
Bard College Bard College

Bard Digital Commons Bard Digital Commons

Senior Projects Spring 2016 Bard Undergraduate Senior Projects

Spring 2016

Radical Recognition in Off-Line Handwritten Chinese Characters Radical Recognition in Off-Line Handwritten Chinese Characters

Using Non-Negative Matrix Factorization Using Non-Negative Matrix Factorization

Xiangying Shuai
Bard College

Follow this and additional works at: https://digitalcommons.bard.edu/senproj_s2016

 Part of the Applied Linguistics Commons, Applied Mathematics Commons, Applied Statistics

Commons, Artificial Intelligence and Robotics Commons, Computational Linguistics Commons, and the

Graphics and Human Computer Interfaces Commons

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Recommended Citation Recommended Citation
Shuai, Xiangying, "Radical Recognition in Off-Line Handwritten Chinese Characters Using Non-Negative
Matrix Factorization" (2016). Senior Projects Spring 2016. 367.
https://digitalcommons.bard.edu/senproj_s2016/367

This Open Access work is protected by copyright and/or
related rights. It has been provided to you by Bard
College's Stevenson Library with permission from the
rights-holder(s). You are free to use this work in any way
that is permitted by the copyright and related rights. For
other uses you need to obtain permission from the rights-
holder(s) directly, unless additional rights are indicated by
a Creative Commons license in the record and/or on the
work itself. For more information, please contact
digitalcommons@bard.edu.

http://www.bard.edu/
http://www.bard.edu/
https://digitalcommons.bard.edu/
https://digitalcommons.bard.edu/senproj_s2016
https://digitalcommons.bard.edu/undergrad
https://digitalcommons.bard.edu/senproj_s2016?utm_source=digitalcommons.bard.edu%2Fsenproj_s2016%2F367&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/373?utm_source=digitalcommons.bard.edu%2Fsenproj_s2016%2F367&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/115?utm_source=digitalcommons.bard.edu%2Fsenproj_s2016%2F367&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/209?utm_source=digitalcommons.bard.edu%2Fsenproj_s2016%2F367&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/209?utm_source=digitalcommons.bard.edu%2Fsenproj_s2016%2F367&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=digitalcommons.bard.edu%2Fsenproj_s2016%2F367&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/375?utm_source=digitalcommons.bard.edu%2Fsenproj_s2016%2F367&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/146?utm_source=digitalcommons.bard.edu%2Fsenproj_s2016%2F367&utm_medium=PDF&utm_campaign=PDFCoverPages
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://digitalcommons.bard.edu/senproj_s2016/367?utm_source=digitalcommons.bard.edu%2Fsenproj_s2016%2F367&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@bard.edu
http://www.bard.edu/
http://www.bard.edu/

Radical Recognition in Off-Line
Handwritten Chinese Characters Using

Non-Negative Matrix Factorization

A Senior Project submitted to
The Division of Science, Mathematics, and Computing

of
Bard College

by
Xiangying (Shar) Shuai

Annandale-on-Hudson, New York
May, 2016

Abstract

In the past decade, handwritten Chinese character recognition has received renewed inter-
est with the emergence of touch screen devices. Other popular applications include on-line
Chinese character dictionary look-up and visual translation in mobile phone applications.
Due to the complex structure of Chinese characters, this classification task is not exactly
an easy one, as it involves knowledge from mathematics, computer science, and linguistics.

Given a large image database of handwritten character data, the goal of my senior project
is to use Non-Negative Matrix Factorization (NMF), a recent method for finding a suit-
able representation (parts-based representation) of image data, to detect specific sub-
components in Chinese characters. NMF has only been applied to typed (printed) Chinese
characters in different fonts. This project focuses specifically on how well NMF works
on handwritten characters. In addition, research in Chinese character classification has
mainly been done using holistic approaches - treating each character as an inseparable
unit. By using NMF, this project takes a different approach by focusing on a more specific
problem in Chinese character classification: radical (sub-component) detection.

Finally, a possible application of radical detection will be proposed. This interactive ap-
plication can potentially help Chinese language learners better recognize characters by
radicals.

Contents

Abstract 1

Dedication 6

Acknowledgments 7

1 Introduction 8

1.1 What is Character Recognition . 8

1.2 Chinese Characters and the Significance of Radicals 9

1.3 Databases of Handwritten Chinese . 11

1.4 Simple Approaches . 12

1.4.1 Hamming Distance . 12

1.4.2 Scale Invariant Feature Transform 13

2 Radical Extraction Using Matrix Factorization 15

2.1 Non-Negative Matrix Factorization . 15

2.1.1 The Basic NMF Algorithm in Detail 16

2.1.2 NMF Applications . 21

2.1.3 Outline of Radical Detection Using NMF 23

2.2 NMF Results . 25

2.2.1 Preliminary Results . 26

2.2.2 The Learning Curves of NMF . 27

2.2.3 Statistical Comparisons of Two Pairs of Algorithms 31

3 Conclusion 36

3.1 Discussions and Comparisons . 36

3.2 A Proposal for a Character Learning Application 38

Contents 3

3.3 Conclusion . 40
3.4 Future Work . 41

3.4.1 Constrained Sparse Matrix Factorization 41
3.4.2 Affine Sparse Non-Negative Matrix Factorization 43

Appendix A Map of Radicals to GB2312 45

Appendix B Brief Descriptions of the NMF Variants 48
B.0.3 Probabilistic Model (PMF) . 48
B.0.4 Alternating Least Squares with Projected Gradient (LSNMF) 48
B.0.5 Non-smooth Model (NSNMF) . 49
B.0.6 Enforced Sparseness (SNMF) . 49
B.0.7 Penalized Model (PMFCC) . 50

Appendix C Plots of Learning Curves 51

Appendix D Paired Comparisons of Means and Variances 54

Appendix E Python Code for Radical Classification 59

Bibliography 66

List of Figures

1.2.1 Hierarchical Composition of a Chinese Character 9
1.3.1 HIT-OR3C Data Example . 11
1.4.1 Poor Alignment of Characters in Hamming Distance 13
1.4.2 SIFT Code Example . 14
1.4.3 Incorrect Feature Detection by SIFT . 14

2.1.1 Reconstruction of a Face Using NMF . 21
2.1.2 Visualization of NMF . 22
2.1.3 Illustration of the Training and Testing Phases 23
2.1.4 An Example of a Reconstructed Character 24
2.2.1 Distribution of Radicals Over the Count of Characters (Character Variability) 28

3.2.1 Dictionary Look-Up Drawing Application 39
3.2.2 A Proposed Layout for a Character Learning Application 39
3.4.1 Normalization of Data . 43

C.0.1Learning Curves . 52
C.0.2Scaled Learning Curves . 53

D.0.1Paired Mean Accuracy and Variance Comparison between Standard NMF
and SNMF (First Half) . 55

D.0.2Paired Mean Accuracy and Variance Comparison between Standard NMF
and SNMF (Second Half) . 56

D.0.3Paired Mean Accuracy and Variance Comparison between Standard NMF
and Penalized NMF (First Half) . 57

D.0.4Paired Mean Accuracy and Variance Comparison between Standard NMF
and Penalized NMF (Second Half) . 58

List of Tables

2.1.1 Use of Parameters in Different NMF Applications 22
2.2.1 Results from Different NMF Variants Using a Minimum Training Set 26
2.2.2 Results from Different NMF Variants After Studying the Learning Curves . 30
2.2.3 t-Test for Population Means - Standard NMF and SNMF 34
2.2.4 F-Test for Population Variances - Standard NMF and SNMF 34
2.2.5 t-Test for Population Means - Standard NMF and Penalized NMF 35
2.2.6 F-Test for Population Variances - Standard NMF and Penalized NMF . . . 35

Dedication

I would like to dedicate this project to all of my family members - my grandparents in
both China and the U.S., Chunxiu Tao, Guangcai Shuai, Amy and Jim Delaune Sr., my
uncle, Gang Shuai, and my parents, Jim and Sophie Delaune. I am so very grateful for
your guidance, support, and generosity all these years. Thank you!

I also want to thank Greg, for always being there for me.

Acknowledgments

First and foremost, I would like to thank my senior project advisers Amir Barghi and
Sven Anderson for providing extraordinary guidance, support, patience, energy and en-
couragement not just this past year, but also throughout my time at Bard. Being a joint
major is extremely difficult, and I want to thank both Sven and Amir for always being
there for me. Without them, I would not have graduated with a joint degree. I also want
to thank my senior project board members, Keith O’Hara and Ethan Bloch for their in-
valuable suggestions and encouragement. Also, I want to thank Sven and Ethan for giving
me much encouragement as my academic advisers.

Furthermore, I want to thank Dean Bethany Nohlgren, Dean Mary Ann Krisa, and Fu-chen
Chan for being such inspirational mentors this year. I also want to thank Dean Rebecca
Thomas for being a wonderful role model - her success stories have strengthened my belief
that as a woman I can be successful in S.T.E.M.

Lastly, I want to thank Kathleen (Katie) Burke, Alexandra Morris, and Marley Alford for
being such inspirational co-clubheads of Women in S.T.E.M. @ Bard with me this year.
I believe we have made a difference and will continue to make differences in improving
gender equality in the S.T.E.M. fields.

1
Introduction

1.1 What is Character Recognition

Character recognition, or optical character recognition, is a field of research in computer

vision, pattern recognition, and artificial intelligence that endeavors to recognize hand-

written characters using computer algorithms. With the emergence of touch screen de-

vices, the field of handwritten character recognition has received renewed interest in the

past few years. Other related popular applications include signature verification, writer

identification, on-line dictionary look-up, visual translation in mobile phone applications,

etc.

In the research field of handwritten character recognition, “off-line” and “on-line” are

important terms that describe the form of the data. The on-line case refers to the avail-

ability of trajectory data during the time of data collection, and the off-line case refers to

data in the form of scanned images, or data in the form of pixels of images.

In this paper, we focus on Chinese characters due to their complex hierarchical struc-

ture and rich variations. Only off-line data is used in this project because real-time live

user interaction is not required. Furthermore, this project focuses specifically on detect-

1. INTRODUCTION 9

ing radicals/sub-components in Chinese characters, since this is a relatively unexplored

problem.

1.2 Chinese Characters and the Significance of Radicals

The Chinese writing system is extremely hierarchical: words consist of individual charac-

ters, which in turn consist of a group of radicals (“偏旁部首”, sub-components), which

then in turn consist of a sequence of strokes (“笔划”, the simplest components of each

character). In general, a single Chinese character stands for at least one meaning, while

a radical can also carry some semantic clues of the character. For example, the character

“好”(hǎo, meaning “good”), consists of the two radicals “女” (nǚ, meaning “female”,

or “daughter”), and “子” (zǐ, meaning “son”). Figure 1.2.1 demonstrates how a Chinese

character can be decomposed based on the “character-radical-stroke” hierarchical law.

Figure 1.2.1. Hierarchical

Composition of a Chinese
Character: Every character

can be decomposed based

on the “character-radical-
stroke” hierarchical law.

For example, the character

“好”consists of the two radi-
cals “女”, and “子”, which in
turn consist of a sequence of

six simple strokes.

There are three known general approaches to Chinese character recognition: holistic,

stroke-based, and radical-based.

Holistic Approaches: Most studies are done using holistic approaches, which recog-

nize each character as an indivisible unit. No segmentation is performed and the whole

character is recognized at once [15]. If we were to recognize characters holistically, we

1. INTRODUCTION 10

would need to determine the size of the entire Chinese character set. According to statis-

tics [11], there are over 400,000 unique Chinese characters, where 4,000 are used on a daily

basis. If we were to classify them holistically and individually, the scale of usage obviously

challenges holistic classification methods because naturally, even with the help of a good

classification algorithm, the probability of selecting a correct character out of 4,000 is very

small.

Stroke-Based Approaches: Another popular approach is to base classification on

the extraction of low-level features such as strokes. Stroke-based methods focus on de-

composing each character into a set of strokes, and then classify it based on the number,

position, order, shape and orientation of the set of strokes [15]. However, because there are

many variations (size, degree orientation, position, etc) of each type of stroke, this method

essentially also has to deal with the problem of a large number of features. In addition,

stroke-extraction is extremely difficult if a particular style of handwriting merges several

strokes into continuous curves (similar to cursive handwriting in western languages). On

the other hand, stroke-based approaches can be explored with on-line data since stroke

order information would be available.

Radical-Based Approaches: Lastly, radical-based approaches decompose each char-

acter into its sub-components, or radicals, and classify the character based on the com-

bination of the radicals and their positions within that character. There are 214 unique

radicals in Chinese script, which is relatively small compared to the set of commonly used

characters. Moreover, unlike strokes, each radical would only have one or two variations

(vertical or horizontal). However, there are only a few existing methods that have focused

on radical decomposition. Ideally, recognizing radicals is much easier than recognizing the

whole character or its individual strokes. A native Chinese speaker recognizes characters

based on high-level features such as the radicals (because they often contribute to the

1. INTRODUCTION 11

meaning of the character), rather than low-level features such as the strokes. These obser-

vations motivate us to research on radical-based approaches to classify Chinese characters.

1.3 Databases of Handwritten Chinese

There are several databases of handwritten Chinese characters on-line, such as the CASIA

On-line and Off-line Chinese Handwriting Databases built by the National Laboratory of

Pattern Recognition (NLPR) and the Institute of Automation of Chinese Academy of Sci-

ences (CASIA) [1]. In this study, we will use a relatively smaller but more recent database

known as the Harbin Institute of Technology Opening Recognition Corpus for Chinese

Characters (HIT-OR3C), which was collected in 2010 [4]. A sample of the data is shown

in Figure 1.3.1.

Figure 1.3.1. HIT-OR3C Data Example

The HIT-OR3C contains both on-line and off-line data of 6,825 unique classes, collected

from 122 different writers, with 832,650 samples in total. The 6,825 character classes

correspond to the 6,825 characters in the Guojia Biaozhun 2312 (GB2312, “国家标准”)

table, which is the registered name for a key official character set of China, used for

simplified Chinese characters. The GB2312 table covers 99.75% of the characters used for

daily Chinese input.

1. INTRODUCTION 12

Furthermore, the 6,825 character classes are divided into two main sections: characters

in the first section are arranged according to Pinyin (“拼音”, the Chinese alphabet), and

characters in the second section are arranged according to radicals (in increasing strokes).

In this project, only the 3008 character classes in the second half of the data are used since

the goal is to find radicals in the characters [4]. A complete mapping from radical classes

to the characters in GB2312 can be found in Appendix A [2]. However, the map shows

that only 168 out of the 214 radical classes are used in the second section of the data set.

In the HIT-OR3C data set, all the Chinese characters have been collected using a tablet

with a handwriting document collection software: OR3C Toolkit, which is available for

download on the website. The original individual character images are 128 by 128 grey

scale.

In our off-line character recognition experiments, the image samples are converted to 128

by 128 binary matrices by averaging the RGB values of each pixel and setting a threshold

of 128. That is, an average pixel value of less than 128 is considered as background and

is converted to 0. Otherwise, it is considered as foreground and converted to 1. The data

is converted to binary because the recognition methods we explore work well with sparse

data, as explained in the next chapter.

1.4 Simple Approaches

1.4.1 Hamming Distance

Previously, we talked about how holistic approaches are quite challenging because of the

large character class size. The most common and simple holistic approach in character

recognition problems is template matching, where individual pixels are used as features.

Classification is performed by comparing an input character with a set of templates (or

prototypes) from each character class. Each comparison results in a similarity measure

between an input character and a template.

1. INTRODUCTION 13

We will show one holistic approach that fails to classify characters - Hamming distance,

which compares the matrices of two character images and finds the number of positions

at which the corresponding binary values are different. Hence, the smaller the Hamming

distance is between two characters, the more similar they are to each other. To do so, we

generated a set of 6,825 typed characters (which are used as templates/prototypes) cor-

responding to the GB2312 table, and for each input handwritten character, we calculated

the Hamming distance between the input and each typed character, and picked the typed

character that was “closest” to the input. We tested this method using 5,000 randomly

picked input characters, and the accuracy rate was less than 1%. The explanation for the

low classification rate is simple - poor alignment, as shown in Figure 1.4.1.

Figure 1.4.1. Poor Alignment of Charac-

ters in Hamming Distance: Simply matching
handwritten characters with printed template

characters results in poor alignment issues, as

printed characters do not demonstrate most of
the variations in handwritten characters: size,

orientation, stroke density, and differences in

handwriting.

Handwritten characters in general vary in size, orientation, and density, especially when

there are multiple writers. Hence a simple holistic method such as this will not capture

the similarities between handwritten characters.

1.4.2 Scale Invariant Feature Transform

There are some much more sophisticated methods to detect features in images, such as

Scale-Invariant Feature Transform (SIFT). Hence we used SIFT to see how well it detects

features in each character. A major part of SIFT is image feature generation, which trans-

forms an image into a large collection of feature vectors, each of which is invariant to image

translation, scaling, and rotation, partially invariant to illumination changes and robust to

local geometric distortion. Fortunately, OpenCV (a library of computer vision functions)

1. INTRODUCTION 14

has built-in SIFT functions to detect key points in images [6]. Figure 1.4.2 demonstrates

how to use the OpenCV SIFT function to detect interesting points in an image [6].

Figure 1.4.2. SIFT Code Example. The

code demonstrates how interesting features
are detected in a given image. First it reads

the input image and turns it into grayscale,

and then it detects the points and draws
them on an output image.

Figure 1.4.3 is an example of how SIFT fails to detect the same key points for two

images of the same character (“爱”, love) written by just two different people.

Figure 1.4.3. Incorrect Feature Detection by
SIFT. The figure shows the key points detected in

the same character written by two different people.

It is clear that the key points in each image not only
differ in the number, but also in the locations.

Poor classification results from the above experiments using holistic approaches do not

show that all holistic approaches are not suitable for Chinese character recognition, nor

that they are not effective. Rather, the results show the drawback of these approaches,

that they require a high degree of correlation between the test and training images. In

addition, holistic methods do not perform effectively under large variations in direction,

scale and handwriting style. In the following chapter, we will explore a new radical-based

method: non-negative sparse matrix factorization for automatically extracting radicals

from Chinese characters.

2
Radical Extraction Using Matrix Factorization

2.1 Non-Negative Matrix Factorization

A fundamental problem in many pattern recognition tasks such as ours is finding a suit-

able representation of the data. Non-Negative Matrix Factorization (NMF), is a recently

developed method for finding such a representation [3]. The NMF method has been used

for many data analysis tasks such as face decomposition, font classification, gene expres-

sion clustering, and scalable Internet distance (round-trip time) prediction.

The NMF method was originally proposed by Lee and Seung to find parts of individ-

ual objects: “Non-negative matrix factorization is distinguished from other methods by

its use of non-negativity constraints. These constraints lead to a parts-based representa-

tion because they allow only additive, not subtractive, combinations.” By contrast, other

methods, such as principal component analysis and vector quantization, learn holistic, not

parts-based, data representations [9].

Definition 2.1.1. Given an n×m non-negative input matrix V , a Non-Negative Matrix

Factorization is one that aims to decompose it into an n× r basis matrix W , and r ×m

coefficient matrix H, respectively, so that V is approximately equal to the product of W

2. RADICAL EXTRACTION USING MATRIX FACTORIZATION 16

and H as follows

Vij ≈ (WH)ij =

r∑
a=1

WiaHaj = V̂ij ,

where the rank r of the factorization is generally picked so that (n+m)r < nm, W ≥ 0,

and H ≥ 0. 4

2.1.1 The Basic NMF Algorithm in Detail

The goal of the NMF algorithm is to decompose an input matrix V into a basis set W and

encoding set H specified in Definition 2.1.1, while satisfying the non-negativity constraint.

We will talk about what W and H each represents in the context of radical detection in

the next section.

To approximate W and H, the NMF algorithm first initiates two random positive ma-

trices of dimensions n× r and r×m, respectively. The next step is to repeatedly calculate

the difference between the estimated matrix V̂ = WH and the input matrix V , and at the

same time update the elements in both W and H to minimize this difference iteratively,

until some kind of a convergence criteria is met - the maximum number of iteration steps

is reached, or the total error E is less than a predefined error threshold.

To converge V and WH is to minimize the construction error ||V −WH||2, which is

the squared error (Euclidean distance) between V and WH. The general error function

E, known as Frobenius Norm, can be described as follows:

E(W,H) =
1

2
||V −WH||2F =

1

2

∑
ij

(Vij − (WH)ij)
2. (2.1.1)

Furthermore, the element-wise error between V and V̂ is:

Eij(W,H) =
1

2
||Vij − V̂ij ||2F =

1

2
(Vij −

r∑
a=1

WiaHaj)
2. (2.1.2)

The above error terms are squared because the difference between the actual input matrix

and the estimated matrix can be either positive or negative.

2. RADICAL EXTRACTION USING MATRIX FACTORIZATION 17

In order to minimize the error, we need to know either to increase or decrease the current

element values in W and H. Generally speaking, to find a local minimum of a function, one

needs to take steps proportional to the opposite/negative direction of the gradient of the

cost function at each iteration, and this method is known as Gradient Descent. Hence in

our case, to find the directions of element values in W and H, we differentiate the function

in (2.1.2) with respect to any pair of elements Wik and Hkj (such that WikHkj = V̂ij)

separately [19]:

∂

∂Wik
Eij =

1

2

∂

∂Wik
(Vij −

r∑
a=1

WiaHaj)
2

= −(Vij − V̂ij)(Hkj)

= −EijHkj .

(2.1.3)

∂

∂Hkj
Eij =

1

2

∂

∂Hkj
(Vij −

r∑
a=1

WiaHaj)
2

= −(Vij − V̂ij)(Wik)

= −EijWik.

(2.1.4)

Notice that in (2.1.3), the partial derivative of (Vij −
∑r

a=1WiaHaj) with respect to any

Wik in W is only one term, −Hkj , not a sum. This is because Wik only corresponds to one

of the terms in
∑r

a=1WiaHaj , where 1 ≤ k ≤ r. Hence the other terms with a 6= k cancel

out in the derivation process. This explanation applies to (2.1.4) as well.

Having formulated the gradient for any pair of elements Wik and Hkj , we can now take

a step proportional to the opposite of the gradients and derive the update rules for them

separately:

W ′ik = Wik + α
∂

∂Wik
Eij = Wik + αEijHkj . (2.1.5)

H ′kj = Hkj + α
∂

∂Hkj
Eij = Hkj + αEijWik, (2.1.6)

where W ′ik and H ′kj are new matrix elements that replace Wik and Hkj .

2. RADICAL EXTRACTION USING MATRIX FACTORIZATION 18

In common Gradient Descent and linear regression problems, α is known as the “learning

rate” whose value determines the rate the algorithm is approaching the local minimum at

each iteration. Usually a very small value (such as 0.001) is chosen because we want to

take small steps towards each local minimum to avoid the risk of missing it.

So far we have described a set of simple additive update rules, (2.1.5) and (2.1.10).

A more popular approach, proposed by Lee and Seung [9] is to update the matrices

multiplicatively [9]:

W ′ik ←Wik
(V HT)ik

(WHHT)ik
(2.1.7)

and

H ′kj ← Hkj
(W TV)kj

(W TWH)kj
. (2.1.8)

The major advantage of the multiplicative approach is, as long as the initiation process

of the matrices assigns positive values to all elements, multiplying each matrix element

by a positive value makes sure the new element is also positive. In addition, there is no

learning parameter α to tune.

The multiplicative rules can easily be derived from the additive ones. First, we will

rewrite the additive update rules in (2.1.5) and (2.1.10) into the following forms:

W ′ik = Wik + α
∂

∂Wik
Eij

= Wik + α
∂

∂Wik
(Vij −

r∑
a=1

WiaHaj)
2

= Wik + α(Vij −WikHkj)(Hkj)

= Wik + α(VijH
T
ik −WikHkjH

T
ik)

= Wik + α(V HT −WHHT)ik

(2.1.9)

and

2. RADICAL EXTRACTION USING MATRIX FACTORIZATION 19

H ′kj = Hkj + α
∂

∂Hkj
Eij

= Hkj + α
∂

∂Hkj
(Vij −

r∑
a=1

WiaHaj)
2

= Hkj + α(Vij −WikHkj)(Wik)

= Hkj + α(W T
kjVij −W T

kjWikHkj)

= Hkj + α(W TV −W TWH)kj .

(2.1.10)

Next, Lee and Seung proposed to replace the α in rule (2.1.9) with the following term:

α =
Wik

(WHHT)ik
, (2.1.11)

and rule (2.1.9) is then rewritten into rule (2.1.7):

W ′ik = Wik + α(V HT −WHHT)ik

= Wik +
Wik

(WHHT)ik
(V HT −WHHT)ik

= Wik +
Wik

(WHHT)ik
(V HT)ik −

Wik

(WHHT)ik
(WHHT)ik

= Wik +Wik
(V HT)ik

(WHHT)ik
−Wik

= Wik
(V HT)ik

(WHHT)ik
.

(2.1.12)

Similarly, the α in rule (2.1.10) can be replaced by substituting the following term:

α =
Hkj

(W TWH)kj
, (2.1.13)

and now rule (2.1.10) can be rewritten into rule (2.1.8):

2. RADICAL EXTRACTION USING MATRIX FACTORIZATION 20

H ′kj = Hkj + α(W TV −W TWH)kj

= Hkj +
Hkj

(W TWH)kj
(W TV −W TWH)kj

= Hkj +
Hkj

(W TWH)kj
(W TV)kj −

Hkj

(W TWH)kj
(W TWH)kj

= Hkj +Hkj
(W TV)kj

(W TWH)kj
−Hkj

= Hkj
(W TV)kj

(W TWH)kj
.

(2.1.14)

Finally, a pseudo code for the NMF can be found in Algorithm 2.1.1. Lee and Seung

have proved that the algorithm under update rules (2.1.7) and (2.1.8) is guaranteed to

reach at least a locally optimal solution [9].

Algorithm 1 NMF Algorithm

1: procedure Init
2: initialize W+

3: initialize H+

4: procedure Factorize
5: for iteration in maxNumberOfIterations do
6: for row = i,col = j in V do
7: compute Eij
8: compute gradients ∂

∂Wik
Eij and ∂

∂Hkj
Eij

9: calculate updated elements W ′ik and H ′ik
10: compute total error E
11: if E < errThreshold then
12: break
13:

return W , H

In the above algorithm, “maxNumberOfIterations”, the maximum number of iterations

the algorithm will run is generally specified by the user. “errThreshold”, the tolerance

threshold for the total error at each iteration, is also used to decide when to stop updating

the elements. This value is usually set to a very small positive number to ensure a close

approximation of V̂ to V .

2. RADICAL EXTRACTION USING MATRIX FACTORIZATION 21

2.1.2 NMF Applications

In recent years, researchers have applied NMF to various problems. Among the most well-

known applications are face decomposition, font classification, and document classification.

The most original application of NMF is face decomposition - looking for localized features

that correspond with intuitive notions of the parts of faces (the eyes, the nose, and the

mouth) [9]. Now let’s take another look at NMF based on Definition 2.1.1. The dimensions

of each matrix can be expressed as follows:

V[n×m] ≈W[n×r] ×H[r×m].

In Lee and Seung’s research, the image database of faces is regarded as an n×m matrix

V , with each column being an input image in the form of a size-n vector. There are m

input images in total. The r columns of W are called basis images, and each column of

H is called an encoding and has a one-to-one relationship with each face in V . What is

even more important to know is that an encoding consists of the coefficients by which

a particular face image is represented with a linear combinations of the basis images of

W [9]. Once W and H are approximated, they can be used to reconstruct a new face, as

demonstrated in Figure 2.1.1 [9].

W	
 H	
 x V	
 =

>︎

Figure 2.1.1. Reconstruction of a face

using NMF. Non-negative matrix factoriza-
tion learns a parts-based representation of
faces: the W shown here is a set of r =

72 = 49 basis images (the eyes, the nose, the

mouth, etc). A particular test image, tagged
as “Original” here, is approximately repre-

sented by a linear superposition of the im-
ages in W , with encodings in H (the darker
the color the bigger the coefficient matrix el-

ement is).

As can be seen from Figure 2.1.1, a large fraction of W , the NMF image basis, consists

of vanishing coefficients. Hence both the basis images and image encodings are sparse

2. RADICAL EXTRACTION USING MATRIX FACTORIZATION 22

(see Definition 2.1.2). The basis images are sparse because they are not global, and they

represent various versions of facial features, mouths, noses, eyes, etc, in different locations

and forms. Any face in the data can be generated by combining these different parts, but

the combination does not necessarily need all of these basis images [9] .

Definition 2.1.2. A sparse matrix is a matrix in which most of the elements are zero.

By contrast, if most of the elements are nonzero, then the matrix is considered dense. 4

Based on the above idea, many other applications including Chinese character classifica-

tion can use NMF to decompose data into different features. Figure 2.1.2 and Table 2.1.2

summarize some of these applications.

Figure 2.1.2. Visualization of NMF

Application n m r

Face Decomposition Total number of pixels in
an image.

Number of face image
samples.

Number of different facial
features.

Font Classification Total number of pixels in a
letter/character image of a
specific font.

Number of character
image samples.

Number of different fonts.

Chinese Radical
Detection

Total number of pixels in
a character image. In this
project, n = 1282.

Number of character image
samples.

Number of different radical
classes.

Table 2.1.1. Use of Parameters in Different NMF Applications

The following section will explain in detail how NMF can be used to detect radicals in

Chinese characters.

2. RADICAL EXTRACTION USING MATRIX FACTORIZATION 23

2.1.3 Outline of Radical Detection Using NMF

Tan, Xie, Zheng, and Lai were the first to use NMF on Chinese characters, and more

specifically, they used the method to find radicals in printed characters. Unlike handwritten

characters, the only variation in printed characters is the font [15]. Their method can be

illustrated as below in two phases - training and testing, as shown in Figure 2.1.3.

Figure 2.1.3. Illustration of

the Training and Testing Phases.
In (a), the training phase, each

radical Wi is learned using m

characters (in their column vec-
tor form) that contain the radi-

cal. Wi and Hi are estimated to

best fit Vi. When all 168 radicals
have been learned, together they

form the radical dictionary, W .

Then in (b), the testing phase,
for every test image v, W is used

to estimate h, a one-column co-

efficient matrix, which is used to
determine what radicals are most

prominent in the reconstruction
of v.

In general NMF applications, the W matrix is known as a dictionary, and in this prob-

lem, it is known as a radical dictionary. Each column of W represents a basis radical class

[15]. In other NMF applications where the features are unknown, r is usually estimated in

order to better approximate W and H. In this problem, we specify r = 1 at each training

step, because we want to isolate radical classes in order to learn them individually. As

demonstrated in Figure 2.1.3, in the training phase (a), we train each radical class Wi

separately from the others using NMF, with m characters that contain this radical. The

training is done when we have r column vectors trained for the r = 168 radical classes in

2. RADICAL EXTRACTION USING MATRIX FACTORIZATION 24

the data. Then W stays constant and is passed into (b), the testing phase. Each column

of W corresponds to one of the learned radical classes. Hence each testing character image

(in its column vector form), can again be estimated as:

v ≈W × h, (2.1.15)

where W is known, and h is a coefficient matrix that is estimated using least squares

(because W is not a square matrix, we cannot solve for h using the inverse of W). Since

most characters are structured by no more than four or five components, and each hi ∈ h

represents how important a radical class i in W is in the formation of a character, we

can see if particular radicals exist in a character simply by examining the top four or five

coefficients in h. In this paper, we make the assumption that all characters have no more

than five components. Figure 2.1.4 demonstrates how a character in the testing phase can

be reconstructed using the estimated W and H.

Figure 2.1.4. An Example of

a Reconstructed Character: As
demonstrated, the input character

“刈(ỳı, [verb] to regulate)” is used

as a testing image sample. In this
example, only five radical classes

are used in the radical dictionary

W for demonstration purposes,
with “刂” being the first radical

class in W . The coefficient matrix

h correctly predicted that the most
prominent sub-component in “刈” is

“刂” (the peak at x = 0). Although
the left part of the reconstructed
image appears to be a blur (since

it contains radical classes that
are not learned), the right side

clearly demonstrates that “刂” is a

prominent part of the test image.

2. RADICAL EXTRACTION USING MATRIX FACTORIZATION 25

2.2 NMF Results

In this section, we will record the initial results of radical detection using the following

variants of NMF: standard, probabilistic, projected gradient, non-smooth, sparse (imposed

on the W matrix), sparse (imposed on the H matrix), and penalized NMF. A short

description of each NMF variant (except standard NMF, which is previously described

in depth in Section 2.1.1) can be found in Appendix B. These are the most popular

NMF methods used today. Since NMF has not been applied to handwritten character

classification, we want to apply all of these methods to see which algorithms would produce

good results.

The basis for comparison at this point is only the average accuracy over all radical

classes. After we get a general idea of how each variant algorithm performs, we will then

compare some of the algorithms in depth in the following section.

Another idea we want to explore here is how the accuracy of NMF changes as a function

of the training-set size. As seen in Appendix A, not all radical classes map to the same

number of characters (we will refer the number of characters a radical class maps to as

its character variability). For example, radical class number 4, “儿(ér, son)”, only maps

to itself, where as radical class number 24, “阝(ěr, ear)”, maps to 61 characters, such as

“阢”, “阡”, “阱”, “阪”, “阽”, “阼”, etc. Hence for a radical class such as “儿”, we get 1

character sample from each of the 122 writers in the data, leading to a total of only 122

samples representing the radical class (hence it has very little noise in the training set). On

the other hand, “阝” would have 122 × 61 = 7442 samples (which we assume would lead

to more noise in the training set). Hence, different radical classes might require training

sets of different sizes for them to be better represented in the dictionary.

2. RADICAL EXTRACTION USING MATRIX FACTORIZATION 26

2.2.1 Preliminary Results

To explore how the accuracy is related to the training set size, we need to first establish a

basis for comparison, using a minimum training set that is equal for all radical classes. For

each radical class, we pick only 102 random samples from the pool of all 122 writers, and

the testing phase will test on the remaining 20 samples. This way, all the radical classes

are learned on training sets of equal size.

We will then use the seven variants of NMF to see how the results differ. It is impor-

tant to state that there is no overlap between the training and testing image samples. In

addition, for each variant NMF algorithm we use, the experiment is run 10 times (using

identical training and testing sets for each algorithm) and returns the average measure-

ments. The results are recorded below in Table 2.2.1. The average training and testing

times are useful measures calculated to determine the efficiency of the various NMF algo-

rithms. The training error, known as Frobenius Norm, is our error function described in

Equation 2.1.1.

NMF Variant

Avg. Training
Time Per

Radical Class
(Seconds)

Avg. Training
Error

(Frobenius
Norm)

Avg. Testing
Time

(Seconds)

Avg. Accuracy
Per Radical
Class (%)

NMF-Standard 4.48 265.44 0.75 22.80

PMF-Probabilistic 4.26 265.62 0.77 23.21

LSNMF-Projected Gradient 2.45 265.45 0.21 21.16

NSNMF-Nonsmooth 3.21 265.71 0.21 22.38

SNMF-Sparse W 3.88 265.44 0.25 22.07

SNMF-Sparse H 7.00 265.34 0.75 22.07

PMFCC-Penalized 3.80 265.37 0.24 21.99

Table 2.2.1. Results from Different NMF Variants Using a Minimum Training Set

All of the results shown in Table 2.2.1 suggest the poor performance of NMF when using

the same number of samples to train each radical class. Because of the small training set

size, the W dictionary is not a good representation of character variability.

A good question to ask here is, whether using all of the available data to train each rad-

2. RADICAL EXTRACTION USING MATRIX FACTORIZATION 27

ical would lead to a better representation of character variability. To answer this question,

we used standard NMF to train on all available data, and tested the resulting dictionary on

the same testing samples used above (20 testing samples per radical class), and obtained

an average classification accuracy of 27.08% over 10 runs. By using all of the available

data to learn the radical, the average classification accuracy improved by less than 5%. It

is possible that this is the best result, but it is more likely that using all of the available

data impacts the dictionary’s ability to generalize the radical classes and their features -

that by using all of the data, too much irrelevant variation is added to the training set.

This is quite a common issue in machine learning.

In the following subsection, we will make use of a concept known as learning curves to

see if incrementally increasing the training size (yet without using the entire data set) will

affect the results in a positive way. Plotting the learning curves for the radical classes can

show us how to fit the data efficiently.

2.2.2 The Learning Curves of NMF

A learning curve is a measure of predictive performance on a given domain as a function of

varying amounts of learning effort. The most common form of learning curves in machine

learning shows predictive accuracy on the testing samples as a function of the number

of training samples. In this radical recognition problem, the accuracy for each radical

class might vary depending on the number of training samples we use. The more training

samples we use, the more variations of characters are added to the training set. This

improves the generalization of the dictionary due to observing more character variability.

One idea is to group all of the radical classes into equal subsets and plot learning curves

for each subset. Note that it is impossible to graph a learning curve for each radical class,

as we need a substantial number of radicals in a dictionary to determine the efficiency of

the algorithm. Because a radical exists in a test character if it is one the top five coefficients

2. RADICAL EXTRACTION USING MATRIX FACTORIZATION 28

of h, a W matrix with r = 1 (r is the number of radicals/columns in the W dictionary)

is extremely biased and would definitely always return a classification accuracy of 100%.

Hence it is important each subset contains more than 5 radical classes.

First we need to see the distribution of the 3008 characters among the 168 radical

classes. Let R = {r1, r2, . . . , r168} be the set of 168 radical classes such that radical class

ri maps to |ri| characters. Appendix A shows that the smallest |ri| is 1, and the largest

|ri| is 204. We plot
∑168

i=1 ri such that |ri| = x for all x ∈ [1, 204]. That is, each column in

the graph represents the number of radical classes that map to x characters. The sum of

all the columns is 168 as we have 168 radical classes.

Figure 2.2.1. Distribution of Radicals Over the Count of Characters (Character Variability): The x-axis represents
the number of characters a radical class maps to (character variability), and the y-axis shows the sum of the radical
classes that map to x characters. It is shown that most radical classes map to fewer than 50 characters, while there

are only a few radical classes that map to more than 100 characters.

Figure 2.2.1 shows that most radical classes map to fewer than 50 characters, while

there are only a few radicals that map to more than 100 characters. We cannot plot the

learning curves for radical classes that contain fewer than 5 characters, because the range

is not wide enough to show improvement in accuracy. This excludes 197 characters out of

2. RADICAL EXTRACTION USING MATRIX FACTORIZATION 29

the set of 3008 characters. We then group the rest of the elements in R (adding the bars

by multiplying them with their corresponding x value in Figure 2.2.1 in a left-to-right

fashion) into three subsets of equal size, S1, S2, and S3. Hence when we test a random

character in a certain radical class, the probability of that radical being already trained

in any one of the three subsets is equal.

After grouping the three subsets, we find that |S1| ≈ |S2| ≈ |S2| ≈ 1
3(3008− 197), and


S1 = {ri ∈ R | 5 < |ri| ≤ 42}
S2 = {ri ∈ R | 43 < |ri| ≤ 78}
S3 = {ri ∈ R | |ri| ≥ 79}.

In a sense, S1 can be thought of as a subset of radical classes that have low character

variability (all of them map to less than 42 characters). Similarly, radical classes in S2 have

medium character variability, and radical classes in S3 have high character variability.

We also double-checked that each subset contains more than 5 radical classes. Now we

have extracted the domains to plot the learning curve for each subset. Since each character

is written by 122 different writers, it means each character sample has 122 copies. We can

use 102 of those for training and 20 for testing. Hence each number in the domain is actually

multiplied by 102 in training. The resulting learning curves are shown in Appendix C.

The learning curve for S1 shows that using around 300 samples for training is ideal

for radical classes in S1. The S2 and S3 learning curves are not minimally monotonous

(they contain many peaks), but they show some peaks which can still suggest some good

numbers to use for training. The highest peaks are x ≈ 1400 and x ≈ 1900 for S2 and S3,

respectively. It is clear that radical classes with high character variability require more

training samples than the ones with low character variability.

Let Ni be the ideal number of samples used for training radical category ri. Based on

2. RADICAL EXTRACTION USING MATRIX FACTORIZATION 30

our observations from the learning curves, Ni can be determined as follows:

Ni =


|ri| × 102 if |ri| ≤ 5

3× 102 if 5 < |ri| ≤ 42

14× 102 if 43 ≤ |ri| ≤ 78

19× 102 otherwise (|ri| ≥ 79),

where for |ri| ≤ 5, all of radical class ri’s available training samples are used. It is im-

portant to emphasize that partitioning the 3008 characters into three equal subsets (in

increasing character variability) is only one way to plot the learning curves. While our

partitioning methodology yields good results (shown below), other methods might also

lead to improvement in learning, such as forming subsets of radical classes with similar

number of strokes, or making sure each subset has the same number of radical classes.

By using the above partition and the 7 NMF variants for training, we get the results

in Table 2.2.2 from testing on 3,360 character images (exactly 20 characters from each of

the 168 radicals). Appendix E contains our Python code for radical classification using

the training data partitioning methodology described in this section.

NMF Variant

Avg. Training
Time Per
Radical

(Seconds)

Avg. Training
Error

(Frobenius
Norm)

Avg. Testing
Time

(Seconds)

Avg. Accuracy
Per Radical

(%)

NMF-Standard 44.20 523.35 0.22 45.56
1

PMF-Probabilistic 12.25 523.54 0.22 41.67

LSNMF-Projected Gradient 8.70 523.25 0.21 39.26

NSNMF-Nonsmooth 50.29 523.64 0.26 41.94

SNMF-Sparse W 11.01 523.30 0.21 44.53
2

SNMF-Sparse H 11.37 523.30 0.21 39.38

PMFCC-Penalized 28.09 523.32 0.78 38.76
7

Table 2.2.2. Results from Different NMF Variants After Studying the Learning Curves. We boxed and ranked
the accuracies of the top two and also the least efficient algorithms.

The above results show significant improvement in accuracy compared to the ones listed

in Table 2.2.1. It is clear that using more training samples generally leads to better results

because a higher level of character variability is expressed.

In real time machine learning applications, training is usually done beforehand, so the

2. RADICAL EXTRACTION USING MATRIX FACTORIZATION 31

training time does not matter significantly even though the training times for the 7 algo-

rithms vary greatly. Hence we can say that the differences between the training errors are

negligible. All of the testing times are under one second. Hence the differences are also not

significant. What we need to focus on is the accuracy - Standard NMF and SNMF (with

imposed sparsity on W) show similar accuracies, whereas the penalized model shows the

lowest accuracy. In the next subsection, we will analyze how statistically different these

results are.

2.2.3 Statistical Comparisons of Two Pairs of Algorithms

In machine learning, an overall classification accuracy alone is typically not enough infor-

mation to help determine what is the best algorithm. The slight difference we saw in the

accuracies produced by Standard NMF and SNMF might be a result of the variance in the

training or testing data and other reasons. In this problem, since our classification system

consists of as many as 168 classes, we cannot use common measurements such as a con-

fusion matrix or a ROC (receiver operating characteristic curve, which is used for binary

classification) to examine the performance of NMF. However, we can apply two commonly

used statistical methods on our NMF results: One-Sample Paired t-Test for Population

Means and One-Sample Paired F-Test for Population Variances. We will first apply the

two tests once to the standard NMF and SNMF pair, to see how statistically different the

two best algorithm results are. Then we will apply the two tests to the standard NMF and

penalized NMF pair, to see how statistically different the best and the worst algorithm

results differ.

Standard NMF & SNMF - One-Sample Paired t-Test for Population Means:

The paired sets of data would be the two sets of accuracies provided by the two NMF

algorithms. Each set contains 168 averaged accuracies, one for each radical class.

2. RADICAL EXTRACTION USING MATRIX FACTORIZATION 32

Let X be the set of accuracies returned by Standard NMF, and Y be the set of ac-

curacies returned by SNMF. Since we want to see if the average results are significantly

different, we want to set up two hypotheses to examine the accuracies. The null hypothesis

is that the overall means of the two sets of results are equal:

H0 : X − Y = 0 (2.2.1)

The alternative hypothesis is that there is a difference in the overall means of the two sets

of results:

H1 : X − Y 6= 0 (2.2.2)

The first step of the t-test is to calculate the difference (Di = Yi−Xi) between the two

observations on each of the N = 168 pairs. Calculating the mean (D) and the square of

standard deviation value (s2
D) of the differences gives:

D =

∑
iDi

N
≈ 0.0104 (2.2.3)

and

S2
D =

∑
iD

2
i

N − 1
− N(D)2

N − 1
≈ 0.0526. (2.2.4)

Then, the standard error of the mean difference (SE(D)) is:

SE(D) =
SD√
N
≈ 0.0513, (2.2.5)

and the test statistic t ratio is found from:

t =
D

SE(D)
≈ 0.2003, (2.2.6)

with N − 1 = 167 degrees of freedom under the null hypothesis. Using the t-value, we

can find the p-value (probability distribution) using the pt command in R (a software for

statistical computing):

p = pt(t = 0.2003, 168− 1) ≈ 0.5793. (2.2.7)

2. RADICAL EXTRACTION USING MATRIX FACTORIZATION 33

Suppose we use a significance level of α = 0.05 in this test, we have p > α, which

means we cannot reject the null hypothesis, H0. This means there is insufficient evidence

to conclude that the two sets of results have different means.

Although the overall improvement of NMF over SNMF in average accuracy is only 1%,

it is not a negligiable difference. It would be useful to calculate a confidence interval for

the mean difference to tell us within what limits the true difference is likely to lie. A 95%

confidence interval for the true mean difference is:

D ± tα/2 × SE(D), (2.2.8)

where tα/2 is the 2.5% point of the t-distribution on N − 1 = 167 degrees of freedom.

Using R again, we can find that the confidence interval is:

[−0.0245, 0.0453], (2.2.9)

which means if we do the same experiment to compare NMF and SNMF 100 times, 95

times the true value for the average difference would lie in the 95% confidence interval

shown above.

Standard NMF & SNMF - One-Sample Paired F-Test for Population Vari-

ances: To build a more solid analysis of the difference between the two sets of results, we

can also compare their variances, σ2
X for SNMF and σ2

Y for NMF. To do so, we can make

the following hypothesis:

H ′0 : σ2
X − σ2

Y = 0 (2.2.10)

and

H ′0 : σ2
X − σ2

Y 6= 0. (2.2.11)

Suppose we choose a significance level of α = 0.05 again. The test statistic F is:

F =
S2
X

S2
Y

≈ 0.22082

0.26032
≈ 0.0488

0.0678
≈ 0.7198. (2.2.12)

2. RADICAL EXTRACTION USING MATRIX FACTORIZATION 34

Then using R again, we can find the probability distribution for the F -statistic is:

p ≈ 0.0091, (2.2.13)

which means, with 95% confidence, the null hypothesis H ′0 is rejected. Furthermore, we

find that the confidence interval for the difference in the two population variances is:

[0.4917, 0.9039]. (2.2.14)

That is, we are 95% confident that the ratio of the two population variances is between

0.4917 and 0.9039. Since the interval does not contain the ratio value 1, we can conclude

that the population variances differ. Table 2.2.3 and Table 2.2.3 sum up the comparisons

between the two algorithms.

Table 2.2.3. t-Test for Population Means - Standard NMF and SNMF
t-value N-1 Significance (α) p-value Confidence Interval

Difference 0.2003 167 0.05 0.5793 [-0.0245, 0.0453]

Table 2.2.4. F-Test for Population Variances - Standard NMF and SNMF
F-value N-1 Significance (α) p-value Confidence Interval

Difference 0.7198 167 0.05 0.0091 [0.4917, 0.9039]

Based on the above tests, we can conclude that although there is insufficient evidence

to conclude which algorithm yields a better overall accuracy, we see that there is lower

variance among the average accuracies of the radical classes in standard NMF. That is,

the 168 accuracies in SNMF disperse further from their population mean than those of

NMF. As described in Appendix B, SNMF imposes sparseness (more zero elements) on

W . It is possible that the level of sparseness is uneven among the radical classes (columns)

in W , leading to more variance among the performance of its radicals.

In conclusion, standard NMF should be used if there there is a preference for accuracies

closer to the expected values, whereas SNMF (with imposed sparseness on W) can be used

2. RADICAL EXTRACTION USING MATRIX FACTORIZATION 35

when there is a preference in a shorter training time.

Standard NMF & Penalized NMF - One-Sample Paired t-Test for Population

Means and F-Test for Population Variances: We will follow the same calculations

described previously to derive the two test statistics for standard NMF and penalized

NMF. The details are omited and we will just show the results in Tables 2.2.3 and 2.2.3.

Table 2.2.5. t-Test for Population Means - Standard NMF and Penalized NMF
t-value N-1 Significance (α) p-value Confidence Interval

Difference 0.7137 167 0.05 0.7618 [0.0031, 0.1330]

Table 2.2.6. F-Test for Population Variances - Standard NMF and Penalized NMF
F-value N-1 Significance (α) p-value Confidence Interval

Difference 1.7138 167 0.05 1.663e-07 [1.6786, 3.0854]

Again, the One-Sample Paired t-Test shows that we cannot reject the null hypothesis

that the populations means of standard NMF and penalized NMF are the same. There is

insufficient evidence to conclude that the two sets of results have different means. What

we can conclude is that the standard NMF results are much more variant than that of

penalized results.

Appendix D contains plots that compare the means and variances of all 168 radical

classes between the two pairs of algorithms: standard NMF and SNMF (the two best

algorithms), and standard NMF and penalized NMF (the best and the worst). Figure D.0.1

and Figure D.0.2 are great illustrations that show although standard NMF and SNMF

yield similar accuracies among all radical classes, there is greater variance among the

performance of radical classes in SNMF. Furthermore, Figure D.0.3 and Figure D.0.4

demonstrate that although there is greater variance among the performance of individual

radicals in standard NMF, it yields much better results than the penalized method.

3
Conclusion

3.1 Discussions and Comparisons

Among the existing methods for handwritten Chinese character classification, the radical-

based approach may be the most similar to human cognition, given that most native

Chinese speakers recognize characters by their radicals (because they give semantic clues

about the meanings of the characters). However, radical extraction in Chinese characters

is still relatively unexplored because of the challenges it presents. In this paper, we used

Non-Negative Matrix Factorization (NMF) to extract the radicals in handwritten charac-

ters. NMF is a very recent methodology proposed to find “parts-based” representation of

objects (usually imagery or textual objects). This method had only been previously used

on printed characters [15].

In this paper, we find that learning each radical using a training set with a size deter-

mined based on the radical’s character variability (the number of characters it maps to)

yields better results than using a minimum or maximum training set. After learning all

168 radicals (as column vectors), a radical dictionary matrix is formed, which we can use

to predict what radicals are present in new testing image samples. Furthermore, because

3. CONCLUSION 37

we did not know which NMF variants would yield good results, we used seven different

variants of NMF (including the standard one) to learn the dictionary. Based on the average

classification accuracies (using the same training and testing samples for all algorithms

over 10 runs/executions), we find that the standard NMF algorithm and Sparse NMF

(with an imposed sparseness on the dictionary matrix) yield the best results. While the

standard algorithm performs well on all radicals, the individual radical class performance

in SNMF shows more variance.

Without modifying the input data images, Non-Negative Matrix Factorization already

produces positive results (a 45% accuracy rate and a testing time that is less than a sec-

ond) that exceed our expectations, also given that the data has so many variations (size,

rotation, and different handwriting styles). We believe that with some modifications in

the data itself, NMF will perform more efficiently.

The original research (by Tan, Xie, Zheng, and Lai) that applied NMF to printed Chi-

nese characters made two more modifications: Taking away the non-negative constraint

and normalizing all images to a bounding shape (which we will describe in the future

work section) [15]. Their methods produced a character classification rate of 99.2%. It

is difficult to compare our results with theirs since they focused on character classifica-

tion and we focused on radical classification. However, since they assumed each character

has at most two radicals, we can estimate their radical classification rate to be approxi-

mately
√

99.2% ≈ 99.6% (assuming that both radicals in each character are independent),

which is a lot better than ours. On the other hand, the scale of their experiments was

much smaller. They learned only 59 radicals from 648 printed characters, and used only

1029 testing samples. It is natural that classification of handwritten characters is more

challenging than that of printed characters because of the handwriting style variations in

handwritten characters.

There is only one paper that we know of that used the same data set, HITPU [13].

3. CONCLUSION 38

The author, Daming Shi, reported a radical classification rate of 96.5% and a character

classification rate of 93.5%. His experiments were conducted using 200 radical classes on

a test set of 430,800 characters from 2,154 character classes [13] (whereas we used 168

radicals, 3,360 testing samples from 3008 character classes), which is on a much larger

scale than ours and produced much better results. Shi’s approach is entirely different. For

training, he uses kernel principle-component analysis to find “landmark” points in the

training samples and capture the main variations around the mean radical. He makes the

assumption that each character consists of up to four unique radicals. For testing, chamfer

distance minimization is used to match radicals within a character using the dynamic

tunneling algorithm to search for the best shape parameters to describe the deformation

of an active model to fit the test image [13]. The author used a combination of algorithms

to best capture the many variations in Chinese characters.

Based on the above comparisons, it is clear that although the standard NMF algorithm

already produces meaningful results on handwritten characters produced by different writ-

ers, alone it is not enough to produce comparable results. Nevertheless, it has been proved

that NMF performs well in finding parts and sub-components of objects. Furthermore,

radical classification can be used in many useful real-world applications, and we will make

a proposal for one in the following section.

3.2 A Proposal for a Character Learning Application

As mentioned in the introductory sections, handwritten Chinese character recognition has

received renewed interest with the emergence of touch screen devices. An on-line dictionary

called Line Dictionary, which bills itself as “more than a dictionary”, has a handy feature

that allows users to find Chinese characters by drawing them with a mouse, a track pad

or a tablet. Figure 3.2.1 is an illustration of the feature [10].

3. CONCLUSION 39

Figure 3.2.1. Dictionary Look-Up Drawing Applica-

tion. This on-line application allows the user to draw
a character using a mouse, and then it makes sugges-

tions in real time about what that character might be.
The example shown here is a hand drawn character,

好(good), and it is clear that the application makes a

correct prediction.

Unlike English, the sound (Pinyin) of a Chinese character does not correlate with its

shape, and to type a character, one must know its sound. The application in Figure 3.2.1 is

useful when the user does not know the Pinyin of the character, which happens frequently

to non-native speakers. While an application like this is becoming more and more popular,

there still does not exist a similar application that extracts radicals from a hand drawn

character. Thereby we will make a proposal for such an application here (Due to time

constraints, we will not be able to actually implement the idea). We propose the following

layout for the radical learning application:

Figure 3.2.2. A Proposed Layout for a
Character Learning Application. We model

the new application based on the layout of
the previous one, with an additional “Next
Page” button to allow the user to look at
more options.

The initial step of building the application requires that we learn the radical dictionary

W beforehand and save the matrix into a file. Then, whenever a user finishes writing, we

convert the character image into a matrix of binary elements. Next, we use W to estimate

3. CONCLUSION 40

the coefficient matrix h, pick the top 12 coefficients in h, and display the corresponding

radicals. Finally, when the user picks the desired radicals, the application should display

the following information about the radical: meaning, number of strokes, etc.

We model the new application based on the layout of the previous one, with an addi-

tional “Next Page” button to allow the user to look at more options. Recall that in our

experiment, we defined that a radical is found in a testing sample if its index appears to be

in the top five elements of the estimated coefficient matrix, h. The layout of the proposed

application allows there to be at least 12 suggestions of radicals, and the user is allowed

to look at more suggestions if the desired radicals are not on the first page. This means

the actually radical classification rate might be much higher than 45%. However, when

building and testing the model, we still need to take into account of new styles of hand-

writing being introduced to the testing set. One solution is to update the W dictionary

constantly as new styles of handwriting appear.

3.3 Conclusion

In this project, we used a novel approach known as Non-Negative Matrix Factorization

(NMF), a recent method for finding a suitable parts-based representation of imagery data,

to detect sub-components (known as radical characters) in handwritten Chinese characters.

Whereas most researchers focus on holistic approaches, by using NMF, this project takes

a different approach and a human cognitive perspective by focusing on a more specific

problem - radical detection.

In our experiments, seven variants of the NMF algorithm were used to learn a dictionary

that represents 168 radical classes. We find that learning each radical using a training set

of a size most suitable to represent its character variability produces better results than

using a minimum or maximum training set. Furthermore, by testing on 3,360 character

image samples, the best accuracies are 45.56% and 44.53%, produced by standard NMF

3. CONCLUSION 41

and sparse NMF (SNMF, with enforced sparseness on the dictionary matrix), respectively.

We have also found that while standard NMF performs well on all radical classes, SNMF

is much faster and shows more variance. We assume the variance is a result of uneven

sparseness among the learned radical classes.

Finally, we proposed a character learning model which can potentially be built into

a mobile phone or web application. The application would allow the user to first hand

draw a Chinese character, then it predicts what radicals may be present in the character

image, and after the user selects the desired radicals, the application displays the following

information about the chosen radicals: meaning, number of strokes, etc. From a linguistic

point of view, we believe that learning radicals and their shapes and meanings would help

a learner better recognize Chinese characters and memorize their meanings.

NMF has shown to be a dynamic method that produces meaningful results for many

different types of problems. For future study, it would be interesting to see NMF being

applied to other Eastern Asian languages that also have hierarchical character structures,

such as Korean and Japanese.

3.4 Future Work

The researchers that applied NMF to printed Chinese characters also proposed two mod-

ification of the problem: changing the non-negative constraint in NMF, and normalizing

the input data using Affine transform. We will briefly describe these two proposals in the

following subsections.

3.4.1 Constrained Sparse Matrix Factorization

Due to the non-negative restraint, NMF meets many challenges and requirements in real

applications. In Tan, Xie, and Zheng’s study, they propose to drop the non-negative con-

straint, because although it may affect the sparseness, is unnecessary for character de-

3. CONCLUSION 42

composition [15]. They introduced Constrained Sparse Matrix Factorization (CSMF) as

an improvement of NMF. CSMF guarantees the sparseness by dropping the non-negative

constraint, and at the same time it brings in penalized functions. Usually, penalty terms

are added to the new method in order to replace a constrained optimization problem by

unconstrained problems whose solutions ideally converge to the solution of the original

constrained problem.

In CMSF, V corresponds to the character set, W corresponds to the radical set, and

H is a matrix of unique decomposition coefficients specific to V and with respect to basis

W [15]. Finding the point of convergence between V and WH in CMSF is the same as

NMF - we need to minimize the construction error ||V −WH||2, which is the squared error

(Euclidean distance) between V and WH. Then the CSMF can be described as follows:

minW,HE(W,H) =
1

2
||V −WH||2F + g1(W) + g2(H) (3.4.1)

s.t.W ∈ D1, H ∈ D2

where D1 and D2 are domains of W and H, and g1 and g2 are penalized functions of W

and H, respectively [15] [18]. The penalty functions are described as follows:

g1(W) = α

r∑
j1=1

r∑
j2=1

n∑
c,j2 6=j1

|Wj1(c)||Wj2(c)|+ β

r∑
j=1

n∑
c=1

|Wj(c)|, (3.4.2)

and

g2(H) = λ
m∑
k=1

r∑
j=1

|hk(j)|, (3.4.3)

s.t. W ∈ Rn×r,W ≥ 0 and H ∈ Rr×m

where α, β, and λ are non-negative weights/coefficients specifying the importance of each

term [15] [18]. It is easy to see that CSMF evolves from NMF because when D1 = {W ≥ 0},

D2 = {H ≥ 0} and α = β = λ = 0, CSMF is essentially NMF.

With the penalty functions g1(W) and g2(H) defined, it is easier to see that that penalty

3. CONCLUSION 43

terms are placed where the original constraints are violated to compensate for the violation.

Ideally, the solutions of the unconstrained problems will eventually converge to that of the

original constrained problem.

3.4.2 Affine Sparse Non-Negative Matrix Factorization

Because of the complexity of Chinese characters, and the variations of handwriting in our

data set, NMF might not perform well as it may result in radical extraction variations in

location, scale, or direction. To overcome this problem, Tan, Xie, Zheng, and Lai proposed

to apply Affine transformation on all characters in the date set, and called this modified

method Affine Sparse Matrix Factorization (ASMF) [15].

The Affine transformation procedure can be seen as the normalization step of the data

set, so that all characters in the data set can have an identical shape, which is bounded

by a rectangle and resembles a TBLR quadrilateral, as shown in Figure 3.4.1. [15].

Figure 3.4.1. Normalization of Data: (a) Bound-

ing rectangle, (b) TBLR quadrilateral.

ASMF Overview: Let f denote the Affine transformation. Then we can combine the

previously described CSMF with Affine transformation and propose the following ASMF

definition:

min
W∈D1,H∈D2

E(W,H) =
1

2
||A−WH||2F + g1(W) + g2(H)

= ||f(V)−WH||2 + g1(W) + g2(H)

(3.4.4)

where

Aiu = f(Viu) ≈ (WH)iu =
r∑

a=1

WiaHau

3. CONCLUSION 44

and D1, D2, g1 and g2 are described in the previous section.

Now the Affine tranformation can be described as follows:

Ai = f(Vi) = AVi + b = AsAtAuAθVi + b

=

(
s 0
0 s

)(
1 0
1 t

)(
1 u
0 1

)(
cos(θ) −sin(θ)
sin(θ) cos(θ)

)
Vi +

(
b1 b2
b3 b4

)
=

(
s · cos(θ) (stu) · cos(θ)− (st) · sin(θ)
s · sin(θ) (stu) · sin(θ)− (st) · cos(θ)

)
Vi +

(
b1 b2
b3 b4

)
,

(3.4.5)

where As, At, Au, Aθ, and b denote the scaling, stretching, skew, rotation, and translation

parameters, respectively. The Affine transformation will improve the alignment of charac-

ters by adjusting them into a common normal structure.

For future work, it would be interesting to see if the modifications that work well on

printed characters would also improve NMF’s performance on handwritten characters.

Appendix A
Map of Radicals to GB2312

The following is a radical index for the 3,008 GB 2312-80 Level 2 hanzi, arranged according
to a reduced set of 186 radicals (this index also applies to GB/T 12345-90 Level 2 hanzi).
The GB 2312-80 Row-Cell codes for the radicals themselves are also provided under the
“Radical”column. Note that some radicals do not have a corresponding range—hanzi
categorized under such radicals are in GB 2312-80 Level 1 hanzi.

Number Radical GB 2312-80

1 50-27 c 5601–5612
2 56-13 丨 5613–5614
3 56-15 丿 5615–5627
4 56-28 丶 5628
5 50-50 乙 5629–5632
6 22-94 二 5633
7 42-14 十 5634–5637
8 19-07 厂 5638–5645
9 56-46 匚 5646–5651
10 18-23 卜 5652–5653
11 56-54 刂 5654–5670
12 56-71 冂 5671–5672
13 56-73 亻 5673–5757
14 40-43 人 5758–5765
15 16-43 八 5766–5771
16 57-72 勹 5772–5775
17 28-24 几 5776–5777
18 22-89 儿 5778
19 57-79 亠 5779–5790
20 57-91 冫 5791–5801
21 58-02 冖 5802–5804

Number Radical GB 2312-80

22 58-05 讠 5805–5863
23 58-64 卩 5864–5865
24 58-66 阝 5866–5926
25 21-22 刀 5927–5928
26 33-06 力 5929–5936
27 51-54 又 5937–5939
28 59-40 廴 5940
29 59-41 凵 5941–5943
30 59-44 厶 5944–5946
31 25-04 工 5947
32 45-33 土 5948–6015
33 42-31 士 6016–6018
34 60-19 艹 6019–6234
35 62-35 廾 6235–6236
36 20-83 大 6237–6243
37 62-44 尢 6244–6247
38 62-48 扌 6248–6313
39 20-71 寸
40 63-14 弋 6314–6317
41 31-58 口 6318–6476
42 64-77 囗 6477–6487

APPENDIX A. MAP OF RADICALS TO GB2312 46

Number Radical GB 2312-80

43 29-77 巾 6488–6506
44 41-29 山 6507–6559
45 65-60 彳 6560–6573
46 65-74 彡 6574
47 65-75 犭 6575–6621
48 47-06 夕 6622–6625
49 66-26 夂 6626
50 66-27 饣 6627–6646
51 25-67 广 6647–6663
52 66-64 忄 6664–6736
53 35-37 门 6737–6759
54 67-60 丬 6760–6762
55 67-63 氵 6763–6917
56 69-18 宀 6918–6932
57 69-33 辶 6933–6969
58 69-70 彐 6970–6973
59 42-12 尸 6974–6981
60 25-13 弓 6982–6987
61 28-26 己
62 69-88 屮 6988
63 37-14 女 6989–7055
64 48-01 小 7056–7057
65 55-51 子 7058–7063
66 34-77 马 7064–7088
67 70-89 纟 7089–7158
68 71-59 幺 7159–7160
69 71-61 巛 7161–7163
70 45-85 王 7164–7223
71 46-04 韦 7224–7226
72 36-30 木 7227–7363
73 40-14 犬 7364–7365
74 20-85 歹 7366–7376
75 19-21 车 7377–7406
76 24-74 戈 7407–7416
77 17-40 比
78 45-63 瓦 7417–7422
79 54-25 止
80 74-23 攴 7423
81 40-53 日 7424–7457
82 17-20 贝 7458–7471
83 28-91 见 7472–7479
84 37-03 牛 7480–7491
85 42-54 手 7492–7502
86 35-11 毛 7503–7512

Number Radical GB 2312-80

87 38-88 气 7513–7521
88 75-22 攵 7522–7524
89 38-12 片 7525–7527
90 29-79 斤
91 55-06 爪 7528–7529
92 52-34 月 7530–7602
93 39-23 欠 7603–7608
94 23-71 风 7609–7614
95 76-15 殳 7615–7618
96 46-36 文 7619–7621
97 23-29 方 7622–7629
98 22-23 斗
99 27-80 火 7630–7664
100 24-24 父
101 76-65 灬 7665–7668
102 27-07 户 7669–7673
103 76-74 礻 7674–7692
104 48-36 心 7693–7716
105 77-17 肀 7717–7718
106 43-14 水 7719–7721
107 46-67 毋
108 42-30 示
109 42-15 石 7722–7771
110 33-90 龙 7772
111 50-21 业 7773–7775
112 36-31 目 7776–7813
113 44-79 田 7814–7822
114 43-36 四 7823–7832
115 35-83 皿 7833–7835
116 78-36 钅 7836–7981
117 42-24 矢 7982–7984
118 26-44 禾 7985–8006
119 16-55 白 8007–8011
120 25-47 瓜 8012–8013
121 51-35 用 8014
122 36-81 鸟 8015–8057
123 80-58 疒 8058–8119
124 33-02 立 8120–8121
125 49-08 穴 8122–8133
126 81-34 衤 8134–8165
127 81-66 疋 8166–8167
128 38-04 皮 8168–8169
129 35-12 矛 8170
130 81-71 耒 8171–8182

APPENDIX A. MAP OF RADICALS TO GB2312 47

Number Radical GB 2312-80

131 32-47 老 8183
132 22-90 耳 8184–8190
133 19-28 臣
134 46-87 西 8191
135 50-19 页 8192–8213
136 82-14 虍 8214–8215
137 19-70 虫 8216–8329
138 83-30 缶 8330–8333
139 41-64 舌 8334
140 54-81 竹 8335–8406
141 30-42 臼 8407-8410
142 55-52 自 8411
143 49-10 血 8412
144 54-59 舟 8413–8431
145 50-34 衣 8432–8437
146 49-82 羊 8438–8443
147 35-55 米 8444–8461
148 84-62 艮 8462–8463
149 51-80 羽 8464–8472
150 84-73 糸 8473–8478
151 34-83 麦 8479–8480
152 55-63 走 8481–8485
153 19-64 赤 8486–8487
154 22-25 豆 8488–8489
155 51-47 酉 8490–8524
156 19-29 辰
157 85-25 豕 8525
158 34-17 卤 8526

Number Radical GB 2312-80

159 32-79 里
160 55-67 足 8527–8583
161 41-77 身
162 18-41 采
163 85-84 豸 8584–8589
164 29-39 角 8590–8603
165 49-52 言 8604–8605
166 48-33 辛
167 25-40 谷
168 39-64 青 8606
169 38-68 其
170 51-74 雨 8607–8618
171 19-61 齿 8619–8627
172 86-28 黾 8628–8630
173 86-31 隹 8631–8637
174 29-80 金 8638–8646
175 51-67 鱼 8647–8715
176 24-79 革 8716–8725
177 25-39 骨 8726–8739
178 25-77 鬼 8740–8746
179 42-19 食 8747–8751
180 50-84 音
181 87-52 髟 8752–8764
182 34-73 麻 8765–8767
183 34-25 鹿 8768–8775
184 26-58 黑 8776–8786
185 42-83 鼠 8787–8791
186 17-39 鼻 8792–8794

Appendix B
Brief Descriptions of the NMF Variants

All of the NMF variant algorithms used in this project are implemented in Nimfa, a
Python library for non-negative matrix factorization. In Nimfa, both dense and sparse
matrix representation are supported [20]. While the standard NMF algorithm is easy
to implement and usually yields good results, researchers have also come up with other
methods that are effective. In this appendix, we will give a short description (including
the objective function if it differs from the standard one) for the other five algorithms and
the motivation to use each of them. The individual update functions and their derivations
will be omitted.

B.0.3 Probabilistic Model (PMF)

We usually see the NMF problem from an optimization point of view. However, there is also
a probabilistic interpretation of the NMF models. Given the probabilistic characterization,
classical multiplicative update rules can be derived as an maximum likelihood estimation
algorithm (MLE, which is a method of estimating the parameters of a model given some
data). In their original NMF article, Lee and Seung proposed another objective function:

E =

n∑
i=1

m∑
j=1

[Vijlog(WH)ij − (WH)ij], (B.0.1)

which also subjects to the non-negativity constraints. This objective function can be de-
rived by interpreting NMF as a way to construct a probabilistic model, in which each pixel
element Vij is generated by adding Poisson noise to the product, (WH)ij . It follows that
this objective function is related to the likelihood of generating the images in V from the
basis W and encodings matrix H [9].

B.0.4 Alternating Least Squares with Projected Gradient (LSNMF)

The projected gradient approach is also commonly used because it converges much faster
than the popular multiplicative update approach, as shown in Table 2.2.1 and Table 2.2.2.

APPENDIX B. BRIEF DESCRIPTIONS OF THE NMF VARIANTS 49

The algorithm uses the same objective function in Equation 2.1.1. However, it updates
entire matrices instead of individual elements (hence the faster speed). It alternates in the
sense that it fixes either W or H while updating the other:

Find W k+1, such that E(W k+1, Hk) ≤ E(W k, Hk), and (B.0.2)

Find Hk+1, such that E(W k+1, Hk+1) ≤ E(W k+1, Hk), (B.0.3)

where E is the error function described in Equation 2.1.1, and k is the iteration number.

B.0.5 Non-smooth Model (NSNMF)

It is common that the basis and encoding vectors in W and H produced by NMF display
a high degree of overlapping among basis vectors, which contradicts the intuitive nature
of the “parts”. For example, in Figure 2.1.1, there are many similar parts that resemble
the same facial feature. Hence an NMF variant capable of producing more localized and
less overlapped feature representations of the data is desired. A new variant, named as
Non-smooth NMF, has been proposed to produce more centralized factorizations.

The new model differs from the original one in the use of an extra smoothness matrix
for imposing sparseness: the target matrix V is estimated as the product, V ≈WSH. The
positive symmetric square matrix S, is a smoothing matrix defined as:

S = (1− θ)I +
θ

r
11T , (B.0.4)

where I is the identity matrix, 1 is a vector of ones, and the parameter θ satisfies 0 < θ < 1.
The interpretation of S as a smoothing matrix can be explained as follows: Let X be

a positive and nonzero vector. Consider the transformed vector Y = SX. If θ = 0, then
Y = X and no smoothing on X has been performed. However, as θ approaches 1, the
vector Y tends to be the constant vector with all elements almost equal to the average of
the elements of X. This means X is the smoothest possible vector because all entries are
almost equal to the same nonzero value. Due to the multiplicative nature of the objective
function, strong smoothing in S forces strong sparseness in both the basis and encoding
matrices, with the parameter θ controlling the sparseness of the model [20]. This method
does not produce good results because it imposes sparseness on both W and H, and we
will see in the model description in SNMF that sparseness in H is not needed.

B.0.6 Enforced Sparseness (SNMF)

Although standard NMF is effective most of the time, it does not always result in part-
based representations. Some researchers have shown that incorporating the notion of
“sparseness” (the number of zero elements) improves the found compositions. Further-
more, the degree of sparseness in W and H can even be controlled and imposed. Re-
searchers Kim and Park introduced two formulations to impose sparseness on the W and
H matrices separately [7].

To apply sparseness constraints on W , they proposed the following objective function:

E(W,H) =
1

2
||V −WH||2F + η||H||2F + α

m∑
i=1

||W (i, :)2
1||, (B.0.5)

where W,H ≥ 0, W (i, :) is the i-th row vector of W , α > 0 is a parameter to suppress
||H||2F , and η > 0 is a regularization parameter to balance the trade-off between the
accuracy of the approximation and the sparseness of W .

APPENDIX B. BRIEF DESCRIPTIONS OF THE NMF VARIANTS 50

On the other hand, they proposed the following objective function for H:

E(W,H) =
1

2
||V −WH||2F + η||W ||2F + β

n∑
j=1

||H(:, j)2
1||, (B.0.6)

where W,H ≥ 0, H(:, j) is the j-th column vector of H, η > 0 is a parameter to suppress
||W ||2F , and β > 0 is a regularization parameter to balance the trade-off between the
accuracy of the approximation and the sparseness of H [7].

The results in our experiments show that imposing sparseness on the dictionary, W , is
quite beneficial since it produces more localized and less overlapped features in W . On
the other hand, imposing sparseness on H does not produce good results because having
more zero elements does not help elements in H to express the importance of each part
in W .

B.0.7 Penalized Model (PMFCC)

Some researchers claim that since a simple objective function such as Frobenius Norm
does not involve any guidance from the data labels or prior knowledge of the data (if
there is any), it makes the results unreliable. In their paper “Semi-Supervised Clustering
via Matrix Factorization”, researchers Wang, Li, and Zhang proposed a new objective
function with a penalty term [17]:

E(W,H) = ||V −WH||2F + tr(WθW T), (B.0.7)

where θ is a constraint matrix. In their paper, prior knowledge on data refers to the
existence of some pairwise constraints indicating similarity or dissimilarity relationships
between training samples. The knowledge that indicates two points belong to the same
class is defined as a must-link constraint, M , where as the knowledge that indicates two
points belong to different classes is defined as a cannot-link constraint, C. Hence θ is
defined as

θij =


θij , (Vi, Vj) ∈ C
−θij , (Vi, Vj) ∈M
0, otherwise,

where Vi and Vj are the i-th and j-th columns in the input data matrix V .
The reason why PMFCC performed poorly in our experiments is perhaps this model is

more suitable for problems with an input matrix V with some columns that are of different
classes. The way we formated our problem is that V contains character samples that are
of the same radical class.

There are many other variations of the penalty function, and all of them add penalty
values to the objective function for violating some given constraints. The penalized model
written in Nimfa does not seem to be suitable for our problem, but it provides a good
basis for comparison.

Appendix C
Plots of Learning Curves

Each of the following 2 figures shows the comparisons between the learning curve for each
of the 3 subsets of radical classes formed in Section 2.2.2. As mentioned in that section,
the learning curves can suggest what amount of training data is good for learning the
radical dictionary. The y-axis in the first figure shows the accuracy or classification on a
set of testing samples (20 samples per radical). The y-axis in the second figure is scaled
based on each learning curve to show if there is a peak (or multiple peaks).

APPENDIX C. PLOTS OF LEARNING CURVES 52

F
ig

u
re

C
.0

.1
.

L
ea

rn
in

g
C

u
rv

es
(x

-a
x
is

:
N

u
m

b
er

o
f

T
ra

in
in

g
S

a
m

p
le

s;
y
-a

x
is

:
A

cc
u

ra
cy

).
In

th
is

fi
g
u

re
,

th
e

ra
n

g
e

fo
r

th
e

y
-a

x
is

o
f

ea
ch

le
a
rn

in
g

cu
rv

e
is

th
e

sa
m

e:
0

to
1
.

R
ec

a
ll

th
a
t

th
e

ra
d

ic
a
l

cl
a
ss

es
in

su
b

se
t
S
1

h
a
v
e

lo
w

ch
a
ra

ct
er

v
a
ri

a
b

il
it

y
a
n

d
a
ll

3
su

b
se

ts
co

n
ta

in
th

e
sa

m
e

n
u

m
b

er
o
f

ch
a
ra

ct
er

s.
T

h
is

m
ea

n
s
S
1

co
n
ta

in
s

m
o
re

ra
d

ic
a
l

cl
a
ss

es
th

a
n
S
2

a
n

d
S
3
,

w
h

ic
h

ex
p

la
in

s
th

e
lo

w
a
cc

u
ra

ci
es

.
O

n
th

e
o
th

er
h

a
n

d
,
S
3

h
a
s

th
e

le
a
st

a
m

o
u

n
t

o
f

ch
a
ra

ct
er

cl
a
ss

es
,

w
h

ic
h

ex
p

la
in

s
th

e
h

ig
h

a
cc

u
ra

ci
es

.

APPENDIX C. PLOTS OF LEARNING CURVES 53

F
ig

u
re

C
.0

.2
.

S
ca

le
d

L
ea

rn
in

g
C

u
rv

es
(x

-a
x
is

:
N

u
m

b
er

o
f

T
ra

in
in

g
S

a
m

p
le

s;
y
-a

x
is

:
A

cc
u

ra
cy

).
T

h
e

fi
rs

t
sc

a
le

d
p

lo
t

sh
o
w

s
th

a
t

th
e

ra
d

ic
a
l

cl
a
ss

es
in

su
b

se
t
S
1

a
re

le
a
rn

ed
b

es
t

w
h

en
th

e
tr

a
in

in
g

se
t

si
ze

is
x

=
3
0
0
.

R
ec

a
ll

th
a
t

th
e

ra
d

ic
a
l

cl
a
ss

es
in
S
1

a
re

th
e

o
n

es
th

a
t

h
a
v
e

le
a
st

ch
a
ra

ct
er

v
a
ri

a
b
il

it
y.

T
h

e
la

ck
o
f

v
a
ri

a
ti

o
n

s
o
f

ch
a
ra

ct
er

s
(w

h
ic

h
re

su
lt

s
in

le
ss

n
o
is

e
in

th
e

tr
a
in

in
g

d
a
ta

)
se

em
s

to
h

a
v
e

co
n
tr

ib
u

te
d

to
th

e
fa

ct
th

a
t

th
e

le
a
rn

in
g

cu
rv

e
o
n

ly
h

a
s

o
n

e
p

ea
k
.

T
h

e
le

a
rn

in
g

cu
rv

e
fo

r
S
3

sh
o
w

s
a

lo
t

o
f

n
o
is

e
(m

a
n
y

p
ea

k
s)

.
T

h
e
S
2

a
n

d
S
3

le
a
rn

in
g

cu
rv

es
a
re

n
o
t

m
in

im
a
ll
y

m
o
n

o
to

n
o
u

s
(t

o
o

m
a
n
y

p
ea

k
s)

,
b

u
t

th
ey

sh
o
w

so
m

e
p

ea
k
s

w
h

ic
h

ca
n

st
il
l

su
g
g
es

t
so

m
e

g
o
o
d

n
u

m
b

er
s

to
u

se
fo

r
tr

a
in

in
g
.

T
h

e
h

ig
h

es
t

p
ea

k
s

a
re
x
≈

1
4
0
0

a
n

d
x
≈

1
9
0
0

fo
r
S
2

a
n

d
S
3
,

re
sp

ec
ti

v
el

y.

Appendix D
Paired Comparisons of Means and Variances

The following plots compare the means and variances of individual radicals between two
pairs of algorithms: standard NMF and SNMF (the two best algorithms), and standard
NMF and penalized NMF (the best and the worst). Because we have to plot data for as
many as 168 radical classes (too many to fit into one plot), each comparison is broken into
two parts so that the first part contains radical classes 1 to 84, and the other one contains
85 to 168.

It is shown in Figure D.0.1 and Figure D.0.2 that although standard NMF and SNMF
yield similar accuracies among all radicals, there is greater variance among the perfor-
mance of each radical in SNMF. We assume this is because of uneven sparseness on the
column vectors of W .

Furthermore, Figure D.0.3 and Figure D.0.4 demonstrate that although there is greater
variance among the level of performance of individual radical in standard NMF, it yields
much better results than the penalized method.

APPENDIX D. PAIRED COMPARISONS OF MEANS AND VARIANCES 55

F
ig

u
re

D
.0

.1
.

P
a
ir

ed
M

ea
n

A
cc

u
ra

cy
a
n

d
V

a
ri

a
n

ce
C

o
m

p
a
ri

so
n

b
et

w
ee

n
S

ta
n

d
a
rd

N
M

F
a
n

d
S

N
M

F
(F

ir
st

H
a
lf

).
T

h
e

fi
rs

t
p
a
rt

o
f

th
e

fi
g
u

re
co

m
p

a
re

s
th

e
m

ea
n

a
cc

u
ra

ci
es

o
f

st
a
n

d
a
rd

N
M

F
a
n

d
S

N
M

F
si

d
e

b
y

si
d

e.
T

h
e

se
co

n
d

p
a
rt

o
f

th
e

fi
g
u

re
co

m
p

a
re

s
th

e
ra

d
ic

a
l

v
a
ri

a
n

ce
s

o
f

st
a
n

d
a
rd

N
M

F
a
n

d
S

N
M

F
si

d
e

b
y

si
d

e.
T

h
e

p
lo

ts

sh
o
w

th
a
t

a
lt

h
o
u

g
h

th
e

p
a
ir

s
o
f

a
cc

u
ra

ci
es

a
re

si
m

il
a
r,

th
e

p
a
ir

ed
v
a
ri

a
n

ce
s

a
ct

u
a
ll
y

v
a
ry

b
y

a
g
re

a
t

a
m

o
u

n
t.

W
e

a
ss

u
m

e
th

is
is

b
ec

a
u

se
o
f

u
n

ev
en

sp
a
rs

en
es

s
o
n

th
e

co
lu

m
n

v
ec

to
rs

o
f
W

le
a
rn

ed
b
y

S
N

M
F

.

APPENDIX D. PAIRED COMPARISONS OF MEANS AND VARIANCES 56

F
ig

u
re

D
.0

.2
.

P
a
ir

ed
M

ea
n

A
cc

u
ra

cy
a
n

d
V

a
ri

a
n

ce
C

o
m

p
a
ri

so
n

b
et

w
ee

n
S

ta
n

d
a
rd

N
M

F
a
n

d
S

N
M

F
(S

ec
o
n

d
H

a
lf

).
T

h
e

fi
rs

t
p

a
rt

o
f

th
e

fi
g
u

re
co

m
p

a
re

s
th

e
m

ea
n

a
cc

u
ra

ci
es

o
f

st
a
n

d
a
rd

N
M

F
a
n

d
S

N
M

F
si

d
e

b
y

si
d

e.
T

h
e

se
co

n
d

p
a
rt

o
f

th
e

fi
g
u

re
co

m
p

a
re

s
th

e
ra

d
ic

a
l

v
a
ri

a
n

ce
s

o
f

st
a
n

d
a
rd

N
M

F
a
n

d
S

N
M

F
si

d
e

b
y

si
d

e.
T

h
e

p
lo

ts

sh
o
w

th
a
t

a
lt

h
o
u

g
h

th
e

p
a
ir

s
o
f

a
cc

u
ra

ci
es

a
re

si
m

il
a
r,

th
e

p
a
ir

ed
v
a
ri

a
n

ce
s

a
ct

u
a
ll
y

v
a
ry

b
y

a
g
re

a
t

a
m

o
u

n
t.

W
e

a
ss

u
m

e
th

is
is

b
ec

a
u

se
o
f

u
n

ev
en

sp
a
rs

en
es

s
o
n

th
e

co
lu

m
n

v
ec

to
rs

o
f
W

le
a
rn

ed
b
y

S
N

M
F

.

APPENDIX D. PAIRED COMPARISONS OF MEANS AND VARIANCES 57

F
ig

u
re

D
.0

.3
.

P
a
ir

ed
M

ea
n

A
cc

u
ra

cy
a
n

d
V

a
ri

a
n

ce
C

o
m

p
a
ri

so
n

b
et

w
ee

n
S

ta
n

d
a
rd

N
M

F
a
n

d
P

en
a
li
ze

d
N

M
F

(F
ir

st
H

a
lf

).
T

h
e

fi
rs

t
p

a
rt

o
f

th
e

fi
g
u

re
co

m
p

a
re

s

th
e

m
ea

n
a
cc

u
ra

ci
es

o
f

st
a
n

d
a
rd

N
M

F
a
n

d
p

en
a
li
ze

d
N

M
F

si
d

e
b
y

si
d

e.
T

h
e

se
co

n
d

p
a
rt

o
f

th
e

fi
g
u

re
co

m
p

a
re

s
th

e
ra

d
ic

a
l

v
a
ri

a
n

ce
s

o
f

st
a
n

d
a
rd

N
M

F
a
n

d
p

en
a
li
ze

d
N

M
F

si
d

e
b
y

si
d

e.
T

h
e

p
lo

ts
sh

o
w

th
a
t

a
lt

h
o
u

g
h

th
e

p
a
ir

s
o
f

a
cc

u
ra

ci
es

a
re

si
m

il
a
r,

th
e

p
a
ir

ed
v
a
ri

a
n

ce
s

a
ct

u
a
ll
y

v
a
ry

b
y

a
g
re

a
t

a
m

o
u

n
t.

APPENDIX D. PAIRED COMPARISONS OF MEANS AND VARIANCES 58

F
ig

u
re

D
.0

.4
.

P
a
ir

ed
M

ea
n

A
cc

u
ra

cy
a
n

d
V

a
ri

a
n

ce
C

o
m

p
a
ri

so
n

b
et

w
ee

n
S

ta
n

d
a
rd

N
M

F
a
n

d
P

en
a
li
ze

d
N

M
F

(S
ec

o
n

d
H

a
lf

).
T

h
e

fi
rs

t
p

a
rt

o
f

th
e

fi
g
u

re
co

m
p

a
re

s

th
e

m
ea

n
a
cc

u
ra

ci
es

o
f

st
a
n

d
a
rd

N
M

F
a
n

d
p

en
a
li
ze

d
N

M
F

si
d

e
b
y

si
d

e.
T

h
e

se
co

n
d

p
a
rt

o
f

th
e

fi
g
u

re
co

m
p

a
re

s
th

e
ra

d
ic

a
l

v
a
ri

a
n

ce
s

o
f

st
a
n

d
a
rd

N
M

F
a
n

d
p

en
a
li
ze

d

N
M

F
si

d
e

b
y

si
d

e.
T

h
e

p
lo

ts
sh

o
w

th
a
t

a
lt

h
o
u

g
h

th
e

p
a
ir

s
o
f

a
cc

u
ra

ci
es

a
re

si
m

il
a
r,

th
e

p
a
ir

ed
v
a
ri

a
n

ce
s

a
ct

u
a
ll
y

v
a
ry

b
y

a
g
re

a
t

a
m

o
u

n
t.

Appendix E
Python Code for Radical Classification

The following Python code demonstrates the usage of each of the 7 algorithms. The user
must make sure that the data is grouped by radicals, so that there are 168 data folders. To
run only one of the algorithms each time, the user should un-comment the rest of them. The
training set size varies for each radical, which is based on the results of the learning curves.
The testing data size is 20 for each of the 168 radicals. There is no intersection/overlap
between the training and testing data. In the Python language, lines that start with ‘#’
are comments and are therefore not executed. Similarly, paragraphs that are surrounded
by triple apostrophes are comments for functions, which include expainations of function
parameters and return values.

from __future__ import division
import random
import numpy as np
import numpy.linalg as la
import character_variability
import time
import nimfa
from numpy import linalg as LA

############# Initiation Stage & Adjustable Parameters ############

countList = counts how many characters each radical maps to.
This is omitted in this file.
The user can regenerate this list from Appendix A.

countList = character_variability.count()

RAD_SET = np.arange(168) # Index of all radicals.

NUM_RAD = len(RAD_SET) # The total number of radical classes.

NUM_RUN = 10 # Number of runs. Default = 10.

APPENDIX E. PYTHON CODE FOR RADICAL CLASSIFICATION 60

Number of samples used for training per radical.
Will be multiplied by a factor based on the learning curve later.

NUM_TRAINING = 102

Number of samples used for testing / per radical, this number stays constant.
NUM_TESTING = 20

Initiate an array of arrays to record the indices of the character samples.
used for training, so later on we can pick test samples that won’t
overlap with the training samples.

picked = np.full((NUM_RAD,NUM_TRAINING*19), -1, dtype=np.int)

############## File-Reading Function ##############

def fileToVector(file):
‘‘‘
:param file: A character image file in its binary form.
:return: The matrix in a vector form.
’’’
data = open(file,’r’)
vector = [row.strip().split(’ ’) for row in data]
data.close()
vector = np.asarray(vector).astype(np.int) # Turning data into a numpy array
vec = vector[0]
return np.asarray(vec)

############## Basic Training Function ##############

def radicalTraining(index, r, num):
‘‘‘
This method is used for training individual radical column vectors.
For the easy of computation, it will return a row vector instead.
Later on we will convert it to the transpose of it.

:param index: Index of the radical if the dictionary is not of size 168.
:param r: Actual index of the radical.
:param num: The character variability of the radical class.
:return: The learned radical column and the Forbenius Norm error.
’’’

Multiply the number of training samples by a factor decided based on the
learning curves.

if num <= 5: num_instances = num
if num > 5 and num <= 42: num_instances = 3
if num >= 43 and num <= 78: num_instances = 14
if num >= 79: num_instances = 19

Initiate input data matrix of different samples.
Note that the dmat here is a transpose of V.
The actual data matrix V is of dimension 128^2 x NUM_TRAINING.

APPENDIX E. PYTHON CODE FOR RADICAL CLASSIFICATION 61

dmat = np.zeros([NUM_TRAINING * num_instances, 128 * 128])

The set of samples we can pick for training.
We use +1 because the actual data files are 1-based.
set = range(1, num * 122 + 1)

Pick the training samples.
trainSet = random.sample(set, NUM_TRAINING * num_instances)

Difference in length between picked array and the initial picked array.
diff = NUM_TRAINING * 19 - len(trainSet)
addon = np.asarray(np.full((1,diff), -1, dtype=np.int))[0]

Update the picked array.
picked[index] = np.asarray(np.concatenate((trainSet, addon)))

Add each image data (in its column vector form) into the V data matrix.
i = 0
for s in trainSet:

testfile = "/user_specified_path/radical" + str(r+1) + "/" + str(s) + ".txt"
vec = fileToVector(testfile)
dmat[i] = vec
i += 1

Convert the transpose back into V.
dmat = np.transpose(dmat)

1. Basic NMF
nmf = nimfa.Nmf(dmat, seed="nndsvd", rank=1, max_iter=50, update=‘euclidean’,

objective=‘fro’)
nmf_fit = nmf()
W = nmf_fit.basis()
H = nmf_fit.coef()

2. Probabilistic (PMF)
pmf = nimfa.Pmf(dmat, seed="random_vcol", rank=1, max_iter=50, rel_error=1e-5)
pmf_fit = pmf()
W = pmf_fit.basis()
H = pmf_fit.coef()

3. Projected Gradient (LSNMF)
lsnmf = nimfa.Lsnmf(dmat, seed="random_vcol", rank=1, max_iter=50, sub_iter=10,

inner_sub_iter=10, beta=0.1)
lsnmf_fit = lsnmf()
W = lsnmf_fit.basis()
H = lsnmf_fit.coef()

4. Non-smooth (NSNMF)
nsnmf = nimfa.Nsnmf(dmat, seed="nndsvd", rank=1, max_iter=50, theta=0.5)
nsnmf_fit = nsnmf()
W = nsnmf_fit.basis()

APPENDIX E. PYTHON CODE FOR RADICAL CLASSIFICATION 62

H = nsnmf_fit.coef()

5. Sparse NMF with Imposed Sparseness on W (SNMF)
snmf = nimfa.Snmf(dmat, seed="random_vcol", rank=1, max_iter=50, version=‘l’,

eta=1., beta=1e-4, i_conv=10, w_min_change=0)
snmf_fit = snmf()
W = snmf_fit.basis()
H = snmf_fit.coef()

6. Sparse NMF with Imposed Sparseness on H (SNMF)
snmf = nimfa.Snmf(dmat, seed="random_c", rank=1, max_iter=50, version=‘r’,

eta=1.,beta=1e-4, i_conv=10, w_min_change=0)
snmf_fit = snmf()
W = snmf_fit.basis()
H = snmf_fit.coef()

7. Penalized NMF (PMFCC)
pmfcc = nimfa.Pmfcc(dmat, seed="random_vcol", rank=1, max_iter=50,

theta=np.random.rand(dmat.shape[1], dmat.shape[1]))
pmfcc_fit = pmfcc()
W = pmfcc_fit.basis()
H = pmfcc_fit.coef()

Calculate the Frobenius Norm error term
WH = W.dot(H)
D = np.subtract(dmat,WH)
fro_norm = LA.norm(D, ‘fro’)

return W, fro_norm

############# Basic Testing Function #############

def radicalTesting(index, rad, num, dict):
‘‘‘
Function that tests all 20 samples of a single radical class.

:param index: Index of the radical if the dictionary is not of size 168.
:param r: Actual index of the radical.
:param num: The character variability of the radical class.
:param dict: Learned dictionary of 168 radical classes.
:return: The number of false classifications, and the total number of tests.
’’’

err = 0 # Number of false predictions.
total = 0 # Total number of tests.

Pool of samples to choose from.
We use +1 because the actual data files are 1-based.
set = range(1, num * 122 + 1)

Find the array of samples that were not used in training.

APPENDIX E. PYTHON CODE FOR RADICAL CLASSIFICATION 63

remainingSet = np.setdiff1d(set, picked[index])

Pick 20 samples that haven’t been used.
testSet = random.sample(remainingSet, NUM_TESTING)

Iterate over the testing samples.
for s in testSet:

testfile = "/user_specified_path/radical" + str(rad+1) + "/" + str(s) + ".txt"
vec = fileToVector(testfile)

Approximate coefficient matrix using least squares.
h = la.lstsq(dict,vec)[0]

Check to see if the correct radical class of the test image is in
the top 5 coefficients in h.

if np.argsort(np.asarray(h))[-1] != index
and np.argsort(np.asarray(h))[-2] != index

and np.argsort(np.asarray(h))[-3] != index
and np.argsort(np.asarray(h))[-4] != index

and np.argsort(np.asarray(h))[-5] != index:
err += 1

total += 1 # Increment the total number of testing samples.

return err, total

################ Main Training Function ################

Initiate the radical dictionary.
This is actually the transpose, for the ease of computation.

radDict = np.zeros([NUM_RAD, 128*128])

def train(dict):
‘‘‘
The following function uses the basic training function to generate
the radical dictionary, W.

:param dict: Initianization of the main dictionary W.
:return: Learned dictionary, average training time, and training error.
’’’

tolErr = 0 # total training err
print "Start training..."
start_training = time.time()
for i,r in enumerate(RAD_SET):

print "-- Training radical ", i, r
W, err = radicalTraining(i, r, countList[r])
dict[i] = np.transpose(W)
tolErr += err

end_training = time.time()
print "End training..."

APPENDIX E. PYTHON CODE FOR RADICAL CLASSIFICATION 64

avg = (end_training-start_training)/NUM_RAD
print "Average training time : ", avg, " seconds / radical."
dict = np.transpose(dict)
print "Radical dictionary shape ", np.shape(dict)

return dict, avg, tolErr/NUM_RAD

################ Main Testing Function ################

def test(dict):
‘‘‘
Calls the basic testing function to test on all 168 radical classes.

:param dict: Learned W dictionary.
:return: Overall accuracy,

average testing time,
and the array of 168 individual accuracies.

’’’

accRadicals = np.zeros([1,NUM_RAD])[0] # Accurary for each of the radicals.

t_err = 0
t_total = 0

start_testing = time.time()
for i,r in enumerate(RAD_SET):

print "testing -> ", i,r
num = countList[r] # number of instances
err, total= radicalTesting(i,r,num,dict)
t_err += err
t_total += total
accRadicals[i] += (total-err)/total

end_testing = time.time()
avg = (end_testing-start_testing)/(NUM_RAD*NUM_TESTING)
print "Average testing time : ", avg, " seconds / character."

for j in range(len(accRadicals)): # Accuracy for each radical
print "radical, ", j, accRadicals[j]

return (t_total-t_err)/t_total, avg, accRadicals

################ Main Function ################

def main(num_run=10):
‘‘‘
Main function that calls all sub-functions to calculate final measurements.

:param num_run: Number of runs. Default = 10.
:return: None. All results are printed.

APPENDIX E. PYTHON CODE FOR RADICAL CLASSIFICATION 65

’’’

tp = 0 # Total number of true positives.
train_time = 0
train_err = 0
test_time = 0

Initiate an array of individual radical class accuracies.
acc_rad = np.zeros([1,NUM_RAD])[0]

Run the experiment several times.
for i in range(num_run):

dict_init = np.zeros([NUM_RAD,128*128])
radDict, avg_train_time, avg_train_err = train(dict_init)
accu, avg_test_time, accRadicals = test(radDict)
tp += accu/num_run
train_time += avg_train_time/num_run
train_err += avg_train_err/num_run
test_time += avg_test_time/num_run
acc_rad = np.add(acc_rad, accRadicals/num_run)

print "############ Final Results ############"
print "true positive ", tp
print "avg training time ", train_time
print "avg train err ", train_err
print "avg testing time ", test_time
print "accuracy for each radical class", acc_rad

main(NUM_RUN)

Bibliography

[1] CASIA Online and Offline Chinese Handwriting Databases, http://www.nlpr.ia.

ac.cn/databases/handwriting/Home.html.

[2] Chinese Character Sets-China: GB 2312-80 Level 2 Radical Index, http://examples.
oreilly.com/9780596514471/cjkvip2e-appG.pdf.

[3] C. Lee, H. Kang, and Kim H, Font Classification Using NMF With Hierarchical Clus-
tering, International Journal of Pattern Recognition, 2005.

[4] Qingcai Chen, Harbin Institute of Technology Opening Recognition Corpus for Chi-
nese Characters (HIT-OR3C), http://www.iapr-tc11.org/mediawiki/index.php/
Harbin_Institute_of_Technology_Opening_Recognition_Corpus_for_Chinese_

Characters_(HIT-OR3C).

[5] Frobenius Norm, http://mathworld.wolfram.com/FrobeniusNorm.html.

[6] Introduction to SIFT (Scale-Invariant Feature Transform), http://docs.opencv.

org/master/da/df5/tutorial_py_sift_intro.html#gsc.tab=0.

[7] Hyunsoo Kim and Haesun Park, Sparse Non-Negative Matrix Factorizations via Alter-
nating Non-Negativity-Constrained Least Squares for Microarray Data Analysis (2007),
1496–1497.

[8] Daniel Lee and Sebastian Seung, Algorithms for Non-negative Matrix Factorization.

[9] , Learning the Parts of Objects by Non-negative Matrix Factorization, Nature
401(6755) (1999), 788-91.

[10] Line Dictionary, http://ce.linedict.com/dict.html#/cnen/home.

[11] L. Shan, Passport to Chinese: 100 Most Commonly Used Chinses Characters, EPB
Publishers, 1995.

[12] Nonnegative Matrix Factorization, http://www.almoststochastic.com/2013/06/

nonnegative-matrix-factorization.html.

http://www.nlpr.ia.ac.cn/databases/handwriting/Home.html
http://www.nlpr.ia.ac.cn/databases/handwriting/Home.html
http://examples.oreilly.com/9780596514471/cjkvip2e-appG.pdf
http://examples.oreilly.com/9780596514471/cjkvip2e-appG.pdf
http://www.iapr-tc11.org/mediawiki/index.php/Harbin_Institute_of_Technology_Opening_Recognition_Corpus_for_Chinese_Characters_(HIT-OR3C)
http://www.iapr-tc11.org/mediawiki/index.php/Harbin_Institute_of_Technology_Opening_Recognition_Corpus_for_Chinese_Characters_(HIT-OR3C)
http://www.iapr-tc11.org/mediawiki/index.php/Harbin_Institute_of_Technology_Opening_Recognition_Corpus_for_Chinese_Characters_(HIT-OR3C)
http://mathworld.wolfram.com/FrobeniusNorm.html
http://docs.opencv.org/master/da/df5/tutorial_py_sift_intro.html#gsc.tab=0
http://docs.opencv.org/master/da/df5/tutorial_py_sift_intro.html#gsc.tab=0
http://ce.linedict.com/dict.html##/cnen/home
http://www.almoststochastic.com/2013/06/nonnegative-matrix-factorization.html
http://www.almoststochastic.com/2013/06/nonnegative-matrix-factorization.html

Bibliography 67

[13] Daming Shi, Offline Handwritten Chinese Character Recognition by Radical Decompo-
sition, ACM Transactions on Asian Language Information Processing 2 (March 2003),
27–48.

[14] Rosie Shier, Statistics: 1.1 Paired t-Tests, http://www.statstutor.ac.uk/

resources/uploaded/paired-t-test.pdf.

[15] T. Jun, X. Xie, W. Zheng, and J. Lai, Radical Extraction Using Affine Sparse Matrix
Factorization For Printed Chinese Characters Recognition, International Journal of
Pattern Recognition and Artificial Intelligence, 2012.

[16] T. Zheng, Fang B, Liu W, Y. Tang, G. He, and J. Wen, Total Variation Norm-
based Non-negative Matrix Factorization for Identifying Discriminant Representation
of Image Patterns, Elsevier, 2008.

[17] Fei Wang, Li Tao, and Zhang Changshui, Semi-Supervised Clustering Via Matrix
Factorization (January, 2008).

[18] W. Zheng, Li S, Lai J, and S. Liao, On Constrained Sparse Matrix Factorization,
Proceedings/IEEE International Conference on Computer Vision., 2007.

[19] Albert Au Yeung, Matrix Factorization: A Simple Tutorial and Im-
plementation in Python, http://www.quuxlabs.com/blog/2010/09/

matrix-factorization-a-simple-tutorial-and-implementation-in-python/.

[20] Marinka Zitnik, Nimfa, http://nimfa.biolab.si/index.html.

http://www.statstutor.ac.uk/resources/uploaded/paired-t-test.pdf
http://www.statstutor.ac.uk/resources/uploaded/paired-t-test.pdf
http://www.quuxlabs.com/blog/2010/09/matrix-factorization-a-simple-tutorial-and-implementation-in-python/
http://www.quuxlabs.com/blog/2010/09/matrix-factorization-a-simple-tutorial-and-implementation-in-python/
http://nimfa.biolab.si/index.html

	Radical Recognition in Off-Line Handwritten Chinese Characters Using Non-Negative Matrix Factorization
	Recommended Citation

	Abstract
	Dedication
	Acknowledgments
	Introduction
	What is Character Recognition
	Chinese Characters and the Significance of Radicals
	Databases of Handwritten Chinese
	Simple Approaches
	Hamming Distance
	Scale Invariant Feature Transform

	Radical Extraction Using Matrix Factorization
	Non-Negative Matrix Factorization
	The Basic NMF Algorithm in Detail
	NMF Applications
	Outline of Radical Detection Using NMF

	NMF Results
	Preliminary Results
	The Learning Curves of NMF
	Statistical Comparisons of Two Pairs of Algorithms

	Conclusion
	Discussions and Comparisons
	A Proposal for a Character Learning Application
	Conclusion
	Future Work
	Constrained Sparse Matrix Factorization
	Affine Sparse Non-Negative Matrix Factorization

	Appendix Map of Radicals to GB2312
	Appendix Brief Descriptions of the NMF Variants
	Probabilistic Model (PMF)
	Alternating Least Squares with Projected Gradient (LSNMF)
	Non-smooth Model (NSNMF)
	Enforced Sparseness (SNMF)
	Penalized Model (PMFCC)

	Appendix Plots of Learning Curves
	Appendix Paired Comparisons of Means and Variances
	Appendix Python Code for Radical Classification
	Bibliography

