraft.io/nethack]

7

As described in the article “History of the Roguelike, from Rogue to Hades” written by

Coleman Gailloreto: “Roguelikes present a random, hostile world in which time is rarely on the

player’s side. In general, wasted turns will come back to haunt the player, by attracting monsters,

depleting food or just from plain old opportunity cost.” A huge factor in this genre is the

generated environment and its ability to impede the player from succeeding which, of course, is

obtained through PCG algorithms.

Both CRPGs and roguelike games have continued to evolve and adapt to modern gaming

conventions. CRPGs like Divinity: Original Sin and Pillars of Eternity have robustly shown their

success, while roguelike-inspired games like Spelunky and Dead Cells have gained popularity for

their fast-paced action and challenging gameplay. It isn’t hard to see why these gaming genres

are so popular and unique. They provide limitless possibilities, worlds to explore, great

challenges, self-improvement, and even a personal connection to your own heroes. As it’s more

fascinating, some of these games and their worlds/levels are built through randomness and few

rules. How can we accomplish this? For the game I will be building, Bubu, I will go over how

using these concepts we can generate cool levels to play in as well as recognize the distinct ways

of building a game without them.

8

1.2
Procedural Content Generation:

The book “Procedural Content Generation for Games” provides a well put definition for

how we can think of PCG: “Procedural content generation is the automatic creation of digital

assets for games, simulations or movies based on predefined algorithms and patterns that require

a minimal user input” (Shaker et al. 7). This means that you can computationally generate

content using patterns, randomness and/or rules. As previously mentioned, PCG has been

exhausted in roguelike games due its ability to provide endless levels which encapsulates how

roguelike games are built. Even though this concept was used to conserve memory and allow

unlimited gameplay, it is also considered to be attached to level design as it can provide engaging

systems and levels.

One of the benefits of PCG is that it allows developers to create content that is unique

and varied for each playthrough which enhances the replayability of a game. Since the content is

randomly generated, the player rarely experiences the same level twice. This can be particularly

effective in open-world games, where the environment is a critical component of the player's

experience. PCG also allows the creation of content more efficiently. Traditionally, designers

would have to spend significant amounts of time and resources creating content by hand, but

with PCG, much of the work can be automated. This can result in a significant reduction in

development time and costs. This is especially true and actively utilized for independent game

developers (Indie devs.) Indie developers are very small teams, or even solo developers that

create games with their own ideas, story line and mechanics. The rise of indie developers is what

has allowed the flourishing of recent roguelike games like Spelunky. The creation of a game

9

can’t be detached from the way it's created. Big game dev companies have the resources and

time to build a great game. Indie developers need to be astute, and self-driven as they have way

less resources and time for building their games. Later in this paper, I will point out how indie

devs are so successful in PCGs despite working in small teams.

1.2.1
Procedural Content Generation Vs. Handmade Game Design:

However, it is undeniable that uniqueness and intentionality of a level design can be lost

due to this way of generating content, therefore, running into the issues of repetitiveness or even

poor-crafted levels. For example, when there isn’t a possible path to find the exit hence making it

impossible to complete a level. Or even worse, enemies are not spawn in reachable areas and you

can never experience the satisfying combat experience. This is why PCG despite being randomly

generated still requires user input and some manual instructions to assimilate to a more

controlled environment. Moreover, it equally requires tons of trial and error to make sure that all

the levels that are being generated are playable.

If we consider a hand crafted game as Hollow Knight, you will soon notice these minor

but yet, important qualities of a game that are lost when randomly generating content. Hollow

Knight, a game built by Team Cherry, was accurately designed, providing an incredible story line

and mechanics. From sounds, to skills, to maps, to bosses, everything is interconnected in a way

that outstands a player’s expectation. A game this carefully designed is arguably what the

audience wants. While this game follows story mode and doesn’t produce new content as is

achieved through PCGs, it’s important to note that it isn’t necessary. In fact, it’s probably best

10

that the game has a rigorous story mode. This is also because Hollow Knight is more commonly

embraced as part of the Metroidvania genre. Metroidvania is a sub-genre term for

action-adventure games where the level design is guided by non-linearity and utility-gated

exploration and progression: “These games usually feature a large interconnected world map the

player can explore, although parts of the world will be inaccessible to the player until they

acquire special items, tools, weapons, abilities, or knowledge within the game”

(“Metroidvania”).This creates a sense of uncertainty and dangerousness. While the game is

progressive and eventually you will beat the boss and win the game, the player is always altered

by knowing that there are secret locations, additional skills and potential milestones. The player

has to then make decisions such as “Do I explore as much as I can?”, “Do I speedrun through the

game?”, “Should I ignore these secret spots?” “Should I play it safe and not risk wasting my

resources?” While cumbersome to some, these are some of the qualities that many players want

to face when playing a video game. It is therefore important to consider when designing a game

what exactly you want to achieve and how it connects to the genre you’re interested in pursuing.

1.2.2
PCG and Roguelike Genre in Spelunky

A perfect example that utilizes PCG is the game Spelunky by Dereck Yiu. In Spelunky,

players take on the role of an adventurer who must explore a series of underground caves filled

with dangers such as traps, enemies, and environmental hazards. The ultimate goal is to reach the

end of the cave and retrieve a treasure known as the "Golden Idol."

11

Figure 3: Gameplay of Spelunky [Source: https://store.steampowered.com/app/239350/Spelunky/]

PCG in Spelunky uses a set of rules to generate levels that are both challenging and

balanced. It starts off by dividing the level into a grid of tiles, each representing a small section

of the level. The PCG system then generates the level by placing tiles in the grid based on a set

of rules. These rules take into account various factors, such as enemy placement, item

distribution, and level layout, to ensure that the generated level is balanced and challenging.

12

Figure 4: Graph that shows the generating of a continuous path from start to finish in Spelunky
[Source: https://www.researchgate.net/figure/Level-generation-in-Spelunky-Adapted-from-10_fig3_309279824]

One of the key benefits of using PCG in Spelunky is that it creates an infinite variety of levels.

This means that players can play the game multiple times and still encounter new and unique

levels. This also allows the game to remain fresh and challenging even after multiple

playthroughs. Because the levels are generated randomly, players never know what to expect,

creating a sense of unpredictability and discovery. The levels are also designed to be challenging,

with the PCG system generating enemies, traps, and other obstacles in strategic locations to

create a difficult but fair gameplay experience. However, a more distinct characteristic of

Spelunky is just how well designed the game is through randomness. Most of the players don’t

realize that this game is randomly generated since it really considers its parts as a whole to

produce a fun challenging level. Overall, the PCG system in Spelunky is a key aspect of the

13

game's design, replayability, and challenging gameplay. It is a great example of how PCG can be

used effectively in game design to create unique and engaging gameplay experiences.

“With Spelunky, you are never learning a 'piece' of music.... It's still a game about

repetition and learning, but what you are learning is the overall composition, understanding the

overall system and how it works, and becoming fluent in that" (Terrell). The main takeaway from

this style of level design is that the game forces the player to understand how the game itself

works. Every level, every playthrough, will be composed of random factors that will work as a

whole to challenge the player. This works so well in RPGs and Rougelike games precisely

because it truly puts your skills into question. It provides a more satisfying experience because

going through a level isn’t just “muscle memory.” thing, it requires you to weigh each decision

out and take the best course of action, whether you are right or wrong.

However, a common issue among roguelikes is the inability to provide a good reward

system to the players to balance out how challenging the playthrough can be. Given that these

types of games use permadeath, it is often dissuading to keep playing after a few runs because

any potential progress is never preserved. In the discussion in Yiu’s book, Spelunky, this is

pointed out as losing due to the game and not your lack of skill can be detrimental: “But from

this game it seems you suck at difficulty.” While he and I agreed that a player’s death should

always be attributed to their own mistakes, we disagreed on what actually constituted a player’s

mistake. In his mind, a death that resulted from his own self-described lack of ‘natural skills’ at

video games—including good dexterity and reflexes—was the game’s fault and not his. “Feeling

cheated and insulted by a game is not fun,” he exclaimed. “Unless a person is brainwashed or

mentally handicapped.” When I die in a game, it’s frustrating but it makes me want to keep

14

trying and improve. To him, it was insulting” (Yiu 55). Although there are different ways to

consider solving this issue, it’s important to note that there is no easy fix, especially because

losing all your progress after playing means restarting from all over. Finding the right balance

between challenge and skills can be very difficult as you’re dealing at the end with randomness.

1.3
Cellular Automata

Cellular Automata is a discrete model by a mathematical computation that generates

complex systems composed of simpler rules. CA is a grid of cells, where each cell has a state–

this can be alive or dead, on and off, etc. Each cell has a neighbor and based on some rules, the

interaction between the cells and its neighbor will generate the outcome of this system. This

output can be deterministic or stochastic. A cellular state can be described as: f(Neighbors, state).

This process happens iteratively for each generation.

Figure 5: Common neighborhood templates that are used to that are un in a 2 matrix to for CA.This image shows
that you can consider in a given cell its 4 adjacent cells vertically and horizontally, or you can consider all its 8

adjacent cells, vertically, horizontally, and diagonally.
[Source: https://theory.org/complexity/cdpt/html/node4.html]

15

1.3.1
Example, Game of Life:

One of the prominent examples using CA is the Game of Life (GOL.) The Game of Life

is a cellular automaton created by mathematician John Conway in 1970. It is a zero-player game,

meaning that its evolution is determined solely by its initial state, and does not require any

further input. The game consists of a grid of cells, where each cell can be in one of two states:

alive or dead. The state of a cell at any given time depends on the states of its eight neighboring

cells (horizontally, vertically, and diagonally adjacent). The rules for determining the next state

of each cell in GOL are as follows:

● Any live cell with fewer than two live neighbors dies, as if by loneliness

● Any live cell with two or three live neighbors lives on to the next generation.

● Any live cell with more than three live neighbors dies, as if by crowding.

● Any dead cell with exactly three live neighbors becomes a live cell, as if by reproduction.

16

Figure 6: Applying rules to a set of cells in the Game of Life. [Source:
https://www.researchgate.net/figure/Rules-of-Conways-Game-of-Life_fig5_339605473]

These rules are applied simultaneously to all cells in the grid, and the process is repeated for each

generation, creating a new grid based on the previous one. The Game of Life has been used to

study complex systems, pattern formation, and artificial life, and has also been used for

entertainment purposes as a simple example of its behavior in a complex system.

To create a simple CA algorithm, we can create a table/grid (a matrix) where each i,j is a

cell. You can start off by going one generation to set up the grid, and giving a state to each cell

given a probability– typically 45%. You will have a neighbor check function that will check

neighbors of the current cell you are at. Using this function, we can then create a set of rules that

will dictate each cell’s outcome. This can be up to preference or the system you wish to create.

Lastly, you will want to have another function that smooths out your system. You can repeat this

process for multiple generations to build something (in the case of this project, an island.)

https://www.researchgate.net/figure/Rules-of-Conways-Game-of-Life_fig5_339605473

17

For the purposes of this project and the creation of the game, we can consider CA as an

enforcement tool to produce rich results in PCG through well thought out patterns. Utilizing

these CA rules, we will be able to form the island after a set of generations in the grid. The

binary state– 1s and 0s, will represent water and ground for the game Bubu.

1.3.2
Necessary aspects for Level Design using CA-PCG:

The generation of a game using CA-PCG requires more than just creating an island.

Repeatedly generating content with a set of rules means that enough variation has to exist in

order for the game to show sophistication. The addition of items, enemies, obstacles, and

missions can be considered to produce new content each time. Additionally, the game still needs

to account for a goal. This relates to what it is that the player needs to solve in order to win the

game. What challenges and obstacles will arise to prevent the player from winning.

A more important aspect that can radically affect the player’s game experience is a

functional game. Even though this is rather obvious, it can be a real problem when playing with

randomness. The same excitement of a random world to explore, is the same fear of an

unstructured world that can’t be navigated. Especially for creating a map utilizing CA-PCG, it’s

important to manually set the grid so that it connects its path, at least those that are necessary to

traverse through.

Thirdly, it’s important to consider the degree of difficulty at any given point in time

during this game. A game that’s too difficult or too simple it’s not joyful to play. If using

CA-PCG, are you generating small corridors with a lot of enemies that are impossible to evade?

18

Are you placing really strong enemies together in the same locations? These are some examples

that can gravely affect the generated level and thus the player’s experience.

1.4
General Overview of Agent Based Modeling (ABM):

Agent Based Model is a system modeled as a collection of autonomous decision making

entities called agents. Each agent has the ability to assess the situation and respond based on a set

of rules. It can then be compared to their interactions between agents. This is often used to

emulate real-world systems. Moreover, agents can evolve / improve over time, allowing them to

demonstrate unique behaviors. For this game’s project, you can start considering Agents as

enemies AI.

1.4.1
Benefits of using ABM:

The article, “Methods and techniques for simulating human systems,” states many

benefits of utilizing ABM: Firstly, it argues that ABM captures emergent phenomena, i.e, the

interaction between individual entities. By definition, they cannot be reduced to the system’s

parts: the whole is more than the sum of its parts because of the interactions between the parts.

We want to consider ABM for potential emergent phenomena when:

● Individual behavior is nonlinear and can be characterized by thresholds

● Individual behavior exhibits memory, path-dependence.

● Agent interactions are heterogenous and can generate network effects

19

Additionally, ABM provides a natural description of a system ABM can be the most natural

medium for describing and simulating a system composed of behavioral entities. Especially

when there’s plenty of information about the agent, it is easy to build ABMs that simulate a more

realistic model. This is usually desired for naturality when:

● Individual behavior is complex

● Activities are more a natural way of describing the system than processes

● Stochasticity applies to the agents’ behavior. Sources of randomness are applied to the

right places as opposed to a noise term added more or less arbitrarily on an aggregate

equation

ABM is flexible as it can easily add more agent-based models when necessary. Moreover, it

proves a natural framework for tuning the complexity of agents (whether that is behavior, degree

of rationality, ability to learn and evolve, and rules of interactions.) Moreover, it can be easily

aggregated sub-agent, single agents with their own levels of behaviors/rules, providing way more

diversity for the construction of Agent-based models (Bonabeau).

1.4.2
Downside of using ABM:

There are downsides of using an Agent Based Model that we need to consider:

● It’s specific-based. It can only serve the purpose it was assigned, thus any

general-purpose model cannot work.

● Computationally intensive: ABM simulations can be computationally intensive,

especially when the number of agents and the complexity of their interactions increase.

20

This means that ABM simulations can be time-consuming and require high-performance

computing resources.

● Difficult to validate: ABM models can be difficult to validate because they often involve

many interacting components, and it can be challenging to ensure that the model

accurately reflects the real-world system it is meant to simulate.

● Sensitivity to initial conditions: ABM models are sensitive to initial conditions, meaning

that small changes in the starting conditions of the simulation can lead to significantly

different outcomes. This can make it challenging to compare different simulations and

draw meaningful conclusions.

● Lack of standardization: There is currently no standardized methodology for developing

and validating ABM models, which can make it difficult for researchers to compare and

replicate results across studies.

● Assumption-heavy: ABM models require many assumptions about the behavior and

interactions of agents, and the accuracy of these assumptions can be difficult to verify.

This can lead to uncertainty and potential biases in the simulation results.

On the bright side, utilizing ABM for building a game eliminates some of these

downsides. ABM concept will be used for the creation of smart enemies AIs that can challenge

the player in its journey. Therefore, all enemies will have a purpose. For creating this ABM, we

can consider each agent’s position to the player and make decisions based on this (which it’s

information we know.) For example, an agent enemy can accelerate when closer in distance to

the player to put pressure on the player. Moreover, the Agent based models can interact with

other enemies, or their own class attributes. An enemy AI whose health is low can be

21

programmed to run away from the user. On the other side, an enemy AI that is closer to other

enemies AIs can become more aggressive and attack together. Since all the parameters presented

for creating these ABMs can be easily calculated, it can be determined at any point in the game

what action should be taken.

1.4.3
Biggest Takeaways to Level Design a Rougelike Game Using PCG:

Considering the nature of Rougelikes games, PCG, and level design, I want to draw out

some important key points that can help for building the game Bubu based on the research I have

gathered. I think it’s important to stay within the genre (and by this I mean still creating a game

that is based on procedurally generated levels, permadeath, and challenging levels.)

1. The game has a good system to compensate for permadeath:

In the game Rogue Legacy, when you die you don’t feel like you have totally

wasted your time. This is because the money collected from that run will be saved

and can be used to buy upgrades that can keep you alive for longer. Similarly in

the game Isaac, even though permadeath is very frequent, you still have the

chance to unlock new characters, items, and/or abilities which don’t really

decrease the difficulty of the game; however, the amount of unlocked stuff

correlates to how much you’ve progressed in the game, allowing the player to feel

rewarded for the time they invest playing.

22

2. There still exists good amount of content to entertain the player, it’s not just

mechanics:

One of probably the biggest downsides of building roguelike games is that they can

discard the story behind the game itself because there is more emphasis on mechanics and

gameplay. As discussed earlier, a well designed game like Hollow Knight will stay true

to its colors and will provide a satisfying story that the player can follow. For roguelike

games, a great illustration is Hades since this game uses an astute system to provide

content and a compelling story while also incentivizing the players to play more. Even

though Hades has the permadeath component, the player can be excited to know that new

content will be unlocked after the run throughs, keeping the audience entertained even

though they keep losing at the game.

3. The randomly generated levels have enough variety and don’t show repetitive

boring levels:

Roguelike games take the advantage of their genre when there is a focus on never lasting

gameplay. Good randomly generated levels will not make the player feel like they are playing the

same level they just played a few minutes ago. And to achieve this, we can consider randomness

not only for the generation of levels, but also to create unexpected events. In Spelunky, the

breakable objects that players can pick up and use have a 0.05% chance of having an enemy

inside. While subtle, an instance where a player is trying to get gold out of a simple breakable

object becomes a questionable decision that makes the player consider its current situation before

breaking a jar.

23

24

CHAPTER II: Creation of Bubu

Author note: All images presented from this chapter and on are from their author (Angel Obergh)

25

2.1
Chosen Technology:

As it’s no surprise, building a game it’s hard. This is why I have decided to use Unity as

the gaming engine to build Bubu. Unity is a powerful software that allows the creation of 2D,

3D, and rendering animations. Unity has a lot of built in components that will facilitate the

creation of CA and PCG for this game, as well as minor tasks like detecting collision, enemies,

sound track. Along with Unity, Visual Studio Code is the IDE that I will be using to code the

scripts. VS Code is typically used in Unity to code.

Unity has a built-in physics engine that makes it easy to simulate realistic movements and

interactions between objects in the game world. This is important for Bubu as it allows to create

a believable and immersive game world where objects interact with each other in a natural way.

Unity provides a wide range of tools for creating and animating 2D graphics. This includes a

powerful sprite editor which allows the creation of complex animations and spritesheets for

characters, objects, and backgrounds. Unity also supports the use of 2D physics, which is

especially useful for top-down view games that rely on accurate collision detection and response.

Furthermore, Unity provides a range of scripting languages, including C# and JavaScript,

which make it easy to create game logic and mechanics. This is useful to implement ABM, AI

behaviors, inventory systems, and character abilities, in a straightforward and organized manner.

In addition to this, Unity provides a range of tools for optimizing game performance, which is

especially important for top-down view games that may involve large numbers of objects on

26

screen at once. Some of these tools that I am hoping to include are: Object pooling, occlusion

cooling, LOD systems, and Unity Burst Compiler.

C# is an object oriented language which has been beneficial for this game to create

enemies classes, a player class, and agent based models. Moreover, C# is a strongly typed

language which improved the readability of my code.

2.1.2
Plastic SCM | Version Control:

Because Unity is the software I am using to build this game, I have decided to work with

the version control system Plastic SCM. Plastic SCM is a software that assists in managing

codebase, including version control, branching and merging, code review, and issue tracking. It

supports a range of programming languages and integrates with popular development tools such

as Visual Studio, Eclipse, and Unity. While this is typical for any big project, Plastic SCM has

been a terrific tool to revert back to versions of my program. This is because sometimes big

issues like infinite loops or crashes happened while building this project and this made it super

easy to simply go back to a working version.

27

2.2
Game Bubu and Game Design Approach:

Figure 7: Screenshot of Trello page with some of the goals and to do list of things necessary to complete
Bubu.

The game concept directly ties to how we are utilizing PCG and CA. Bubu is a survival

Roguelike game where the player wakes up in the middle of nowhere and with little resources, a

sword, some arrows, and a pistol with limited bullets, the player needs to fight monsters, evade

traps, and survive. In the midst of the unknown, the player can find items and add ups to become

stronger. Along in your journey, Spirit Ghosts will be situated at random locations, willingly

28

ready to help the player and help them find the correct path. The player needs to use this

information to win the game.

PCG and CA work cohesively with this survival theme as this becomes a new experience

each for each run through of the game. With enough variety, the player can spend a lot of time

exploring and figuring out the new paths/missions to win the game. The creation of a long

unexplored map will constantly force the player to choose new areas, figure out new ways to

escape, and think about the limited resources they have. Because one of the main focuses of this

game was to bring a sense of exploration (Adventure rougelike), I have considered adding UI

features such as a Minimap and a Boxchat to communicate.

Figure 8: Screenshot of the game Bubu in Unity showing the basic UIs of the game with the box text, mini map, and
hearts containers.

29

2.2.2
Implementation of Cellular Automata for the Creation of an Island

For Bubu, the MapGenerator script deals with the construction of the island. The function

GenerateMap() takes in a grid sizes WIDTH and HEIGHT. It starts off by iterating once through

the map, giving a state to the cell, 1 or 0 with a 45% probability (1 corresponds to an area that’s

inaccessible and 0 corresponds to an area that’s land.) After fully iterating through the grid, it

“smoothes” out the grid given the CA rules. The function int countWalls(x,y) takes in a point in

the graph and returns how many neighbors it has given our binary system. If this function returns

4 or more walls, then our smoothing function will convert this cell into water, and if it’s less than

4 it will convert this cell into land. This is repeated as many times as we wish to iterate through

the map to refine edges and areas that are too unnatural.

Figure 9: Screenshot of the generated islands in Bubu. Cellular Automata is used to create islands using different
parameters, first image uses Width and Height of 150x150, with 7 proceeding generations Second image uses Width

and Height of 300x300, with 4 proceeding generations.

30

Figure 9.1: 600x600 with 6 smoothing.

After a lot of trial and error, the island started to take shape. I realized that in order to keep a

more natural island look, it was necessary for the width and height to be in the margins of

100-300, with 6-10 generations. Drastically increasing the WIDTH and HEIGHT or not adding

many smoothing generations created a lot of these unstructured islands where water and land

were almost the same.

I took inspiration from building around limitations. As the article “How to effectively use

procedural generation in games” argues: “The next time you think of a question like ‘What is the

best way to generate a system of caves?’, maybe think, ‘What is a way that I already know to

generate a system of caves, why are those caves unsatisfying to me, and what can be changed

about everything but the caves themselves to make them satisfying?” (Kazemi). While this is an

island and not a cave, the same methodological process can take place to solve some of the

issues. Why expect the perfect randomly generated island when instead I can work around its

imperfections? I have decided to do this because it feels as if it will allow a more explorative

environment. Additionally, this will allow me to think more critically about mechanics that can

31

enhance the gameplay while also taking in account how to solve for those “unsatisfying”

structures. As it’s true that using PCGs brings a lot of challenges, like not having transversable

paths, or making sure that items are located in the ground and not water.

After having the map generated, I focused on building other functions to create content.

Thanks to the Tilemap component in Unity has layers, it’s easier to have a layer for each

respective asset that’s added to the game. This is very useful as it allows you to keep a ground

layer on the very bottom, and a trap layer for instance all the way to the top. I created a helper

function, FindRandomFloorTile() of type Vector. Given a number of trials, it randomly picks a

location in the map and then checks to see if it’s available, if not it keeps checking based on the

number of trials. By available, it means that it checks if the randomly chosen tile is a floor tile

and not a water tile. If that’s the case, then stores the location and returns it when it’s needed.

CA-PCG in Unity

With the basic idea of how each algorithm works, we can now consider the game Bubu as a

whole. Cellular Automata and PCG will be directly connected to each other while Agent Based

Modeling will indirectly use this information to create enemies AI. For the instance of Bubu,

CA-PCG will simply generate an island with enough variation that is fun to explore. I have

decided to do this by using the component Tilemaps from Unity. Tilemaps is a component that

you can utilize to facilitate the tilesets and organize which tiles will have collisions and which

tiles will not. More in depth, Unity provides a really beneficial component within Tilemaps

called Autotile. Autotile allows you to manually set up the rules and behavior of each tile so that

32

it connects the right tiles to each other. In the MapGenerator script, we can create a public

component of Tile Map and draw out the autotile. The Autotile then sets the autotile based on

our behavioral rules of CA, and because it automatically creates corresponding tiles adjacent to

one another, there’s no need to worry about tiles in their incorrect position.

33

Figure 10: Unity’s component autotile in Tilemaps. This creates a single set that contains this tileset and the
relationship of each tile with its whole. When our Cellular Automata calls out this autotile (that’s a tile you can set
on the grid) it always considers its adjacent tile and adds the correct tile at any given point. This happens even after

going through different generations Smoothing for our function.

34

By doing so, we can now create tile map layers that can account for everything necessary to

generate a full island. It starts off with the layer of the autotile which simply sets the land tiles

and the water tiles in their corresponding position/form. It then uses another tilemap that has all

the obstacles like trees, rocks, bushes, etc. and adds new objects depending on the first layout for

the island. That is, after creating the full island, there’s now another iteration through the map

that checks if there’s space available to add obstacles. This means that it will only place an

obstacle over the tiles that are considered floor. This prevents issues like having trees or bushes

on water.

After having a generated map, we can start adding enemies. The location of the enemies

will be evaluated on the map based on free floor tiles and the location of the player. The goal is

to have a dynamic list of enemies that will challenge the player while exploring the island. Now,

ABM behavior will be dependent on specific aspects. Primarily, each agent will have the ability

to detect the player and follow them within a given distance. As the player loses health, the

enemies will become frenetic, adding difficulty and pressure when the player is low. The

enemies will also take in account the amount of bullets and arrows that the player has. The lower

the amount is, the more likely they will become in getting closer to the player to attack. Also the

enemies will consider their surroundings, how many other enemies are around, their own health,

and the time elapsed.

This implementation will hopefully create an intense survival game where the player

truly needs to be mindful of their time, location, and resources at all times while playing the

game. With enough variety, the player can make decisions as to whether to hide, search for

35

resources, or just go on in a full fight with the enemies. This will be the core of the game. More

components can be considered after to create a more sophisticated game.

Discussion:

There’s a lot of styles and different ways to create a fun interactive game. Finding the

right balance between luck and skill, content and uniqueness, and even rewards systems and

repetitive loss makes up for a lot of prominent games. When using PCG and CA as the main

components to build a game like this, there needs to be accountability for then dealing with

everything else that will make up for the game as a whole. It’s imperative to think critically about

how you will use your other systems to create a good game.

I also would like to bring up the conversation of Indie developers that take their time to

build awesome games with little resources in these genres. As a game enjoyer, over the past few

years I have come to see myself playing more and more indie games rather than AAA games.

Why is this? A huge reason is probably because I am a nostalgic guy who loves pixel art like

Final Fantasy and Zelda. Indie devs bring a lot of resemblance to these types of games. But

more for a more technical answer, I truly like the carefulness and intentionality that’s put in each

game. I don’t want to take away from AAA organizations this credit because they spent years in

their big games and of course that means probably more perfection. However, I think I am

speaking towards a different kind of thoughtfulness. For indie devs to sustain themselves, they

often do marketing and offer their audience to input ideas for their on-going games. While the

intention here is for indie devs to be able to work full time in their games, an invisible contract

36

between the audience and the author is built, even some sense of trust. If a game concept is

absolutely rejected by the audience, there is very little chance that the developer will adapt it to

the game. Therefore, you can think of these games almost as if they were built for their audience.

Conclusion in Future Work:

While I was unable to complete Bubu, I learned an incredible amount about game design

in relation to the algorithms used to build it. Don’t underestimate the job of a game designer as

even the smallest miscalculation can fatally destroy a video game. If you look at a game like

Celeste whose mechanics are built completely dependent on the game physics, even a slight

change to gravity will prevent the player from reaching the platforms. Games that are accurate

are satisfying because nothing but perfection is expected by the player and knowing that you can

pass the level is proof that you beat the designer. When randomness takes part in a game,

conversely, a whole new scenario is created. It’s not just you against the creator; it’s also you

against logic. It’s you against the game, almost as if the level itself is considered an enemy. At

the same time, the designer is responsible for yet creating another living creature in their game

that’s neat, beatable, and joyful to play against it. So what’s at stake? Considering science itself

as art is by far the biggest lesson I learned from PCGs, roguelike games, and this project. Despite

not finishing my project, I realized that it takes more than just knowing how to use PCG in order

to build a videogame. Additionally, I have come to value more UI’s systems and less direct parts

of a videogame. As a creator, I was initially interested in having great mechanics that will

produce quality gameplay. But I was wrong. Quality gameplay comes from all the parts as a

37

whole. A fun compelling story, an inventory with all your items, a minimap UI, present health

system, particle systems, and the list goes on. To say the least, PCG for games is not enough.

Overall, I am glad that I could do this research and learn more about level design. I had

the opportunity to learn how to use a gaming engine, Unity, and how it works. I also learned a lot

about organization and just how important it is for building a game. With this set of skills, I am

planning to finish Bubu and start my journey in becoming a Game Programmer. I hope that by

finishing this game I will be able to create more fun and interestings games in the genres of

roguelikes and RPGs.

Works Cited

Barton, Matt, and Shane Stacks. Dungeons and Desktops: The History of Computer

Role-Playing Games 2e. CRC Press, 2019.

38

Blomberg, Johan, and Rasmus Jemth. An Exploration of Procedural Content Generation for

Top-Down Level Design. Chalmers University of Technology, 2018,

https://publications.lib.chalmers.se/records/fulltext/256132/256132.pdf.

Bonabeau, Eric. “Agent-Based Modeling: Methods and Techniques for Simulating Human

Systems.” Proceedings of the National Academy of Sciences, vol. 99, no. suppl_3, May

2002, pp. 7280–87. DOI.org (Crossref), https://doi.org/10.1073/pnas.082080899.

“Exploring Roguelike Games Book by John Harris (z-Lib.Org).” Studylib.Net,

https://studylib.net/doc/26051747/exploring-roguelike-games-book-by-john-harris--z-li

b.org-. Accessed 3 May 2023.

Gailloreto, Coleman. “History of the Roguelike, from Rogue to Hades.” ScreenRant, 11 Dec.

2020,

https://screenrant.com/roguelike-definition-games-rogue-hades-roguelite-dungeon-craw

ler/.

Harris, John. Exploring Roguelike Games. CRC Press, 2020.

---. Exploring Roguelike Games. CRC Press, 2020.

Kazemi, Darius. “How to Effectively Use Procedural Generation in Games.” Game

Developer, 10 Apr. 2019,

https://www.gamedeveloper.com/design/how-to-effectively-use-procedural-generation-i

n-games.

LoguidiceBloggerMay 05, Bill and 2009. “The History of Rogue: Have @ You, You Deadly

Zs.” Game Developer, 5 May 2009,

https://www.gamedeveloper.com/design/the-history-of-rogue-have-you-you-deadly-zs.

39

Macedo, Yuri Pessoa Avelar. An Integrated Planning and Cellular Automata Based

Procedural Game Level Generator. Nov. 2018. repositorio.ufmg.br,

https://repositorio.ufmg.br/handle/1843/36255.

“Metroidvania.” Wikipedia, 25 Apr. 2023. Wikipedia,

https://en.wikipedia.org/w/index.php?title=Metroidvania&oldid=1151704310.

Spelunky - Derek Yu.Pdf - Free Download PDF.

https://kupdf.net/download/spelunky-derek-yupdf_59603950dc0d60dd012be30c_pdf.

Accessed 3 May 2023.

Terrell, Richard. “A Spelunky Game Design Analysis - Pt. 2.” Game Developer, 15 Nov.

2012, https://www.gamedeveloper.com/design/a-spelunky-game-design-analysis---pt-2.

	Discussion of Game Design and Construction of a Videogame Utilizing PCG, CA, and ABM
	Recommended Citation

	Bard College Senior Project

