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Abstract

This thesis is an exploration into the physical mechanism responsible for the

acceleration experienced when pumping a ramp on a bicycle, skateboard, or related

human-powered vehicle. Pumping is the technique by which one propels oneself on a

ramp, which is very similar to the process of pumping a playground swing. It is my

hypothesis that the acceleration one experiences when pumping a ramp is primarily

due to the conservation of angular momentum, affected by altering ones moment of

inertia relative to the focal point of the curve through which one is traveling. This

report documents my attempt to accurately describe the process mathematically,

experimentally verify my predictions, analyze, and synthesize the results.
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Chapter 1

Introduction

In this report I will explore the physical mechanism responsible for the acceleration

experienced when pumping a transition, i.e. a ramp, while riding a human-powered

wheeled vehicle – in my case a bicycle, but the mechanism will be essentially the same

were one to consider a skateboard, scooter, inline skates, etc. The physics is similar to

that of pumping a playground swing, although perhaps somewhat simpler. I will

demonstrate through a comparison of theoretical modeling and experimental results,

that the acceleration experienced by rider is the result of the conservation of angular

momentum achieved by moving one’s center of mass relative to the focus of the ramp

(transition/curve) being traversed.

1.1 Background

As a young person I became fascinated by and enamored with the relatively new sports

of skateboarding and Bicycle Motocross (BMX) bicycling. By the time I reached my

teens, BMX bicycling had become my primary passion and I spent nearly all of my free

time practicing and exploring the world onboard my bicycle. I was most impressed by,

and most wanted to emulate, the various ways that people were able to jump, or fly,

using their bikes, especially using the quarter-pipes or half-pipes that were becoming

increasingly popular at the time. When my friend built a ramp in his backyard,

learning to ride it, learning to fly, became an obsession, and we spent countless hours

burning calories and perfecting the craft. At the time, my friend’s father referred to us

as ”the hyperventilating squirrels.”
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Despite persistent parental admonition backed by confident assurance that I would

soon enough grow out of my childish obsession, the thrill had become an addiction, and

I became ever increasingly entrenched in the competitive and cultural world of BMX

bicycling. After publishing a short-lived BMX lifestyle magazine, I found employment

as a graphic designer and photographer at a sports training camp. It was there that I

first recall pondering the physics involved in what we were doing. In addition to riding

hours each day, I spent a lot of time observing and helping others to learn various

aspects of the art form.

Pumping is a fundamental skill for anyone wanting to participate in one of these sports.

I can recall groups of beginner skateboarders lined up across the flat bottom of a

half-pipe, all rolling back and forth, like a line of pendulums, trying to find the rhythm

of the ramp. Pumping is the primary means by which riders accelerate, but speaking

as a rider it becomes subjectively much more than that; it’s the way that you learn to

relate to a transition. The curve can catch you like a cradle, or hurl you high into the

air, and each and every one has its own temperament, its own natural frequency.

1.2 About this Thesis

This is the thesis of Christopher Hallman, submitted as part of the requirements for

the degree of BSc Physics at Bard College, Red Hook, NY.

In this work I will develop a theoretical framework for explaining the acceleration

experienced by a rider (bicyclist, skateboarder, etc.) when pumping a ramp as the

consequence of the conservation of angular momentum.

1.3 Chapter List

Chapter 2 Background Research.

Chapter 3 Design: explanation of the theoretical and experimental approach.

Chapter 4 Experimental Implementation.

Chapter 5 Experimental & Theoretical Results.

Chapter 6 Conclusion.
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Chapter 2

Background Research

P

COM

Figure 2.1: Pumping on a ramp is related to pumping on a swing.

Suspecting that pumping on a bike had a lot in common with pumping on a swing, I

began by searching to see if there had been any physical studies into the mechanism of

pumping a playground swing. I found, somewhat surprisingly, that there has been

quite a lot of research into this deceptively simple activity. According to William Case,

the author of a 1996 paperCase 1996 on pumping a swing, ”The pumping of a swing is an
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almost ideal example of a physical system. It is simple and transparent enough to be

analyzed with confidence and complicated enough to produce almost magical results.”

Let me just say that one physicist’s idea of simple can be profoundly confusing to a

physics student; and I would argue that the continued research, with new papers

published as recently as 2023, suggest that this simple activity hides a great deal of

rich complexity.

I began by exploring the above mentioned paper, hoping to find an appropriate

theoretical approach to the problem. In that paper, titled ”The pumping of a swing

from the standing position,” the authors model the pumping motion of a standing

swinger both as what they refer to as a harmonically driven oscillator and also as a

parametrically driven oscillator. I believe that the purpose of having the swinger

standing is to isolate the two motions and simplify the analysis. The technique that

they refer to as harmonically driven involves a ’rigid’ swinger forcing the angle between

themselves and the supporting chains to vary in phase with the swing, basically leaning

back and forth. By contrast, in the parametric model, the swinger pumps by standing

and squatting in phase with the swing, thereby lowering and raising their center of

mass. Although the parametric model seems more appropriate to the case of pumping

a ramp, I wanted to explore both models to better understand the two mechanisms.

The authors employ a Lagrangian approach to derive the equations of motion for both

pumping scenarios, although they did not show the derivation in detail. Therefore, to

better understand their approach and hopefully learn how to adapt it for my own

pumping problem, I derived the equations of motion below. In Lagrangian mechanics,

one defines variables that describe the location of an object within a given space; then

using that mathematical description, a mathematical algorithm can be used to arrive

at the equations of motion.

Lagrangian Approach

Figure 01 illustrates the relevant parameters and relationships necessary to describe

the location and movement of the center of mass for the harmonic oscillator approach.

x = (R− psin(ϕ))cos(ϕ) −→ ẋ = (−sin(ϕ)(R− psin(ϕ))− pcos2(ϕ))ϕ̇

y = (R− psin(ϕ))sin(ϕ) −→ ẏ = (cos(ϕ)(R− psin(ϕ))− pcos(ϕ)sin(ϕ))ϕ̇

4



In the above equations, x and y represent the position coordinates for the center of

mass, whereas ẋ and ẏ represent the velocity of those points as they move. With this

description, the Lagrangian can be constructed, and then using the Euler Lagrange

equation, the equation of motion for the system can be calculated. This process is

essentially a path optimization problem which results in an equation that describes the

motion that an object will take. Below is the Lagrangian for the system, and the

resultant equation of motion.

L = 1
2
m[ l2ϕ̇2 − 2sl ˙phi(ϕ̇+ θ̇)cosθ + (s2 +R2)(ϕ̇+ θ̇)2] +mg[ lcosϕ− scos(ϕ+ θ)]

Equation of Motion

(l2 − 2slcosθ + s2 +R2)ϕ̈− gl sinϕ+ gs sin (ϕ+ θ)− ls sin θθ̇2 + (ls cos θ − s2 −R2)θ̈ −
2ls sin θθ̇ϕ̇

The authors of the paper then make some small-angle approximations to simplify the

equation. ϕ dependence is Taylor expanded keeping only zeroth and first order terms.

θ dependence is Taylor expanded keeping up to the second order. The periodic driving

force supplied by the swinger periodically rocking back and forth is modeled with the

following relation: θ = θo cos (ωt). With these simplifications and the θ substitution we

arrive at the following equation of motion:

ϕ̈+ ω2
0 = F cos (ωt) + A cos (2ωt)ϕ+B sin (2ωt)ϕ̇+ C cos (2ωt)ϕ̈

To better understand how this equation describes the motion of the swinger, I used

Python to numerically solve the equation and plot the solution (See appendix A).

After this consideration and exploration, I came to believe that the simpler parametric

approach would better approximate the motion undergone by a cyclist or skater when

pumping a ramp. First of all, I believe that the rocking motion described in the paper

is not applicable to the case of pumping a ramp, because a biker or skater can not lean

forward or backward without losing balance and falling over. Put simply, a biker or
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Figure 2.2: Comparison skateboard vs. bike. Notice the axis with respect to which bal-
ance must be maintained. The necessity of maintaining balance prevents any significant
rotation around the rider’s center of mass.

skater does not have a supporting chain to hold onto; and if they were to move their

center of mass either fore or aft relative to a line drawn from the focus of the curve to

their point of balance on the ramp, the wheels would roll out from underneath them,

and they would fall over; an unfortunate outcome referred to as ”looping out.” While

the complexity and horizontal extent of the biker/bike system makes this more difficult

to see, the more vertically streamlined skater/skateboard system makes this more

obvious. Simply put, a biker or skater must remain vertically balanced, and therefore

the only relevant motion is that of their center of mass along the line from the focus of

the curve to their point of balance on the ramp.

With this understanding I looked into what the authors of the paper called the

parametric approach, which involves the swinger raising and lowering their center of

mass along the line of the swing. There are two relevant coordinates to describe the

motion of the system, the rotation from origin, which sits at the focal point of the

swing and is described by the variable ϕ, and the distance l
′
which I have labeled in

the above diagram. l
′
is the relevant parameter that changes in order to drive the

motion of the system. With these variables defined, the position of the center of mass

of the swinger can be located by defining a rotation in degrees and a distance from the

origin. Both the tangential velocity as well as the radial velocity of the changing

moment of inertia is considered separately, an approach which yields the following

Lagrangian and equation of motion. I will use this approach later to derive a

6



parametric model for my system.

L
′
= 1

2
m(l

′2ϕ̇2 + ˙l′2) +mgl
′
cosϕ

Equation of Motion ϕ̈ = −2 l̇′

l′
ϕ̇− g

l′
sinϕ

Considering and analyzing these approaches forced me to consider pumping more

critically, gave me insights into my problem, and also highlighted the significance of

simplifying assumptions. The authors of this paper are arguing that swinging on a

swing is better modeled as a harmonic oscillator, which again they define as the

rocking back and forth motion, and which they contrast with the parametric motion of

varying one’s moment of inertia. However they also note that ”If the amplitude of the

swing is sufficiently small, the contributions from the parametric terms are negligible,

the driving terms dominate, and the swing is properly considered a driven oscillator.

For motion at a sufficiently great amplitude the situation is reversed, the parametric

terms dominate, and the swing is properly considered a parametric oscillator” (Case

217). As evidence for their hypothesis, the go on to note that when you observe a

swinger on a swing, that they are ”relatively quiet” as they pass through the lowest

point in the swing, either leaned all the way forward or all the way back, and that this

contrasts with the parametric regime in which the swinger is most active at the lowest

point, raising their center of mass.

As part of my research I went to swing on a playground swing in order to develop a

better intuitive understanding of the process, trying both standing techniques as well

as the traditional seated technique. Notably, when sitting and swinging, I observed

that I am exerting the most effort as I pass through the lowest point, even though I am

all the way leaned back and my body does not appear to be moving very much. Also

when performing the standing and leaning method described by the authors, at the

lowest point one needs to hold themselves up with their hands, which kinks the chains.

I realized that what I am doing at the lowest point is pulling my lower body up,

essentially doing a leg lift. Again, the chains at this point are noticeably kinked. In all

the research that I had encountered, the researchers always simplified the problem by

modeling the chains as rigid. To my understanding, this means that in reality where

chains or ropes are not rigid, there is a significant parametric component even in the

rocking back and forth case as the swinger lifts at least some portion of the lower body

7



upwards.

My experiences and consideration of the previous analysis lead me to believe that, by

attempting to isolate and examine the two motions separately, the authors may have

overestimated the contribution of the rocking harmonic motion. Part of their

qualitative argument for the case that the harmonic motion is dominant, at least at

lower amplitudes, is that when you observe people swinging, everyone is rocking back

and forth, and no one is stood upright on the swing, squatting and standing. In

confronting my own biases, I realized that I have a preexisting belief that it is the

parametric motion and not any potential rocking that is dominant in the case of

pumping a ramp, a point for which I argued earlier. I still believe that this is the case,

convinced by my own skateboarder argument, but I do not deny that, in the case of a

bicycle with a much larger footprint, there may be some additional effects due to

moving ones center of mass fore or aft on the bicycle. However, I believe that any

rocking related contribution would be small, and I will focus my attention on the

parametric motion.

That being said, the rocking motion is interesting. When swinging on a swing, it

provides a mechanism by which to begin the swinging motion and which the authors

note is most effective at smaller amplitudes. When riding a ramp, the rider does not

have such a mechanism available to them, and so they are always coming at the ramp

with some initial velocity. That is to say, we are generally interacting with the ramp in

the large amplitude regime where the authors note that the parametric effect is

dominant. This again leads me to believe that it is the parametric approach that is

more relevant in the case of riding ramps.

2.1 Conclusions

With a better understanding of how playground swings work, and a clearer focus on

what parameters would be important in the case of pumping a ramp, my advisor Paul

Cadden-Zimansky suggested that I start with a simple model that considered the

motion of a rider on a ramp as a combination of the conservation of gravitational

potential energy together with the conservation of angular momentum. In this model I

will consider a rider starting at the top of the ramp and dropping in. As the rider rolls

down the ramp, their gravitational potential energy is transferred to kinetic energy.

Then the rider pumps, pushes themselves towards the focal point of the arc, thus

8



decreasing their moment of inertia, and by the conservation of angular momentum,

increasing their velocity. I will then attempt to derive a parametric oscillator model of

pumping in order to compare the two descriptions.

9



Chapter 3

Theoretical Approaches

P{

R = h

Figure 3.1: A schematic diagram for the approach to analyzing the pump. The origin is
at the very bottom of the ramp, bottom left corner of this diagram. P is the displacement
of the rider’s center of mass, the small red dot. The position of the center of mass is
given by the x and y coordinate, with P growing as a function of the angle ϕ.
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First allow me to layout some terms and describe the basic theoretical approach. The

essential question is how to mathematically describe and track the rider’s center of

mass, and hence their moment of inertia with respect to the focal point of the ramp, as

they ride and pump the ramp. In this analysis I will be considering a bicyclist

”pumping” a ramp with circular transitions, the transition being the curve of the

ramp. Two common ramp configurations are a quarter-pipe which is in form roughly

one quarter of a circle, and half-pipes which are roughly one half of a circle, which is to

say that they have the shape of a ”U”. In the case of a half-pipe the two circular

quarter-pipes are generally separated by some distance of level surface at the bottom.

This level surface is referred to as the ”flat bottom.” I will be primarily concerned with

a single quarter-pipe as it is the simplest to model and experimentally test. I will

compare the velocity expected at the bottom of the ramp for a mass rolling down the

ramp under only the influence of gravity, versus what might be expected after pumping.

Figure 3.2: Estonian sport of Kiiking in
which the parametric pump is employed to
swing completely around.

The pump, or pumping,

is the method employed to accelerate

when riding a ramp, and is very

similar to pumping a playground swing

as discussed earlier. I will be tracking

the center of mass of the rider/bicycle

system as the parameter that

characterizes and affects the motion of

the system. I am considering a bicyclist

because that is my personal experience,

but I believe that this analysis will

apply equally to other popular wheeled

vehicles being ridden on ramps, such as

skateboards, inline skates, roller skates,

scooters, or even skis and snowboards

in those winterized version of the activity.

The commonality being the circular

shaped ramps that they all utilize.

As discussed earlier, I

believe that it is sufficient to consider the

radial displacement of the center of mass

11



for several reasons. Firstly, I am mainly

interested in understanding the dominant physical mechanism that drives the

acceleration experienced by a rider, and due to my research, I believe that the

conservation of angular momentum affected by changing ones moment of inertia is by

far the dominant driver at play in this system. During my research I discovered an

Estonian sport called Kiiking in which the swinger, whose feet are strapped in, is able

to swing around a full 360 degrees. The pump that they employ to achieve this is the

simple parametric stand-squat method, essentially what I believe is the dominant

contributor to pumping a ramp. That they have chosen this method rather than some

form of rocking back and forth, to my understanding, is evidence for the dominance of

this technique.

I begin with a simple model that takes into account the conservation of gravitational

potential energy and subsequently of angular momentum to calculate the expected

velocity at the bottom of a ramp after pumping during descent. The model parameters

include the radius of the ramp, the height of the ramp, the location during the descent

at which the pump is performed, and the displacement of the pump (i.e. the distance

that the center of mass moves perpendicular to the surface). Because I am tracking the

center of mass, which sits approximately 1 meter off the ground in my case, and thus

follows a circular trajectory roughly 1 meter smaller in radius than the ramp, I set the

radius in my calculation accordingly. That is to say, I measure the height/radius of the

ramp, and then adjust that by the position of my center of mass relative to the ramp.

Also, for the sake of simplicity, I am considering ramps that are exactly one quarter of

a circle, in which case the radius will be equal to the height.

Center of mass calculation To find the center of mass of the rider/bicycle system, I

consider separately the center of mass of both the rider and the bicycle, and then use

the center of mass formula to find their common center. I approximate the rider’s

center of mass based on a study published on hypertextbook.comElert 2024 which finds

that the average center of mass for a human being is roughly located at the navel.

When performing experiments I wrapped a florescent strap around my waist at the

navel so that I could track it during video analysis. To locate the center of mass of the

bicycle I balanced the bicycle along the top to bottom dimension and separately along

the fore to aft dimension, then take the crossing point as the approximate center of

mass. When analyzing the video, I measure these locations separately relative to the

surface of the ramp in order to calculate the center of mass of the system.

12
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Figure 3.3: Center of mass calculation.

The initial analysis is based on the conservation of energy together with the

conservation of angular momentum. If my assumption is correct, and the angular

momentum is the primary mechanism at play, this approach provides a mathematically

simple way to test that assumption. The analysis is based on the following physical

laws and relationships:

Conservation of Energy

E1 = E2 =⇒ Ki + Ui = Kf + Uf =⇒

1
2
mv2i +mgh2

i =
1
2
mv2f +mgh2

f

From which vf can be solved for: vf =
√
v2i + 2g(h1 − h2)

13



Conservation of Angular Momentum L

Li = Lf =⇒ Iiω1 = Ifω2 =⇒

Moment of inertia = I = mR2, and ω = v
R

Therefore L = mRv =⇒ mRivi = mRfvf

Solving for vf =⇒ vf = Ri

Rf
vi

With this paradigm it is possible to calculate the velocity at different points along the

descent trajectory, as well as the expected final velocity at the bottom of the ramp. To

begin, the velocity at any point due simply to the transformation of gravitational

potential energy to kinetic energy can be calculated using the relationship Vg =
√
2gR.

This initial velocity can then be used to calculate the change in velocity due to the

conservation of angular momentum as the rider pumps =⇒ vf = Ri

Rf
vi, forcing their

center of mass radially inward, thus changing their moment of inertia. This second

velocity can then be input into a second conservation of energy calculation to find the

velocity at some point further down the ramp vf =
√

v2i + 2g(h1 − h2). This

calculation can be repeated any number of times to evaluate different patterns of

pumping.

Using this approach I first calculated the expected velocity at the bottom of the ramp

considering only the transformation of gravitational potential energy into kinetic

energy. That is to say, simply rolling down the ramp without pumping. This could be

considered the baseline or control against which theoretical predictions and

experimental results can be compared. Next I considered rolling down to the bottom of

the ramp, and then instantaneously pumping, the full displacement of the pump, at

the very bottom. I then repeated this calculation and considered pumping all at once

halfway down the transition. For this calculation I first calculated the initial velocity

based on the conservation of energy due to the drop from the top of the ramp to the

halfway point, then the change in velocity due to pumping at the halfway point, and

then from that second velocity, I calculated the final velocity at the bottom of the

ramp, again using the conservation of energy. At this point I decided to write a

PythonB.1 program to perform the calculations so that I could quickly run different

14



simulations.

Having performed an experimental trial, I had some data to enter into the equations

and check against. The single pump at the very bottom of the ramp gave me a value

that matched my experimental result surprisingly close, but as I added more iterations

to better simulate a more realistic continuous pump, the theoretical value diverged

from the experimental result, limiting towards the value I get if I calculate a single

pump at the very bottom, but having first dropped only the distance (R− P ), rather

than the full height R. While this makes sense, since, if I am pushing my center of

mass to a higher level, then it can not drop the full height, the fact that it does not

match experimental observations led me to suspect that this model is not telling the

whole story. For this reason I decided to pursue the parametric oscillator model.

Parametrically Driven Harmonic Oscillator

A number of papers that I had found analyzing the motion of swings, including ”The

Pumping of a Swing from the Standing Position”Case 1996 and ”Optimal Strategies for

Kiiking: Active Pumping to Invert a Swing”Petur Bryde, Ian C. Davenport, L. Mahadevan 2010, had

modeled the swing-set problem as a parametrically driven harmonic oscillator. While

my first approach produced predictions that were close to my experimental results, I

wanted to apply the parametric approach to pumping a ramp in order to see if it could

better match my experimental results. In this model, the parameter that varies and

drives the oscillation is the radius from the focal point of the ramp and the position of

the center of mass. The Lagrangian for such a system has the following form:

L = 1
2
m(R2ϕ̇2 + Ṙ2)− gR cosϕ

In this approach, there are two velocities to consider in the kinetic energy, R2ϕ̇2 the

tangential velocity, what a rider would consider their forward velocity, and Ṙ2 the

radial velocity of the changing center of mass. ϕ is set to 0 at the bottom of the ramp,

and R is the parametric variable which I define as R = R0 + P sinϕ. In this definition,

R0 is the radius from the focal point to the center of mass at it’s shortest distance after

pumping. P is the length associated with the pump, the distance that the center of

mass moves while performing the pump. At the top of the ramp, at ϕ = 90◦, sin 90 = 1
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and the radius is at its longest extent R0 + P . Then as the center of mass moves down

the ramp towards ϕ = 0, the value of sin decreases towards 0, thus shortening the

length of the radius to R0, which represents the motion of the pump. Given this

definition, and substituting it into the original Lagrangian, the derivation of the

equation of motion is as follows:

R = R0 − P cosϕ Ṙ = P sinϕϕ̇

L = 1
2
m(R2

0 + P 2 − 2R0P cosϕ)ϕ̇2 −mg(R0 −R cosϕ− P cos2(ϕ))

∂L
∂ϕ

= 1
2
m(2R0P sinϕ)ϕ̇2 −mgR0 sinϕ− 2mgP cosϕ sinϕ

∂L
∂ϕ̇

= m(R2
0 + P 2 − 2R0P cosϕ)ϕ̇

d
dt

∂L
∂ϕ̇

= m2R0P sinϕϕ̇2 + (R2
0 + P 2 − 2R0P cosϕ)ϕ̈

Equation of Motion

ϕ̈ = RP sinϕϕ̇2−gR0 sinϕ−gP cosϕ sinϕ
R2
0+P 2−2R0P cosϕ

I solved this equation numerically in python using solve.ivp from the scipy.integrate

package, and plotted the results using matplotlib. I restricted the input from π
2
−→ 0,

to model a person dropping in from the top of the ramp and pumping, where the final

output is the position and velocity at the very bottom of the ramp.

The previous model produces a realistic looking curve, but an unrealistically low final

velocity. In that derivation I treated the tangential and radial velocities separately, as

authors of previous papers seem to have done for their purposes. However I have

defined the radial velocity to be a function of ϕ. I believe this requires the velocity

vectors to be added first and then squared. So I attempted another derivation as

follows:
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L = 1
2
m(Rϕ̇+ Ṙ)2 − gR cosϕ

R = R0 − P cosϕ Ṙ = P sinϕϕ̇

L =
1
2
m(R2

0+P 2+2R0P cosϕ+2R0Psinϕ−2P 2 cosϕ sinϕ)ϕ̇2−mg(R0−R cosϕ−P cos2(ϕ))

∂L
∂ϕ

= 1
2
m(2R0P sinϕ+ 2R0P cosϕ− 2P 2 cos 2ϕ)ϕ̇2 −mgR0 sinϕ−mgP cosϕ sinϕ

∂L
∂ϕ̇

= m(R2
0 + P 2 − 2R0P cosϕ+ 2R0Psinϕ− 2P 2 cosϕ sinϕ)ϕ̇

d
dt

∂L
∂ϕ̇

= m[(2R0P sinϕ+ 2R0P cosϕ− 2P 2 cos 2ϕ)ϕ̇2 + (R2
0 + P 2 + 2R0P cosϕ+

2R0Psinϕ− 2P 2 cosϕ sinϕ)ϕ̈]

Equation of Motion

ϕ̈ = (−R0P cosϕ−R0P sinϕ+P 2 cos 2ϕ)ϕ̇2−gR0 sinϕ−gP cos (2ϕ)

R2
0+P 2−2R0P cosϕ+2R0P sinϕ−2P 2 cosϕ sinϕ

I will discuss the results of these theoretical models in comparison with my

experimental results in chapter 5.
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Chapter 4

Experimental Implementation

Figure 4.1: Screen shot of experimental video in Tracker© video analysis software. The
blue one-meter reference stick is visible on the left. With that reference, measuring tools
(in red) are available to measuare other distances.

To test the theoretical predictions I filmed myself riding several different ramp

configurations trying to find the best way to experimentally capture the acceleration

that one experiences when pumping a ramp. After a number of trials I decided to film
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on a ramp that was exactly one quarter of a circle, and concentrate on one single pass,

dropping in from the top of the ramp and pumping on the way down. This simplified

the analysis significantly. Starting from a known height, I would be able to easily

calculate the theoretical velocity that would be expected at the bottom of the ramp if

one were to simply roll down the ramp under only the influence of gravity. This would

give me a baseline against which to compare the recorded velocity obtained after

pumping.

Care was taken to film with the camera level, positioned at the vertical midpoint, and

perpendicular to the ramp at the point at the bottom of the curve where the the curve

ends and the flat bottom starts. A focal length between 50mm and 85mm was used to

minimize distortion.

That the form of the ramp is an exact quarter of a circle simplifies the calculation in

several ways. Firstly, the radius of the ramp is equal to the height of the ramp. I first

tried filming on smaller ramps and quickly realized that it was very difficult to

determine the radius of the ramp. While the height was easy enough to measure,

determining the radius of a partial curve would have required a much more detailed

analysis. Additionally, during theoretical calculations, I would have needed to adjust

the starting angle to reflect the height; in short, it would have been a much more

laborious calculation. With a quarter-pipe that was exactly a quarter of a circle, a

simple sine or cosine function ranging from ϕ = 0 −→ ϕ = π
2
, coupled with the radius,

could be employed to track the position of the rider. For my first calculations I set

ϕ = 0 to be at the top of the ramp, using R− sinϕ to track the height; while on later

calculations I setϕ = 0 to be the bottom of the ramp and tracked the height with a

cosine.

Distances were calculated in post processing by measuring the height of one meter on

my bike (blue line in photo at right), and then defining that dimension to be one meter

in the Tracker© software. Once the reference measurement is set, Tracker© offers

measurement tools, such as tape measures, which can be used to measure other

distances. In this photo I have a tape measure set to measure the height of the center

of mass of my bike, and another measuring the height of the center of mass of my body.

The ramp in this case is 2.482m tall, which is consistent with an eight foot ramp, and

the distance of the center of mass from the surface of the ramp varies from
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Figure 4.2: Screenshot of Tracker© video analysis software with coordinate axis (ma-
genta), distance calibration stick (blue), and multiple rulers visible.

approximately 0.90m to 1.34m throughout the pump. The center of mass was

calculated using a standard center of mass calculation based on my weight (78.5kg)

and that of the bicycle (11.8kg) separately. My center of mass was approximated at my

navel as discussed earlier, and I wore a florescent belt wrapped about my midsection at

the navel in order to better track that position in the software. As mentioned, the

center of mass of the bicycle was approximated by balancing the bicycle as it lay on its

side, both front-to-back and side-to-side; the point of intersection being taken to be the

center of mass. The height of the center of mass of the bicycle based on this calculation

is 0.45m.

After comparing theoretical models to my experimental results and seeing how

sensitive the calculations are to subtle changes in the moment of inertia, I felt that I

needed to better refine my center of mass approximations. Tracker© software offered

the possibility to track a center of mass based on a collection of point masses, by

calculating their combined center of mass. I approximated to the best of my abilities

the center of each major body part, such as head, thorax, abdomen, upper leg, lower

leg, etc. I then found a kinesiology websiteexrx.net 2024 with data on the average relative
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Figure 4.3: In this screenshot, you can see the process I had developed for approximating
the center of mass.

mass of body parts as a percentage of total body mass. While the software said it

would track the combined center of mass, I was not able to find a way to list its

coordinates. So I performed a manual center of mass calculation using the coordinates

of each point mass along with the relevant body weight data. When I compared the

resultant x and y coordinates for my refined center of mass calculation to my previous

intuitive guess in Tracker©, I was very surprised to find that they differed by less than

1mm! With greater confidence in the position of my center of mass, I placed a ruler at

that position in Tracker©, and measured it’s distance from the surface of the ramp.

The process can be seen in the screenshot below.

I believe that uncertainty in the position of my center of mass will have the greatest

effect upon the predictions of the mathematical models, although as discussed I believe

that the effect should be relatively small, since it is the overall displacement of the

center of mass that has the greatest effect on the change in velocity experienced. To

say it another way, it is the ratio of initial radius divided by the final radius that

multiplies the initial velocity and causes the acceleration. For example, if I use values

from experimental trial 1 and consider a 4 inch (0.08m) discrepancy in the position of
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the center of mass:

1.569
1.249 vs. 1.569−0.08

1.249−0.08

1.2562 vs. 1.2737

The effect of the uncertainty, assuming a 4 inch discrepancy, shows up in the second

decimal place, a relatively small difference for my purposes, but not insignificant.

Clearly there is value in better approximating the exact center of mass. A more clearly

defined singular point, or perhaps a belt with a series of well defined points, would

have made this process easier.

Notably, I do not believe that this will affect the experimental measurement of the final

velocity, since the bicycle and I are moving as a system, to which end I chose a point

on the bicycle that was bright, small, and easy to track, and then tracked that point

when it is moving purely horizontally.

One of the most difficult variables to calculate was the initial velocity, and it therefore

represents one of the larger experimental uncertainties. I realized this would be an

issue, and tried to plan my experiments accordingly. It is nearly impossible to start

from a stand-still at the top of the ramp with my center of mass exactly equal to the

top of the ramp. This was my first consideration, and I tried several approaches to

mitigate this problem. In the final videos I chose to start from rest balanced on the

edge of the ramp. This approach put my center of mass closest to the top of the ramp,

but I was parallel rather than perpendicular to the surface of the ramp, which made

determining the position of my center of mass relative to the surface of the ramp more

difficult. When I drop in I rotate my body and bicycle to be perpendicular to the ramp

surface. By the time my center of mass passes the top edge of the ramp, I am nearly

perpendicular to the ramp, but not entirely. I did my best to locate my body’s center

of mass in the video analysis as discussed above, and took my bicycle’s center of mass

to be the same as it is on flat ground. The bicycle’s center of mass might be slightly

different than on flat ground, but it should be close at the moment that our center of

mass passes the top of the ramp and the pump begins.

I also analyzed one run in which, rather than start from a standstill, I rode the ramp
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and attempted to turn around at the top edge of the ramp, given that at the peak of

my maneuver, I would be motionless, essentially starting from a stand still. In each

case I was trying also to maximize my body position so that I would be able to pump

as much as possible, get the largest displacement of my center of mass. In retrospect,

and having done more video analysis, I could have gone a little higher, which would

have allowed me to enter the ramp more perpendicular, and have a better body

position to pump. In post processing video analysis it’s relatively easy to locate the

top edge of the ramp and my position relative to it. If I had a more well-defined spot,

or series of spots, marking my center of mass, I could use that to determine the initial

velocity and perhaps better maximize the motion of the pump.

I filmed a number of trials runs and will analyze eight in order to obtain an average.

Results will be discussed in chapter 5.
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Chapter 5

Experimental & Theoretical Results

Theoretical modeling was first developed mathematically and then coded in Python in

order to solve the equations and produce theoretical predictions that could then be

compared against experimental results. Table 5.1 below contains the data from eight

separate simulations based on initial conditions from eight experimental trials. The

video was filmed at 400 frames per second. Results for each trial run vary depending on

the initial velocity and pump recorded. The table lists Recorded experimental velocities

as well as theoretically predicted velocities. Column Vi is the experimentally recorded

initial velocity. Vgrav is the theoretical velocity that would be expected if one were to

simply roll down the ramp under the influence of gravity alone. The 45◦, 50◦, 75◦, 90◦

values represent ϕ values for hypothetically pumping instantaneously at those positions

in the transition; for example, 45 is halfway down, 75 is 3
4
of the way down, etc.

The ≈ 50◦ column represents the height from the top of the ramp to the height of P,

the pump displacement. That is, the radius that is used in the computations is the

radius from the focal point to the center of mass at the top of the ramp. At the

bottom of the transition after pumping, the center of mass is at a height

R− (R− P ) = P . So this column represents pumping at a height P up the transition.

I have arranged the results in order of increasing initial velocity. The last row of the

table provides Averages values. I will primarily discuss these values.

The first point of interest is that the prediction for hypothetically pumping all-at-once

at the very bottom of the ramp, 90 degrees, is the closest to the experimentally
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Trial Vi Vgrav 45◦ ≈ 50◦ 75◦ 90◦ Cnt. Vexp

6 2.23 6.02 7.18 7.63 7.54 7.83 7.06 8.64

4 2.48 6.12 7.26 7.71 7.82 7.89 7.15 8.82

2 2.68 6.20 7.43 7.87 7.99 8.06 7.31 8.11

7 2.98 6.34 7.62 8.04 8.16 8.24 7.51 7.80

8 3.23 6.44 7.79 8.18 8.32 8.39 7.68 8.65

1 3.33 6.51 7.86 8.27 8.39 8.46 8.55 8.52

5 3.44 7.08 8.63 9.05 9.12 9.18 8.53 8.56

3 4.41 7.11 8.70 8.67 9.18 9.25 8.60 8.46

Avg 3.10 6.48 7.81 8.18 8.32 8.41 7.80 8.49

Table 5.1: Recorded and Theoretical Velocities. Vi is the initial velocity, Vgrav is the
velocity expected due to the influence of gravity alone, the degree measurements repre-
sent pumping all-at-once that that point in the descent, Cnt. represents the continuous
approximation, and Vexp is the experimentally determined velocity.

recorded value. In fact, given the uncertainties such as locating the exact center of

mass, and considering that I am ignoring friction and other forms of dissipation, this

result is close enough to be confused for equivalence. This model assumes that the

center of mass falls the full distance R, and then converts that kinetic energy, through

the conservation of angular momentum, into the final kinetic energy. The issue is that

in reality, I am pumping during the entire descent, and thus my center of mass never

falls the full distance R, but rather R− P . Considering how the pump is performed in

reality, one would expect that the continuous model should best approximate the

experimental result; however, the continuous case, in fact, compares poorly with the

observed velocity. This leads me to believe that this simplistic model is not capturing

some aspect of the physics.

Also curious is the affect of the initial velocity on the theoretical model. When the

initial velocity is smaller, all simulations underestimate the final velocity, but when the

initial velocity is higher, all models instead overestimate. This to me indicates that the
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model is placing too much emphasis on the initial conditions, and missing some aspect

essential to the process. Again, that the model produces results as close as they are

leads me to believe that they are addressing the primary physical mechanism, but

there seems to be more subtle aspects to how the changing moment of inertia affects

that system that is being missed. I suspect from experience that it has something to

do with being in resonance with the transition. When riding a ramp, the faster one

goes, or the tighter the curve of the ramp, the faster one needs to pump. Also, being

out of sync with the ramp can have disastrous consequences.

Having learned that resonance within a system can have profound effects on energy

transfer, I had hoped that modeling pumping as a parametrically driven harmonic

oscillator might help to illuminate what is happening during the pump, and account

for the discrepancies in the more simplistic model. Unfortunately I was unable get my

parametric models to work. I made many attempts, below is a graph of my final model.

Figure 5.1: A plot of velocity and position predictions from my last parametric model.

I tried inputting different lengths for the pump, which is the say, changing the distance

that the center of mass moves, and found that the model is very sensitive to changes in

this parameter, which makes me think that it’s capturing some aspect of the process;

however, my mathematical comprehension has proven insufficient to solve the problem.

I went through the Lagrangian process of deriving the equation of motion no fewer
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than 10 times, and each time I got different results. With each attempt I would input

the resultant equation of motion into python and run the simulation. Then I would

consider the results, the process, the modeling, and make another attempt. Some of

the models produced certain aspects of the motion correctly; however, non made

complete physical sense. This final attempt almost has the right magnitude, although

the motion is in the wrong direction. At this point it feels like guesswork, and I have

no sense of what part of the mathematical process I need to understand better in order

to solve the issue.

I had considered that perhaps simplifying the equations might help, but the

simplifications that I had seen other authors utilize, such as the small angle

approximation, or removing terms of higher order, did not seem relevant in this case,

since the regime I was interested in probing occurred at large angles, and the equation

of motion is complex to a degree that I do not have a sense of how the different terms

are contributing to the motion. I tried naively removing some of the higher order

terms, but this had no positive effect on the results.
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Chapter 6

Conclusion

Investigating the pump has been an interesting and educational journey. I had long

suspected that pumping on a ramp was similar to pumping a playground swing, and

while I may not have produced a perfectly accurate mathematical model, my research

has convinced me that swing sets and ramps are indeed distantly related cousins. I

have fond memories of teaching my daughter to swing; it’s almost a right of passage,

the transition from ”push me, push me” to ”I can do it myself.” Pumping is a uniquely

visceral and enjoyable application of a deep physical law of conservation, and we

humans have found many ways to enjoy its accelerating effect, from playground swings,

to spinning ice skaters, and more recently as a way to propel ourselves on ramps.

6.1 Conclusions

I believe that I’ve developed an effective experimental model for analyzing the pump

on a ramp, I’ve provided evidence which links the process of pumping a ramp with that

of pumping a playground swing, and I’ve honed in on the role that conservation of

angular momentum plays in the process. Focusing the analysis on a single descent

down a ramp that is exactly one quarter of a circle enables a very direct way to probe

the effect of the pump, and the fact that the very simple mathematical models,

considering only the conservation of angular momentum, get so close to predicting the

expected velocity, I find to be compelling evidence for the central role that it plays in

the acceleration experienced by a rider on a ramp.
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6.2 Future Work

If someone wanted to continue this research, they could further develop the

parametrically driven harmonic oscillator model. From a subjective standpoint,

pumping on a bicycle feels like a very efficient way to transform physical exertion into

acceleration. I find it preferable to pedaling, and have at times dreamt of city

sidewalks shaped like endless rolling waves. I’m convinced that it is the conservation of

angular momentum that causes the acceleration, and I find the example of kiiking to

be particularly compelling entertaining evidence for that conviction. It would be

interesting to see the math that describes this process, explained in a way that adds

depth of understanding to the physical intuition that one has of pumping, be it on a

swing, bike, skateboard, etc.

On the experimental side, if someone were interested in pursuing this research, I would

suggest using a skateboarder or inline skater to film the experiments, as I believe that

would simplify the analysis even further. Also, marking the center of mass more

distinctly would make the task of tracking easier. Small highly contrasting spots would

be best. The most difficult parameter for me to measure accurately was the initial

velocity, so special attention should be given to that consideration. When I think back

to watching others ride ramps, I imagine that inline skaters might be best able to start

from a point where their center of mass is obviously even with the top of the ramp.
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Appendix A

Project Support

A.1 Experimental Data

Velocity data recorded from Tracker video analysis software.

Table A.1: Final Velocity data from Tracker© video analysis software.

Vid01 Vid02 Vid03 Vid04 Vid05 Vid06 Vid07 Vid08

8.86 9.53 8.82 9.91 9.01 9.47 8.26 9.68

9.09 8.03 8.82 9.91 8.11 8.91 9.17 9.38

8.86 9.20 8.82 9.60 8.56 8.64 9.17 9.68

8.86 9.53 9.09 9.91 9.46 7.24 8.72 8.80

9.32 8.36 6.89 9.60 9.01 6.96 7.80 8.80

9.32 8.36 6.61 8.36 8.11 8.36 8.26 9.68

9.09 8.36 8.26 8.36 8.11 8.91 10.5 8.21

9.55 8.86 8.82 9.29 8.11 8.91 10.1 7.92

8.86 9.03 8.82 8.98 8.56 8.91 7.80 9.09

8.41 8.19 8.54 9.29 8.56 8.64 8.26 9.09

7.73 8.03 7.99 9.60 9.01 8.36 9.17 8.50

9.09 6.89 8.36 8.56 9.47 8.72 7.92

9.77 7.71 8.67 8.11 8.91 7.34 9.09

9.09 8.54 9.60 7.66 6.41 7.80 9.38

6.89 9.60 7.21 6.96 8.72 7.92

6.89 9.60 9.01 8.64 8.72 7.04

Continued on next page
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Table A.1 – continued from previous page

Vid01 Vid02 Vid03 Vid04 Vid05 Vid06 Vid07 Vid08

7.99 9.29 8.56 9.47 8.26 7.62

8.82 8.67 7.66 8.91 8.26 7.92

9.09 8.05 8.11 7.52 7.34 8.21

8.82 8.67 8.11 6.96 7.80 8.21

9.09 8.36 7.66 7.24 8.72 8.50

8.26 7.43 8.11 8.91 7.34 8.50

6.89 8.98 8.11 8.91 6.42 7.33

6.61 10.2 8.11 9.47 7.34 8.21

7.99 9.29 8.56 8.36 7.80 7.62

8.82 7.74 7.66 6.13 7.80 7.04

7.71 7.74 7.21 7.80 7.80 8.21

7.71 7.66 8.91 7.34 7.62

7.99 7.66 8.64

8.26 7.21 7.52

8.26 8.11 7.24

6.34 8.11 7.80

6.89

8.54

9.37

9.37

9.09

8.26

6.34

6.89

8.54

9.37

7.16

6.89

8.82
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Table A.2: Initial Velocity data from Tracker© video analysis software. For Video01,
initial velocity was calculated using ∆y

∆y
with the following position and time data from

Tracker: (1.955m− 1.825m)/(0.415s− 0.377s)

Vid01 Vid02 Vid03 Vid04 Vid05 Vid06 Vid07 Vid08

3.33 3.01 4.13 0.62 3.60 2.79 2.29 2.35

2.01 4.96 4.33 5.41 3.34 2.29 3.52

2.01 4.41 4.33 2.70 2.79 4.13 3.52

1.67 3.86 0.62 1.80 2.23 4.59 4.69

1.67 4.41 4.33 0.90 2.23 3.67 4.69

3.34 4.96 3.10 3.60 2.23 3.67 2.35

3.34 4.68 3.72 6.31 1.11 2.75 3.52

2.01 2.20 7.43 4.50 5.01 3.67 4.69

2.01 2.75 5.57 2.70 5.57 4.59 2.93

2.68 5.23 3.10 2.70 3.34 2.75 1.76

2.34 4.13 2.48 2.70 2.79 3.67 2.93

2.68 3.31 1.86 2.70 2.79 5.05 4.11

2.01 2.75 3.72 5.41 1.67 4.13 3.52

2.01 1.65 6.81 1.80 4.13 2.35

3.01 3.86 4.33 2.70 2.75 1.17

3.01 4.41 4.33 3.60 2.29 3.52

3.01 3.03 6.19 3.60 4.13 5.28

2.68 2.20 4.33 5.41 3.21 3.52

2.68 3.31 0.62 2.70 4.13 4.69

3.01 5.51 2.70 5.05 2.93

3.01 4.68 3.60 2.29 4.11

2.34 3.03 4.50 3.21 4.69

1.65 3.67 2.35

2.75 3.52

4.13 3.52

4.13 3.52

4.68 4.11

3.86 5.28

3.58 3.52

4.68 1.17

Continued on next page
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Table A.2 – continued from previous page

Vid01 Vid02 Vid03 Vid04 Vid05 Vid06 Vid07 Vid08

2.35

4.11

3.52

4.11

34



Appendix B

Python Code

This code models a standing swinger on a playground swing from William Cases 1996

paper ”The pumping of a swing from the standing position.”Case 1996 I coded this to

learn the process, and in hopes of developing insight.

B.1 Python Code

1 # Parameters

2 g = 9.81

3 s = .2 # .2 meters = 8 inches

4 l = 2.44 # major radius, support beam to seat

5 R = 0.86 # support beam to COM

6 Rprime = np.sqrt((l-s)**2+R**2 )

7 omega = np.sqrt(g*(l-s))/Rprime

8 omega_0 = omega

9 Theta_o = np.pi/12 # 15 degees

10 C = -(l*s*Theta_o**2)/(2*Rprime**2)

11 B = (omega*l*s*Theta_o**2)/(Rprime**2)

12 A = -(omega**2*s*Theta_o**2)/(4*(l-s))

13 F = (omega**2*l*R**2*Theta_o)/((l-s)*Rprime**2)

14

15

16 def pmp(t, y): # define a function where the y arument may be an ←↩
array

17 Phi = y[0] # assign each dynamic function needed to its own ←↩
position in the array
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18 PhiDot = y[1]

19

20 dPhi_dt = PhiDot

21 dPhiDot_dt = ((B * np.sin(2 * omega * t) * PhiDot) + (A * np.cos(2 * omega * t ←↩
)*Phi) + (F * np.cos(omega * t)) - np.square(omega_0)*Phi) / (1 - (C * np. ←↩
cos(2 * omega * t))) #define each of the needed 1st order ODEs

22

23 return np.array([dPhi_dt, dPhiDot_dt]) #return the derivative solutions

24

25 t_span_pmp = np.array([0, 15]) # set the times

26 times_pmp = np.linspace(t_span_pmp[0], t_span_pmp[1], 401)

27

28 pmp0 = np.array([0, 0]) # set initial conditions corresponding to each ←↩
dynamic function

29

30 soln_pmp = solve_ivp(pmp, t_span_pmp, pmp0, t_eval=times_pmp) # use solve idp

31 t_pmp = soln_pmp.t # an array for ←↩
the times

32 Phi_pmp = soln_pmp.y[0] # and the corresponding x(t) solutions; soln.y[1] ←↩
would give the v(t) solutions

33

34 # plot the solutions

35 plt.rc("font", size=14)

36 plt.figure(figsize=(10,6))

37 plt.plot(t_pmp, Phi_pmp, ’o’, label=’X’)

38 plt.xlabel("time")

39 plt.ylabel("position")

40 plt.legend()

41 plt.show()

Figure B.1: Output of above code.
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The following code calculates velocities based on conservation of energy together with

conservation of angular momentum, the approach outlined starting on page 13. The

number of iterations, fractional pumps, can be controlled by setting the number of

samples in the numpy linspace array named degrees, which generates values between 0

and π
2
. Setting 2 results in one pump at the bottom of the ramp, setting 3 would result

in one half pump halfway down, and the second half pump at the bottom, etc.

1 import numpy as np #for more robust numerical calculations

2 import matplotlib.pyplot as plt #for plots

3 from scipy.integrate import solve_ivp #for solving ODEs

4

5 g = 9.81

6

7 Vi = 3.33 # Average of values from Tracker

8 Vf = 8.52 # Average of values from Tracker

9 m1 = 11.8 # mass of bike

10 m2 = 78.5 # mass of myself

11 x1 = 0.45 # center of mass of bike at top of ramp

12 x2 = 0.925 # center of mass of myself at top of ramp

13 x1f = 0.45 # center of mass of bike at bottom of ramp

14 x2f = 1.346 # center of mass of myself at bottom of ramp

15

16 COMi = (m1*x1 + m2*x2)/(m1+m2)

17 COMf = (m1*x1f + m2*x2f)/(m1+m2)

18

19 R = 2.482 - COMi # Radius minus height to COM at top of ramp

20

21 p = COMf - COMi # displacement of COM during pump

22

23 V45 = np.sqrt(np.square(Vi) + 2*g*(R*np.sin(np.pi/4))) # no pump at 45

24 #print("no pump at 45 = ", V45)

25

26 V50 = np.sqrt(np.square(Vi) + 2*g*(R*np.sin(-(p-R)/R))) # no pump at 60

27 #print("no pump at 60 = ", V60)

28

29 V75 = np.sqrt(np.square(Vi) + 2*g*(R*np.sin(1.31))) # no pump at 75

30 #print("no pump at 75 = ", V75)

31

32 V90 = np.sqrt(np.square(Vi) + 2*g*(R)) # No pump @ 90

33 print("no pump at 90 = ", V90)

34
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35 print(" ")

36

37 Vp45 = ((R/(R-p)) * V45) # V gain from pump at 45

38 #print("V gain from pump at 45 = ", Vp45)

39

40 Vp50 = ((R/(R-p)) * V60) # V gain from pump at 60

41 #print("V gain from pump at height of pump = ", Vp60)

42

43 Vp75 = ((R/(R-p)) * V75) # V gain from pump at 75

44 #print("V gain from pump at 75 = ", Vp75)

45

46 Vp_45f = np.sqrt(np.square(Vp45) + 2*g*(R - (R-(p*np.sin(np.pi/4))) * np.sin(np.pi ←↩
/4)) - 2*g*(R - (R-(p*np.sin(np.pi/2))) * np.sin(np.pi/2))) # 1 pump @ 45

47 print("1 pump at 45 = ", Vp_45f)

48

49 Vp_50f = np.sqrt(np.square(Vp50) + 2*g*(R - (R-(p*np.sin(-(p-R)/R))) * np.sin(-(p- ←↩
R)/R)) - 2*g*(R - (R-(p*np.sin(np.pi/2))) * np.sin(np.pi/2))) # 1 pump @ 45

50 print("1 pump at height P = ", Vp_50f)

51

52 Vp_75f = np.sqrt(np.square(Vp75) + 2*g*(R - (R-(p*np.sin(1.31))) * np.sin(1.31)) - ←↩
2*g*(R - (R-(p*np.sin(np.pi/2))) * np.sin(np.pi/2))) # 1 pump @ 45

53 print("1 pump at 75 = ", Vp_75f)

54

55 Vp_90 = (R/(R-p)) * V90 # 1 pump @ 90

56 print("1 pump at 90 = ", Vp_90)

57

58 print(" ")

59

60 degrees = np.linspace(0,np.pi/2,200) # array of angles between 0 and 90

61

62 P = np.linspace(0,p,len(degrees)) # array of pump displacements

63

64 Vp = np.zeros(len(degrees)) # Array for Velocity values after each pump

65

66 Rp = np.zeros(len(degrees)) # Range of values Rp equivalent to the ←↩
change in R due to the pump P.

67

68 dH = np.zeros(len(degrees)) # Range of values for the change in height ←↩
between pumps

69

70 Vo=0 # Initial velocity is zero at top of ramp

71
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72 for i in range(len(degrees)): # Calculates Rp values, change in radius due ←↩
to pump

73 Rp[i] = R-P[i]

74

75 for i in range(len(degrees)): # Calcuates dH values, change in height at ←↩
each point

76 if i == 0:

77 dH[i] = 0

78 else:

79 dH[i] = (R - Rp[i-1]*np.sin(degrees[i-1]) - (R - Rp[i-1]*np.sin(degrees[i]) ←↩
))

80

81 for i in range(len(degrees)): # Populates array Vp, velocity after each partial ←↩
pump. Final entry is final velocity at bottom.

82 if i == 0:

83 Vp[i] = Vi

84 Vo = Vi

85 #print(Vp[i])

86 #print(Vo)

87 else:

88 Vp[i] = (Rp[i-1]/Rp[i]) * np.sqrt( np.square(Vo) + 2 * g * dH[i])

89 Vo = Vp[i] # Assigns ←↩
new value to Vo for next iteration

90 #print(Vp[i])

91 #print(Vo)

92

93 print("Initial Velocity = ", Vi)

94 print("Experimental measured velocity: ",Vf)

95 print("Vp = theoretical continuous pump = ", Vp[-1]) # continuous pump theoretical ←↩
value

96 #print("COMi = ",COMi) # initial center of mass pre-pump

97 #print("COMf = ",COMf) # final center of mass after pump

98 #print("p = ", p)

99 #print("R = ", R)

100 #print("p-R = ",R-p)

101 #print(1.569/1.249, " vs ", (1.569-.08)/(1.249-.08)) # comparing center of mass ←↩
precision

102 #print("Phi = ", np.rad2deg(np.arcsin((p-R)/R))) # theta at which height of p is ←↩
reached
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The following code represents my penultimate approach to model pumping as a

parametric oscillator. This derivation is 2 dimensional; however, I’m unclear as to

whether or not this approach could me used to model the system.

1

2 import numpy as np #for more robust numerical calculations

3 import matplotlib.pyplot as plt #for plots

4 from scipy.integrate import solve_ivp #for solving ODEs

5

6 g = 9.81

7

8 Vi = 3.33 # Average of values from Tracker

9 Vf = 8.52 # Average of values from Tracker

10 m1 = 11.8 # mass of bike

11 m2 = 78.5 # mass of myself

12 x1 = 0.45 # center of mass of bike at top of ramp

13 x2 = 0.925 # center of mass of myself at top of ramp

14 x1f = 0.45 # center of mass of bike at bottom of ramp

15 x2f = 1.346 # center of mass of myself at bottom of ramp

16

17 COMi = (m1*x1 + m2*x2)/(m1+m2)

18 COMf = (m1*x1f + m2*x2f)/(m1+m2)

19

20 R = 2.482 - COMi # Radius minus height to COM at top of ramp

21

22 p = COMf - COMi # displacement of COM during pump

23

24

25 def pmp(Phi, y):

26 x = y[0]

27 v = y[1]

28 dx_dPhi = v

29 dv_dPhi = ( (-R*P*np.cos(Phi) - R*P*np.sin(Phi) + np.square(P)*np.cos(2*Phi))* ←↩
np.square(v) - g*R*np.sin(Phi) - g*P*np.cos(Phi)*np.sin(Phi) ) / \

30 ( np.square(R) + np.square(P) + 2*R*P*np.sin(Phi) - 2*R*P*np.cos(Phi) - 2*np. ←↩
square(P)*np.cos(Phi)*np.sin(Phi) )

31

32 return np.array([dx_dPhi, dv_dPhi]) #return the derivative solutions

33

34 #set the times

35 Phi_values = np.linspace(np.pi/2, 0, 100)

36
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37 #set initial conditions corresponding to each dynamic function

38 pmp0 = np.array([np.pi/2, Vi])

39

40 #use solve idp

41 sol = solve_ivp(pmp, [np.pi/2, 0], pmp0, t_eval=Phi_values)

42

43 # Plot the solution

44 plt.plot(sol.t, sol.y[0], label=’Position (x)’)

45 plt.plot(sol.t, sol.y[1], label=’Velocity (v)’)

46 plt.xlabel(’Phi’)

47 plt.ylabel(’Angular Velocity’)

48 plt.legend()

49 plt.show()

50

51 print(sol.y[1])

52 print(" ")

53 print(P)

54 print(np.square(P))

55 print("Tangential Velocity = R_final * ",chr(969), " = ", -sol.y[-1][-1]*R, "m/s" ←↩
)

The following code represents my final attempt to model pumping as a parametric

oscillator. This is essentially a one dimensional model dependent only on ϕ.

1 import numpy as np #for more robust numerical calculations

2 import matplotlib.pyplot as plt #for plots

3 from scipy.integrate import solve_ivp #for solving ODEs

4

5 g = 9.81

6

7 Vi = 3.33 # Average of values from Tracker

8 Vf = 8.52 # Average of values from Tracker

9 m1 = 11.8 # mass of bike

10 m2 = 78.5 # mass of myself

11 x1 = 0.45 # center of mass of bike at top of ramp

12 x2 = 0.925 # center of mass of myself at top of ramp

13 x1f = 0.45 # center of mass of bike at bottom of ramp

14 x2f = 1.346 # center of mass of myself at bottom of ramp

15

16 COMi = (m1*x1 + m2*x2)/(m1+m2)

17 COMf = (m1*x1f + m2*x2f)/(m1+m2)
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18

19 R = 2.482 - COMi # Radius minus height to COM at top of ramp

20

21 p = COMf - COMi # displacement of COM during pump

22

23

24 def pmp(Phi, y):

25 x = y[0]

26 v = y[1]

27 dx_dPhi = v

28 dv_dPhi = ( R*P*np.sin(Phi)*np.square(v) - g*R*np.sin(Phi) - g*P*np.cos(Phi)* ←↩
np.sin(Phi) ) / \

29 ( np.square(R) - 2*R*P*np.cos(Phi) + np.square(P) )#return the derivative ←↩
solutions

30

31 return np.array([dx_dPhi, dv_dPhi]) #return the derivative solutions

32

33 #set the times

34 Phi_values = np.linspace(np.pi/2, 0, 100)

35

36 #set initial conditions corresponding to each dynamic function

37 pmp0 = np.array([np.pi/2, Vi])

38

39 #use solve idp

40 sol = solve_ivp(pmp, [np.pi/2, 0], pmp0, t_eval=Phi_values)

41

42 # Plot the solution

43 plt.plot(sol.t, sol.y[0], label=’Position (x)’)

44 plt.plot(sol.t, sol.y[1], label=’Velocity (v)’)

45 plt.xlabel(’Phi’)

46 plt.ylabel(’Angular Velocity’)

47 plt.legend()

48 plt.show()

49

50 print(sol.y[1])

51 print(" ")

52 print(chr(969))

53 print("Tangential Velocity = R_final * ",chr(969), " = ", -sol.y[-1][-1]*R, "m/s" ←↩
)
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