
Bard College Bard College

Bard Digital Commons Bard Digital Commons

Senior Projects Spring 2020 Bard Undergraduate Senior Projects

Spring 2020

The Impact Of Live Coding Within An Educational and The Impact Of Live Coding Within An Educational and

Performance Setting Performance Setting

Alexus Renee Foster
Bard College

Follow this and additional works at: https://digitalcommons.bard.edu/senproj_s2020

 Part of the Graphics and Human Computer Interfaces Commons, and the Music Performance

Commons

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Recommended Citation Recommended Citation
Foster, Alexus Renee, "The Impact Of Live Coding Within An Educational and Performance Setting" (2020).
Senior Projects Spring 2020. 227.
https://digitalcommons.bard.edu/senproj_s2020/227

This Open Access work is protected by copyright and/or
related rights. It has been provided to you by Bard
College's Stevenson Library with permission from the
rights-holder(s). You are free to use this work in any way
that is permitted by the copyright and related rights. For
other uses you need to obtain permission from the rights-
holder(s) directly, unless additional rights are indicated by
a Creative Commons license in the record and/or on the
work itself. For more information, please contact
digitalcommons@bard.edu.

http://www.bard.edu/
http://www.bard.edu/
https://digitalcommons.bard.edu/
https://digitalcommons.bard.edu/senproj_s2020
https://digitalcommons.bard.edu/undergrad
https://digitalcommons.bard.edu/senproj_s2020?utm_source=digitalcommons.bard.edu%2Fsenproj_s2020%2F227&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/146?utm_source=digitalcommons.bard.edu%2Fsenproj_s2020%2F227&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1128?utm_source=digitalcommons.bard.edu%2Fsenproj_s2020%2F227&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1128?utm_source=digitalcommons.bard.edu%2Fsenproj_s2020%2F227&utm_medium=PDF&utm_campaign=PDFCoverPages
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://digitalcommons.bard.edu/senproj_s2020/227?utm_source=digitalcommons.bard.edu%2Fsenproj_s2020%2F227&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@bard.edu
http://www.bard.edu/
http://www.bard.edu/

The Impact Of Live Coding Within An Educational
and Performance Setting

A Senior Project submitted to the
Divisions of Arts and Science, Mathematics and Computing

of
Bard College

by Alexus Foster

May 3, 2020

Abstract

For the past three semesters at Bard, live coding has become my newest form of creative

expression and performance. This method of coding involves either creating on the spot from

scratch or editing pre-existing code in a real time manner. There is no real set structure or steps

that must be followed, however, one rule must always be followed: show your code. In the

classroom, live coding occurs when the professor demonstrates some algorithm by displaying the

program on a projector for the entire class to observe. During musical performances, the same

improvisational nature of live coding is also present, and the methods by which programmers use

to practice live-coding are similar to that of musicians. In my two final concerts at Bard, I

performed original music and live coded. Primarily using the program MaxMSP, I was able to

create audio reactive visuals and vocal talkbox effect projects. The two concerts featured

completely different setups; while one was in- person, the other was live streamed. In this paper,

we aim to explore the impact of live-coding in both environments, educational and performance

based.

2

Acknowledgements

I want to start by thanking my beautiful mother for instilling in me what it means to be a

strong, independent, black woman. Thank you for your kindness, for being gentle with me, for

showing me the right way. Without you, I would not be the woman I am today. I would also like

to thank all of my advisors on my board: Keith O’Hara, John Esposito, Pamela Pentony, Sven

Anderson, Thurman Barker, and Whitney Slaten. To Keith, thank you for your support in all of

my years at Bard, and for your patience. To John, thank you for your sense of humor and

encouraging words, and for helping me not be shy to take a solo. To Pam, my dear vocal teacher,

thank you for opening up my voice and for showing me that it’s ok to be nervous about

performing, and to always remember: when it’s genuine, it shows. Thank you Sven for all those

times in office hours, when I didn’t get the material you always showed me the way. Thank you

Thurman for your wisdom and for always supporting me. Thank you Whitney for teaching me

that there are limitless styles of music to enjoy, and for your empowering words. Thank you also

to Matthew Sargent for showing me the beauty that is MaxMSP, and thank you Amber Billey,

who taught me about databases. I hope you see this message!

Finally I want to thank my closest and best friends, Omar Ramirez, A’Zeyonna Hasty,

Talaya Robinson-Dancy, Anabel Briu, Edwar Aviles-Mercedes, Adam Fallah, and Andrea Otey.

You all truly made my life at Bard a million times better and I consider you all my family.

3

Table of Contents

Artist Statement ...………………………………………………………………...5

Chapter 1: Introduction and Background ….……………………………………..7

Chapter 2: Related Work ...……………………………………………………….10

Chapter 3: My Own Concerts ……………………………………………………16

Chapter 4: Next Steps ……………………………………………………………28

4

Artist Statement

I am a musician, songwriter, and live coder from Atlanta, Georgia. As an aspiring

singer-songwriter and live-coder, I produce art that illustrates the beauty of passion and love. I

sang in the church choir from a young age, and thus my music features roots in RnB and Gospel,

with the occasional experimental sound. The lyrical content of my music has heavy Motown and

RnB influences, with a focus on having a conversation with the subject of the song. I released

my first and only online project back in summer 2016, and plan on releasing more works this

summer. Vocally, I cite Anita Baker as one of my vocal role-models, and fondly remember the

emotions that Ms. Baker’s music gave me when I was younger. Before diving head-first into the

world of live-coding, I only improvised during a solo; now, I also improvise while programming.

My performances at Bard were collections of both music I had studied in my classes and music I

created on my own. In my final two concerts, I branched out and began to include live-coding as

a part of the show. I love to travel, and want to explore the world, visiting other countries and

neighborhoods to observe and play music with other musicians of the world. I believe strongly in

the power of empathy, and my mission is to reach individuals from all walks of life through my

art and vulnerability, and to live life unapologetically.

My concerts would usually open with a gospel piece as an ode to my roots and as a

musical selection to get my mind and heart in the right place. For my first senior concert, I

opened the show with a gospel song, “Calvary” by Richard Smallwood. I had 6 other original

songs named I’m So In Love With You, Deeper Meaning, I’d Give My All To You, OOP,

Eternal Mood, and Trashpop. Each song held it’s own theme, from inner conflict, to the intense

feelings that loving someone brings, to letting people know to stay in their lane. OOP in

5

particular stood out from the rest of the other songs because I played this song in the background

while I live-coded. Live-coding during my performance was exhilarating and nerve-wrecking, as

there is a big moment of silence while you write the code and run it. For my last concert, I chose

to perform one of the most beautiful Anita Baker songs, “Just Because”, which speaks of love

with no expectations or rules. This song makes me emotional and her delivery of the lyrics is a

skill that I am working towards. My other four songs for this final concert are named Clear

Intentions, Show Me, Dreams, and Body Shimmer and are all original compositions. This second

concert was live streamed due to the global pandemic, and some of these songs had themes either

musically or lyrically surrounding isolation and longing for human interaction.

I am proud of how my final concert turned out, even if it was performed remotely,

because despite the circumstances I was still able to share my work with my friends and family.

After Bard, I look forward to branching out and working with other artists, specifically in writing

songs or producing. If my music can uplift at least one person, then I know that I have done what

I’ve set out to accomplish.

6

Chapter 1: Introduction and Background

Live-Coding is the practice of writing, debugging, compiling, and running code in a real

time manner. “Live Coding has established itself as an alternative to traditional laptop

performances. Offering a form of improvisation at an algorithmic level, it gives an insight into

the used algorithms to the audience by making the source code visible, while at the same time

focusing on the (physical) presence of the performers.” (Zmölnig and Eckel, 2007) Programmers

live-code for a variety of reasons ranging from educational opportunities to creative endeavors.

In this practice, there are many parallels to improv in music, and being both a programmer and a

musician, these similarities were striking. In my project, I explore both of these worlds,

embracing the challenges. These challenges come in the form of learning the language inside and

out, so that live coding on stage is autonomous, or letting the creative side of your work be

shown, without limiting yourself as an artist and programmer. In the live-coding environment, on

stage, the set-up and delivery isn’t very conventional; “While it is often not so interesting for the

audience to watch pale faces illuminated by computer screens, it is at the same times often not

very interesting for the performers to play their (however complex) systems and algorithms with

the limited interface of keyboard, mouse and fader-boxes.” (Zmölnig and Eckel, 2007) In my

artistic practice, I choose my live-coding decisions based on the story that my music is telling.

For upbeat, sassy and beat driven records, there is some audio-reactive image going on in my

immediate background, because I need the image to do the moving for me. For softer songs, I

include calmer pictures. In the classroom, the professor writes out a working program from

scratch, in demonstration, to their students. Sometimes, the students follow along on their

7

computers, and other times they are simply taking it in, simply observing everything that is

happening. This is the Manifesto of live-coding.

When looking at coding as a process in the live-coding performance setting, there is more

space and forgiveness given to the programmer. In fact, the environment is entirely experimental

at times, with bugginess and errors being not only rare, but expected! Premade code, which I

mentioned above, is utilized as well during live-coding performances, however there are some

negative opinions towards this. Another part of the live coding process is diagramming or

creating a mark-up, which is a method I employed personally! In Figure 1, notice my notes on

which aspects and attributes of the code I could change. I remember figuring these scribbles out

through a trial and error process, and even admittedly feeling like I was diluting the experience

in a way, because I brought the notes with me on stage. Although live coding is essentially

expected to be completely live, I wrote these notes down for my own performance anxieties that

I sometimes experience. Ironically, I ended up not using them much during the show.

 This thesis initially aimed to investigate the impact that live-coding has within different

settings, such as an educational classroom or a performance setting. Within the classroom, live

coding has been utilized in many different outlets. For one example, it has been used as a

learning tool to accompany students who may require a more hands on approach when it comes

to learning how to become a programmer. In the performance setting, live-coding can add

another visual or audio aspect to performances ranging from art installments to music

performances. My project was initially going to conduct a course followed by a survey, but I

decided to keep it simple as a demonstration of live coding during a concert. I describe this in

more detail in Chapter 4.

8

In future concerts, I expect to become more intentional in what I live-code. Right now

everything is still very experimental, but one goal I am working towards is intention with the

creativity aspect still being evident, and not sacrificing it during performance. Further in this

paper, there are code snippets from two concerts I conducted that featured original music along

with live-coding audio reactive visuals, and an explanation on a talkbox effect I created using

Max/MSP/Jitter. These concerts were vastly different, as the first concert was in person, and the

second concert was streamed via twitch.tv. Both experiences were challenging, however they

taught me to be resourceful and to work under pressure, and both experiences also taught me that

people are very open to live-coding, and even think it is exciting to watch.

9

Chapter 2: Related Work

The Pros and Cons of Live-Coding in Performance

Advantages of live coding during performance include: extreme flexibility, the ability to

hear or see your efforts instantly, and being able to practice your improvisational skills in a new

way. In a similar way that the audience and performer receives instant gratification at seeing a

live-code implemented correctly, students in the classroom receive the same rewarding feeling

after following a successful live-coding implementation. In the article “Live Coding In Laptop

Performance”, the disadvantages were also discussed, and included reasons such as: no

debugging or testing, preparation for the next line of code takes too long, sometimes there may

be moments where the code produces an ugly result such as a sharp sound. One other strong

criticism of live coding in music is that it can sometimes be considered lazy performing or not

considered real music, however this has been a criticism of computer music even before the

thought of live-coding. Before the implementation of live-coding in music, there was computer

music that simply featured two parts: the program, and the score. “In computer music there used

to be a strong distinction between the program (the instrument) and the score (the player)... In the

case of an interpreted language, this mediation can be constructed, but essentially the distinction

is blurred.” (Collins, McLean,Rohrhuber, Ward 2003) In this way, live-coding during

performance blurs the roles of the computer and the person. The computer is no longer doing all

of the work, there is now a more human engagement to performance using computers.

What is Cognitive Apprenticeship?

Cognitive Apprenticeship is “a model that focuses on making thinking visible. This

model is based on the ancient model of apprenticeship where a student learns a skill from a

10

master by working under the master’s guidance.” (Raj, Halverson R., Patel, Halverson E. 2018).

This model focuses on the process rather than the final product, and is a very useful model to

consider when dealing with computer science students. Speaking from personal experience, the

very first time I was presented with code, I wondered how did the author write a complete

program in one sitting. When I first started, what I didn’t know is that writing code is a process,

it is not an activity that can be completed in one sitting. Live coding helps to shed light on this

process by showing students a few useful strategies that programmers implement. For example,

incremental coding, which is where you write only a few lines of code and compile it, as

opposed to trying to write many lines, is one of the strategies that live coding allows students to

witness.

In the article, “Role of Live-Coding in Learning Introductory Programming” the

Cognitive Apprenticeship model is broken down into three stages: Modeling, Scaffolding, and

Fading. In the Modeling stage, the students are following along with the instructor, as the

instructor demonstrates, via live coding on a projector. In this stage the students are encouraged

to follow along on their own laptops or they can alternatively just observe. In the Scaffolding

stage, the teacher gives the students an assignment and provides a skeleton or “scaffold” of the

assignment so that the students can piece together the missing elements. Lastly, the Fading stage

is essentially the students working on an assignment by themselves, for example a homework

assignment or a project. In this final stage, the instructor does not provide any scaffolds and

leaves the process completely up to the student, who must demonstrate their mastery of the

concept.

11

Looking At Programming As A Process

As mentioned earlier, it is important for computer science students to understand that

programming is a process. In a traditional classroom, this concept may not be as clear. When

students are presented with blocks of already made and debugged working code, or readings that

feature this type of pre-made code, there are no disclaimers discussing the process behind this

work. This can lead to feelings of frustration or inability, when a student attempts to write their

own code, only for it to never work properly. With live-coding, the student is allowed to see that

programming isn’t linear. They see how a good computer scientist writes code, which is line by

line. Debugging, which is a process of going through every line in your code and determining the

cause of errors, is demonstrated not as an afterthought, but as an integral part of the

programming process. One other positive is allowing students to personalize their own process

by being able to see the different methods that each computer science professor utilizes.

12

Figure 1- Alexus’ Programmer’s Notes

13

Other practices have been utilized as well, and these practices were similar to the

discipline that a musician employs when preparing music! For example, isolation practices are

one method that live-coders use when practicing. This technique is the practice of focusing on

small parts, instead of the project as a whole. An example would be typing exercises, which

work to increase the programmer’s typing speed. Of the exercises I researched, I employed the

typing, memory, and awareness practices. From the article, “Live Coding Practice” on memory

practices- “Trying to keep all the processes and details in mind (especially without any graphical

reminder in your live coding system) may be aided by memory practice exercises.” (C. Nilson)

While awareness practice works on being in the moment with the performance and even offers

that “Meditation and reflection may also play a part in managing stress and concert anxiety.”

(C.Nilson)

Live-coding as a Collaborative Art Within The Classroom

The effects of live-coding on collaborative learning amongst students who are all learning

the same concepts for the first time, is observed in using EarSketch. “EarSketch supports CSP

(Computer Science Principles) through promoting creative practice and self-expression linked to

computational learning; allowing for the use of computational concepts, such as layers of

abstraction (e.g. the DAW timeline), loops, variables, different data types, and procedural

algorithms; providing the Internet medium as both an individual and a collaborative space in

which songs and scripts can be shared; and allowing for social impact of computing practices.”

(Xambó and Freeman 2016) In this example, students are learning from each other in many ways

ranging from sharing their various music-making techniques to sharing their original

14

compositions. Additionally, EarSketch provided students with the chance to share their scores

amongst each other and input edits as needed. The best environment, in order for live-coding to

be successful is mentioned in the article as meeting these requirements. “A suitable environment

for live coding in the classroom needs to allow for the exploration of real-time manipulation of

code, in which both musical and computational understanding are important. Furthermore, the

environment needs to be easy to use including domain-specific languages that are easy to

understand.” (Aaron and Blackwell 2013)

15

Chapter 3: My Own Concerts

My two concerts are experiments, as I hadn’t live coded prior to these performances.

Though I haven’t found my “formula” yet for my personal process, I still had preparation, in a

much similar fashion to practicing, in order to have these sections of the concert run smoothly.

Before I get into my preparation, I want to briefly discuss the two aspects within my first

concerts’ live-coding segments. I’ll begin by saying that, for my first concert at least, half of that

code was developed in the Technologies of Music class I took with Matt Sargent in Spring 2019,

and the software and language that was used was Max/MSP. This code was a part of a final

project we did, and I figured I’d add a visual aspect to the code, since there was already an audio

aspect. The audio aspect was in the form of a vocoder that transformed my voice in realtime to

have a robotic texture, while also being done in a three part harmony. This effect was inspired by

one of my favorite bands Zapp and Roger, who were known for their use of the talkbox.

Unfortunately, this effect wasn’t utilized fully. I initially wanted to sing during one of my songs

with this vocoder, however during the dress rehearsal, we discovered two things. The first was

that I would need a separate microphone to capture my voice, and since the code was within my

laptop, at the time I didn’t know the solution/connection needed for this setup. The second was

getting the actual audio to come out of the speakers, while at the same time having the mic

connection that I just mentioned. Needless to say, during the concert, I ended up having a

light-hearted moment and telling the story of how I lost the second half of my code. This was my

way of salvaging that part of my live coding, because I felt it would be a shame to have done all

of that work and not be able to show off my vocoder. The second part of my live-coding segment

was an audio-visual program. Essentially this code was on display while I played an instrumental

16

named OOP, which was one of my original songs. This code was very basic as I am still learning

shapes on MaxMSP, and I wanted to play with layers and shading so as to give the room I was

in, a nightclub vibe. It somewhat worked, and what was really great, was that I was able to turn

the image I loaded on an axis, giving the audience a 3d experience as well. I’m really saddened

that I didn’t get to incorporate different colors into the imagery, as that would’ve taken those

visuals to the next level.

Figure 1.2- Generation of the Image begins at the loadbang section

17

Max/MSP/Jitter

Max/MSP/Jitter is a visual programming language, which, for someone who is a visual

learner, helps immensely. The program features three parts: Max is the MIDI section that handles

mathematical operations, MSP deals with the audio, and Jitter offers graphical abilities,

including videos. More on this software will be discussed in this chapter, as well as how I

decided to utilize the software and why. In addition, this section will discuss the pros and cons of

using this software. To begin, each Max project is called a Max Patch, and in contrast to the

other languages, each piece of these patches are objects! “Max patching starts on a blank canvas,

free from tracks, layers, or predetermined structure. This makes it natural to create

interconnected processes and discover nonlinear approaches that would be hard to do

elsewhere.” (cycling74.com 2020) I will first discuss the interface.

 Figure 1.3- An Audio-reactive Jitter Visualization Patch, set to OFF

18

https://cycling74.com/products/max/

MaxMSP features a very clean, yet sometimes complex interface. One advantage of using

this software is the visual aspect of connecting each piece of the code with another piece. These

parts are called inlets and are at the two right and left corners of each object box. Depending on

the type of object, the box may have both inlets at the top and outlets on the bottom. For

programmers who like to keep their code organized, this software allows the user to resize object

boxes, move boxes around and organize the “hooks”, which are the wires that connect the object

boxes. Depending on how the user organizes the hooks, there may be an effect that occurs if

everything is connected correctly, or in other words, the code works. Max will not allow

incorrect connections, for example outlets to outlets, to happen and will also show the user what

each inlet and outlet connection will do. This interface overall is very user friendly, especially to

someone who may have prior coding experience. Another extremely useful feature of the Max

interface is the help library, which is built into the actual program. Unlike Java where the

programmer has to search the Java documentation online for assistance, Max has a built in help

library that allows the programmer to search for what different objects can do without taking

themselves out of the environment. Additionally, the help library offers copy-and-paste options

of an instance of the object being used, which can provide a quick solution to the question the

programmer has. To someone who has never coded before, the interface can become

overwhelming, and because patches can become dense, this software may be a little difficult at

first to someone programming for the first time. Jitter is another graphical interface, but we will

discuss this later in the chapter as it serves its own purpose independent of the Max interface.

Max is able to support six types, and types are essentially a kind of data that will let the

program know how the user is using that data. The six types in Max are: int, float, list,

19

symbol, bang, and signal, with the last two being Max specific types that interact with the

Max audio interface. With a bit of Max background, I can now talk about my programmer’s

notes and my code that I used during the first concert.

Looking at Figure 1, we can now explain what these notes mean. Within the big idea of

this Max Patch, in order to display the audio reactive image as efficiently as possible, I came

with a big portion of it created, and changed certain attributes with the objects. In Figure 1, to

“subtract the amplitude value from a number”, alters the image so that the space between each

square shape either increases or decreases. Change color is self explanatory, it simply would

change the images’ color. To detach the clip, made it possible to keep the vertical axis stationary,

while the horizontal axis rotated. And rotatexyz is the attribute that allowed the image to

rotate initially. I then illustrated diagrams, as Max is very visual, to also provide extra support.

Notice how they are illustrated with the object boxes and inlets and outlets to match.

These types of notes, as well as practice, and actual performance hours all contribute to

the live-coding process. As a beginner and reflecting back on these concerts, I recognize now

that it is ok to use notes while I am starting out. The goal is to eventually become automatic and

intentional with the software, and with consistent practice, much like a musician, this can be

achieved.

20

Figure 2 Max Vocoder, currently set to OFF

In Figure 2, I made a vocal talkbox as my final for Technologies in Music, inspired by

my favorite band Zapp and Roger. This talkbox has several features including harmony

capabilities with an option of making an infinite amount of harmonies by adding more kslider

objects, manually changing the distance between the notes via mouse-click, and the option to

load a pre-recorded song that performs in talkbox fashion.

I insisted on having the talkbox program be as simple and user friendly as possible. Also,

this was one of those cases where I made the patch as visual as possible. Not only would this

benefit me personally, but I also thought the audience would like the three keyboard visuals.

Within the code I have three kslider keyboard objects all connected to a

midi-to-frequency object, separately. midi-to-frequency takes midi note values and

returns frequencies. From there, they each are connected to a sawtooth wave, which when

21

specified as saw~ produces nicer tones that don’t experience aliasing, which makes tones sound

cluttered and unintelligible. From here I connected the three objects to a selector object,

which just takes any number of inputs. The most crucial and challenging part of this code was

figuring out why my talkbox would unpredictably buzz out, and when I applied a visual

oscillator(not pictured) to the selector object, I noticed that my tone signals would sometimes go

above the x-axis, and that this was causing the buzz. Adding the zerox object helped solve this

issue, and finally the last step was to add audio playback buttons. This is done with the dac and

adc objects and these two objects send audio signals to each other. The adc object receives the

audio, in this case my voice, and the dac object sends this audio out to whatever output is

selected on the computer. When I used this patch for my concert, I alternated the actual keynotes

on the keyboards to allow for harmonies to be made while I spoke into the talkbox.

Figure 2.1- Creation of the world; the window that displayed the Jitter Visualization

In Figure 2.1, I used Jitter which is a part of Max that deals with building graphical

effects and editing movie clips. It allows the user to create a “world” where the user loads in

pixels to create graphic animations. For my concert I made an audio reactive patch that was very

simplified and featured square shapes that would dance to the rhythm of the song. For this code I

had to create a separate window, called a world, that took the arguments fsaa (full screen

anti-aliasing), size, window position, floating, erase_color, fs menu bar, fps

(frames per second), and sync. This created the actual pop-up window that would hold the audio

22

reactive image. For the image, it held the attributes name, draw_mode, automatic, scale,

blend_enable, and blend. This is the mesh effect’s shapes and attributes. These two were the

biggest builds of the patch, and to get the image to react to the audio, I connected them to a

trigger object, named tbbbb that was then connected to a snapshot object. When the

snapshot object receives a bang, or signal, it returns the value as a float message. Also note

the float objects being received by the jitter image. From there the snapshot and trigger objects

were connected to the sfplay object, which simply plays an mp3 file, and once a signal was

received (here I refer to a signal as a rhythm), those float messages were returned and the image

would move to the beat. From here it was possible to change the colors, but I did not figure out

how to do this, and decided to do this effect in my final concert. One other effect that I enabled

was the ability to rotate the image along an axis, and that is the axis with the rotatexyz

attributes.

Figure 2.2- A side view of the Jitter Visualization

23

Figure 2.3- The section of code that generates Figure 2.2

Second Concert

My second concert will also incorporate visual aspects and audio reactive materials. I will

be opening the concert with this visual camera capture software, named shaderbooth, that

24

incorporates live coding. In it you can choose several different visual “filters” and live code your

alterations into your capture feed, giving the audience funny and unusual effects. My set-up was

a bit tricky to figure out as an unexpected and large change occurred this semester. With school

becoming remote and virtual, I had to find an alternative set-up in order to complete my concert

in a way that I would still be able to give an actual concert. I went with an alternate option to

present my concert via the live streaming service Twitch, and due to this fact, I needed to make

sure the audio set-up was sufficient enough so that everyone could hear what I was saying and

doing. The audio set-up couldn’t be the norm; the norm being the instruments and computer

connected to an amp etc. Instead I settled on connecting a mic and my keyboard to my computer

via an audio interface. Additionally, instead of utilizing my mac camera, I was able to borrow a

computer webcam from my advisor. This concert was also obviously much shorter in length,

given the fact that there were no longer musicians left on campus and that the buildings had all

been closed for the rest of the semester, leaving limited resources. At the time of writing this

paper, the concert has not happened yet, but I am looking forward to it!

25

Figure 2.4- The Second Concert Set-up

A little more on my set-up, and a comparison of my set-up from the first concert to the

last one. My final concert incorporated the use of video capture software named OBS, so that I

may capture the video and audio feed in a real time manner. OBS or Open Broadcast System is a

“free and open source software for video recording and live streaming that offers high

performance real time video/audio capturing and mixing.”(obsproject.com 2020) Open

Broadcast System not only features streaming capabilities, but it also features recording

capabilities as well, which is integral during this time of remote interaction. The audio setup

features the use of an audio interface, which is a small box that holds multiple inputs for musical

instruments and mics. This box is then plugged into the computer, and from there I select my

input and outputs as needed. The mic I’m using is a condenser mic, Audio Technica at2020,

which means it requires phantom power on the interface in order to operate. It will work with the

help of the audio interface and Logic, which is a music making software. The audio interface is

26

one separate connection via usb. The other connection is my keyboard, which is a Yamaha

MX88, and this is plugged in through a usb as well. Although my setup in this final concert is

much more succinct, the technicalities and connection are more confusing. In my first concert,

the setup was pretty standard for a concert: instruments and mics ran into amps, and my

computer ran into a projector to be displayed to the audience. With my final concert set-up, even

the idea of streaming music to a live audience from just my room seemed daunting, and this is

the biggest difference personally for me. With a few concerts like this, I could see myself getting

used to regularly hosting these types of concerts.

27

Chapter 4: Next Steps

For a large part of my time at Bard, I adamantly chose to keep my two majors completely

separate. In my mind, music was my creative outlet and computer science was another outlet that

I knew would support me. CompSci also provided me with a daily challenge that allowed me to

set coding specific goals for myself each semester. I even moderated into my majors separately!

It wasn’t until my junior year when I took Technologies Of Music with Matt Sargent that I saw

how I could possibly combine both music and computer science. In this class we used a program

called MaxMSP that features endless possibilities, from vocal effects like delay or talkboxes, to

musical effects. Since taking the class, I’ve also found that Max can be used to do almost

anything, including visual graphics and video playback! I remember speaking about coding

during my final concerts to my CS advisor and I thought they would be apprehensive, but they

were the opposite; they were so excited! My advisor and I then began to speak about how coding

is done in a live setting, and from that day on I began to plan for my project. I took Matt’s class

initially to have an elective that was in two subjects that I loved, but I didn’t think it would play

such a major part in my project. I made sure to design and utilize my final project for this class in

a way that I would be able to use some of the code in my concert. As is to be expected, my

project changed from its initial aim, and it changed even further when a global pandemic hit in

my final semester of undergrad.

I initially planned to design a CS based lesson where I would teach a course to a group of

non CS majors and a group of CS majors. These courses would be taught using the “traditional”

method, and a method that employed live coding. The traditional method included sending

students home with reading material that would explain the assignment. The live coding method

28

was an in class live demo that taught the same assignment, but it was more hands on. The aim

was to take survey responses from these two groups of students to determine which method of

delivering the lesson was more beneficial to the students. I hypothesized that the students would

prefer the live-coding method as it presented students with a visual and hands-on real time

experience. In contrast to the traditional method, I felt the live-coding method would appeal to

more students and a more diverse learning style. This experiment wasn’t carried out however

because I found a substantial response from simply having a concert that featured live-coding.

For my second concert, I was interested in providing a survey or experiment. In one

option I run an experiment in which I conduct a lesson using live-coding vs. traditional learning,

and ask students which method they preferred. Alternatively, a survey given before and after my

concert could also provide me with insight on how live-coding has impacted the general opinion

of coding or my project as a whole. But as mentioned earlier, this didn’t occur, and instead I

gave an in bedroom streamed performance.

Now, the next steps I am looking at, is taking live-coding and music as a serious hobby

that I will want to eventually make a living out of. Using live coding as a means of creativity,

especially in the cross-section of the musical performance realm, is still a relatively new avenue.

As I mentioned earlier, the pandemic hit and with an entire society reduced to their living rooms,

it really showed the power and importance of remote performance. Concerts streaming on

Instagram live and Facebook live have become the norm as of the creation of this paper, and I

believe that we are witnessing the beginnings of true live stream performance.

As for myself, I want to continue live-coding and performing music. While at Bard, I was

blessed with the opportunity to travel to Haiti and teach CS classes while I was over there. They

29

love Computer Science down in Haiti, and I was able to meet kids and young adults who truly

valued education and creativity! I will be returning to Haiti to work with the students there again

and show them some live-coding, as I think this is something they would like. In the very distant

future, I will open a music school for children who cannot afford normal priced music lessons.

This school would offer reduced or totally free lessons, as long as they maintained an excellent

GPA.

30

Bibliography

Zmölnig, I., Eckel, G. (2007). Live Coding: An Overview

TOPLAP Manifesto. http://toplap.org/wiki/ManifestoDraft.Accessed May 2020.

Nilson, C., “Live Coding Practice”, Accessed December 2019

OBS Open Broadcast System. https://obsproject.com/. Accessed May 2020

Cycling ‘74. https://cycling74.com/products/max/. Accessed May 2020

Raj, A. G. S., Patel, J. M., Halverson, R., & Halverson, E. R. (2018). Role of Live-coding in
Learning Introductory Programming.

A. Xambo, J. Freeman, B. Magerko, and P. Shah, ´ “Challenges and new directions for
collaborative live coding in the classroom,” 2016

N. Collins, A. McLean, J. Rohrhuber, and A. Ward, “Live coding in laptop performance,”
Organised sound, vol. 8, no. 03, pp. 321–330, 2003.

31

http://toplap.org/wiki/ManifestoDraft
https://obsproject.com/
https://cycling74.com/products/max/

32

	The Impact Of Live Coding Within An Educational and Performance Setting
	Recommended Citation

	tmp.1588621903.pdf.7gTiA

