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Abstract

The original goal of this project was to develop an accurate ”tape measure” application for
Android based mobile phones. The main challenge for such applications is to construct one
method that ensures a given Android device can, with accuracy and precision, estimate
its own position and movement.

The author developed an application in the Unity 3D game environment in order to
understand the challenges of such estimation. This required translation of accelerometer
and gyroscope data to the Unity platform. Efficient computation required easy translation
from right-handed coordinates to left-handed coordinates. Moreover, it is necessary to
design and implement calibration procedures in order to lessen the impact of variation in
Android hardware between devices. Once the device has been calibrated, the accelerometer
and gyroscope data is synthesized to create an accurate model of the device’s position in
space.
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1
Introduction

As computer hardware has become more powerful, engineers have been able to fit higher

quality computers into smaller and sleeker form factors. This has led to the rise in popular

usage of mobile devices such as smart phones and tablets. Because of their handheld

nature, engineers have also added small sensors to these computers, allowing users to

interact with them in new and exciting ways. Android devices in particular have become

widespread because the open source operating system allows itself to be run on a variety

of devices with different hardware. The goal of this project is to develop an application

for Android devices which tracks the device’s position and orientation in space, or pose,

using two sensors commonly found in recently made mobile devices; the accelerometer and

gyroscope.

Most mobile devices released within the past few years include a built in three axis

accelerometer and three axis gyroscope. An accelerometer is a sensor which measures the

forces exerted on it, and a gyroscope measures its rotational velocity. The raw data from

these sensors can be processed and fused to produce a mathematical model of the device’s

position and orientation in space.



1. INTRODUCTION 7

The application described in this work was developed in the Unity 3D game engine. This

choice was made because the Unity game environment comes with a variety of tools that

facilitate the modeling of objects in three dimensional space. Another potential benefit

is Unity’s consistency across platforms; once this application is developed for Android

devices, it could be easily adapted to work on other devices which have the same sensors

and support the Unity environment, such as iOS devices.

1.1 Related Work

Previously at Bard College, another Computer Science project by Blagoy Yordanov

Kaloferov addressed a similar problem in 2013. The project, ”Recreating the Trajectory of

a Golf Swing Using a Microelectromechanical System,” used a custom device made with an

arduino, gyroscope, accelerometer, and a magnetometer to measure the path of a golf club

as it is swung by a golf player. In contrast, for this project we will be using commercially

available hardware with no assembly or modification needed by the end user. Additionally,

the nature of the motion will be different; a golf swing is a short, quick motion, but for

our test we will be moving the device in a slow and careful manner, which may affect how

well the sensors are able to detect changes in the device’s motion.

1.2 Summary

The rest of the paper is organized as follows. Chapter 2 introduces the main challenges in

measuring pose using our chosen sensors. Chapter 3 explains the mathematical models that

will be used to model and update the devices pose. Chapter 4 details the specifications of

the devices used in testing, as well as an overview of the Unity game environment. Chapter

5 explains how the mathematical model from Chapter 3 is adapted to be implemented in

Unity. Finally, Chapter 6 contains concluding thoughts, and suggestions for future work.



2
Challenges in Measuring Pose

Although hardware varies by device, many mobile devices now have some sensors in com-

mon. Typical sensors include gyroscopes, accelerometers, cameras, proximity sensors, and

compasses, to name a few. For this project, we will be examining how precisely a user

might be able to interact with such a device simply by moving it, so we will be using

the gyroscope and accelerometer sensors. We will create an application which will closely

track and model the movement of the device in three dimensions, and then compare the

path that the device traveled with the path calculated in the model.

2.1 Modeling Pose in Three Dimensions

In order to analyze the accuracy and precision of the application, we will need an efficient

way to mathematically represent pose in three dimensions. A pose is an object’s posi-

tion and orientation in relation to a reference frame. For our purposes, the mathematical

representation we choose will need to be able to quickly combine a series of incremental

changes in pose, in order to calculate the device’s current pose.
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2.2 Calibration

When processing the accelerometer data, the data will have to be integrated twice in

order to calculate the device’s displacement from its original position. A consequence of

this process is that any small errors in the accelerometer data will be exaggerated after

integration. To deal with this problem, we will have to come up with a simple calibration

procedure which reduces error as much as possible, while still being simple enough to

carry out that a user would be able to perform it consistently and with little or no extra

equipment.

2.3 Testing

To test the accuracy of the model, we will move the device running the application along

a predetermined path. Then, we will graph both the path of the device and the path

calculated by our model, calculate the difference between the two paths.



3
The Mathematics of Graphics

3.1 Representing Pose in Unity

In Unity 3D, every scene is a separate three dimensional virtual space. In this virtual space,

GameObjects are the base class for all entities that exist in this space. Every GameObject

has an associated Transform object, which contains information relating to the position,

rotation, and scale of the object relative to both the world space and local space. World

space refers to the global coordinate system associated with every scene, and local space

refers to the local coordinate system of an object’s parent GameObject. Position in both of

these coordinate systems is represented as a set of Cartesian coordinates on the x, y, and

z axes. Orientation is represented as a quaternion, which is a complex number commonly

used to represent rotations.

3.1.1 Quaternions

Quaternions are not the most intuitive representation of rotation, especially when com-

pared to alternatives such as Euler angles. However, they have some mathematical prop-

erties which are very useful for manipulating rotational data.



3. THE MATHEMATICS OF GRAPHICS 11

Quaternion Structure

Quaternions are complex numbers, represented as q̇ = w + ix + jy + kz, where i2 =

j2 = k2 = −1, and w, x, y, and z are all real numbers. An axis-angle, by comparison,

represents rotation as a rotation angle θ around a vector v = (xa, ya, za). The relation

between a quaternion and an axis-angle rotation, (v, θ) representing the same rotation is

q̇ = (wq, xq, yq, zq) = (cos θ2 , xa sin θ
2 , ya sin θ

2 , za sin θ
2) [2].

Quaternion Product

The Hamilton product of two quaternions, denoted as q̇1 ⊗ q̇2, represents two rotations

being applied in succession. A product of two quaternions can be calculated as such:

q̇1 ⊗ q̇2 =


w1 x1 y1 z1
−x1 w1 −z1 y1
−y1 z1 w1 −x1
−z1 −y1 x1 w1



w2

x2
y2
z2

 (3.1.1)

An important property to note of quaternion products is that they are non commutative,

meaning that q̇1 ⊗ q̇2 will yield a different result from q̇2 ⊗ q̇1 [1].

Quaternion Conjugate

Every quaternion also has a conjugate, denoted as 	q̇ 7→ q̇−1. The conjugate of a quater-

nion is defined as q̇−1 = (w,−x,−y,−z). The conjugate can be thought of as the reversed

rotation of a quaternion. The product of a quaternion and its conjugate q̇⊗ q̇−1 will result

in no rotation, because we are essentially applying a rotation and subsequently undoing

that same rotation.

Benefits of Quaternions

There are two ways of interacting with rotations that are supported by Unity; quaternions

and Euler angles. However, even though a user may manipulate an object’s rotation as

an Euler angle, an object’s rotation is alway stored internally as a quaternion, because

they are more computationally efficient than using Euler angles. Additionally, Euler angle
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representations of rotation suffer from the singularity problem, similar to the gimbal lock

problem encountered by mechanical gyroscopes.

An Euler angle represents a three dimensional rotation as a series of two dimensional

rotations around an object’s x, y, and z axes, which we can represent as the orthonormal

rotational matrices Rx, Ry, and Rz respectively. We can define an Euler angle as such:

R = Rz(ψ)Rx(φ)Ry(θ) (3.1.2)

=

cosψ − sinψ 0
sinψ cosψ 0

0 0 1

1 0 0
0 cosφ − sinφ
0 sinφ cosφ

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ


It is important to note that just like the quaternion product, these rotations are non-

commutative. In Unity, an Euler angle will first rotate ψ degrees around the z axis, φ

degrees around the x axis, and then θ degrees around the y axis [4]. Given the rotation

matrices for two Euler angles, we can multiply the matrices to apply two rotations in

sequence BR =A RABR, similar to the Hamilton product of two quaternions. However,

combining rotations in this way is more computationally intensive than if we represented

the same rotations as quaternions; the product of two Euler angle rotational matrices takes

27 multiplications and 18 additions to compute, while the product of two quaternions takes

16 multiplications and 12 additions [1].

The other problem with Euler angles is that they can run into the singularity phe-

nomenon. Singularity occurs when the middle rotation is an odd multiple of 90◦. For ex-

ample, consider the case where φ = 90◦ for some rotational matrix R = Rz(ψ)Rx(φ)Ry(θ)

which represents the rotation from frame A to frame B. In this case, we can apply the

identity [1]:

RTx (90◦)Rz(ϑ)Rx(90◦) ≡ Ry(ϑ) (3.1.3)

Rz(ϑ)Rx(90◦) ≡ Rx(90◦)Ry(ϑ)

In this case, RTx represents the transpose of a rotational matrix, such that ABR
T
x =B

A Rx.
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Substituting this identity into R, we get

R = Rx(90◦)Ry(ψ)Ry(φ) = Rx(90◦)Ry(ψ + φ) (3.1.4)

The effect of this is that we lose a degree of freedom in our rotation, because rotations

around the z and y axes both rotate around the same axis in this instance.

3.1.2 World Space and Local Space

In Unity 3D, the global coordinate system is referred to as world space. In this coordinate

system, the x and z axes are both parallel to the ground and perpendicular to each

other, and the y axis extends upward perpendicular to both the x and z axes. Every

GameObject’s Transform object has a position and orientation relative to world space,

stored as transform.position and transform.rotation respectively.

Each GameObject also has a local coordinate system, which is referred to as that object’s

local space. In the local coordinate system, there are still three perpendicular axes, x y

and z, but the origin of this coordinate system is located at the object’s position in world

space. Additionally, the coordinate system is rotated relative to world space by the rotation

stored in transform.rotation.

A GameObject can have another GameObject set as its parent. Suppose we have two

objects A and B, such that A is the parent of B, denoted here as B ∈ A. In this case,

the pose of B in world space is the composition of the pose A in world space, and the

pose of B in the local coordinate system of A, such that W
B P =W

A P ⊕AB P . Whenever an

object’s position is altered, it’s local position is updated to match the new global position,

and vice versa. The same applies to an object’s rotation and local rotation. Additionally,

if A changes its pose, the local pose of B, ABP , will remain the same, but its pose in world

space W
B P will be recalculated with the new pose of A.

By default, if no parent is set for a GameObject, then the object’s pose in local space is

the same as its pose in world space. Additionally, while each GameObject can only have
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one parent, there is no limit on the number of child objects any one GameObject may

possess.

3.2 Translating Sensor Data to Model Movement

3.2.1 Combining Poses

For this project we will have a constant stream of data from the gyroscope and accelerom-

eter, representing incremental changes in pose in the local coordinate system. We will have

to continually incorporate this data to update the world position of the device every frame.

We can represent a pose P as P = (t, q̇), where t is the position of the object represented

as a set of Cartesian coordinates, and q̇ is the orientation of the object relative to the

origin, represented as a quaternion. For each frame, we can use the following equation to

calculate the new position of the device [1]:

P = P1 ⊕ P2 = (t1 + (t2 ∗ q̇1), q̇1 ⊗ q̇2) (3.2.1)

Where P1 is the pose of the device in world space calculated in the previous frame, and

P2 is the change in pose of the device in its local coordinate system. In this application, P1

will be the pose in world space in the previous frame, and P2 will be the change in pose in

local space between P1 and the current frame, and P is the updated pose in world space

in the current frame. This means that (t2 ∗ q̇1) represents the change in displacement in

world space.

3.2.2 Calculating Change in Displacement

In order to calculate the change in displacement since the last frame, first we calculate

the velocity of the device by integrating the device’s acceleration:

~v(n) =

∫ n

0
~a(n)dt (3.2.2)
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Where n is the number of samples taken by the accelerometer up to this point. However,

since the device will be changing orientation, we need to calculate the velocity in world

space; otherwise, if the device rotates during movement, it will carry over its previous

velocity on its local axes, making the model move in a different direction than the device.

One way to approximate velocity is the equation:

~v(n) = v(n− 1) + ~dvW (n) (3.2.3)

Where v(n− 1) is the velocity in the previous frame, and ~dvW is the change in velocity

in world space. We can calculate the vector representing the local change in velocity, ~dvL,

by simply multiplying ~a(n) by the time since the last frame dt. Once we have ~dvL, we

have to rotate the vector by the devices orientation in order to find the change in velocity

in world space, ~dvW . Then, we can simply add ~dvW to the velocity vector ~v(n − 1) from

the previous frame to calculate ~v(n).

Once we have the velocity in world space, we simply need to multiply that velocity by

the time since the last frame dt, to find the change in displacement in world space, ~d. This

change in displacement approximates (t2 ∗ q̇1) from our pose composition equation 3.2.1.



4
Technology

4.1 Unity

Unity is a cross-platform game engine developed by Unity Technologies. A game engine

is a software development environment designed to facilitate the construction of video

games. Aside from video games, Unity is also used to create simulations on computers,

consoles, and mobile devices. In Unity, a developer can create a Scene, which is a three

dimensional virtual space, and import 3D models of objects into the scene. Once a model,

or gameObject, is in the Scene, a script can be attached to the object. Then, the script

can access user input, and affect attributes of the gameObject it is attached to, as well as

other gameObjects within the same Scene. Scripts are written in C# or in Unityscript, a

variation of Javascript. In this project, scripts are written exclusively in C#.

4.2 Device Used

The following table details the technical specifications of the hardware for the device used

during the tests. [3]
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Table 4.2.1: Nexus 5 Specifications.

Screen
4.95” 1920 x 1080 display (445 ppi)

Full HD IPS
Corning Gorilla Glass 3

Size 69.17 x 137.84 x 8.59mm

Weight 4.59 ounces (130g)

Cameras
1.3 MP front facing

8 MP rear facing with Optical Image Stabilization

Memory
16GB or 32GB (actual formatted capacity will be less)

2GB RAM

Processing
CPU: Qualcomm Snapdragon? 800, 2.26GHz

GPU: Adreno 330, 450MHz

Sensors

GPS
Gyroscope

Accelerometer
Compass

Proximity/Ambient Light
Pressure

Hall Effect

Battery

2,300 mAh non-removable battery
Standby time: up to 300 hours

Talk time: up to 17 hours
Internet use time: up to 8.5 hours on Wi-Fi; up to 7 hours on LTE

Wireless Charging built-in

OS Android 6.0.1



5
Implementation

The following chapter details how the mathematical models used to represent pose were

adapted for implementation in the Unity3d environment. The final update method can be

found in the Appendix in section 8.1.1.

5.1 Quaternion Conversion

In Unity, the data output from the accelerometer and gyroscope provides us the orientation

and acceleration of the device in a right handed coordinate system; that is, a coordinate

system where the x axis extends to the right of the screen, the y axis extends upward

from the top of the screen, and the z axis extends outward perpendicular to the screen.

This is a problem, because in Unity everything is modeled using a left handed coordinate

system, meaning that the direction of the y and z axes are swapped from what it would

in a right handed coordinate system. The simplest way to correct this is to invert the z

component, and switch the y and z components in the quaternions and vectors returned

by the gyroscope and accelerometer.
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5.2 Calculating the Acceleration Vector

In Unity, we have access to an array of AccelerationEvent objects from Input.accelerationEvents.

This array holds every acceleration measurement since the last frame, as well as the time

since the last measurement for each acceleration vector in the array. We can calculate the

average acceleration in the local coordinate system since the last frame using an iterative

loop, found in the Appendix in section 8.1.2.

This calculates the average acceleration measured by the device since the last frame.

We use an average here because it helps to lessen the impact of sudden jumps in the

accelerometer readings.

5.3 Calibration

Commercial IMU (Inertial Measurement Unit) sensors are often not calibrated very well

by default, so the first step will be to ensure that the sensor readings are as accurate as

possible. Fortunately, Unity provides us with methods that already integrate gyroscope

measurements with a reasonable degree of accuracy. With the accelerometer, we are not

so lucky; we only have the raw accelerometer data, so we will have to account for errors

such as gain and bias, as well as remove the gravity forces from the acceleration vector.

5.3.1 Bias and Gain

We can account for errors in raw sensor readings by using the equation

c = Ku− b (5.3.1)

where c is the calibrated sensor reading, determined by the sensor gain K, the uncalibrated

reading u, and the sensor bias b [7]. Sensor gain is a sensitivity variable, so changing

the gain variable adjusts the sensitivity of the sensor readings. Sensor bias is a constant

variable representing any constant offset in the uncalibrated sensor readings. However, for
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the purposes of calibration, I will use a slightly different form of this equation. If we let

b = Ki, then we can rewrite equation 5.3.1 as c = Ku −Ki. This will be useful because

when we calibrate the sensor, we can solve for K and i individually much more easily than

we could solve for K and b.

5.3.2 Calibration Method

Given that the average user does not have access to machines that can move their phones at

a consistent velocity, we will try to base our calibration method off of a series of stationary

poses that the user can position their phone in to gather the parameters for our calibration

equation. For each of the three axes of the accelerometer, we will take the following steps.

When the accelerometer experiences no acceleration, such as when sitting stationary

with the given axis parallel with the ground, we can easily solve for i:

0 = Ku−Ki

Ki = Ku

i = u (5.3.2)

Then, we can solve for K by positioning the phone so that the axis is now perpendicular

to the ground. The accelerometer output is in G force units, where one G force is the force

exerted by earth’s gravity, so the calibrated output should be -1 G force.

−1 = Ku−Ki

−1 = K(u− i)

K = −1/(u− i) (5.3.3)
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5.3.3 Poses

The axes relative to the phone are aligned so that if the screen is upright and facing you,

the x axis points directly to the right, the y axis points directly up, and the z axis points

out of the screen perpendicular to the plane of the screen. For each pose in the calibration

process, the calibration program will run for ten seconds, summing all of the acceleration

vectors during that time, and then dividing that by the number of samples taken to get

the average acceleration recorded on each axis. Using this average, we can calculate the

K and i variables of our calibration equation.
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(a) In the first pose, the phone is placed
laying down face up on a flat horizontal
surface, such as a floor or level table.
Using the acceleration vector, ~a, of the
average acceleration from this sample,
we can calculate the i variable for the x
and y axes, since both axes are perpen-
dicular to the force of gravity in this po-
sition, and therefore should experience
no acceleration.

(b) In the next pose, the phone is posi-
tioned ”standing up,” meaning that the
phone is positioned such that it rests on
the bottom of the phone screen, with
the screen perpendicular to the ground.
A wall or heavy block would be ideal for
this pose. This is the most unstable of
all the poses, so care must be taken to
ensure that the phone is as vertical as
possible. Using the average acceleration
~a of this sample, we can calculate the i
variable for the z axis, since it is perpen-
dicular to the force of gravity in this po-
sition, and therefore should experience
no acceleration, and we can calculate K
for the y axis, as it should be experienc-
ing -1 G.
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(a) The third pose is similar to the sec-
ond, but instead of resting on the bot-
tom of the phone screen, the phone is
resting on the left side of the screen,
again with the screen perpendicular to
the ground. Similarly, care should be
taken to ensure that the phone is sta-
ble and as vertical as possible. Using
the average acceleration ~a of this sam-
ple, we can calculate the K variable for
the x axis, as it should be experiencing
-1 G.

(b) The last pose is the same as the
first. This time, since we have the i vari-
able for the z axis, we can now calculate
the K variable for the z axis.

Figure 5.3.2: Calibration Steps
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5.4 Removing Gravity

To estimate the position of the device, we first have to remove the acceleration due to

gravity from the accelerometer data. The accelerometer returns a vector in local space,

but we can use two empty GameObjects, gravPoint and gravOrigin, to simultaneously

model the vector in local space and world space. In the method RemoveGrav(Vector3

accelInput) from Appendix section 8.1.3, gravOrigin is set as the parent of gravPoint,

and gravOrigin is set to a position of (0, 0, 0) in world space. By setting the local position

of gravPoint to the acceleration vector, and setting the orientation of gravOrigin equal

to the device’s current orientation, we effectively rotate the acceleration vector so that

the position of gravPoint in world space is now equal to the acceleration vector in world

space. Then, we can simply add 1 to the y component of the vector (gravity exerts a force

of -1G on the global y axis), so that the local position and global position of gravPoint

represents the acceleration vector in local space and world space, respectively, without the

influence of gravity.

5.5 Velocity Threshold

Even after calibration, the accelerometer is still prone to small errors when stationary,

which can lead to a nontrivial amount of drift when the device is left stationary. To

address this issue, we apply a threshold to the calculated local velocity vector dvL, as

detailed in the method 8.1.4 in the Appendix, such that if the magnitude of any one

component of the vector falls below the threshold amount, that component will be set to

zero. Here, we use 0.001G ∗ s as our threshold, so we will discount any acceleration less

than the threshold. The unit G ∗ s means G forces times time in seconds, which we use

here because the threshold is applied before the conversion from G ∗ s to m/s.
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5.6 Velocity Window

One problem encountered during development of this application was that the device

would not detect sharp decelerations when the device stopped moving; that is, it could

detect when the device started moving, and when the device moved in a different direction,

but when the device stopped moving, it could not detect a sharp acceleration that would

bring the velocity back to zero. Because of this, the model would continue to move at a

constant velocity even when the device was brought to a standstill.

The compromise to this problem was to use a moving window, using the last 64 calcu-

lated dvW values to calculate the current velocity, resulting in the following approximation

of the velocity equation 3.2.3:

~v(n) =

n∑
i=(n−64)

~dvW (n) (5.6.1)

This compromise allowed the program to integrate acceleration over short periods of

time, enough for most quick short movements a user might make within the range of their

own reach, and it will cause the velocity to regress to zero when the accelerometer no

longer indicates movement in any direction, such as when lying on a table or floor after

having been moved around by the user.

In the application, the window and the integration was maintained using a Vector3

object called velocity to hold the integrated velocity, and an array of Vector3 objects

called vWindow to hold the past 64 values of dvW . Both velocity and all the Vector3

objects in vWindow[] are initialized to (0,0,0) at the beginning of each measurement.

The velocity threshold method is listed in Appendix section 8.1.5.



6
Application Evaluation

6.1 Experiment

For the experiment, we moved the device in a half-circle arc, of radius 0.5m. A picture of

the path that the device traced can be found in figure 6.1.1. In the tests, we moved the

device along the path starting at the left end of the semicircle and ending at the right

end, all the while keeping the device’s local x axis as parallel as possible to the tangent of

the path at any given point. As the device is moved, the application writes the following

information to a text file in every frame: the device’s position on the global x and z axes,

as well as its orientation around the y axis. We only log the position in the x and z axes

and the orientation around the y axis, because in the test the device does not move along

the y axis, nor does it rotate around the x or z axes. Once we have this information, we

determine the accuracy of the trial by comparing the final position vector calculated by

the model with the vector representing the device’s real position in relation to its starting

point.
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Figure 6.1.1: The path that the device followed during testing.
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6.2 Results and Analysis

The experiment was run a total of 16 times, and the data is organized in the following

tables. Table 6.2.1 holds the final displacement from the starting point, in world space

coordinates, calculated by the application. Table 6.2.2 holds initial orientation of the

device around the y axis θ, and the final displacement of the phone in real space. The final

position in real space should be negative one meter in the local z axis of the device from

the starting position. To calculate the final position in real space, we use the equation

(x, z) = (cos (θ + π), sin (θ + π)). Table 6.2.3 holds the percent error calculated in each

trial for each axis, as well as the average percent error for both axes in each trial. The

percent error for a trial was calculated as E = | (sr−sm)
sr
|, where sr is the displacement on

the given axis in real space, and sr is the displacement on the given axis calculated by the

model. Figures 6.2.1 through 6.2.3 depict histograms of the error calculated in each axis

for the 16 trials that were conducted using the methodology from section 6.1. Figure 6.2.4

depicts the error calculated in each axis, as well as the average error for each trial in a

column chart.
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Table 6.2.1: Model Final Displacement Per Trial.
This vector represents the final position of the device as calculated by the application.

Trial Model Final X Position (m) Model Final Z Position (m)

1 -0.8489108 0.4057785
2 -0.2229519 0.2225117
3 -0.3422129 0.5514016
4 -0.5277649 0.7251852
5 -1.032179 -0.01985528
6 -0.9716508 0.85658
7 -0.2344769 -0.04385906
8 0.0535818 -0.1542997
9 -0.3942275 -0.0961595
10 -0.3441142 0.4647673
11 -0.4832019 -0.2587929
12 -0.4089997 -0.1077248
13 -0.406965 -0.2025759
14 0.4144926 -0.2419026
15 -0.4653716 -0.3411021
16 0.2594578 0.7042051

Table 6.2.2: Final Displacement Per Trial.
This vector represents the final position of the device as measured manually in the exper-
iment

Trial Model beginning θ (rad) Final X Position (m) Final Z Position (m)

1 -1.274081627 -0.29238005 0.9563022045
2 -1.251439471 -0.3139560004 0.9494375334
3 -1.287847039 -0.2791888715 0.9602362074
4 -1.232874404 -0.3315272568 0.9434456412
5 -1.276785142 -0.2897936073 0.9570891626
6 -1.269735757 -0.2965332408 0.9550225322
7 -1.220332468 -0.3433335072 0.9392135555
8 -1.240377574 -0.3244391577 0.9459065667
9 -1.289742467 -0.2773683129 0.9607636645
10 -1.272643476 -0.2937550545 0.9558807289
11 -1.262295419 -0.3036306585 0.9527898106
12 -1.275542468 -0.2909827335 0.9567283046
13 -1.254710218 -0.3108489567 0.9504593238
14 -1.228266734 -0.3358708076 0.9419080638
15 -1.26852799 -0.2976864698 0.9546636925
16 -1.230711941 -0.3335666463 0.9427265205
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Table 6.2.3: Percent Error by Trial.
The error calculated between the application model’s final position and the device’s actual
final position

Trial X Axis % Error Z Axis % Error Average % Error

1 190.3449807 57.56796355 123.9564721
2 28.98625931 76.56383994 52.77504963
3 22.57397587 42.57646236 32.57521912
4 59.19200885 23.134395 41.16320192
5 256.1772841 102.0745486 179.1259163
6 227.6701112 10.30787535 118.9889933
7 31.70579186 104.6697644 68.18777812
8 116.5152075 116.3123616 116.4137846
9 42.13141216 110.0086529 76.07003251
10 17.14324392 51.37810755 34.26067574
11 59.14134047 127.161594 93.15146723
12 40.55806511 111.2597066 75.90888585
13 30.92049733 121.3134739 76.11698562
14 223.4083435 125.682188 174.5452658
15 56.32944296 135.7300799 96.02976143
16 177.7828967 25.30123162 101.5420642
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Figure 6.2.1: Histogram of the X axis percent error for 16 trials: a visual representation
of columns 1 and 2 from Table 6.2.3
The average percent error in the X axis is 98.78630385%
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Figure 6.2.2: Histogram of the Z axis percent error for 16 trials: a visual representation
of columns 1 and 2 from Table 6.2.3
The average percent error in the Z axis is 83.81514033%
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Figure 6.2.3: Histogram of the average error in both axes for 16 trials: a visual represen-
tation of columns 1 and 2 from Table 6.2.3
The average percent error for both axes is 91.30072209%
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Figure 6.2.4: Error calculated in each trial. Average error is the average of the error in
the X and Z axes for that particular trial.
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6.3 Discussion

The application is able to calculate the final displacement of the device with an average

percent error of 91.3%. With an average error so close to 100%, the position tracking in

this application is not very useful in practice. Part of the problem comes from the fact

that after the device is brought to rest, the application predicts that the device is still

moving in a similar motion for a moment after it is brought to rest, and so the model

continues to move in an arc even after the device stops moving. Another limitation is the

hardware itself; during testing, it was discovered that the device would not pick up on

sharp changes in acceleration well. It was for this reason that we had to implement the

velocity window to bring the velocity vector back to zero once the device stopped moving,

because the device would not detect the sharp change in acceleration as the device was

brought to a standstill. The sensors are not reliable then at very high accelerations, but

at low accelerations small errors have a larger proportional impact on any estimates of

position derived from the sensor data, especially when the sensor readings rise just above

the threshold we impose on the raw data. Having unreliable readings at both high and

low acceleration values makes it very difficult to obtain good data for position estimation,

especially since such estimation requires double integration of the accelerometer values,

compounding any errors in the sensor readings.



7
Conclusion and Future Work

In this project an application was developed for Android devices to measure the dis-

placement of a device using internal sensors. This application had rather poor accuracy,

drastically limiting its practical use. However, there are a number of ways that this applica-

tion, or one similar to it, could be modified or improved for future study. One route would

be to research and implement a variety of different methods of processing and filtering

sensor data, so that the different approaches could be compared side by side. Another area

for improvement would be to experiment with different ways of combining position and

orientation data to represent a device’s pose, to see if this had any effect on the accuracy

of the estimated position of the device.

Another way to improve the accuracy would be to account for the location of the ac-

celerometer sensor within the device. The reason that this is important, is that if the

gyroscope is sensing that the device is rotating, but the accelerometer detects no accelera-

tion, then the device must be rotating around the point where the accelerometer is located.

In order to create a more accurate model of the device’s pose, we would want to take into

account the dimensions of the device, as well as making the location of the accelerometer
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the center of rotation for the model. We had tried to incorporate this information into

the model for the application developed in this project, by using the accelerometer and

gyroscope sensors to calculate the distance from the accelerometer sensor to an edge of

the device by rotating the device around that edge. We tried to calculate these values

within the application, because the location of the sensor is not readily available informa-

tion that the application could obtain from the device, and there are too many devices

running Android to keep a comprehensive list containing this information for all devices

that could run the application. However, this aspect of the model had to be abandoned,

because the calculated distance was not accurate enough to be reliably used to locate the

accelerometer within the device. Should another method for modeling pose produce more

reliable and accurate results, it may be able to incorporate this information into the model

in order to further increase the accuracy of the model.



8
Appendices

8.1 Code Excerpts

8.1.1 Complete Update Method

// Update is called once per frame

void Update () {

if (collect) {

// Find average acceleration

Vector3 accel;

Vector3 accelMean = Vector3.zero;

int count = 0;

float dt = 0;

foreach (AccelerationEvent accEvent in Input.accelerationEvents) {

accel = accEvent.acceleration;

accelMean += accel;// * gforce;

count++;

dt += accEvent.deltaTime;

}

accelMean = accelMean / count;

// c = K(u - I)

Vector3 c = Vector3.Scale ((accelMean - I), K);

// Find local dv vector

Vector3 dv = RemoveGrav (c) * dt;

// Apply threshold

dv = VelocityThreshold (dv) * gforce;
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// Change local dv vector to global coordinates

Vector3 gdv = LocalToGlobal (dv);

// add global gdv to velocity window

velocity -= vWindow [n];

vWindow [n] = gdv;

velocity += vWindow [n];

n++;

if (n >= vWindow.Length)

n = 0;

// integrate global velocity to get global change in position

Vector3 deltad = velocity * dt;

// add change in position to global position

displacement += deltad;

}

// update orientation

transform.rotation = GetOrientation ();

// Display current orientation and displacement

SetDisplacementText (displacement);

SetOrientationText (transform.rotation.eulerAngles);

if (collect)

LogData ();

// transform.rotation = ConvertRotation(gyro.attitude);

}

8.1.2 Acceleration Vector

int count = 0;

Vector3 accelMean = Vector3.zero;

Vector3 accel;

foreach (AccelerationEvent accEvent in Input.accelerationEvents) {

accel = accEvent.acceleration;

accelMean += accel;

count++;

}

accelMean = accelMean / count;

8.1.3 Remove Gravity Vector

Vector3 accel;



8. APPENDICES 40

Quaternion pose = GetOrientation ();

// set gravPoint.transform.localPosition to the vector

// representing the accelerometer input

gravPoint.transform.localPosition = new Vector3(-accelInput.x, accelInput.z,

-accelInput.y);

// rotate the vector around gravOrigin by the pose

gravOrigin.transform.rotation = pose;

// gravPoint world position is now equal to the

// acceleration in world axes

// subtract gravity from the world y axis

// note: accelerometer data is measured in G forces,

// so gravity will exert a force of -1 G forces on the

// world y axis

accel = new Vector3(gravPoint.transform.position.x,

gravPoint.transform.position.y + 1,

gravPoint.transform.position.z);

gravPoint.transform.position = accel;

// gravPoint.transform.localPosition is now the accelerometer

// data without gravity

accel = gravPoint.transform.localPosition;

return accel;

}

8.1.4 Velocity Threshold

public Vector3 VelocityThreshold(Vector3 v) {

Vector3 vt;

if (v.x > -0.001 && v.x < 0.001)

vt.x = 0;

else

vt.x = v.x;

if (v.y > -0.001 && v.y < 0.001)

vt.y = 0;

else

vt.y = v.y;

if (v.z > -0.001 && v.z < 0.001)

vt.z = 0;

else

vt.z = v.z;

return vt;

}
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8.1.5 Velocity Window

// Update is called once per frame

void Update () {

...

velocity -= vWindow [n];

vWindow [n] = gdv;

velocity += vWindow [n];

n++;

...

}
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