
Bard College Bard College

Bard Digital Commons Bard Digital Commons

Senior Projects Spring 2018 Bard Undergraduate Senior Projects

Spring 2018

Training Neural Networks to Pilot Autonomous Vehicles: Scaled Training Neural Networks to Pilot Autonomous Vehicles: Scaled

Self-Driving Car Self-Driving Car

Jason Zisheng Chang
Bard College

Follow this and additional works at: https://digitalcommons.bard.edu/senproj_s2018

 Part of the Automotive Engineering Commons, Computer and Systems Architecture Commons,

Electrical and Computer Engineering Commons, and the Hardware Systems Commons

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Recommended Citation Recommended Citation
Chang, Jason Zisheng, "Training Neural Networks to Pilot Autonomous Vehicles: Scaled Self-Driving Car"
(2018). Senior Projects Spring 2018. 402.
https://digitalcommons.bard.edu/senproj_s2018/402

This Open Access work is protected by copyright and/or
related rights. It has been provided to you by Bard
College's Stevenson Library with permission from the
rights-holder(s). You are free to use this work in any way
that is permitted by the copyright and related rights. For
other uses you need to obtain permission from the rights-
holder(s) directly, unless additional rights are indicated by
a Creative Commons license in the record and/or on the
work itself. For more information, please contact
digitalcommons@bard.edu.

http://www.bard.edu/
http://www.bard.edu/
https://digitalcommons.bard.edu/
https://digitalcommons.bard.edu/senproj_s2018
https://digitalcommons.bard.edu/undergrad
https://digitalcommons.bard.edu/senproj_s2018?utm_source=digitalcommons.bard.edu%2Fsenproj_s2018%2F402&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1319?utm_source=digitalcommons.bard.edu%2Fsenproj_s2018%2F402&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/259?utm_source=digitalcommons.bard.edu%2Fsenproj_s2018%2F402&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.bard.edu%2Fsenproj_s2018%2F402&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/263?utm_source=digitalcommons.bard.edu%2Fsenproj_s2018%2F402&utm_medium=PDF&utm_campaign=PDFCoverPages
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://digitalcommons.bard.edu/senproj_s2018/402?utm_source=digitalcommons.bard.edu%2Fsenproj_s2018%2F402&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@bard.edu
http://www.bard.edu/
http://www.bard.edu/

Training Neural Networks to Pilot

Autonomous Vehicles: Scaled Self-Driving Car

Zishneng Jason Chang,

The Division of Science, Mathematics, and Computing

of

Bard College

May 2018

1

CONTENTS

Contents

1 Introduction 6

1.1 Purpose . 9

1.2 Scope . 10

2 Background 11

2.1 Computer Vision and Autonomous Cars . 11

2.1.1 ALVINN . 11

2.1.2 NVIDIA end to end learning . 12

2.2 Neural Networks . 12

2.2.1 Activation Function . 13

2.3 Training . 14

2.3.1 Error Functions . 14

2.3.2 Overfitting . 15

2.4 Convolutional Neural Networks . 16

2.4.1 Dense Layer . 18

2.5 Recurrent Neural Networks . 18

2.5.1 Long Short-Term Memory . 19

2.6 Models . 20

3 Implementation 25

3.1 System Overview . 25

3.2 Donkeycar Platform . 27

3.2.1 Datastore and Records . 28

CONTENTS

4 Datasets and Training 30

4.1 Tracks . 30

4.1.1 8-Track . 30

4.2 Circuit . 32

5 Methods 34

5.1 Model Training . 34

5.2 Steering Accuracy . 34

5.3 Position Tracking . 35

5.3.1 Path Averaging and Comparison . 37

5.4 Track Trials . 38

6 Results and Analysis 39

6.1 Steering Accuracy . 39

6.2 Raw Model Paths . 42

6.3 Averaged Model Paths . 44

6.3.1 Human Driver Path . 45

6.3.2 Linear Model . 46

6.3.3 Categorical . 47

6.3.4 RNN . 48

6.3.5 RNN Categorical . 49

6.4 Circuit Path Deviation . 50

7 Conclusion 52

Abstract

This project explores the use of deep convolutional neural networks in autonomous

cars. Successful implementation of autonomous vehicles has many societal bene-

fits. One of the main benefits is its potential to significantly reduce traffic acci-

dents. In the United States, the National Highway Traffic Safety Administration

states that human error is at fault for 93% of automotive crashes. Robust driver-

less vehicles can prevent many of these collisions. The main challenge in develop-

ing autonomous vehicles today is how to create a system that is able to accurately

perceive and process the world around it. In 2016, NVIDIA successfully trained

a deep convolutional neural network to map raw images from a single front-facing

camera into steering commands. Today, automotive companies such as Google’s

Waymo, and Tesla’s Autopilot, utilize deep convolutional neural networks to con-

trol their autonomous vehicles. The goal of this project is to evaluate how well

a recurrent neural network and categorical output perform when combined with

NVIDIA’s platform. These models’ performances are then evaluated on a scaled

self driving car and compared to a human driver. NVIDIA’s model combined

with a RNN is able to keep the car within 6.1 cm of a human driver’s path.

4

Acknowledgements
Thank you to Professor Sven Anderson for mentoring me through this senior project and advising me

throughout the semester. Another thank you to my friends for getting me through this semester. And

to Patrycja Witanowska for joining me through these highs and lows, and pushing me to be my best.

5

1 Introduction

The goal of developing an autonomous car is to create a vehicle that navigates from point A to B without

any human intervention. While the idea of self-driving vehicles have existed since the the 20s [14], the

idea of a intelligent vehicle being able to sense and perceive did not yet exist. As computers were not

commonplace, solutions to autonomous vehicles involved infrastructure built to guide them. An example

of early developments during the 50s was that of GM and RCA’s automated highway prototype (Figure

1) [1]. This prototype housed magnets that tracked steel cables embedded in the road. However, the cost

of installing these steel cables proved infeasible, and the magnetic system it utilized to steer was unstable

at high speeds. During a demonstration, a reporter noted the vehicle’s inability to detect vehicles ahead

of it, relying on the demonstrator to stop before colliding into a stopped car ahead [8]. The lack of

intelligence to guide the vehicle hindered any further development.

6

1. INTRODUCTION

Figure 1: Advertisement for GM’s “Electronic Highway of the Future”

During the 1970s the digital revolution sparked the development of intelligent autonomous systems [1].

Robotics researchers in the 70s aimed to reverse engineer intelligent systems found in animals: sensing,

processing, and reacting. In 1979 the Stanford Cart demonstrated the ability for a robot to complete these

tasks. In this project, the cart navigated around obstacles by processing stereoscopic images captured

by a swiveling camera [13]. This project laid the foundations for developing cars that could perceive

highways, intelligently process the information, and react from their perceptions.

Ernst Dickmann’s VaMoRs Mercedes van (Figure 2) successfully demonstrated the application of

computer vision and machine intelligence in autonomous vehicles. Notably, the van was able to drive

itself without relying on any external guidance infrastructure. This vehicle was capable of travelling on

freeways at speeds above 130 km/h. Dickmann’s system used Kalman filters to estimate the position of

the vehicle through a combination of inertial measurements and images [5]. Feature extractors extracted

1. INTRODUCTION

edges and areas of similar textures to determine vehicle direction. This project pioneered the beginning

of intelligent autonomous vehicles.

Figure 2: Dickmann’s VaMoRs Autonomous Van

In 2005 The United States Defense Advanced Research Projects Administration (DARPA) sought

to spur autonomous vehicle development in the United States. The result was the Grand Challenge, a

competition that challenged dozens of teams to to create an autonomous vehicle that could navigate a

150 mile course in California’s Mojave desert. During its inaugural competition in 2005, no team finished

the course. By the fall of 2005, 5 vehicles out of 195 managed to cross the finish line. In 2007 DARPA

shifted their course to a staged city environment. Out of the 11 teams, 6 completed the course [4]. An

area of needed improvement was computer vision. Autonomous vehicles require methods of recognizing

asphalt, other vehicles, and lane markings. Competitors in DARPA’s Grand Challenge solved these

patten recognition tasks with custom made feature extractors and classifiers.

The breakthrough of convolutional neural networks(CNNs) is its unique ability to learn and develop

feature extractors from training examples. This enables the neural network to find the most effective

feature extraction filters [17]. The first demonstration of its application in autonomous vehicles was

Pomerleaus Autonomous Land Vehicle in Neural Networks (ALVINN) in 1989 [15]. ALVINN demon-

strated a convolutional neural network that learned to steer a car on public roads, capable of speeds up

to 3.5 mph. However, during the 20th century the true potential of CNNs were limited by the processing

power required. Today, technological advances have enabled researchers to access resources capable of

1. INTRODUCTION

applying far more data and computational power to the task. For reference, ALVINN’s architecture

consisted of a single hidden layer back-propagating network. Neural networks today can be composed of

dozens to hundreds of hidden layers. These multi-layered neural networks are referred to as deep neural

networks.

In recent years deep convolutional neural network models have become commonplace in autonomous

vehicles. The Tesla Model S is known to use deep neural networks for vision based obstacle detection and

avoidance in their electric vehicles [2]. NVIDIA’s self driving car, DAVE-2 is capable of driving on public

roads using deep neural networks. This project focuses on expanding upon NVIDIA’s network detailed

in their paper [3]. This project compares a categorical model vs. single output model, and a single state

convolutional neural network to a recurrent neural network.

Variations of these networks are evaluated using a scaled self-driving car platform. The performance

of the these neural network models is assessed by the ability of the neural network to generalize to new

tracks. The aim of using this platform is to evaluate performance of these neural networks in a real

environment rather than a simulated one.

1.1 Purpose

This senior project explores implementations of deep convolutional neural networks for autonomous

vehicles. All implementations are modified versions of NVIDIA’s published convolutional neural network

[3]. This project explores the following variations:

• Categorical Output vs. Single Output

• Recurrent Neural Network vs. Single State Convolutional Network

NVIDIA’s network is a single state convolutional neural network that does not retain any internal

information from a sequence of inputs, acting only on current information. The goal of using a recurrent

neural network is to address this shortcoming. A recurrent neural network forms connections between

1. INTRODUCTION

units along a sequence, enabling the network to remember a sequence of inputs, making them applicable

to the task of self driving cars.

The second variation this project explores is implementation of a model with multiple outputs: steering

angles mapped to bins according to their output angles. This system allows the network to assign

probabilites to a vector of steering angles. This could possibly enable the vehicles to generalize more

effectively. These models are evaluated using a open source scaled self driving car platform, known as

Donkeycar.

1.2 Scope

While this project aims to build a autonomous vehicle, the limitations of the project are listed here:

• The car will not be considered to be fully autonomous. The scaled car is only able to predict

steering angles.

• The physics of a remote control car by no means simulates the driving dynamics of a real life car.

• Speed will be kept at such a low rate that slippage and other physical factors can be ignored.

2 Background

This section describes the information needed before proceeding into the project.

2.1 Computer Vision and Autonomous Cars

The most critical feature of a autonomous vehicle is its ability to detect and avoid obstacles around it

(pedestrians, traffic cones, or buildings). In 1979 the Stanford Cart demonstrated the ability of a robot

to find objects in a image and navigate around them [13]. Capable of traversing a 8 meter room in 5

hours, obstacles were identified in images by corners and areas of high contrast.

DARPA’s 2007 Grand Challenge exhibited the advancements in technology since the Stanford Cart.

Competitors’ vehicles relied on a combination of sensors and cameras to navigate the course. The winner

of DARPA’s 2005 Grand Challenge, the STANLEY Stanford team, detected obstacles by utilizing a

laser to steer and a camera sensor to control throttle. Their system did not utilize the camera system to

determine the direction the vehicle should travel [19]. Creating robust road surface and obstacle detection

algorithms for images required too much effort. The breakthrough of convolutional neural networks is its

ability to learn to recognize road surfaces and obstacles independently with minimal human preprocessing.

2.1.1 ALVINN

With convolutional neural networks, obstacles and road surfaces can be detected using a camera. ALVINN

first demonstrated the potential for convolutional neural networks to be used in an autonomous car.

ALVINN sensed the world around it through a forward facing camera and laser range finder. The neural

network model processed this information, and outputted a direction in which the car should travel.

11

2. BACKGROUND

However, ALVINN’s potential at the time was limited due to the processing power needed to train

convolutional neural networks.

2.1.2 NVIDIA end to end learning

In 2015 NVIDIA’s research team successfully developed a convolutional neural network capable of map-

ping raw pixels from a front facing camera into steering commands [3]. NVIDIA’s neural network is

able to learn useful road features in images with only steering inputs as a training signal. With their

trained network, NVIDIA’s neural network is able to navigate a car through highways and traffic. The

breakthrough of NVIDIA’s system is the ability for the car to navigate itself utilizing only a camera.

NVIDIA’s neural network serves as the basis for this research project.

2.2 Neural Networks

Neural networks are a type of machine learning algorithm vaguely inspired by biological neural networks.

These networks consist of thousands to millions of densely connected nodes. Through training, neural

networks can learn to classify data. A general model of a neural network can be seen in Figure 3. Each

node’s incoming connection is assigned a number known as a weight. These weights are initialized with

random numbers. Each neuron’s weight dictates what it will output. This example is a single output

neural network with four inputs and one hidden layer.

2. BACKGROUND

Figure 3: Neural network architecture

Artificial Node Neural networks are made up of many of artificial neurons - known as nodes. These

nodes are the basis for how neural networks transform raw inputs into desired outputs. The artificial

neuron works by calculating the sum of its weighted inputs, adding a bias, and outputting a value that is

a function of a summed input. Each node can be described as a transposed multiplication of a input X.

f(WT ∗X) (1)

2.2.1 Activation Function

The activation layer is responsible for taking the output of the artificial node y, and determining what

the neuron fires. This next section will describe two types of activations layers in this project: rectified

exponential linear units and softmax.

Rectified Linear Units Rectified linear units are an activation function that outputs x only if x

is positive. Otherwise, it outputs 0. The benefit of using rectified linear units is its ability to sparsely

fire nodes only with negative weights. These units are used in NVIDIA’s model described in Section 2.6.

2. BACKGROUND

f(x) =

{
0 x ≤ 0

x x > 0

Softmax The softmax activation function is used in the final layer of the categorical output models

described in Section 2.6. This activation function is a generalization of the logistic function, squashing

arbitrary real values between the range (0, 1). The vector of a softmax output sums to 1. For j = 1, ...,K.

This equation is used for categorical steering model. When used with cross entropy, it yields class

probability.

σ(z)j =
ezj∑K
k=1 e

zk
(2)

2.3 Training

For the neural network to learn, it must be able to reduce the error between its output and the desired

output. This training process is done through a two step process: feed forward and error back propagation.

During the feed forward pass the network is given an input and calculates an output determined by the

weights mentioned previously. As the network trains, it aims to reduce the error between the output of

the network and the actual output by changing the weights of its nodes.

Epochs A full training cycles are measured in epochs. The general definition of an epoch is a pass of

the network over the entire dataset.

2.3.1 Error Functions

A loss function calculates the error: the difference between the correct output and model’s ouput. This

error is propogated backwards through the model to reduce its error. While there are different ways of

calculating the error, this project’s single output neural networks use the mean squared error loss seen

in Equation 3 where X is a correct steering angle, Y is the predicted steering angle, and n is the total

number of predictions.

2. BACKGROUND

MSE =
1

n

n∑
n=1

(Y − f(X))2 (3)

The loss function used in a multi-output model is the cross-entropy loss function. This function

returns the cross entropy between a predicted distribution and a true distribution, where every element

in the distributions are in the range [0, 1]. Equation 4 shows the function, where M equals the number

of categories, y is its binary class c (if it is the correct classification for observation o), and the predicted

probability p o is of class c

−
M∑
c=1

yo,clog(po,c) (4)

2.3.2 Overfitting

This training process is repeated over and over until the network reaches an error minimum. However, it

is important to note that a minimum may not be the best solution for the problem. This issue is known

as overfitting. Overfitting is a result of networks containing more weights than required of the problem.

While the network may accurately classify the data it learned from, it might not be able to generalize the

problem. Thus the true goal of a network is not for it to find the local minimum, but for it to generalize

a optimal solution for all data. Methods to prevent this include early stopping: interrupting the training

process so that the neural network does not reach the local minimum for a training data set.

Dropout Layer Dropout layers purposely select a percentage of nodes to be deactivated. Through

deactivation, the network is forced to generalize with different nodes.

Validation and Training Data Another method to prevent overfitting is the use of validation

data. While training the network, a subset of the data is set aside from training. After the network trains

over the dataset, a validation dataset is used to give a unbiased evaluation of the network’s performance

during each training interval.

2. BACKGROUND

With this general overview of artificial neural networks, the next section details the neural networks

used to analyze images: Convolutional Neural Networks(CNN).

2.4 Convolutional Neural Networks

In 1983 Kunihiko Fukushima introduced a neocognitron(a hierarchial multilayered artificial neural net-

work) that could recognize hand written characters and patterns [7] using neural networks. Inspired

by the neocognitron, in 1998 LeCun introduced the first convolutional neural network model with back

propagation and gradient based learning. The convolutional neural network LeCun developed was able to

accurately classify hand written digits in a 32x32 image [12]. While computing power in 1998 limited the

resolution and scalability of the network, LeCun’s reserach demonstrated that a CNN could be trained

to recognize visual patterns with minimal preprocessing.

In the 21st century the ImageNet Project exhibited the full potential of Deep CNNs. Since 2010 the

ImageNet Project has hosted an annual competition challenging teams to classify a large visual database

with over 14 million annotated images [6]. During 2010 a reasonable error rate was considered to be

25%. Then in 2012 a deep convolutional neural network achieved a 16% error rate [11]. This dramatic

improvement attracted both industry and research attention, sparking a deep neural network boom. This

boom motivated NVIDIA to research using deep convolutional neural networks in autonomous cars.

Like neural networks, convolutional neural networks are made up of learnable weights. Nodes in a

CNN receive inputs, calculate the weighted sum, pass it through a activation function and respond with

a output. What separates convolutional neural networks from neural networks is their ability to analyze

a volume of data using location invariant feature detectors. In this project’s case, a three color depth

image. Convolutional layers generate a feature map by iterating filters over an image, detecting features

such as straight edges, simple colors, and curves. By stacking filters, the convolutional neural network is

able to learn complex features and shapes.

An example of a convolutional filter is seen in Figure 4. Assume that in this example, there are only

2. BACKGROUND

two color channels; black and white represented by 1 and 0. The convolutional filter is represented by

matrix A, and the image represented by matrix B. The black border represents the location of the filter

on the image: (2, 2). The filter then multiplies each feature by the corresponding pixel in the image,

sums it, and divides by the total number of pixels in the feature.

Figure 4: Example of a Convolutional Filter

The feature in Figure 4 is calculated as follows:

A⊗B =
(1 ∗ 1) + (−1 ∗ 0) + (−1 ∗ 0) + (1 ∗ 1)

4
=

2

2
= 2 (5)

This process is repeated until the feature has iterated over every image patch. The final output of

the feature map is shown as C in figure 5:

2. BACKGROUND

Figure 5: Feature Map

2.4.1 Dense Layer

In this project, dense layers represent a matrix vector multiplication that transforms a convolutional

layer’s two dimensional input into a one dimensional vector output. Every input is connected to every

output by a learned weight.

2.5 Recurrent Neural Networks

Recurrent neural networks are a class of artificial neural networks that forms connections between units

over time. The first development in recurrrent neural networks was in the 1980s by John Hopfield [18]. In

this network, the state of the nodes activated depending on the input it received from every other node.

In 1989 the Elman network introduced the idea of inputs from previous time steps fed forwards. Since

then, recurrent neural networks have been demonstrated to be successful for speech recognition, text to

speech synthesis, machine translation, language modeling, and image captioning. The basic algoirthm of

a RNN is similar to a feedforward neural network layer, but includes a separate set of weights to evaluate

results of previous timestep elements.

Figure 6 shows a example of a single unfolded recurrent neural network, where a represents the node,

ht the output and xt the input. The variable t represents the timestep of the network.

2. BACKGROUND

Figure 6: A unfolded recurrent neural network

The network is able to exhibit dynamic temporal behavior by enabling previous network states to

influence the output of the current network. However, a flaw with recurrent neural networks is the

inability to integrate information from distant timesteps.

2.5.1 Long Short-Term Memory

RNNs suffer issues storing memory over long periods of time. Errors flowing backward either vanish or

blow up over long sequences. As a solution to this problem, Hochreiter and Schmidhuber introduced the

long short term memory cell [9]. The goal of a LSTM is to have cells that make decisions on what to

store from previous timesteps by using gates which open and close depending on the information. The

gates are determined by weights which are adjusted through gradient-based learning.

Figure 7 shows an LSTM cell and the two time steps before the current state t. The difference between

this and a recurrent neural network is how information from previous timesteps are inputted into the

current step. There are three main gates in the network shown in Figure 7: forget gate (7a), input gate

(7b), and the output gate (7c). The forget gate is responsible for choosing what the neural network will

take as inputs. The input gate layer decides which of the gates should be updated. The final output gate

pushes the values of the previous state into the neural network.

2. BACKGROUND

Figure 7: A unfolded LSTM network

2.6 Models

This research project explores the effectiveness of combining LSTMs with NVIDIA’s deep convolutional

neural network, and comparing single output models to categorical output models. This section discusswa

the four models being evaluated in detail.

When designing a neural network, small changes in structure or parameters of the network can dras-

tically alter its performance. The models described here are based on NVIDIA’s neural network. The

only modifications to NVIDIA’s network is the number of outputs and recurrent layers.

A total of four different models are explored. These different modifications can be seen in Table 1.

The columns are the number of outputs, and the rows state whether the model is recurrent or single

state. The values in the table are the model names for each combination.

Table 1: Names of models being evaluated

Single Output - Linear Multiple Outputs - Categorical
Single State linear categorical
Recurrent rnn rnn cat

Linear The linear model is the same model found in NVIDIA’s published paper [3]. This model

outputs a floating point number between [−1.0, 1.0] that indicates steering direction.

2. BACKGROUND

Figure 8: NVIDIA Linear Output network architecture [3]

Categorical This categorical output model returns a one dimensional 15 column vector representing

the probability of each steering angle. Figure 9 shows the implementation of categorical outputs.

2. BACKGROUND

Figure 9: NVIDIA Categorical output network architecture

RNN The recurrent neural network model uses long short term memory cells for the final dense layers

and recurrent sequencing convolutional layers - thus enabling the model to exhibit memory. There are

only two differences between this model and the linear model: the implementation of recurrent and LSTM

nodes and number of filters for two convolutional layers. In order for the model to run on a Raspberry

Pi 3 (Tensorflow throws a generic out-of-memory error), the number of filters for the last two layers

2. BACKGROUND

have been reduced from 64 to 32 filters. This model was sourced from Tawn Kramer’s Github Branch of

Donkeycar [10].

Figure 10: RNN Linear output architecture

RNN Categorical This is the same recurrent neural network model as described above, with the

difference being the output. This model returns a one dimensional 15 column vector representing the

2. BACKGROUND

probability of each steering angle.

Figure 11: RNN Categorical output network architecture

3 Implementation

This section explains how these models are implemented on the car hardware.

3.1 System Overview

The scaled self driving car platform is built on the Donkeycar open source platform. This platform

combines a RC Car, Raspberry Pi, Python, and various Python packages(Tornado, Keras, Tensorflow,

OpenCV) to create a scaled autonomous vehicle. This section details the components used to build the

platform. Figure 12 shows a image of the vehicle, and its various components.

25

3. IMPLEMENTATION

Figure 12: The scaled self driving car. Modified 1/10 Traxxas Slash 4x4.

The platform’s foundation is built using modules called parts. Each part wraps a functional component

of a vehicle. The parts used in this research project are cameras, acutuators, motor controllers, pilots,

web console, and tubs(for data). Figure 13 shows the main components used for driving the vehicle with

a neural network model.

Raspberry Pi 3 The Raspberry Pi ARMv8 64 bit processor is responsible for neural network

computations, communications with the user, and controlling the remote control car through a pulse

width modulation servo board. Two channels on the servo board are connected to the RC Car: channel

one controls the speed of the motor, and channel two controls the steering.

3. IMPLEMENTATION

Traxxas Slash 4x4 The RC Car chosen for this project is a Traxxas Slash 4x4. The Traxxas Slash

is a consumer grade remote control car modeled at 1/10th scale. At 1/10th scale there is substantial

space for a Raspberry Pi, servo board, and battery to be mounted.

Platform and Camera Mount The mounting platform is built using a piece of flat plywood

and a 3D printed camera mount. The 3D Printed Camera mount is uploaded on this project’s github

repository page [ssdc]

Keras In this research project all neural networks are implemented using Keras. Keras is an open

source neural network library written in Python. A tensorflow backend is used for building the networks.

The core data structure of Keras are models made up of a linear stack of layers. For example, to construct

a simple Sequential model with 100 inputs and 10 categorical outputs:

from keras . models import Sequent i a l
from keras . l a y e r s import Dense

model = Sequent i a l ()
model . add (Dense (un i t s =64, a c t i v a t i o n=’ r e l u ’ , input dim =100))
model . add (Dense (un i t s =10, a c t i v a t i o n=’ softmax ’))
model . compile (l o s s=’ c a t e g o r i c a l c r o s s e n t r o p y ’ ,

opt imize r=’ sgd ’ ,
met r i c s =[’ accuracy ’])

model . f i t (x t ra in , y t ra in , epochs =5, b a t c h s i z e =32)

3.2 Donkeycar Platform

This section describes the integration of these components. There are two modes during initialization of

the donkeycar: drive or train. Training is covered in Section 5.1.

In drive mode, the car launches an online web controller on the local network through WiFi. Within

drive mode there are two options: human pilot or autonomous pilot. Figure 13 shows the components

set up in autonomous drive mode. The web controller in Figure 13 is the main interface for controlling

3. IMPLEMENTATION

the car.

Figure 13: Donkeycar platform components

After connecting to the interface on the same local network, the user can toggle the car between

autonomous and human pilot mode. In human pilot mode, the user controls the steering and throttle of

the car. This mode is primarily used when collecting training samples.

In autonomous mode, images are fed into the neural network model, and the output (steering angle)

is sent to the servo driver.

In both autonomous and user pilot modes, images and steering information are saved in a datastore.

3.2.1 Datastore and Records

All images and steering angles during each session are stored in a datastore. At 20hz, the steering angle

and image is captured and written into a record. The record is written as a JSON file containing the

location of the image file, steering angle, time, and throttle.

3. IMPLEMENTATION

(a) Sample image 730 from 8-Track dataset (b) Sample image 740 from 8-Track dataset

Figure 14: Dataset image samples

1 { "record_740": {
2 "cam/image_array": "740_cam -image_array_.jpg",

3 "user/angle": 0.5569997712185508,

4 "user/throttle": 0.6010691979352165,

5 "user/mode": "user" },
6 "record_750": {
7 "cam/image_array": "750_cam -image_array_.jpg",

8 "user/angle": 0.7670956034409372,

9 "user/throttle": 0.6042288050932043,

10 "user/mode": "user"} }

Figure 15: JSON file referencing images in Figure 14

4 Datasets and Training

The models are evaluated by the ability to determine the correct steering angle compared to a human

driver and the path of the vehicle compared to one piloted by a human driver. The performance of these

models are evaluated using two types of tracks detailed in this section.

4.1 Tracks

The tracks are composed of two white lanes taped one meter apart, and a yellow center divider lane. The

tracks are made using white ribbon and yellow masking tape.

4.1.1 8-Track

To test generalization, the models are trained with only the 8-Track dataset. The training dataset

contains 59,190 images. The dimensions of the track are shown in Figure 16. The red arrow points to

the direction the vehicle travels in and the initial position of the car.

30

4. DATASETS AND TRAINING

Figure 16: 8-Track - The red arrow indicates direction and initial position

The 8-Track is used to build the training dataset as the steering angles required to navigate it en-

compass the remote control car’s steering range. Figure 17 below shows the histogram of steering angles

requested by a human driver over 20 laps. Note that the steering angles are not an even distribution due

to the physical behavior of hardware and steering servo.

Figure 17: 8-Track Steering Histogram

Figure 18 is a graph of the car’s turning radius path for each steering angle request. The paths are

all labeled. A explanation for the uneven distribution seen in 17 is the car’s bias towards right turns.

Steering requests between −0.4, 0.4 are negligible.

4. DATASETS AND TRAINING

Figure 18: Car steering angle requests vs. path graphed

4.2 Circuit

The dimensions of the network are shown in Figure 19. This track consists of 2 left turns and 1 right

turn. The purpose of this track is to evaluate the model’s ability to generalize onto a track different than

the 8-Track. The car was driven counter clockwise. The red arrow shows where the vehicle starts from,

and which direction it is traveling in.

Figure 19: Circuit - The red arrow indicates direction and initial position

Figure 20 below shows the histogram of steering angles requested by a human driver over 20 laps on

4. DATASETS AND TRAINING

the circuit

Figure 20: Circuit Steering Histogram

5 Methods

This section details how the models are trained and evaluated when navigating each track.

5.1 Model Training

All models were trained using the same dataset: 59,190 images of a human driver navigating the 8-Track.

In these recordings, the car is limited to 50% throttle. All models are given three training sessions. After

three training sessions, the model with the lowest error loss is selected for piloting the car. Models are

trained using a NVIDIA GTX 1070 and took an average of 25.3 minutes each.

Each training session continued until the validation loss increased for 5 epochs. Validation losses must

improve by a minimum of 0.0005 to be considered as progress. Figure 21 shows the training loss values

for each model over time.

5.2 Steering Accuracy

To evaluate each models’ steering accuracy, the models are tested on a dataset excluded from the training

and validation dataset. For each record in the dataset, the model predicted a steering angle. This

predicted steering angle was compared to the actual steering angle for the record. The mean squared

error was taken between The difference of the predicted angle and human angle (Equation 3).

For the 8-Track, the models were evaluated on a recorded dataset of a human driver looping twice

around it. There are a total of 725 images in this dataset. The circuit testing dataset contains 4820

records of a human driver driving 5 loops around it. A higher mean squared error is expected for the

circuit dataset as none of the models have been trained on it.

34

5. METHODS

(a) Linear Model Training Loss (b) Categorical Model Training Loss

(c) RNN Model Training Loss (d) RNN Categorical Model Training Loss

Figure 21: Model Training Loss

5.3 Position Tracking

While MSE evaluates the model’s steering accuracy, it does not evaluate the model’s ability to keep the

car centered in its lane. Thus, the global position of the vehicle must be known. Automated tracking

of the car was implemented by using a ball-tracker in OpenCV and Python. A flourescent pink circle is

mounted on the car for the program to track (Seen in Figure 13). The position tracker program is directly

sourced from Adrian Rosebrock’s blog “Ball Tracking with Open CV” [16]. The only modifications to

this program was a different color configuration and addition of a method to export a CSV data file

(containing X Y coordinates). A screenshot of the program running is shown in Figures 22 and 23.

For the 8-Track, the camera was placed on a stand 2 meters high at an downward acute angle from

5. METHODS

the horizon due to a low ceiling. Because of this, the 8-Track dataset is too distorted for positional

comparisons. Thus, the dataset is only used as a reference for visualizing the car’s position. Figure 22

shows a screenshot of the program tracking the vehicle.

Figure 22: Screenshot of program used to track car on 8-Track.

The Circuit Track’s overhead camera was setup 6 meters above the track at a obtuse angle downwards

from the horizon. However, calculations in this project assumed it is directly overhead the track at a

right angle. In this image, the scale is 1px = 3.27cm.

Figure 23: Screenshot of program used to track car on circuit.

Another variable with this track was the reflection from the sun and light fixtures on the floor. The

effects of these lights on each model are explained in Section 6

5. METHODS

5.3.1 Path Averaging and Comparison

The average of the paths were calculated by taking the mean of all points within 20 pixels of each point.

Paths are compared by using vector projections to calculate the distance between the point closest to

another path’s point. Figure 24 represents the comparison of two paths. Figure 24 (a) shows the output

of this function.

Figure 24: Vector projection to calculate distance between path points

5. METHODS

5.4 Track Trials

After setup of the overhead camera, the models are tested on each circuit as follows.

8-Track Each model is given three trials. The trial ends after the car laps the track 20 times, or

veers off course. The cars are all started from the same position. As this track was set up in a basement,

environment conditions stayed the same.

Circuit Each model is given five trials. The trial ends after the car laps the track ten times, or veers

off course. The cars are all started from the same position.

6 Results and Analysis

After training and validating the models, the recorded results of the methods are described in this

Chapter.

6.1 Steering Accuracy

Tables 2 and 2 shows the mean squared error for each models’ predicted steering angles on the 8-Track

dataset. The variance of each model’s steering error on the 8-Track is shown in the boxplot in Figure 25.

The variance is too high to make a significant comparison about these models from Table 2.

Table 2: Model MSE on 8-Track

8-Track
Model MSE
Linear 0.21
Categorical 0.23
RNN 0.18
RNN Categorical 0.28

39

6. RESULTS AND ANALYSIS

Figure 25: Model and Steering Error Variance

6. RESULTS AND ANALYSIS

For the circuit dataset, the recurrent neural network has the lowest mean squared error compared to

the other models. The categorical output models also have higher errors than single output models. The

variance of each model’s steering error on the Circuit is shown in the boxplot in Figure 26. From the

ANOVA calculation, the F-statistic is 4.21 with a p-value equal to 0.00558 rejecting the null hypothesis

of equal mean squared errors. Thus it can be concluded the recurrent neural network has the lowest mean

squared error. Notably, the categorical output models have higher mean squared errors than its linear

models.

Table 3: Model MSE on Circuit

Circuit
Model MSE
Linear 0.30
Categorical 0.33
RNN 0.28
RNN Categorical 0.34

Figure 26: Model and Steering Error Variance

6. RESULTS AND ANALYSIS

6.2 Raw Model Paths

While the mean squared error assesses the network’s ability to predict steering angles, it does not account

for any lateral shift from a model’s predicted angle. In this project a overhead camera is used to track

the global position of the car’s when piloted by a human or neural network. Evaluating the ability of

the models to generalize is important as a robust autonomous vehicle needs to be able to identify road

surfaces it has never been trained on. This section contains figures of the path of the car when piloted

by human and neural network models on the 8-Track and Circuit courses. The recorded human path for

each track is used as the baseline for comparing the models.

6. RESULTS AND ANALYSIS

Figures 27 and 28 are graphs of driving paths for both human and neural network models. Every

model was able to navigate the 8-Track after training. The paths shown in the Figure 28 is the result of

each model piloting the car 20 laps on the 8-Track course.

Figure 27: Path of every human and neural network model on 8-Track (px)

Figure 28 is a graph of driving paths for both human and neural network models. On the Circuit, all

models failed to complete all five trials. However, the RNN was able to complete the most laps.

Figure 28: Path of every human and neural network model on circuit (cm)

6. RESULTS AND ANALYSIS

6.3 Averaged Model Paths

The figures below are the averaged paths of the vehicle when piloted by each neural network model. Each

model’s path is overlaid the averaged path of a human for reference. Note that only the circuit track was

used to calculate path deviation.

6. RESULTS AND ANALYSIS

6.3.1 Human Driver Path

The 8-Track and Circuit was recorded from a human pilot.

8-Track The paths shown here were also included in the training set for the models.

(a) Human Path (px) (b) Average Human Path (px)

Figure 29: Human Driver Paths

Circuit A subsection of this path is used to assess the steering accuracy of the models.

(a) Human Path (cm) (b) Average Human Path (cm)

Figure 30: Human Driver Paths

6. RESULTS AND ANALYSIS

6.3.2 Linear Model

8-Track The linear was able to complete 20 laps of the 8-Track. The black path is the average human

pilot path.

(a) Linear Path (px) (b) Average Linear Path (px)

Figure 31: Linear Model Paths

Circuit On the circuit, the linear model failed all five trials. The black path is the average human

pilot path.

(a) Linear Path (cm) (b) Average Linear Path (cm)

Figure 32: Linear Model Paths

6. RESULTS AND ANALYSIS

6.3.3 Categorical

8-Track The categorical model was able to navigate 20 laps of the 8-Track. The black path is the

human average path.

(a) Categorical Path (px) (b) Average Categorical Path (px)

Figure 33: Categorical Model Paths

Circuit The categorical model was only able to complete the trial 2 out of 5 times.

(a) Categorical Path (cm) (b) Average Categorical Path (cm)

Figure 34: Categorical Model Paths

6. RESULTS AND ANALYSIS

6.3.4 RNN

8-Track The RNN model was able to navigate 20 laps of the 8-Track. The black path is the average

human pilot path.

(a) RNN Path (px) (b) Average RNN Path (px)

Figure 35: RNN Paths

Circuit The RNN model was the only model able to complete all 3/5 trials of the circuit. An

interesting characteristic to note is on the bottom straightaway, the RNN model tended to drift towards

the inside of the track. This may be a result of the LSTM influencing the RNN to prepare for a right

turn that was learned in the 8-Track dataset.

(a) RNN Path (cm) (b) Average RNN Path (cm)

Figure 36: RNN Paths

6. RESULTS AND ANALYSIS

6.3.5 RNN Categorical

8-Track The RNN Categorical model was able to complete 20 laps without issue.

(a) RNN Categorical Path (px) (b) Average RNN Categorical Path (px)

Figure 37: RNN Categorical Path

Circuit The RNN Categorical only completed 2 out of 5 trials. A possible explanation for 3 trials

failing was the lighting reflecting from the floor had impacted the model’s performance. On the trials it

did complete, a notable difference between this and a RNN model with a single output was its path on

the circuit’s straightway.

(a) RNN Categorical Path (cm) (b) Average RNN Categorical Path (cm)

Figure 38: RNN Categorical Path

6. RESULTS AND ANALYSIS

6.4 Circuit Path Deviation

After averaging the positional data for each of the models, the model’s deviation is calculated by compar-

ing it to the averaged human pilot path. Table 4 shows the number of points compared and the models’

mean deviation from the human path. On average a complete lap around a Circuit is 111 points. As the

RNN and Categorical models were able to complete the trials, the number of points for these two models

are higher than the Linear and RNN Categorical models.

Table 4: Circuit Models and Average Deviation

Circuit
Points Mean Deviation

Linear 54 3.36 cm
Categorical 109 2.22 cm
RNN 112 0.98 cm
RNN Cat 64 4.75 cm

The statistical significance of difference in model mean deviation was determined by performing an

analysis of variance using R. The ANOVA test showed a p < 0.05 adjusted value between each model’s

error deviation (Figure 39).

Figure 39: ANOVA Table of Models

The boxplot in 40 shows that the mean of the RNN model is lower than all other models on the

Circuit.

6. RESULTS AND ANALYSIS

Figure 40: Box Plot of Model Deviation Variances

The histograms in Figure 41 shows the variance for each of the models. The RNN has a significantly

tighter variance than compared to other models.

Figure 41: Path deviation of models on Circuit course

7 Conclusion

This project shows that a recurrent neural network in combination with NVIDIA’s model outperforms

NVIDIA’s single state linear output model in generalization. After training the models on the same

8-Track dataset, the RNN model was able to generalize and navigate the Circuit track with a average

deviation of 0.98 cm from a human piloted path. NVIDIA’s single output network model failed to

generalize on the Circuit track, and had an average deviation of 3.36 cm. The RNN model had the

smallest variance of 2.25 cm on the Circuit (compared to NVIDIA’s linear model variance of 8.36).

Interestingly, the Categorical model had the second smallest variance with 5.22 cm, but was the second

worst model in steering accuracy on the Circuit dataset with a MSE of 0.33 (Table 3). Future research

could include reconsidering how autonomous vehicle models are evaluated. The categorical model could

have been considered a bad model if only evaluated with MSE.

This project also demonstrated that one track is not substantial for models to generalize to any track.

Another issue that must be considered is lighting conditions. Reflections of light can confuse the network

into outputting incorrect angles. Additional research could increase the diversity and amount of training

data. A possible direction for increasing the dataset diversity is training the model to generalize on

lighting reflections.

Improvements can also be made to the scaled self driving car platform. Increased processing power

on the Traxxas Slash would enable longer RNN sequence lengths. Hardware can be improved with a

more accurate steering rack. Additional modifications to the model could include increasing the number

of outputs.

52

References

[1] Keshav Bimbraw. “Autonomous Cars: Past, Present and Future - A Review of the Developments
in the Last Century, the Present Scenario and the Expected Future of Autonomous Vehicle Tech-
nology”. In: 1 (Jan. 2015), pp. 191–198.

[2] Official NVIDIA Blog. Tesla Self-Driving Car Built on NVIDIA DRIVE PX 2. url: https://
blogs.nvidia.com/blog/2016/10/20/tesla-motors-self-driving/.

[3] Mariusz Bojarski et al. “End to End Learning for Self-Driving Cars”. In: CoRR abs/1604.07316
(2016). arXiv: 1604.07316. url: http://arxiv.org/abs/1604.07316.

[4] DARPA. Grand Challenge. url: http://archive.darpa.mil/grandchallenge/.

[5] Ernst D.Dickmanns. “Vehicles capable of dynamic vision: a new breed of technical beings?” In:
ELSEVIER 103 (1998), pp. 49–76. doi: https://www.sciencedirect.com/science/article/
pii/S000437029800071X.

[6] J. Deng et al. “ImageNet: A Large-Scale Hierarchical Image Database”. In: (2009).

[7] Kunihiko Fukushima. “Neocognitron: A Self-Organizing Neural Network Model for a Mechanism of
Pattern Recognition Unaffected by Shift in Position”. In: Biological Cybernetics 36 (1980), pp. 193–
202.

[8] “Highway of the Future”. In: Electronic Age (1958). doi: http://www.americanradiohistory.
com/Archive-Radio-Age/Electronic-Age-1958-Winter.pdf#14.

[9] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-term Memory”. In: 9 (Dec. 1997), pp. 1735–
80.

[10] year = 2018 publisher = GitHub journal = GitHub repository howpublished = https://github.

com/tawnkramer/donkey/ commit = 2c5ae708b47ecac73435d8ffa5490a54e1fc55ea Kramer Tawn
title = Donkey.

[11] Large Scale Visual Recognition Challenge (ILSVRC). url: http://www.image-net.org/challenges/
LSVRC/.

[12] Yann Lecun et al. “Gradient-based learning applied to document recognition”. In: (1998), pp. 2278–
2324.

[13] Hans P Moravec. In: The Robotics Institute Carnegie Mellon University (24 February 1983). doi:
http://www.dtic.mil/dtic/tr/fulltext/u2/a133207.pdf.

[14] “’Phantom Auto’ will tour city”. In: The Milwaukee Sentinel (1926). doi: https://news.google.
com/newspapers?id=unBQAAAAIBAJ&sjid=QQ8EAAAAIBAJ&pg=7304,3766749.

[15] Dean A. Pomerleau. “ALVINN: An Autonomous Land Vehicle in a Neural Network”. In: (1989).
Ed. by D. S. Touretzky, pp. 305–313. url: http://papers.nips.cc/paper/95-alvinn-an-
autonomous-land-vehicle-in-a-neural-network.pdf.

[16] Adrian Rosebrock. Ball Tracking with OpenCV. 2016. url: https://www.pyimagesearch.com/
2015/09/14/ball-tracking-with-opencv/.

[17] Dominik Scherer, Andreas Müller, and Sven Behnke. Evaluation of Pooling Operations in Convolu-
tional Architectures for Object Recognition. Ed. by Konstantinos Diamantaras, Wlodek Duch, and
Lazaros S. Iliadis. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 92–101. isbn: 978-3-
642-15825-4.

53

REFERENCES

[18] M. Schuster and K.K. Paliwal. “Bidirectional Recurrent Neural Networks”. In: Trans. Sig. Proc.
45.11 (Nov. 1997), pp. 2673–2681. issn: 1053-587X. doi: 10.1109/78.650093. url: http://dx.
doi.org/10.1109/78.650093.

[19] Sebastian Thrun. In: Wiley Online Library (2006). doi: https://onlinelibrary.wiley.com/
doi/full/10.1002/rob.20147.

	Training Neural Networks to Pilot Autonomous Vehicles: Scaled Self-Driving Car
	Recommended Citation

	tmp.1537973405.pdf.Ad6SS

