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Abstract

It is known that there is an agreed upon convention of how to go about evaluating expres-
sions in the real numbers, denoted R. We colloquially call this PEMDAS, which is short for
Parentheses, Exponents, Multiplication, Division, Addition, Subtraction. It is also called
the Order of Operations, since it is the order in which we execute the operators of a given
expression. When we remove this convention and begin to execute the operators in every
possible order, we begin to see that this allows for many different values based on the
order in which the operations are executed. We will investigate this question by looking
at how this affects the operations on R through using parentheses to force operators to
be executed in a specific order. We compute the asymptotic bound for the number of
outcomes, defined as associativity, for each of the operations on R.



Contents

Abstract 1

Dedication 3

Acknowledgments 4

1 An Introduction 5
1.1 PEMDAS and You . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 The Catalan Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Operations on R 11
2.1 n-expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Tamari Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Addition and Multiplication on R . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Subtraction on R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Two Algorithms for Subtraction . . . . . . . . . . . . . . . . . . . . . . . . 16
2.6 Division on R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.7 Exponentiation on R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Bibliography 28



Dedication

I would like to dedicate this project to my mother, Kim, who has helped me find solace
with who I am and who I have become, and to my father, Tom, who has been a great
support to me in very trying times.

There is a select group of people who have meant very much to me for a very long time.
While none of you helped me with my project, you’ve all helped me grow into a person
capable of doing such things. Together we have all come into our own, and we will keep
developing and continuing to do amazing things. You are my closest friends, and will con-
tinue to be. The Confed continues.

I would also like to dedicate this project to my close friends who I have made here, who
have listened to me complain, and talk generally way too much. You are all wonderful
people, whom I care so very much about.

Lastly, and most importantly, I would like to dedicate this to Lily and Garrett, for being
there, anytime that I’ve needed them. You two are, and always will be, the best people
I’ve known.



Acknowledgments

I would like to acknowledge Kline Commons for keeping me fed, for without the lovely
dining hall I probably would have starved to death.

I would also like to acknowledge the Math department for accepting me into the program
and making my three years here as enjoyable as possible.



1
An Introduction

1.1 PEMDAS and You

PEMDAS is a clever mnemonic used in schools to teach the order of operations on the real

numbers, denoted R, and its subsets (i.e., the rationals or the counting numbers). It is the

arithmetic structure on the real numbers that describes the order in which operations are

executed. Spelled completely out it is Parentheses, Exponentiation, Multiplication, Divi-

sion, Addition, Subtraction. Even though multiplication is before division, and addition

is before subtraction, they actually take the same precedent, and thus are just evaluated

left to right. We also have the convention of evaluating exponentiation in a right to left

manner. Using this convention we ensure that there is an unambiguous way to evaluate

a given expression, which will then give us only one answer. This is fantastic because it

removes the ambiguity from any expression you can write in R. But a question arises

from this: what would happen if we remove this structure? What happens if we execute

these operations in other possible orders? Would we get the same answer, or would they

differ wildly? Before we can tackle this question, we have to introduce some background



1. AN INTRODUCTION 6

information. We introduce the Catalan Numbers to gain access to a more insightful way

of observing the results.

The Catalan Numbers were discovered in the early 18th century by the Mongolian math-

ematician Minggatu[2], but named after the man who applied them numerous counting

problems, Eugéne Catalan[1]. The Catalan numbers are a sequence of numbers that are

the solution to many different counting problems. We will focus on one of these problems

in particular. We start with a simple idea: given n sets of parenthesis, what are all the

possible ways in which they can be grouped such that the parentheses are proper? A

proper set of parentheses is one where each right parenthesis ‘(’ has a matching left paren-

thesis ‘)’ when read left to right. For instance, ‘()((())())’ is a set of proper parentheses,

but ‘())(()(()(’ is not, because the third, fourth, seventh and eighth parentheses are all

unmatched.

Each of these pairs of parentheses can be viewed as a possible grouping of two numbers

and a binary operation. When viewed this way, we can see that the set of different proper

parentheses of length n for some n ∈ N is actually every possible way that an expression

can be grouped. For instance, we see that an expression such as a + b − c ∗ d has three

operators, and thus all of the balanced forms for 3 sets of parentheses are

((())), (())(), (()()), ()(()), ()()()

and those can be brought into correspondence with all possible groupings of the expression,

listed below,

(a + (b− (c ∗ d))), (a + ((b− c) ∗ d)), ((a + b)− (c ∗ d)),

((a + (b− c)) ∗ d), (((a + b)− c) ∗ d).

We will not go into how exactly this correspondence works, since it is not important for

the project. It turns out that the set of different proper parentheses of length n for some

n ∈ N are actually the well known Dyck words[1]. The Dyck Words are known to have
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Cn different valid words[3], where Cn is the n-th Catalan Number. But before we start

getting into any of this, we must first ask: what are the Catalan numbers?

1.2 The Catalan Numbers

We introduce the Catalan numbers below with their definition.

Definition 1.2.1. [3] Let {Cn}∞n=0 be the sequence in R such that C0 = 1 and Cn+1 =∑n
i=0CiCn−i. We call this sequence the Catalan Numbers, and Cn the n-th Catalan

Number. 4

Using the above definition to evaluate the first few terms of the sequence we see the

progression of the first few values is {1, 1, 2, 5, 14, . . .}. The Catalan numbers are well

studied, but we will still walk through some of the derivations in order to get a little more

acquainted with them.

Our first investigation will be to find the closed formula for the n-th Catalan number,

and we will use a recursive function in order to weasel our way to a solution.

Theorem 1.2.2. [3] The closed formula of the n-th Catalan Number is

Cn =
1

n + 1

(
2n

n

)
.

Proof. Let p : R→ R be a formal power series defined by p(x) = 1+x+2x2 +5x3 + · · · =∑∞
n=0Cnx

n where Cn is the n-th Catalan number. Note that
∑n

k=0CkCn−k−1 = Cn.

Therefore, we have

(p(x))2 =

( ∞∑
n=0

Cnx
n

)( ∞∑
n=0

Cnx
n

)
(1.2.1)

=

∞∑
n=0

[(
n∑
k=0

CkCn−k

)
xn

]
. (1.2.2)

By our definition,
∑n

k=0CkCn−k = Cn+1. Therefore, we have that the above expression

reduces to
∑n

k=0Cn+1x
n. Note that this is nearly our original function p(x). We further
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multiply both sides of the equation by x, giving

x[p(x)]2 =

n∑
k=0

Cn+1x
n+1 = p(x)− 1 (1.2.3)

p(x) = x[p(x)]2 + 1 (1.2.4)

p(x) =
1−
√

1− 4x

2x
. (1.2.5)

We can use the extended Binomial Theorem we can expand the part under the radical,

√
1− 4x =

∞∑
n=0

(1
2

n

)
(−4x)n =

∞∑
n=0

(−1)n+1

4n(2n− 1)

(
2n

n

)
(−1)n4nxn =

∞∑
n=0

(−1)2n+1

2n− 1

(
2n

n

)
xn.

(1.2.6)

Plugging the radical into p(x), we get

p(x) =
1−
√

1− 4x

2x
=

1−
∑∞

n=0
(−1)2n+1

2n−1
(
2n
n

)
xn

2x
(1.2.7)

=
1− 1−

∑∞
n=1

−1
2n−1

(
2n
n

)
xn

2x
(1.2.8)

=

∞∑
n=0

(
2n

n

)
1

n + 1
xn. (1.2.9)

Since the coefficient for each xn is Cn, then Cn =
(
2n
n

)
1

n+1 .

We now have the closed form for the value of Cn is for any n ∈ N, and we will continue

to parse through some of the undefined terms from the first section by introducing the

definition for Dyck words.

Definition 1.2.3. [1] A Dyck Word is a string of length 2n containing X’s and Y ’s that

satisfies the following criteria:

1. The string must contain n X’s and n Y ’s.

2. No initial segment of the word can contain more Y ’s than X’s.

4
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Dyck words are extremely helpful for looking at certain strings of characters. For exam-

ple, the set of Dyck words of length 6 would be {XXXY Y Y, XXY XY Y, XY XXY Y,

XY XY XY, XXY Y XY }. Note that Dyck words always start with an X and end with a

Y , and that the set of Dyck words of length 2n is Cn. Since the X’s and Y ’s are arbitrary,

we reinterpret them in the following way: we’ll define X and ‘(’ and Y and ‘)’. It is easy

to see that using those terms the Dyke words are in equivalence with the set of balanced

parentheses. For example, XXYXY Y is equivalent to (()()). As previously mentioned,

is directly related to the ways in which we can parenthesize an expression with n opera-

tors. We can see these words as pairing two objects with a binary operation. Returning

to the example we introduced at the beginning of the paper, we see that the balanced

parenthesized forms of an expression such as a + b− c ∗ d are

(a + (b− (c ∗ d))), (a + ((b− c) ∗ d)), ((a + b)− (c ∗ d)),

((a + (b− c)) ∗ d), (((a + b)− c) ∗ d).

We can view each of these pairings as a distinct function. Also note that something that is

parenthesized and contains binary operations is an object in and of itself. This means that

if we have (a+(b−(c∗d))), then the object ‘pairs’ are c∗d, b−(c∗d), and a+(b−(c∗d)). We

can write all the possible orderings of the expression as what we call a Tamari Lattice[4],

pictured on the next page.

We will describe the Tamari Lattice in greater detail later. Since these are all of the

possible different ways in which to execute the binary operations, we have the following

result:

Theorem 1.2.4. The upper bound for possible unique answers for an expression with n

operators is Cn.

We will take a moment here to talk about what associativity is. We will define this

relative associativity by looking at how many different answers the expression gives. For
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Figure 1.2.1. The Tamari Lattice for the expression a + b − c ∗ d. See section 3.2 for a
introduction to the lattice structure.

instance, we call an expression completely associative if there is only one distinct answer

no matter the order in which the operations of the expression are evaluated. An expression

is completely unassociative if there are Cn distinct answers depending on the order

in which the operations are evaluated. One expression is more associative than another if

there are less distinct answers.



2
Operations on R

In this chapter we will investigate five operations on R: addition, subtraction, multiplica-

tion, division, and exponentiation. We must begin by setting up some formal definitions

first, and then we will continue with what it means to be associative. We will see that

addition and multiplication are completely associative, while subtraction, division, and

exponentiation are not as fortunate.

We introduce the general form for the expressions that we are going to talk about.

2.1 n-expressions

Before we begin talking about anything involving expressions, we must define what we’ve

meant by the word expressions.

Definition 2.1.1. An n-expression in R is a string S of n + 1 real numbers

{a1, a2, . . . , an+1} and n operators {∗1, ∗2, . . . , ∗n} written in the following way,

a1 ∗1 a2 ∗2 · · · ∗n an+1. (2.1.1)

If all the operators are of the same type, we call the expression a (name of the operator)

n-expression. 4
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There is another type of expression we need to define is called a normal form.

Definition 2.1.2. We define a normal form of an n-expression in R to be an n-expression

containing no parentheses, and following the typical order of operations evaluated on

R. 4

For instance, a1∗1a2∗2a3∗3a4 is a “normal form.” The difference between an n-expression

and a normal form is that former can have parentheses pairing the numbers while the latter

cannot. We introduce these because they are incredibly helpful for comparing different

parenthesized expressions in R. We must also introduce a helpful way of organizing all of

the different parenthesized expressions, which is the Tamari Lattice structure.

2.2 Tamari Lattices

The Tamari Lattice structure, construced by Dov Tamari in 1968[4], is a poset wherein

the elements of the lattice are groupings of objects into pairs via parentheses. As we saw

earlier in Figure 1.2.1, we can take the set of parenthesized expressions to construct a

Tamari Lattice. We define the lattice in the following way.

Definition 2.2.1. A Tamari Lattice is a partially ordered set wherein the elements of

the lattice are groupings by pairs of objects with parentheses. The ordering on the lattice

is such that one element is greater than the other if and only if the greater element can

be obtained from the lesser by only rightward applications of the associative law. 4

For instance (from our previously introduce lattice in Figure 1.2.1), (a+ ((b− c) ∗ d)) >

((a + (b − c)) ∗ d), since the right handed side is equal to the left handed side after one

rightward application of the associativity law. This is an incredibly helpful structure since

we can now have a visual for what these parenthesized expressions are.
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We will also define the following two sets from the elements of the Tamari Lattice. Given

a set of numbers {a1, a2, . . . , an+1} and operators {∗1, ∗2, . . . , ∗n} written as a normal

expression, we can define the following sets.

Definition 2.2.2. Let n ∈ N. Let Fn = {S1, . . . , SCn} be a set of functions where each

Si : Rn+1 → R for 1 ≤ i ≤ n corresponds to an element of the Tamari Lattice. We define

Fn as the function space of all parenthesized versions of an n-expression. 4

Note that |Fn| ≤ Cn always, since there are Cn elements of the Tamari Lattice of an

n-expression. Thus if all the Si are distinct functions, then we have |Fn| = Cn. We also

want to define a set of normal forms, in order to show that we can map this function space

onto this second set of functions.

Definition 2.2.3. Let n ∈ N. Let Nn = {N1, . . . , Nk} for some k ∈ N, be a set of

functions where each Ni : Rn+1 → R for 1 ≤ i ≤ k corresponds to some normal form of

the n-expression. We call this the set of possible normal forms of an expression with n

operators. 4

The magnitude of Nn depends on the expression, and will be established in each case.

We will show why the associativity of the expression depends on the magnitude of Nn by

showing that Fn maps onto Nn via the underlying arithmetic structure of whatever ring

we are working in. We can thus define associativity in the following way.

Definition 2.2.4. The associativity of an expression is defined as the magnitude of Nn.

If |Nn| = 1, then the expression is completely associative. If |Nn| = Cn, then the

expression is completely unassociative. If there are two expressions, then one expression

is more associative than the other if there are less normal forms for that expression. 4
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2.3 Addition and Multiplication on R

Addition and multiplication have similar properties in R. They are both associative, which

we will show means that they are also completely associative. We will still investigate

addition, and make a brief remark about multiplication, to outline the methodology for

determining the associativity of an operator. We start with the Tamari Lattices generated

by general addition n-expressions. We saw that for any n-expression there existed a Tamari

Lattice structure in which each node was a different way of executing an n-expression, and

if we treat the nodes of the lattice as functions S1, . . . , SCn : Rn+1 → R. Let us take the

following addition n-expression,

a1 + a2 + a3 + a4

We will set up the Tamari Lattice for this expression,

Figure 2.3.1. The Tamari Lattice for the expression a1 + a2 + a3 + a4.

By applying the structure of R to remove the parentheses from each of the functions

in F 3, we can see that all the elements of F 3 map to the single element of N3. The only

normal form of that expression is just a1 +a2 +a3 +a4, i.e., that N3 = {a1 +a2 +a3 +a4}.
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This means that all the different functions defined by the elements of the Tamari Lattice

are actually the same, and thus there is only one distinct function present. Therefore it is

completely associative by our definition.

This leads us to our first result,

Theorem 2.3.1. The addition n-expression in R is completely associative.

Proof. Let n ∈ N and a1, . . . , an+1 ∈ R. The addition n-expression is written as a1 +

· · ·+ an+1. Note that there is only one possible normal form of this expression, i.e., Nn =

{a1 + · · ·+ an+1}. If we apply the transformation via the structure of R, we can see that

each parenthesized expression reduces to our one element of Nn. Thus Fn maps onto the

one element of Nn, and therefore all the Cn elements of the Tamari Lattice reduce to the

same function, namely, the one normal form for the addition n-expression.

This should be of no surprise, since we already know that addition is associative in

R, which means one can remove and add parentheses without worry of changing the

expression. By a similar logic, it is obvious that any associative operator in R must also

be completely associative in R.

Theorem 2.3.2. The multiplication n-expression in R is completely associative.

2.4 Subtraction on R

Subtraction requires more of an investigation of how these normal forms are derived. We

can observe the Tamari Lattices generated by general subtraction n-expressions in order

to see how exactly why we choose what the normal forms for subtraction are. We saw

that for any n-expression there existed a Tamari Lattice structure in which each node was

a different way of executing an n-expression. When we treat the nodes of the lattice as

functions S1, . . . , SCn : Rn+1 → R we can create an algorithm to check whether or not the

functions are unique within the set of nodes of the Tamari Lattice.
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Looking at any node we can notice two very important facts about each subtraction

n-expression. For any subtraction n-expression, we know that a1 is positive, and a2 is

always subtracted from a1. This is due to the underlying structure on R, that allows us

to distribute negative signs in order to remove parentheses. We want to use this fact to

convert these parenthetical expressions into their normal forms.

For example, the normal form of the subtraction 2-expression (a1 − (a2 − a3)) is a1 −

a2 + a3, using the arithmatic structure on the ring R, while the normal form of the other

possible subtraction 2-expression ((a1 − a2) − a3) is a1 − a2 − a3. Before we continue we

must stress again the important fact: for any subtraction n-expression, the normal form

of that expression always begins as a1 − a2 · · · . This will help us tremendously, as it will

reduce the amount of possible normal forms of subtraction by an entire factor of two.

We will introduce an algorithm that reverses this process, showing that each normal form

corresponds with a certain parenthesized subtraction n-expression.

Lets take a minute to truly clarify the normal forms of subtraction. The set of normal

forms Nn for subtraction consist of elements written in the following way

a1 − a2 ± a3 ± a4 ± · · · ± an+1.

This is because the distribution of negative signs via removing parentheses can cause any

operator after the first to be either an addition or subtraction operator. Since each other

operator can either be an addition or subtraction, then there must be 2n−1 different normal

forms. Therefore,

Lemma 2.4.1. For an subtraction n-expression, |Nn| = 2n−1.

2.5 Two Algorithms for Subtraction

We will show via two algorithms that not only does each normal form correspond with a

parenthesized n-expression, but that a single normal form can map to different parenthe-
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sized n-expressions based on which algorithm you use. The first algorithm will show that

we can map these normal forms back to the parenthesized expressions, and then the sec-

ond algorithm will show us that not every parenthesized expression has a unique normal

form for subtraction. Let us introduce the first algorithm that we will be using in order

to convert normal forms into parenthesized n-expressions.

Definition 2.5.1. Let n ∈ N. Let A : Nn → Fn be a function defined in the following

way,

1. If we have a negative term followed by a positive one (ie, · · · − aα + aα+1 · · · ) we

factor out a negative one, giving a parenthesized version of those two objects (ie,

· · · − (aα − aα+1) · · · ).

2. If there are no more addition signs, we left associate the terms beginning (ie, a1 −

a2 − a3 − · · · → ((a1 − a2)− a3)− · · · ).

4

Lets introduce the Tamari Lattice for a subtraction 3-expression for our example. It is

pictured below,

To exemplify how this algorithm works, let us look at all the normal forms of an 3-

expression using only addition and subtraction operators. We list out all of these expres-

sions below

a1 − a2 − a3 − a4, a1 − a2 − a3 + a4, a1 − a2 + a3 − a4, a1 − a2 + a3 + a4

a1 + a2 − a3 − a4, a1 + a2 − a3 + a4, a1 + a2 + a3 − a4, a1 + a2 + a3 + a4.

Using our noted fact, we can throw away those normal forms that start a1 +a2, since they

will never be the result of any of our parenthesized subtraction 3-expressions. This leaves

us with 4 different expressions,

a1 − a2 − a3 − a4, a1 − a2 − a3 + a4, a1 − a2 + a3 − a4, a1 − a2 + a3 + a4.
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Figure 2.5.1. The Tamari Lattice for the expression a1 − a2 − a3 − a4.

Let us denote the set of such expressions as N3. We will pick a1 − a2 + a3 − a4 as an

exemplary member to show how the algorithm works. Applying the first rule,

a1 − a2 + a3 − a4 → a1 − (a2 − a3)− a4

wherein we must apply rule number 2,

→ (a1 − (a2 − a3))− a4

and then rule number 2 again,

→ ((a1 − (a2 − a3))− a4)

which fully parenthesizes our expression.

Showing that the other three 3-expressions can be put through A in order to get different

parenthesized subtraction 3-expressions will be left as an exercise for the reader in order

to get them more acquainted with the algorithm.

We will also introduce another algorithm in order to show that some nodes of the Tamari

Lattice are redundant.
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Definition 2.5.2. Let B : Nn → Fn be a function defined in the following way,

1. If an addition is followed by a subtraction (i.e., · · ·+aβ−aβ+1 · · · ) we can parenthesize

the two terms together, without factoring out (−1), (i.e., · · ·+ (aβ − aβ+1) · · · ).

2. If we have a negative term followed by a positive one (i.e., · · · − aα + aα+1 · · · ) we

factor out a (−1), giving a parenthesized version of those two objects (i.e., · · · −

(aα − aα+1) · · · ).

3. If there are no more addition signs, we left associate the terms beginning (i.e., a1 −

a2 − a3 − · · · → ((a1 − a2)− a3)− · · · ).

4

Applying B the same expression we applied A to, we can see that

a1 − a2 + a3 − a4 → a1 − a2 + (a3 − a4)

→ a1 − (a2 − (a3 − a4))

→ (a1 − (a2 − (a3 − a4))).

This shows us that some of the nodes on this Tamari Lattice actually define the same

function, and thus are redundant. Therefore we conjecture there must be fewer than Cn

possible results for any subtraction n-expression.

This points us towards our next result, that there actually are only 4 distinct functions

of a Tamari Lattice of a1−a2−a3−a4. Since there are only 2n−1 possible normal forms for

any parenthesized subtraction n-expression, this directly implies that there at most 2n−1

unique functions from Rn+1 → R for the normal forms of subtraction with n-operators.

We generalize these results below.

Lemma 2.5.3. If a1, . . . , an+1 ∈ R for some n ∈ N. Let A = {ai |3 ≤ i ≤ n+ 1} be a set.

If A satisfies the following criteria,
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1. If C1, C2 are subsets of A and C1 6= C2 then
∑

C1 6=
∑

C2,

then all the possible normal forms of the subtraction n-expression for this selection of

numbers are unique functions.

Proof. Before we begin, by our hypothesis it follows that a3, . . . , an+1 6= 0. Let A be a

set as defined in our hypothesis, with a1, . . . , an+1 ∈ R. Let C1, C2 ⊆ A, let C2 = ∅, and

C1 6= ∅. The sum of an empty subset is defined as
∑
∅ = 0. Then by our criteria, we know

that
∑

C1 6=
∑

C2 = 0. Therefore, no subset of A sums to zero.

We will now show that under these conditions each normal form must be distinct. Let

Ni, Nj be two different elements of Nn, where i, j ∈ N and 1 ≤ i, j ≤ n. Assume that

Ni = Nj . Since they are two different elements of Nn, their signs must differ at some

amount of ak for 3 ≤ k ≤ n + 1.

Let us define two sets, C1, C2, where C1 is all the ak that are positive in Ni and negative

in Nj , and C2 is all the ak that are negative in Ni and positive in Nj . Notice that once

the like terms are canceled, we can move all the elements of C1 in Nj to the left hand

side, and similarly can move all the elements of C2 in Ni to the right hand side. This gives

2
∑

C1 = 2
∑

C2. Notice that C1, C2 ⊆ A and C1 6= C2. Therefore, by our criteria, we

have a contradiction.

Since for our choice of numbers all the normal forms of an subtraction n-expression are

unique, therefore by lemma 2.4.1 and 2.5.3 we have the following result.

Theorem 2.5.4. The lower bound for distinct answers for a subtraction n-expression is

2n−1.
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This comes about from the two parts of our analysis: that we can map Fn onto Nn

using the arithmetic structure on R, and that |Nn| = 2n−1 under our specific conditions.

Together this implies the above result.

2.6 Division on R

The analysis of the associativity of division is very similar to subtraction. Let us take an

arbitrary division n-expression, denoted a1 ÷ a2 ÷ · · · ÷ an+1. Looking at the elements of

the Tamari Lattice we can see that every expression begins with a1 times 1
a2

. This means

the normal forms of a division n-expression can be written as fractions, with a factor of

a1 in the numerator and a2 in the denominator, and the rest of the elements either being

in the denominator or the numerator. Therefore we have two different states each number

a3 to an+1 can be and therefore 2n−1 possible variations.

Figure 2.6.1. The Tamari Lattice for the expression a1 ÷ a2 ÷ a3 ÷ a4.

For example, take the normal division n-expression a1 ÷ a2 ÷ a3 ÷ a4. Looking at the

Tamari Lattice for this structure we can see, using the arithematic structure of R, that

a1 ÷ a2 will always be the case. Otherwise we have that a3 and a4 can be placed either
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in the denominator (dividing a1
a2

) or in the numerator (multiplying a1
a2

). Thus the normal

forms of a division 3-expression are,

a1a3a4
a2

,
a1a3
a2a4

,
a1a4
a2a3

,
a1

a2a3a4
.

With this realization, we generalize to get the following result.

Lemma 2.6.1. For a division n-expression, |Nn| = 2n−1.

Using the arithmetic structure on R, obtain a map from the elements of the Tamari

Lattice for a division n-expression Fn onto the normal forms of that expression Nn. We

once again introduce constraints in order to show that it is possible to pick numbers

a3, · · · , an+1 such that all of these normal forms give distinct values.

Lemma 2.6.2. If a1, . . . , an+1 ∈ R − {0} for some n ∈ N. Let A = {ai | 3 ≤ i ≤ n + 1}

be a set. If A satisfies the following criteria,

1. If C1, C2 are subsets of A and C1 6= C2, then ΠC1 6= ±ΠC2.

then all the possible normal forms of division are unique functions.

Proof. Before we begin, by our hypothesis it follows that a1, . . . , an+1 6= ±1. Let A be

a set as defined in our hypothesis, with a1, . . . , an+1 ∈ R − {0}. We disallow 0 in order

to keep our calculations well defined. Let C1, C2 ⊆ A, let C2 = ∅, and C1 6= ∅. The

multiplicitive sum of an empty subset is defined as Π∅ = 1. Then by our criteria, we know

that ΠC1 6= ΠC2 = 1. By our criteria, we also have that ΠC1 6= −ΠC2 = −1. Therefore,

no non-empty subset of A mutliplicatively sums to ±1.

We will now show it is impossible for two normal forms to be equal under these condi-

tions. Let n ∈ N and Ni, Nj ∈ Nn be two distinct normal forms for i, j ∈ N and i, j ≤ 2n−1.

Assume Ni = Nj . If the two normal forms are distinct, then they must have a certain num-

ber of ak for k ∈ N that are in the denominator in Ni but in the numerator in Nj , or vice
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versa. Let C1 be the set of all ak in the numerator of Ni and also in the denominator of

Nj , and let C2 be the set of all aj in the denominator of Ni and also in the numerator

of Nj . Note that C1, C2 ⊆ A, that C1 6= C2 and if we divide both sides of our assumed

equality by Nj , we get,

Ni

Nj
=

(ΠC1)
2

(ΠC2)2
= 1

ΠC1

ΠC2
= ±1.

If the above expression were equal to ±1, it would be a contradiction, since a non-empty

subset of A would multiplicatively sum to ±1.

And therefore by lemma 2.6.1 and 2.6.2,

Theorem 2.6.3. The lower bound for distinct answers for a division n-expression is 2n−1.

Interestingly enough, this means that both division and subtraction are equally asso-

ciative in R. This shouldn’t be much of a surprise, since we have seen that the magnitude

of the set of normal forms, Nn, is the indicator of how associative an expression can be.

2.7 Exponentiation on R

Exponentiation is where further analysis is required. Unlike the other operations on R,

exponentiation is not as straight forward. There is less intuition as to which expressions

with a repeated exponentiation operator are equivalent. We will show that the maximum

amount of normal forms is actually Cn for n = 2, 3, 4. We wish to start with an example

to denote the normal forms of exponentiation, and to highlight this difficulty.

Let a1, a2, a3 ∈ R−{0}. We disallow 0 because of problems involving the term 00, since

we would like our expressions to always be well defined.
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We want to apply the structure on R to remove the parentheses to get the normal forms

of these expressions, which are

a
a
a3
2

1 , aa2a31 .

Note that a1 is always the base. Therefore, we can make these normal forms a bit neater

by applying loga1 to both sides. This gives us the simpler normal forms for exponentiation

aa32 , a2a3.

We want to look at the solution set of

aa32 − a2a3 = 0, (2.7.1)

and we must ask, when are these two normal forms equal? There is the simple solution of

a2 = a3 = 1, but are there other solutions? Choosing only a3 = 1, we can see that a2 can

be any value, since the normal forms reduce from aa32 = a2a3 to a2 = a2. Another easily

observed solution is a2 = a3 = 2. We can ask the honest question, does this also lie on a

curve or is it an isolated solution? Since 2.7.1 is a differentiable function and that a3 is

defined as an implicit function of a2, we know that a2 = a3 = 2 is not an isolated solution.

So there exists two curves that allow those two to be equivalent.

Since we are looking for when they are not, this gets a bit easier for us. Let a2 = a3 = 1
2 .

Then aa32 =
√

1
2 and a2a3 = (12)(12) = 1

4 , which are obviously different.

Now let a1, a2, a3, a4 ∈ R − {0}. The Tamari Lattice for this expression is pictured on

the next page, and this gives us the normal forms,

a
a
a4
3

2 , aa3a42 , a4a
a3
2 , a2a

a4
3 , a2a3a4.
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Figure 2.7.1. The Tamari Lattice for the exponentiation 3-expression a
a
a
a4
3

2
1 .

It is very easy to see how the number of functions to check quickly increases. However,

this allows us to realize something important about these functions. If we avoid choosing

numbers a1, . . . , a4 such that a2 = a3 = a4, these are all distinct functions. Looking at the

third and fourth normal forms for this expression let us realize that we must avoid the

situation wherein aa32 = aa43 in order to produce the maximum amount of normal forms.

So let us choose a1 = 1
2 , a2 = 1

2 , a3 = 1
4 , a4 = 1

8 . Then the normal forms evaluate to,

2
− 1

4√2 ,
1

32
√

2
,

1

8 4
√

2
,

1

2 8
√

4
,

1

64
.

Therefore we have that each of these are distinctly different numbers, and thus all the

normal forms are distinct.

The problem is in finding the correct numbers to choose in this situation. We will show

for n = 4 that the selection of numbers a1 = 1
2 , a2 = 1

4 , a3 = 1
8 , a4 = 1

16 , a5 = 1
32 that the

fourteen normal forms of the exponentiation 4-expression are unique.

The set of functions F 4 can be written,



2. OPERATIONS ON R 26

F 4 = {((((aa2)
a3)

a4)
a5

1 ), (((a
(a

a3))
a4)

a5

2
1 ), (((a

a2)
(a

a4))
a5

3

1 ), ((a
((a

a3)
a4))

a5

2
1 ), ((a

(a
(a

a4)))
a5

3
2

1 ),

(((a
a2)a3))

(a
a5
4 )

1 ), ((a
(a

a3)))
(a

a5
4 )

2
1 ), ((a

a2)
((a

a4)
a5 )

3

1 ), ((a
a2)

(a
(a

a5
4 ))

3

1 ), (a
(((a

a3)
a4)

a5 ))

2
1 ),

(a
((a

(a
a4))

a5 ))
3

2
1 ), (a

((a
a3)

(a
a5
4 ))

2
1 ), (a

(a
((a

a4)
a5 ))

3
2

1 ), (a
(a

(a
(a

a5
4 )

3 )

2 )
1 )}

Written out in their normal forms, we have

N4 = {a2a3a4a5, a4a5aa32 , a2a5a
a4
3 , a5a

a
a4
3

2 , a5a
a3a4
2 ,

aa32 aa54 , a2a3a
a5
4 , a2a

a
a5
4

3 , a2a
a4a5
3 , aa3a4a52 ,

a
a5a

a4
3

2 , a
a3a

a5
4

2 , a
a
a4a5
3

2 , a
a
a
a5
4

3
2 }

wherein the normal forms are from the parenthesized forms in the same order. Notice

that all of these are distinct functions, but we must be cautious not to pick numbers such

that these functions are equal. Let a1 = 1
2 , a1 = 1

22
, a1 = 1

23
, a1 = 1

24
, and a1 = 1

25
.

Plugging in these values and evaluating them gives

N4 = {2−14, 2−92−
1
4 , 2−72−

3
16 , 2−52

− 2

2
3
16 , 2−52−

1
64 ,

2−
3
8 , 2−52−

1
8 , 2−22

− 3

2
1
8 , 2−22−

3
512 , 2−

1
2048 ,

2
− 1

(16)2
3
16 , 2

− 1

(4)2
1
8 , 2

− 2

2
3

512 , 2−2
(1− 3

2
1
8

)

}.

To show that these are all different values, we need only approximate to three digits,

which gives us

N4 = {0.000, 0.001, 0.006, 0.009, 0.030,

0.771, 0.029, 0.037, 0.248, 0.999,

0.962, 0.853, 0.251, 0.813}.
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Therefore they all give distinct numbers, and thus are different functions.

It is suspected that for most selections of a1, . . . an+1 between 0 and 1 that all the normal

forms of an exponentiation n-expression are unique, however the general proof has been

elusive. We have shown that this holds true for up to n = 4 via examples.

There is still room for investigation, however. We pose additional questions that still

require analysis:

1. Find values a1, . . . , an+1 such that all the elements of Nn are distinct functions.

2. Show that with ak = 1
2k

that the Cn functions of Nn are distinct.
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