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Abstract

The purpose of this project is to identify subtweets. The Oxford English Dictionary defines
“subtweet” as a “[Twitter post] that refers to a particular user without directly mentioning
them, typically as a form of furtive mockery or criticism.” This paper details a process for
gathering a labeled ground truth dataset, training a classifier, and creating a Twitter bot which
interacts with subtweets in real time. The Naive Bayes classifier trained in this project classifies
tweets as subtweets and non-subtweets with an average F1 score of 72%.
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1
Introduction

There were over 140 million active Twitter users who sent 340 million text-based tweets to the

platform every day by March of 2012 (Twitter, 2012). Since Twitter-founder Jack Dorsey sent the

first Tweet in March of 2006 (Dorsey, 2006) social scientists, political scientists, and computer

scientists have applied machine learning techniques to understand the patterns and structures of

the conversations held on the platform. Through sentiment analysis, we are able to use machine

learning to identify patterns within natural language which indicate particular feelings both

broadly (e.g. positive, neutral, or negative) and toward topics (e.g. politics, terrorism, brands,

etc.).

On Twitter, the most common way to publicly communicate with another user is to compose a

tweet and place an “@” before the username of that user somewhere in the tweet (e.g. ”How are

you doing, @NoahSegalGould?”). Through this method, public discussions on Twitter maintain

a kind of accountability: even if one were to miss the notification that they were mentioned in

a tweet, one’s own dashboard keeps a running list of their most recent mentions.

“Subtweet” was coined in December of 2009 by Twitter user Chelsea Rae (Rae, 2009) and

was entered into Urban Dictionary the following August (Urban Dictionary, 2010). In “To tweet

or subtweet?: Impacts of social networking post directness and valence on interpersonal impres-

sions” (Edwards and Harris, 2016), Edwards and Harris sought to analyze student participants’
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perceptions of known subtweeters. In the news, too, subtweets have garnered attention in The

Atlantic (Madrigal, 2014), The Washington Post (Dewey, 2016), and Slate (Hassler, 2016). In

news media, subtweets garner attention for their prevalence among government officials as well.

Following President Donald Trump’s inauguration, The Washington Post compiled its “A run-

ning list of all the possible subtweets of President Trump from government Twitter accounts,”

(Ohlheiser, 2017) cementing subtweets as particularly newsworthy.

If an individual sought to disparage or mock another, they could certainly do so directly. But

the targeted user would probably notice, and through the search functions of the platform, any-

one could see who has mentioned either their own or another’s username. Instead, a phenomenon

persists in which users of the platform deliberately insult others in a vague manner by making

complaints while omitting the targets of those complaints.

Although the OED’s definition states that a subtweet “...refers to a particular user without

directly mentioning them, typically as a form of furtive mockery or criticism,” it is perhaps too

restrictive. Some individuals believe subtweets abide by this definition, but others expand it

to allow inclusion of others’ real names (especially if that individual does not own a Twitter

account), and some do not even require that a particular user be the target of the tweet. Because

subtweeting is colloquial in nature, we will expand the definition of subtweet to permit these

less restrictive features.

Sentiment analysis on social networking services such as Twitter has garnered attention within

seemingly distinct fields of interest. In “Text mining for market prediction: A systematic review,”

Nassirtoussi et al. surveyed varied methods for text-mining social media for sentiment analysis

of financial markets and approached that problem with both behavioral and economic considera-

tions in mind (Nassirtoussi et al., 2014). Following a terrorist event in Woolwich, London in 2013,

Burnap et al. analyzed the immediate Twitter response following the attack to inform statistics

on how long it takes for responses from official sources to disseminate during crises (Burnap et

al., 2014). Prior research of these kinds utilizes sentiment analysis techniques on tweets, but no

known research exists which specifically performs any sentiment analysis on subtweets.
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Long before Twitter, psychologist Gordon Allport wrote about “antilocution” in The Nature

of Prejudice (Allport, 1954). For Allport, antilocution was the first of several degrees of apathy

which measure prejudice in a society. It represented the kind of remarks which target a person,

group, or community in a public or private setting but do not address the targeted individual

directly. Different from both hate speech and subtweeting, antilocution necessitates that an

in-group ostracize an unaware out-group through its biases.

The most germane research available focuses on sentiment analysis of figurative language.

Determining sentiment based on features of text which are distinctly separate from their literal

interpretations presents difficulties for human readers as well as computer programs. In SemEval,

the International Workshop on Semantic Evaluation, analysis of figurative language on Twitter

has been a core task for their competition since 2015 (Ghosh et al., 2015) and returns this year

with a specific focus on ironic tweets (Van Hee et al., 2018). In this year’s description for “Task

3: Irony detection in English tweets,” Van Hee et al. touch upon online harassment as a potential

point of significance for sentiment analysis of ironic tweets.

This project pursues sentiment analysis of subtweets in order to challenge the hypocrisy of

utilizing a service which presents itself as a public forum to speak in distinctly private ways.

Toward this end, these are our goals: this project will provide a framework for collecting exam-

ples of subtweets, train a classification algorithm using those examples, and finally utilize that

classifier in real time to make tweets which were intended to be unseen by specific parties easily

accessible to all parties. In presenting covertly hurtful content as obviously hurtful in a public

fashion, perhaps it will promote a particular awareness that tweets posted by public accounts

are indeed publicly accessible, and that Twitter’s Terms of Service (Twitter, 2016) allows for

this kind of monitoring.

Using a machine-learning approach to perform sentiment analysis, syntactic and linguistic

features are typically utilized in probabilistic (e.g. Naive Bayes and Maximum Entropy) and

linear (e.g. Support Vector Machines and Neural Networks) classification algorithms. The prob-

abilistic approach is sometimes called generative because such models generate the probabilities
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of sampling particular terms (Medhat et al., 2014). Linear classification utilizes the vectorized

feature space of words, sentences, or documents to find a separating hyperplane between multiple

classes.

This project approaches the problem of identifying subtweets using the probabilistic Naive

Bayes classification algorithm. We demonstrate this method by programmatically identifying

subtweets in real time. Using a Twitter bot—an automated program which accesses Twitter—

we use this classifier to detect and interact with subtweets as they are posted.



2
Methods

2.1 Gathering Tweets for the Ground Truth Dataset

2.1.1 The Twitter API

Twitter provides a free Application Programming Interface (API) to registered users and has

done so since September of 2006 (Stone, 2006). The API allows developers to programmatically

access and influence tweets individually or through real time search filters, and also read and

write direct messages (Twitter, 2018). The creation of a Twitter application which utilizes the

API requires creation and email verification of an account, and developers are also required to

agree to the Terms of Service (Twitter, 2016). Creation of an application provides developers

with authentication tokens which can then be used to access the API.

To make creation of Twitter applications easier, Tweepy (Roesslein, 2009) is an open source

library for the Python programming language which provides methods and classes used to inter-

act with the API and its status objects (Twitter, 2018). A Twitter status object is a dictionary

of key and value pairs which contains text, media, and user information associated with partic-

ular tweets. There are rate limits for both reading and writing to the API which must be kept

in mind when programming for it.
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2.1.2 Searching for Tweets

For acquisition of a ground truth dataset, we consider true subtweets to be tweets to which

another Twitter user replied who specifically called it out as a subtweet. We consider true non-

subtweets to be tweets to which another user replied who specifically did not call it out as a

subtweet.

1 def get_subtweets(max_tweets=2500,

2 query=("subtweet AND @ since:2018-04-01"

3 "exclude:retweets filter:replies")):

4 subtweets_ids_list = []

5 subtweets_list = []

6 for potential_subtweet_reply in tweepy.Cursor(api.search, lang="en",

7 tweet_mode="extended",

8 q=query).items(max_tweets):

9 potential_subtweet_original = first_tweet(potential_subtweet_reply)

10 if (not potential_subtweet_original.in_reply_to_status_id_str

11 and potential_subtweet_original.user.lang == "en"):

12 if (potential_subtweet_original.id_str in subtweets_ids_list

13 or "subtweet" in potential_subtweet_original.full_text

14 or "Subtweet" in potential_subtweet_original.full_text

15 or "SUBTWEET" in potential_subtweet_original.full_text):

16 continue

17 else:

18 subtweets_ids_list.append(potential_subtweet_original.id_str)

19 subtweets_list.append({"tweet_data": potential_subtweet_original._json,

20 "reply": potential_subtweet_reply._json})

21 with open("../data/other_data/subtweets.json", "w") as outfile:

22 json.dump(subtweets_list, outfile, indent=4)

23 return subtweets_list

After the API credentials are loaded, this Python code is used to download tweets with replies

which do and do not call them out as subtweets. Tweepy provides the Cursor object which

is used to iterate through different sections of the Twitter API. In this example, we use it

with Twitter’s search API to find tweets matching our query. This particular version finds true

subtweets with their accusatory replies, but it requires only modification of its query argument

to download true non-subtweets. Within the for loop, we confirm that the following qualities

hold true:

• The alleged subtweet or non-subtweet is not in reply to any other tweet.

• The user who posted it used English as their primary language.

• We do not download duplicate tweets.

• It does not contain the string “subtweet” (with variations in capitalization).
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For acquisition of both subtweets and non-subtweets, this function can be modified to accept

different queries. Respectively, these are the queries which were utilized in acquiring so-called

subtweet-accusations (i.e. these replies typically claim that the tweet to which they reply was

a subtweet) and non-subtweet-accusations (i.e. these replies are essentially normal replies to

normal tweets):

"subtweet AND @ since:2018-04-01 exclude:retweets filter:replies"

"-subtweet AND @ since:2018-04-01 exclude:retweets filter:replies"

The only difference between the two is that the former searches for tweets which contain the

string “subtweet” and the latter searches for tweets which exclude it. Both access the API as far

back as it will allow (typically one week for free API users) and exclude retweets (i.e. unoriginal

tweets which are reposted) while specifically searching for tweets which were in reply to other

tweets. Unfortunately, tweet status objects representing replies to tweets do not contain the

object data of the tweet to which they reply.

1 def first_tweet(tweet_status_object):

2 try:

3 return first_tweet(api.get_status(tweet_status_object.in_reply_to_status_id_str,

4 tweet_mode="extended"))

5 except tweepy.TweepError:

6 return tweet_status_object

To obtain this object, this code essentially goes up a chain of recursively finding the original

tweet to which a reply was made until the API can no longer find another tweet object with an

in_reply_to_status_id_str attribute, indicating that the tweet is an original true subtweet

or true non-subtweet. The two versions of this program for acquiring true subtweets and

true non-subtweets ran for three weeks between March and April of 2018, acquiring over

20,000 tweets which compose our ground truth dataset.

True Subtweet Data True Non-Subtweet Data

Tweet Talk to him again about “drop-
ping me” and you’ll get your teeth
knocked out

That’s been one of my biggest is-
sues here; the onus is on ordinary
people who, in their spare time,
must campaign for the basic ser-
vices of a city. This is not how pro-
gressive cities should be built

Reply Thomas don’t subtweet me during
work hours

i guess i am not as creative as i
thought



8 2. METHODS

This table features a true subtweet and its associated reply and a true non-subtweet and

its associated reply.

2.1.3 Changes in Data Acquisition

This approach for creating a ground truth dataset relies on a particular phenomenon in which

Twitter users call-out the subtweets of their peers. The following pattern was observed: a user

posts a subtweet which is easily recognized by a peer, and that peer then replies to that tweet

in order to complain that the original user was subtweeting or to ask if the tweet was indeed a

subtweet. Initially, the program for acquiring the ground truth dataset used the Twitter API’s

search functionality to specifically search for replies to tweets which contained some form of

the string “subtweet.” It utilized the API’s status object to access the tweet to which it was

replying. For 73 days, each day’s alleged subtweets and their associated accusatory replies were

saved.

Previously, the classifier was trained using a dataset which was half composed of these alleged

subtweets and half composed of tweets randomly selected from a pre-labeled sentiment analyzed

tweets dataset (Go et al., 2009). This procedure failed to make the training data representative

of true subtweets and true non-subtweets. The alleged subtweets downloading program was

revised and it has been set to download tweets with replies which specifically do not contain

the string “subtweet.” In both the program which downloads subtweets and the program which

downloads non-subtweets, the assumptions about these interactions will not hold true in every

case. They are intended as generalizations which make acquiring a ground truth dataset for

use in performing binary classification significantly easier and less time-consuming than finding

and labeling subtweets and non-subtweets by hand. Indeed, the dataset utilized by Go et al.

uses a similar method for acquiring labeled data. In their Sentiment140 dataset, the labels were

acquired according to emoticons present within the tweets instead of through hand-labeling by

actual humans.
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2.2 Language Analysis & Naive Bayes

Before training the classifier, the ground truth dataset is modified such that the important

features within it are easily accessible. Changes are made to preserve the characteristics of the

text which are relevant to the goal of the analysis and to leave out the ones which are irrelevant.

Because we will be using Naive Bayes, we must keep in mind which features in each tweet (e.g.

URLs and user names) ought to influence the probabilities that an entire feature-set (i.e. that

whole tweet) suits a particular class.

2.2.1 Resources for Language Analysis

2.2.1.1 Regular Expressions

For text classification through machine learning, it is popular to modify the ground truth dataset

to make features which are not important to the classification problem as generic as possible.

For classification of subtweets, the classifier will treat URLs, mentions of usernames, and English

first names generically. In other words, it will keep track of the existence of those features but

specifically will not encounter the text contained within them. In identification of subtweets,

there exists no syntactic or linguistic significance in the format of a URL or the name a user

chooses to associate with themselves or another. However, the existence of those features within

the tweet remains important. For this kind of substring searching, pattern matching through

regular expressions was used to replace every occurence of URLs, usernames, and first names

with special tokens which were not already in the dataset. The top 100 most common English

names for both men and women over the last century were acquired from the United States

Department of Social Security.

2.2.1.2 Tokenization

Instead of training the classifier on entire strings, tokenization is necessary in order to extract

individual features from the text. The Natural Language Toolkit (Bird and Loper, 2004) provides

a tweet tokenizer to achieve this. For some string, the tokenizer splits apart words, usernames,

URLs, hashtags, and punctuating characters as individual tokens. NLTK’s tweet tokenizer also
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appropriately distinguishes between punctuating characters and emoticons composed of punc-

tuating characters.

2.2.1.3 N-Grams

An n-gram is a contiguous sequence of n tokens in a piece of text. For example, given a string

such as “This is a test,” the bigrams (n = 2) for this string are “This is,” “is a,” and “a test.”

Instead of training the classifier using unigrams (n = 1) exclusively, we train it using unigrams,

bigrams, and trigrams (n = 3). Thus, when the probability that some specific token within a

tweet belongs to a specific class is calculated, its neighbors are also considered in combination

with it. n-grams enable the classifier to treat particular groupings of tokens with some size n as

importantly as it treats the individual tokens, thus identifying particular word groupings most

associated with the classes.

2.2.1.4 Stop Words

A list of stop words typically contains the most common words in a language. For English text,

the list is often composed of words such as “the,” “it,” and “of.” Tokens matching stop words are

ignored during classifier training because they are too common to help the classifier distinguish

subtweets from non-subtweets.

2.2.2 Cleaning and Preparing the Data

Although true subtweets and true non-subtweets are identified using characteristics of the

Twitter API’s tweet status objects, we utilize Naive Bayes exclusively for text classification on

the unicode text contained within each alleged subtweet and non-subtweet status object. Thus,

we ignore the replies to these tweets.

1 def load_data(filename, threshold=0.1):

2 data = [(urls_pattern.sub("GENERIC_URL",

3 at_mentions_pattern.sub("GENERIC_MENTION",

4 names_pattern.sub("GENERIC_NAME",

5 t["tweet_data"]["full_text"])))

6 .replace("\u2018", "'")

7 .replace("\u2019", "'")

8 .replace("\u201c", "\"")

9 .replace("\u201d", "\"")

10 .replace("&quot;", "\"")

11 .replace("&amp;", "&")

12 .replace("&gt;", ">")

13 .replace("&lt;", "<"))

14 for t in json.load(open(filename))
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15 if t["tweet_data"]["lang"] == "en"

16 and t["reply"]["lang"] == "en"

17 and t["tweet_data"]["user"]["lang"] == "en"

18 and t["reply"]["user"]["lang"] == "en"]

19 new_data = []

20 for tweet in data:

21 tokens = tokenizer.tokenize(tweet)

22 english_tokens = [english_dict.check(token) for token in tokens]

23 percent_english_words = sum(english_tokens)/len(english_tokens)

24 if percent_english_words >= threshold:

25 new_data.append(tweet)

26 return new_data

The load_data function genericizes URLs, mentions of user names, and mentions of English

first names. Using regular expressions for pattern matching, these substrings are replaced with

special identifiers. The tweets are also cleaned to make HTML characters and unicode characters

more consistent. The list comprehension intentionally excludes non-English tweets and those

which were not posted by accounts which list their primary language as English. NLTK’s tweet

tokenizer is utilized at the end to check for tweets which contain at least 10% English tokens.

This language detection is performed on each token in the tweet using the pyEnchant library

(Kelly, 2016) which primarily serves as a spell-checker. The resulting dataset of either true

subtweets or true non-subtweets is returned as a list.

After text cleaning, we remove tweets which are present in both the dataset of true subtweets

and true non-subtweets. Duplicates may have appeared because one user thought a tweet was

a subtweet but another did not.

1 subtweets_data = load_data("../data/other_data/subtweets.json")

2 non_subtweets_data = load_data("../data/other_data/non_subtweets.json")

3 subtweets_data = [tweet for tweet in subtweets_data

4 if tweet not in non_subtweets_data]

5 non_subtweets_data = [tweet for tweet in non_subtweets_data

6 if tweet not in subtweets_data]

With the duplicates gone, we limit the size of the larger dataset to be the same as the smaller

of the two. Thus, both the true subtweets and true non-subtweets compose the entire final

ground truth dataset equally.

1 smallest_length = len(min([subtweets_data, non_subtweets_data], key=len))

2

3 subtweets_data = sample(subtweets_data, smallest_length)

4 non_subtweets_data = sample(non_subtweets_data, smallest_length)

5

6 subtweets_data = [(tweet, "subtweet") for tweet in subtweets_data]

7 non_subtweets_data = [(tweet, "non-subtweet") for tweet in non_subtweets_data]

8

9 training_data = subtweets_data + non_subtweets_data
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In this code, Python’s random library provides the sample function which randomly returns a

list of n items from a list. After both datasets are made the same length, the lists of strings

are made into lists of tuples. For each tuple, the true subtweet or true non-subtweet is

associated with its label (i.e. subtweet and non-subtweet). Finally, these two lists of tuples are

put together for use in training the classifier.

2.2.3 TF & TF-IDF

Term frequency (TF) is a simple method for vectorizing text in which all terms (e.g. tokens,

features, words, etc.) in the corpus are featured in a vector for each document, and the frequency

of each term is reflected in the number representing the corresponding term. The bag of words

model essentially vectorizes features using this method. Thus, tf(t, d) = ft,d.

Unfortunately, TF falls short when the corpus of documents contains terms which appear

frequently but do not necessarily help inform the classifier on terms that are best associated

with a particular class. TF-IDF, or term frequency-inverse document frequency, is the product

of the TF for a specific term and the inverse document frequency (IDF) for that same term.

The TF is equal to the ratio between the number of occurrences of a term in a document, and

the total number of words in that document. IDF, then, is the logarithm of the ratio between

the number of documents in the corpus, and the number of documents which contain that term.

The product of TF and IDF assigns weights which appropriately value terms which are frequent

within a document but rare in the entire corpus of documents. Thus, idf = log N
nt

where N

is the total number of documents and nt is the number of documents which contain the term.

Because the weighted feature vectors calculated using TF-IDF follow a multinomial distribution,

our classification algorithm is specifically a Multinomial Naive Bayes classifier.

2.2.4 Naive Bayes

Naive Bayes stands out as particularly simple and common for use in text classification. A

bag of words model typically ignores word positions in favor of keeping track of raw token

frequencies, which are weighted to produce TF-IDF feature vectors. Then, Bayes theorem is
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utilized to predict the probability that a given feature set (e.g. words, sentences, etc.) belongs

to a particular label (i.e. a category or class). Bayes theorem is a means of predicting the

posterior probability that an event occurs given the observation of another event. It relies

on the conditional probability that the other event occurs given the observation of the event

and the prior probabilities that both events occur in general.

Thus,

P (A|B) =
P (B|A)P (A)

P (B)

where P (A|B) is the posterior probability, P (B|A) is the conditional probability, and

P (A) and P (B) are the prior probabilities.

The prior probability P (A) is otherwise known as the class probability and is equal

to the general probability of encountering a particular class. In our case, we have chosen to

keep our classes balanced (i.e. there are equal numbers of documents in both), so the class

probability will always be 50%. The other prior probability P (B) or evidence, then, refers

to the probability of encountering the features within a document independent of the class

label. The conditional probability P (B|A) refers to the likelihood of encountering the features

within a document given that those features belong to a particular class. The evidence is often

ignored in the final classification step on the basis that it acts merely as a scaling factor when

trying to maximize which class produces the greater posterior probability. The posterior

probability is the probability that a particular document belongs to a class given the observed

features within that document. The Naive Bayes algorithm maximizes this probability in order

to predict which class best fits a document. In all cases where we must calculate the probability

for an entire feature-set, we simply take the product of all the extracted feature probabilities in

the document. Consider this classification example:

if P (ω = subtweet | x) ≥ P (ω = non-subtweet | x) classify as subtweet,

else classify as non-subtweet.

Dropping the evidence term on the basis that it is constant for both classes, we expand that:

P (ω = subtweet | x) = P (x | ω = subtweet) · P (subtweet)

P (ω = non-subtweet | x) = P (x | ω = non-subtweet) · P (non-subtweet)
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Assuming the posterior probability for the former is greater than or equal to the latter,

the classifier predicts that the document fits that class. The naive assumption maintains that

all features are treated as conditionally independent (i.e. that the presence or omission of a

particular feature does not change the likelihood of encountering other features), and although

this is frequently violated, Naive Bayes often performs well anyway (Zhang, 2004).

For cases in which the classifier encounters a feature absent from the features which were used

to train it, a so-called zero probability appears. Because the probability of encountering the

feature is 0, additive smoothing is often utilized to appropriately weight new features using

an extra term α, so the probability that an entire feature-set fits into a specific class is not 0. In

this project, we use Laplace smoothing (α = 1). This technique smooths categorical data by

including the pseudo-count α into each probability estimate. Thus, the probability of a feature

given a particular class becomes:

P (xi | ωj) =
Nxi,ωj + α

Nωj + αd
(i = (1, ..., d))

where Nxi,ωj is the number of times feature xi appears in samples from class ωj , Nωj is the

total count of all features in class ωj , α is the parameter for additive smoothing, and d is the

dimensionality of the feature vector x = [x1, ..., xd]. Compared to datasets which contain millions

of tweets such as Sentiment140 (Go et al., 2009), our classifier has access to significantly fewer

documents. We utilize Laplace smoothing because when the classifier is tested on new tweets

it will likely encounter never before seen features given the limited size of the ground truth

dataset.

2.2.5 Statistical Considerations

In the binary classification of subtweets and non-subtweets, we consider true positives (TP)

to be true subtweets which were correctly labeled as predicted subtweets, false positives

(FP) to be true non-subtweets which were incorrectly labeled as predicted subtweets, true

negatives (TN) to be true non-subtweets which were correctly labeled as predicted non-

subtweets, and false negatives (FN) to be true subtweets which were incorrectly labeled
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as predicted non-subtweets. As such, there are two ways for the classifier to be wrong: it

can produce false negatives and false positives. Using TP, FP, TN, and FN, we can calculate

statistical measurements on the performance of our classifier such as precision, recall, F1

score, and null accuracy.

2.2.5.1 Precision

Precision refers to the ratio between the true positives, and the true positives and false positives.

It is also known as the positive predictive value.

P =
TP

TP + FP

2.2.5.2 Recall

Recall, then, refers to the ratio between the number of true positives, and the true positives

and false negatives. It is also known as the sensitivity.

R =
TP

TP + FN

2.2.5.3 Accuracy

The accuracy is the ratio between the true positives and the true negatives, and the true

positives, true negatives, false positives, and false negatives. Accuracy alone is a particularly

bad quantifier of how well a classifier performs when working with data which is class-imbalanced

(i.e. there are not equal numbers of items in each class). In our ground truth dataset, the classes

are balanced so measuring accuracy will still be informative.

A =
TP + TN

TP + TN + FP + FN

2.2.5.4 F1 Score

The F1 score is a weighted average of the precision and recall. Thus, it takes both false

positives and false negatives into account.
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F1 =
2 ∗ (P ∗R)

P +R

2.2.5.5 Null Accuracy

The null accuracy is the accuracy which is obtained by always predicting the most frequent

class. Because there are two classes and the tweets within the ground truth dataset equally

compose both, the null accuracy will always be 50%.

2.2.6 K-Folds Cross-Validation

Instead of using the entire ground truth dataset as training data for the Naive Bayes classifier,

we can split it into a training set and a test set. The training set is fed to the classifier,

and the test set is used to observe statistics about its performance. Figure 2.2.1 depicts cross-

validation using k-folds, in which we make random splits in the dataset k times to create several

training set and test set sections. In k-folds, we then take statistical measurements of how

well the classifier performs on the test set for each fold. If we made one single split into training

and testing sections of our ground truth dataset and only used that single test set to gather

statistics on the classifier’s performance, we would not be able to confirm that those statistics

were representative of all the data in the entire ground truth dataset. Instead, we perform 10-

fold cross validation, choosing 90% of the data to be the training set, and 10% to be the test

set in each fold. Precision, F1 score, and recall are calculated within each iteration of the 10

folds, thus utilizing 10 different test sets. Finally, we use the averages of those statistics across

all folds to measure the overall performance of the classifier.
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Figure 2.2.1. K-Folds Cross-Validation Example (Borovicka et al., 2012)

2.2.7 Training & Testing Naive Bayes

We utilize Scikit Learn’s API for machine learning (Pedregosa et al., 2011) to create a pipeline.

In Scikit, pipelines make managing machine learning algorithms easy by consolidating their

parts into one object with configurable attributes.

1 sentiment_pipeline = Pipeline([

2 ("vectorizer", TfidfVectorizer(tokenizer=tokenizer.tokenize,

3 ngram_range=(1, 3),

4 stop_words="english")),

5 ("classifier", MultinomialNB())

6 ])

Our pipeline contains a vectorizer and a classifier. We change the default arguments for Scikit’s

TF-IDF vectorizer to use NLTK’s tweet tokenizer, and specify that we want to calculate our TF-

IDF vectors using unigrams, bigrams, and trigrams. Then, we set the vectorizer to use Scikit’s

default English language stop words. The Multinomial Naive Bayes Classifier we implement

using Scikit includes Laplace smoothing (α = 1) by default.

Scikit also has a convenient KFold object which we utilize to perform cross-validation on our

classifier. The goal of k-folds cross-validation is to train the classifier and acquire statistics on

its performance while treating k different parts of the ground truth dataset as test sets. Within

a single iteration for 10 iterations, the test set will always be 10% of the entire ground truth

dataset, however the next iteration will use a different section. We ultimately average those

statistics to understand the overall performance of the classifier.
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1 def confusion_matrices(training_data, num_folds=10):

2 text_training_data = np.array([row[0] for row in training_data])

3 class_training_data = np.array([row[1] for row in training_data])

4 kf = KFold(n_splits=num_folds, random_state=42, shuffle=True)

5 cnf_matrix_test = np.zeros((2, 2), dtype=int)

6 for train_index, test_index in kf.split(text_training_data):

7 text_train, text_test = (text_training_data[train_index],

8 text_training_data[test_index])

9 class_train, class_test = (class_training_data[train_index],

10 class_training_data[test_index])

11

12 sentiment_pipeline.fit(text_train, class_train)

13 predictions_test = sentiment_pipeline.predict(text_test)

14 cnf_matrix_test += confusion_matrix(class_test, predictions_test)

In each iteration of the 10 folds, the above program splits apart a training set and a test set.

The classifier is trained on the training set using sentiment_pipeline.fit, and the classifier’s

predictions for the test set in that fold are used to add toward a confusion matrix which will

categorically visualize the performance of the classifier. We also calculate the precision, recall,

and F1 score for each fold’s individual test set.

2.3 Creating the Twitter Bot

We use Tweepy to interact with the Twitter API. It provides a convenient object for streaming

Twitter data in real time. The StreamListener class can track tweets by searching for specific

users, locations, and keywords. For our purposes, it has to be extended to track subtweets.

1 class StreamListener(tweepy.StreamListener):

2 def on_status(self, status):

3 id_str = status.id_str

4 screen_name = status.user.screen_name

5 created_at = status.created_at

6 retweeted = status.retweeted

7 in_reply_to = status.in_reply_to_status_id_str

8 text = status.full_text

9

10 # Genericize extra features and clean up the text

11 text = (urls_pattern.sub("GENERIC_URL",

12 at_mentions_pattern.sub("GENERIC_MENTION",

13 names_pattern.sub("GENERIC_NAME",

14 text)))

15 .replace("\u2018", "'")

16 .replace("\u2019", "'")

17 .replace("\u201c", "\"")

18 .replace("\u201d", "\"")

19 .replace("&quot;", "\"")

20 .replace("&amp;", "&")

21 .replace("&gt;", ">")

22 .replace("&lt;", "<"))

23

24 tokens = tokenizer.tokenize(text)

25

26 english_tokens = [english_dict.check(token) for token in tokens]
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27 percent_english_words = sum(english_tokens)/float(len(english_tokens))

28

29 # Make sure the tweet contains some English

30 is_english = False

31 if percent_english_words >= 0.1:

32 is_english = True

33

34 # Calculate the probability using the pipeline

35 subtweet_probability = sentiment_pipeline.predict_proba([text]).tolist()[0][1]

This part of the program is for live classification of subtweets and gathers information on tweet

status objects as they are encountered. We extract data from the tweet object including the ID

of that tweet and the text contained within it. We utilize the same techniques for cleaning and

genericizing the tweet which we used in preparing our ground truth data for the classifier. The

pipeline has a predict_proba method which takes as its input a list of strings and outputs an

array of probabilities for each class. subtweet_probability, then, uses that method to predict

the probability that the tweet fits the “subtweet” class according to the Naive Bayes classifier

and the vectorizer we used in our pipeline. We also check that the potential subtweet meets

specific requirements before the Twitter bot will interact with it.

1 if all([subtweet_probability >= THRESHOLD,

2 "RT" != text[:2], is_english,

3 not retweeted, not in_reply_to]):

Included in this conditional statement is a comparison to determine if the probability that the

tweet is a subtweet meets a specific threshold. We do not want to call out subtweets unless the

probability is high enough. Following this check, we can interact with the tweet in several ways.

1 # Quote the tweet

2 api.update_status(("Is this a subtweet? {:.2%} \n" +

3 "https://twitter.com/{}/status/{}").format(subtweet_probability,

4 screen_name,

5 id_str))

6 # Like the tweet

7 api.create_favorite(id_str)

8

9 # Reply to the tweet

10 api.update_status("@{} Is this a subtweet? {:.2%}".format(screen_name,

11 subtweet_probability),

12 id_str)

To quote the potential subtweet means that the tweet being referenced is embedded within our

own tweet with a caption above it. Finally, we instantiate our custom StreamListener class

and use it to filter through tweets in real time.
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1 stream_listener = StreamListener()

2 stream = tweepy.Stream(auth=api.auth, listener=stream_listener, tweet_mode="extended")

3

4 stream.filter(follow=user_ids, stall_warnings=True, languages=["en"], async=True)

5 print("Streaming has started.")

6 sleep(DURATION)

7 stream.disconnect()

The user_ids list contains strings of Twitter user IDs. Every time a user whose ID is in the list

sends a tweet, the program will classify that tweet and use the predicted probability that it is a

subtweet to call it out on Twitter from the account linked to the application’s API credentials.

We filter the stream asynchronously in order to use the sleep function from the time Python

library, so we can run the Twitter bot for a limited number of seconds.



3
Results

3.1 Ground Truth Dataset

No corpus already exists which provides examples of subtweets and non-subtweets. To produce

such a corpus, the acquisition of the ground truth dataset relies on assumptions and generaliza-

tions of how Twitter users accuse others of subtweeting. For each subtweet and non-subtweet

we acquired, we did not also acquire every single reply to that tweet, because doing so would

violate the API’s rate limits (Twitter, 2018). Instead, we maintain that using Twitter’s search

API, a single reply to a tweet is enough to indicate that it is or is not a subtweet. By ignoring

the associated metadata of tweet objects and their replies, we obtain the unicode text contained

within subtweets and non-subtweets for our ground truth dataset.
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True Subtweets True Non-Subtweets

I know who I want to take me home He’s followed the putrid smell of
GENERIC MENTION which has led him to
GENERIC MENTION’s whereabouts.
Some odd neighbor boy was watching him as
he approached the house. Liam didn’t hesitate
to drink the young one dry.
“HONEY, I’M HOME!” He calls, kicking in
the door.

One bad chapter doesn’t mean your story is
over

YG so low? I guess the only group that sold
physicals well is Bigbang GENERIC URL

What do you offer someone who doesn’t like
tea, coffee, or hot chocolate? YOU’RE A
GUEST, YOU NEED A HOT DRINK, IT IS
THE LAW.

is everything ok?? GENERIC URL

on the flip side, i agree that “big” accounts
have an obligation to do their due diligence to
not sic their followers on others

The parade of falsehoods about CIA nominee
Gina Haspel GENERIC URL

im bout to drop like 20lbs and then become a
rapper.

Very first day of fortnite got 2 second place
games and a third place gg not bad for a trash
player :p

It’s hilarious that your only “godly” when it’s
convenient for you or when you want to put it
on twitter.

Rosie the Corpse Flower bloomed at
Tucson Botanical Gardens: See pix
allery here GENERIC URL #Tucson
GENERIC MENTION GENERIC URL

It really bothers me when people try to take
advantage or assume I do shoots for free
GENERIC URL

What is Uncle’s GREATEST prediction?

I just don’t get people lol Didi Gregious is my new favorite player.

y’all kids today with your “waifu this” and
“waifu that,” back in my day our waifus had
metal jaws and carried high-frequency blades

GENERIC MENTION we need to get you
drawn as Dekamaster Doggy Krueger

I follow this gorgeous dog account on insta and
his owner has such an annoying voice. SHUT
UP AND LET ME ENJOY YOUR MAGNIF-
ICENT DOG! I’M NOT HERE FOR YOU!

“Huge Caravan” Of Central Americans Is
Headed For The U.S. Border In Hopes Of Asy-
lum GENERIC URL

When the vectorizer runs over these strings in order to tokenize them and extract features for

use in the classifier, GENERIC URL, GENERIC MENTION, and GENERIC NAME stand in

place of actual URLs, mentions of user names, and English first names in the original tweets.

We use these generic tokens because we want the classifier to probabilistically acknowledge the

presence of these features while specifically ignoring the content within them.
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3.1.1 Characteristics of the Ground Truth Dataset

With tens of thousands of tweets contained within the ground truth dataset, understanding the

characteristics of these tweets by example alone is insufficient. To improve our overall under-

standing of these characteristics, we gathered statistics on the distributions of tweet lengths,

punctuating characters, stop words, and unique words in both the true subtweets and true

non-subtweets parts of the dataset.

Twitter serves as a micro-blogging framework which limits the lengths of English text posts

to 280 characters. Because Twitter is also a multimedia platform which supports embedding

URLs, images, and videos, tweets do not necessarily contain this maximum number of characters.

In contrast to the popularity of multimedia tweets, subtweets are characterized as exclusively

text-based. Between both true subtweets and true non-subtweets, Figure 3.1.1 illustrates

that the ground truth dataset contains more short tweets (1 ≤ length ≤ 125) than long tweets

(125 < length ≤ 280). The subscripts s and n respectively indicate subtweets and non-subtweets.

Figure 3.1.1. Histogram of Ground Truth Tweet Lengths
(x̄s = 103.71, ss = 71.99), (x̄n = 105.63, sn = 74.95)
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Twitter does not enforce any grammar or syntax regulations in tweets, thus punctuating

characters are often ignored altogether for use in the stream-of-consciousness style of writing.

As shown in Figure 3.1.2, both true subtweets and true non-subtweets follow this trend

in omitting punctuation, on average containing just under 2 punctuating characters (such as

quotation marks, periods, commas, and apostrophes).

Figure 3.1.2. Histogram of Ground Truth Tweet Punctuation
(x̄s = 1.79, ss = 1.54), (x̄n = 2.16, sn = 1.68)

English stop words are ignored by the vectorizer because they are too common to help the

classifier distinguish between the appropriate features for the classes. Figure 3.1.3 shows that

our ground truth dataset contains tweets which are more likely to contain between 5 and 8

unique stop words than they are to contain fewer. In comparison, Figure 3.1.4 illustrates the

distribution of the number of unique English words per tweet in the ground truth dataset.

As we expect of text-based posts under 280 characters in length, tweets containing fewer unique

English words are more common.
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Figure 3.1.3. Histogram of Ground Truth Unique English Stop Words
(x̄s = 7.14, ss = 1.31), (x̄n = 7.05, sn = 1.39)

Figure 3.1.4. Histogram of Ground Truth English Unique Words
(x̄s = 16.80, ss = 10.95), (x̄n = 16.25, sn = 11.15)
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3.2 Statistics

3.2.1 The Confusion Matrix

We used k-folds cross-validation to test the performance of our Naive Bayes classifier on each

test set fold of our ground truth dataset. Each individual test set was composed of only 10% of

the tweets in the entire dataset. By keeping track of the classifier’s predictions on this test set,

we accumulated a confusion matrix of true positives, true negatives, false positives, and

false negatives for all 10 folds. Figure 3.2.1 illustrates these outcomes in terms of raw counts

and normalized over the entire ground truth dataset.

Figure 3.2.1. Confusion Matrix on Test Data from Each Fold on the Ground Truth Dataset

We read the confusion matrix by matching rows with columns to see how well the classifier

performs on true subtweets and true non-subtweets in making classifications to produce

predicted subtweets and predicted non-subtweets. These results indicate that the Naive

Bayes classifier performs 5% better when classifying true positives than it does when classifying

true negatives. In comparison, it is 5% worse at classifying false positives than it is at classifying

false negatives.
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3.2.2 Precision, Recall, & F1

The statistics gathered using k-folds cross-validation were averaged across all 10 folds, and

measure the overall statistical performance of our classifier.

Precision Recall F1 Score

Non-Subtweets 0.7357 0.6988 0.7166

Subtweets 0.7132 0.7490 0.7305

The average F1 scores for non-subtweets and subtweets are respectively 71.66% and 73.05%.

Thus, our classifier performs similarly well above the 50% null accuracy on both.

3.3 Known Subtweeters

In order to test how the classifier performed on tweets from known subtweeters, we acquired all

publicly available tweets from 11 different accounts from which users had previously subtweeted.

Figure 3.3.1 shows the distributions of tweets classified as subtweets under particular subtweet

probability thresholds using the classifier on all the tweets from these accounts.

Figure 3.3.1. Distribution of Subtweet Probabilities for 11 Known Subtweeters(x̄ = 0.520, s = 0.127)
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Of these 11 accounts, the Naive Bayes classifier predicts that out of 26,928 tweets, 15,538 were

subtweets (if the threshold for classifying a particular tweet as a subtweet was a probability of

50%). In comparison, if we only accept classifications of at least 75% and make that our threshold,

then just 924 tweets (3.4%) were predicted to be subtweets. Of these accounts, we selected the

users who produced the minimum percentage of subtweets (27.6%), the median percentage of

subtweets (58.8%), and the maximum percentage of subtweets (68.4%) using the former (50%)

threshold. Figure 3.3.2 shows the distributions of tweets classified as subtweets under particular

subtweet probability thresholds using the classifier for all the tweets from these three users’

accounts.

Figure 3.3.2. Distribution of Subtweet Probabilities for 3 Known Subtweeters
(x̄min = 0.430, smin = 0.116), (x̄med = 0.523, smed = 0.128), (x̄max = 0.561, smax = 0.123)

3.4 Most Informative Features

By iterating through the entire vocabulary of features on which the classifier was trained, and

sorting those features by the probability that the feature belongs in the subtweet class, we are

able to see which features are most informative for classifying tweets as predicted subtweets.
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Token P (T |ω = subtweet)

. -7.655
, -8.022
GENERIC URL -8.049
” -8.148
people -8.427
? -8.552
like -8.673
don’t -8.683
just -8.744
i’m -8.833
! -8.864
it’s -9.080
. GENERIC URL -9.100
: -9.110
know -9.184
... -9.204
you’re -9.210
twitter -9.284
love -9.329
* -9.404
friends -9.418

The only bigram in the top 20 most informative features is “. GENERIC URL,” which can

only occur when a URL follows the end of a sentence. In comparison, the rest of these terms are

unigrams of which 8 are exclusively punctuating characters (period, comma, quotation, question,

exclamation mark, colon, ellipsis, and asterisk). The presence of these most informative features

indicates the importance of punctuation in predicting subtweets.

3.5 The Twitter Bot

After training and testing our classifier, we utilized it in creation of a Twitter bot which inter-

acts with predicted subtweets in real time. By limiting the minimum predicted subtweet

probability threshold to 75%, we prevent the Twitter bot from interacting with users too much.

Figures 3.5.1 and 3.5.2 show (censored) examples of these interactions.
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Figure 3.5.1. Example of the Twitter Bot Quoting Users’ Tweets

Figure 3.5.2. Example of the Twitter Bot Replying to a User’s Tweet

3.6 Discussion

Subtweets have garnered attention from news organizations (Madrigal, 2014), social scientists

(Edwards and Harris, 2016), and governmental officials (Ohlheiser, 2017), but sentiment analysis

of subtweets has been entirely unresearched. Utilizing the Twitter API, we acquired data for

training and testing a Naive Bayes classifier, and developed a Twitter bot which actively calls-out

subtweets in real time. We obtained 12,169 true subtweets and 21,411 true non-subtweets to
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be used in our ground truth dataset. After confirming they were English and removing duplicates,

there were 11,288 true subtweets and 19,289 true non-subtweets remaining. In order to

preserve a balance between the classes, we limited the number of true non-subtweets to be

the same as the number of true subtweets. Thus, our final ground truth dataset contains

22,576 tweets. Our classifier identifies non-subtweets with an F1 score of 71.66% and subtweets

with an F1 score of 73.05%, performing significantly better than the null accuracy of 50%.

For the 2017 International Workshop on Semantic Evaluation (SemEval), numerous teams

submitted approaches for task 4, subtask A: English Twitter polarity classification on a 3-point

scale (positive, neutral, and negative sentiment) (Rosenthal et al., 2017). Although this par-

ticular classification is ternary instead of binary (such as in our case of classifying subtweets and

non-subtweets), the outcomes of the competition on this particular subtask are still informative

for us in comparing the performance of our method to others. The team which performed best

on this subtask was DataStories with an average F1 score of 67.7% (Baziotis et al., 2017).

Baziotis et al. utilized Long Short-Term Memory (LSTM) networks to achieve this score. In

comparison to our average F1 score of 72.4%, we performed similarly well on a particularly less

complicated problem than 3-point general sentiment classification.

Because we utilized our own novel method for data acquisition, we did not acquire a ground

truth dataset which is as successful in representing the features of actual subtweets and non-

subtweets as those which can be obtained using a service such as Amazon’s Mechanical Turk

which hand-labeled crowdsourced data. The Twitter API rate limitations prevented acquisition

of tweets which were more than one week old at the time of downloading, and we only ever

acquired one single reply to each subtweet and non-subtweet as the distinguishing characteristic

of true subtweets and true non-subtweets. If a Twitter API search query exists which can

find all the replies to a particular tweet, it will serve better than our method for finding only

one.
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Conclusion

4.1 Summary of Project Achievements

We treated a new colloquial form of online harassment—“subtweeting”—as a text classification

problem and used the probabilistic Naive Bayes classification algorithm to identify it. We judged

the performance of the algorithm and went beyond identification to engage with subtweets, pro-

moting publicity for content which is deliberately written to be unseen by the targeted party. We

utilized Twitter’s API to demonstrate a potential use for sentiment analysis on this kind of text.

All data acquired and all programs developed for this project have been made publicly available

on GitHub at https://github.com/segalgouldn/Senior-Project-Subtweets.

4.2 Future Work & Considerations

Our implementation of Naive Bayes exclusively made classifications using features from the uni-

code text contained within tweets, but other features related to the metadata contained within

tweet objects and their replies will probably prove fruitful in producing a better subtweets clas-

sifier. We did not test other classification algorithms in favor of pursuing Naive Bayes singularly,

but there exists no reason to not utilize others. Using topic modeling via methods such as non-

https://github.com/segalgouldn/Senior-Project-Subtweets


34 4. CONCLUSION

negative matrix factorization and latent dirichlet allocation, we can analyze the topics about

which most users are tweeting, and potentially group these users into subtweet-topic networked

communities through clustering algorithms such as k-means.

Finally, we treated this project as a binary classification problem between subtweets and non-

subtweets, but it can be expanded. What would we find if we trained a classifier to distinguish

ironic tweets, sarcastic tweets, mocking tweets, and subtweets? What are the features of the

figurative language used in each of these examples? These questions motivate further research.
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