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Abstract

This project introduces the concept of share strings and how they can be used to figure out
maximal cap sizes for different decks of the card game EvenQuads. We prove that all caps must
map to a share string with respect to a basis and that if no share strings exist for cap size k in
a given dimension d, then the maximal cap size of that dimension M(d) must be less than k.
We prove the maximal cap sizes up to dimension 7 and show that there are at most 8 possible
share strings for 19-caps of dimension 8.
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1
Introduction

The game EvenQuads, or Quads, is a card game invented by Jeffery Perreira and Lauren Rose in

2013 that mimics the popularized card game SET. In Quads, some number of cards are laid out

and players race to find a quad, or a set of four cards that adhere to the quad conditions that

can be found in Chapter 2.1. There is, however, a possibility that a quad may not be present

in the layout which would qualify the layout to be a cap. This possibility raises the following

question: How many cards are required to ensure that a quad is present in a given layout? The

question that better pertains to the math we will be exploring is what is the maximal cap

size, or the largest possible cap, of Zd
2 when viewed as an affine space for given dimensions d?

This was one of the driving questions in the original article “How Many Cards Should You Lay

Out in a Game of EvenQuads: A Detailed Study of Caps in AG(n, 2)” ([3]) which comprised the

results of the 2021-22 Bard Summer Research Initiative (BSRI) mathematics research groups.

The paper proves the maximal cap sizes up to the standard Quads deck-size, or the dimension

6 deck, whose results can be found in Table 1.0.1, along with other interesting properties about

caps and Quad cards.

During the summer of 2023, I worked with professor Lauren Rose through BSRI and helped

expand the Quads research of the previous two mathematics groups. I was given an opportunity

to experience the process of discovering new math in an attempt to solve large scale problems

1



2 INTRODUCTION

Dimension Maximal Cap Size

0 1
1 2
2 3
3 4
4 6
5 7
6 9

Table 1.0.1: (Results from [3]), Maximal Capsizes for dimensions 0-6

that had never fully been solved before. As opposed to the more rigid structure of a class,

I had the ability to play freely with the material and come up with my own ways of solving

problems using math. With this freedom, I noticed patterns in the structure of caps that led

me to conceive what I now call share strings which are defined in section 3.1. I saw that

these strings could provide information about the existence of caps of given sizes in different

dimensions, enough so that they can be used to prove maximal cap sizes. For this project, I

decided to continue answering the max-cap question for dimensions 7 and 8 using share strings

and reprove dimensions 0-6 which were initially proved in [3].

Chapter 2 provides a more in depth description of Quads and its relation to SET along with

a brief reiteration of how Quad cards are isomorphic to Zd
2 and the affine geometry AG(d, 2). A

more detailed description can be found in [3] but I include all definitions and theorems needed to

construct share strings. The majority of the math defined and proved in this chapter is derived

from [3]. All definitions and theorems beyond this chapter are of my own discovery through

research unless otherwise indicated.

Chapter 3 fully defines share strings along with other important terminology including shar-

ing, sumsets, and sum decompositions which are used abundantly throughout the project.

It also includes general theorems about share strings and their properties such as the frequently

used Theorems 3.3.1 and 3.3.3 as well as the most important theorem, the Share String The-

orem. Proofs for the max-cap sizes of dimensions 0-5 using share strings are also included in

this chapter.
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Sum Decomposition Possible Share Strings

(58, 72), (59, 91) (0,0,0,0,0,0,9,0,0,0,0)

(57, 73) (0,0,0,0,0,0,7,2,0,0,0)
(0,0,0,0,0,0,8,0,1,0,0)

(56, 74) (0,0,0,0,0,0,5,4,0,0,0)
(0,0,0,0,0,0,6,2,1,0,0)
(0,0,0,0,0,0,7,0,2,0,0)
(0,0,0,0,0,0,7,1,0,1,0)

Table 1.0.2: Remaining possible share strings for 19-caps of dimension 8

Chapters 4 and 5 attempt to prove the maximal cap sizes for dimensions 6, 7, and 8 using

share strings. Other important theorems such as the Pair-Share Theorem are proved in chapter

4. I prove in full that the maximal cap size for dimension 7 is 12 and that the 7 share strings in

Table 1.0.2 are the only 7 possible share strings for 19-caps of dimension 8 out of the potential

911, or 31381059609, initial possibilities.

Chapter 6 concludes the project and begins to formulate a description of share string equiv-

alencies along with other potential future work with share strings.
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2
Quads

2.1 Introduction to Quads and SET

In order to better understand Quads, it may be easier to look at SET as an analogue first. Much

research has been done on Set which has been compiled and mainstreamed into the book The

Joy of SET ([4]). Like Quads, Set involves players laying out some number of cards and racing

to find a set of 3 cards that adhere to the required properties of a set. Each SET card contains

some number of uniquely colored shapes filled with a unique texture. We call these properties

the attributes of the cards.

There are 3 states for each attribute: 3 shapes (ovals, diamonds, or squiggles), 3 colors (red,

green, or purple), 3 textures (filled, hollow, or hatched), and 3 numbers (1, 2, or 3 shapes on

each card). For 3 cards to be a set, each attribute must be either alike on all 3 cards or different

on all three cards. The 3 asterisked cards in Figure 2.1 form a set because their colors are all

the same and the number and shape are all different.

What distinguishes Quads from SET is that there are 4 different states for each attribute and

a quad is composed of 4 cards instead of 3. Similar to SET, each attribute in a quad may be

different or alike across the 4 cards, but unlike in SET, having 2 different pairs of like attributes

is also acceptable. For example, a quad could contain two cards that are red and two that are

5
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Figure 2.1.1: A layout of SET cards found at https://blog.untrod.com/2021/06/set-solver-in-
python.html

Figure 2.1.2: A layout of Quad cards
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Figure 2.1.3: The standard Z6
2 Quads deck

blue. In Figure 2.1 the 4 asterisked cards form a quad because they have a different number, a

different color, and a different shape. The official quad conditions from [3] are as follows:

Quad Conditions: A set of 4 cards forms a quad if for each attribute one of the following

holds:

1. The states are the same on each card.

2. The states are different on each card.

3. Two different states occur, each on two cards.

Given that there are 4 possibilities for the 3 attributes of each card, there are 43 = 64 unique

quad cards in the Quads standard deck with 3 attributes as shown in Figure 2.1.3.

2.2 Quads and Binary

The heart of bridging Quads and mathematics lies in the fact that we can map Quad cards to

elements of Zd
2. Before we look at individual cards, we can look at each attribute and how it can

be mapped to an element of Z2×Z2 which is the set of binary strings of length 2: {00, 01, 10, 11}.
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Attribute 00 01 10 11

Number 1 2 3 4
Color Red Blue Yellow Green
Shape Circle Square Triangle Twinkle

(Number, Color, Shape)∈ Z6
2

Table 2.2.1: Mapping of Quad card attributes to elements of Z2 × Z2

We could, for example, have red cards correspond to (00), blue to (01), yellow to (10), and green

to (11). Table 2.2.1 displays the arbitrary mapping of the attributes of the standard Quads deck

to elements of Z2 × Z2 that we will use in the remainder of the project.

For example, the card with 2 green triangles would correspond to the element (01, 11, 10) ∈

(Z2 × Z2)
3. Each element of the standard Quads deck must then correspond to an element of

(Z2 × Z2)
3. Even further, we can use the group isomorphism (Z2 × Z2)

3 ∼= Z6
2 to conclude that

each card corresponds to an element of Z6
2.

What are some of the uses of mapping Quad cards to Z6
2? The first and most crucial property

of any 4 cards that form a quad is that their corresponding vectors in Z6
2 will sum to the zero

vector.

Theorem 2.2.1. ([3], Theorem 2.1). Let a, b, c, d ∈ Z6
2 be distinct. Then {a, b, c, d} is a quad if

and only if a+ b+ c+ d = 0⃗.

Proof. Let x, y, z, w ∈ Z2 × Z2.

Suppose the elements are all the same. Then using the property that elements of Z2 ×Z2 are

their own additive inverses, we get that x+y+z+w = x+x+x+x = x+(−x)+x+(−x) = (00).

Suppose the elements are all different. Then since there are only 4 distinct elements in

Z2 ×Z2, one will be equal to (00), one will be (01), one will be (10), and one will be (11). Thus

x+ y + z + w = (00) + (01) + (10) + (11) = (0 + 0 + 1 + 1, 0 + 1 + 0 + 1) = (00).

Suppose the elements consist of two sets of repeated elements. Then there are two sets of

equal elements, say {x, y} and {z, w}. Thus x+ y + z + w = x+ x+ z + z = (00).

Therefore, by using the isomorphism (Z2 × Z2)
3 ∼= Z6

2, we can conclude that if each of the 3

attributes of a, b, c and d adhere to the properties of a quad, then a+ b+ c+ d = 0⃗.
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The proof of the other direction is similar and will be omitted.

This theorem allows us to begin working with arbitrary vectors without having to use binary

strings when referring to Quad cards. For the remainder of the project we will omit vector

notation. We will refer to the zero vector as just 0 for simplicity and only use 0⃗ if necessary.

We can look at an example to better visualize the relationship between Quad cards and their

mappings to Z6
2:

Example 2.2.2. Observe the following elements of Z6
2 :

(0, 0, 1, 0, 0, 1)

(1, 0, 1, 1, 0, 0)

(1, 1, 0, 1, 0, 1)

(0, 1, 0, 0, 0, 0)

It is relatively easy to see that their sum will be 0, thus indicating that they form a quad. We

can take our mapping to determine the cards represented by the vectors (ordered respectively):

The numbers and colors are all different and the shapes are half and half— in other words, we

have a quad. voila!

Recall that Zd
2 is a vector space over the field Z2. This fact allows us to conclude the following

proposition:

Proposition 2.2.3. Let p ∈ Zd
2. The following are equivalent:

1. p = p.
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2. p+ p = 0.

3. p− p = 0

we can remold this fact to make it more directly applicable to many of the theorems and

proofs to come.

Theorem 2.2.4 (The Even Odd Theorem). Let p ∈ Zd
2.

1. p added an odd number of times is p.

2. p added an even number of times is 0.

Proof. Let k ∈ Z. Observe that
∑2k+1

i=1 p = (p+p)+· · ·+(p+p)+p where there are k groupings of

(p+p). Using Proposition 2.2.3 we get that (p+p) = 0 so (p+p)+· · ·+(p+p)+p = 0+· · ·+0+p =

p. Using the same logic we can deduce that
∑2k

i=1 p = (p+ p) + · · ·+ (p+ p) = 0 + · · ·+ 0 = 0.

so p added an odd number of times is p and p added an even number of times is 0.

We are very lucky for this very simple fact since this entire project would not be possible

without it.

Seeing that we can map elements of Z6
2 to quad cards isomorphically, what happens if we map

using elements of Z5
2 or Zd

2 for some natural number d? In the Z5
2 case, we end up reducing one

of the attributes to just two options instead of 4. For example, we could reduce the number of

possible shapes to just circles and squares which would correspond to the elements of Z2 (circles

could be 0 and squares would be 1) instead of Z2 ×Z2. Then each quad card would correspond

to a binary string of length 5 where the first two entries determine the number, the second two

determine the color, and the last one determines the shape. Relative to the 3 attributes found

in the standard Z6
2 deck, the deck corresponding to Z5

2 would have 2 full attributes and one half

attribute. In theory, any combination of attributes such that the number of half attributes and

half of the number of full attributes that adds to the size of the dimension would suffice.

Seeing that we can define quads mathematically, we can also define a quadless set of cards

which we have been referring to as caps.
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Definition 2.2.5. Let C ⊆ Zd
2.

1. The set C is a cap if C does not contain a quad, i.e., for any distinct a, b, c, d ∈ C,

a+ b+ c+ d ̸= 0. A cap with k elements is called a k-cap ([3], Definition 3.1).

2. A cap C is complete if C ∪ {c} contains a quad for all c ∈ Zd
2 − C

3. Suppose there exists a cap C ⊆ Zd
2 for a given d. Then C is maximal if there exists no

caps with cardinality |C + 1| in Zd
2.

4. We denote the maximal cap size of Zd
2 as M(d).

△

A complete cap is a quadless set of cards that, when another card is added to the set, will

necessarily contain a quad. It is complete, or full, in the sense that there are no cards left to

add that allow the set to remain a cap. Maximal caps are the largest possible complete caps

of a given dimension, meaning there exist no caps of a greater cardinality. It has been proved

in [3] that in the Z6
2 deck, the maximal cap size is 9, meaning any set of 10 or more cards will

necessarily contain a quad. We distinguish maximal caps from complete caps because there

exist complete caps that are not maximal, where, for example, there exists 8-caps in Z6
2 that are

complete but not maximal since larger 9-caps are attainable. Below is an example of a complete

8-cap of dimension 6:

{(000000), (100000), (010000), (001000),
(000100), (000010), (000001), (111111)}

Any other element of Z6
2 will form a quad with the elements of the above cap, thus making it

complete. We can state a few facts about complete and maximal caps.

Proposition 2.2.6. ([3], Proposition 3.2). Let S ⊆ Zd
2.

1. If S has fewer than 4 elements then it is a cap.

2. maximal caps are complete.
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3. If all k-caps in dimension d are complete then they are maximal.

Proof. These properties descend directly from Definition 2.2.5

Since four cards are required to form a quad, any set of less than four Quad cards cannot be

a quad. However, for any three cards, there is a unique fourth card that forms a quad with the

original three which is proved in Corollary 2.2 in [3]. Given that there are then 61 remaining

cards to choose from in the Z6
2 deck, there is a 1

61 or a 1.64% chance of choosing the necessary

card to form a quad. The entire deck has an obvious 100% probability of containing a quad since

it quite literally contains all of the quads, but it is easy to see that we shouldn’t need to lay out

the entire deck to ensure that a quad is present. We could continue calculating probabilities in

this manner, but calculations become extremely messy and difficult to work with so we will need

to develop some more math to find the answers to our driving question. The size of maximal caps

have been proven mathematically for dimensions 1 through 6 using the techniques developed in

[3]. In theory we could pack up and go home at this point, but we still want to know how many

cards we must lay out if we add attributes to play with, for example adding a background color

to the cards, or perhaps different textures to the shapes like in SET. In the next chapter, we

will begin to define and develop new math and techniques that form a continuation of [3] that

we can use to prove the maximal cap sizes of dimensions 7 and 8. We must first, however, relate

Quad cards to yet another field of math.

2.3 Quads and Affine Geometry

We can gain further insight into how Quad cards act by exploring the relationship between Zd
2

and affine geometry. As opposed to Euclidean geometry, affine geometry excludes angles and

distance from the structure of points and planes in space. This takes privilege away from the

zero vector and allows us to view all elements of Zd
2 the same. Caps were originally defined in

the affine geometry AG(d, n) as collections of points in general position [3]. While we will not

be working directly with the axioms of finite geometry, we can use its properties to strengthen

the structure of Quad cards represented in Zd
2.
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Definition 2.3.1. ([3], Definition 4.1). Let V be a finite dimensional vector space over a field

K, and let S = {x1, . . . , xn} ⊆ V .

1. An affine combination of S is a linear combination

α1x1 + · · ·+ αnxn,

where α1, . . . , αn ∈ K satisfy α1 + · · ·+ αn = 1.

2. An affine dependence of S is a linear combination

α1x1 + · · ·+ αnxn = 0,

where α1 + · · ·+ αn = 0 and α1, . . . , αn are not all zero.

3. The affine span of a subset S ⊆ V is the set aff(S) of all affine combinations of finitely

many elements of S.

4. S is affinely dependent if some element of S is in the affine span of the other elements.

Otherwise S is affinely independent.

5. An r-dimensional affine subspace F of V , called an r-flat, is defined to be the affine

span of r+1 affinely independent elements of V , or equivalently, the translate L+ v of an

r-dimensional linear subspace L of V .

6. An affine basis for an r-flat F ⊆ V is a set of affinely independent elements of V whose

affine span is F . Equivalently, if F = L + v, then an affine basis for F is given by

{x+ v|x ∈ B ∪ 0}, where B is a linear basis for L.

7. An affine transformation between vector spaces V and W over K is a function A :

V → W for the form A(x) = M(x) + y for all x ∈ V , where M : V → W is a linear

transformation and y ∈W is a fixed vector.

8. An affine transformation A is an affine isomorphism, or affine equivalence, if A is

invertible. In this case, we say that V and W are affinely equivalent, denoted V ∼=W .
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9. subsets S, T ⊆ V are affinely equivalent if A(S) = T for some affine isomorphism

A : V →W .

△

Throughout the rest of the project, we will use certain simplifications for some terms to make

the reading easier. When referring to affine bases, we will drop the affine label and simply refer

to them as bases. We will refer to an affine span as just a span. We will refer to elements of

Zd
2 as points. Affinely independent points will be referred to as independent points or basis

points if they are apart of a basis. Similarly, affinely dependent points will be referred to as

dependent points if such distinction is necessary. The following propositions are standard and

follow from Definition 2.3.1.

Proposition 2.3.2. ([3], Remark 4.2). The following results are standard and follow from

Definition 2.3.1.

1. Any basis for a d-flat contains d+1 points, and every point of a flat can be written uniquely

as an affine combination of basis points.

2. Two affinely independent sets of the same size are affinely equivalent.

3. When F is a field with q elements, a d-flat will contain qd elements.

Because we are looking at Zd
2, our field Z2 will contain 2 elements and for each dimension

d we get that our deck will contain 2d points. Any basis that spans dimension d or a d-flat

will contain d + 1 points and the rest of the 2d − (d + 1) points in the dimension will be affine

combinations of the basis points.

Lemma 2.3.3. ([3], Lemma 4.3). Let C = {x1, . . . , xn} ⊆ Zd
2.

1. An Affine combination of C is a sum of an odd number of points in C.

2. C is affinely dependent if and only if a sum of an even number of points in C equals 0.
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Proof. (1). Since the coefficients of an affine combination line in {0, 1}, the sum of the coeffi-

cients equals 1 if and only if the number of points is odd per Theorem 2.2.4.

(2). A dependence means that some xi ∈ C is an affine combination of other points in C,

hence the sum of an odd number of them. Without loss of generality, assume x1 = x2+ · · ·+x2t.

Using the fact that x1 = −x1 we get that x1 + x2 + · · ·+ x2t = 0.

Definition 2.3.4. ([3], Definition 5.9). Let C ⊆ Zd
2 be a cap.

1. The dimension of C, denoted dim(C), is the dimension of aff(C), the smallest flat con-

taining C.

2. We denote by M(r) the maximal cap size in an r-flat in Zd
2.

3. If C is r-dimensional and complete, we say that C is a complete cap in dimension r,

and that C completes the r-flat aff(C).

△

When we refer to a cap or a set C ⊆ Zd
2, if dim(C) = d we will say that C is a cap of

dimension d as opposed to a cap in dimension d. We will encounter 11-caps of dimension 7 and

of dimension 8, but while the caps of dimensions 7 are technically affinely equivalent to caps in

dimension 8, they do not span the entirety of Z8
2 and are thus not caps of dimension 8.

We can conclude that for any k-cap that spans dimension d, there will be an affine basis

B ⊆ C which will contain d+ 1 affinely independent points in C. The points in C − B will be

affine combinations of the points in B, where each is a sum of some odd n points in B. We will

prove that 5 ≤ n ≤ d + 1 in Property 2.2.6. We will use these facts as a jumping off point for

defining share strings in the next chapter.
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3
Share Strings

3.1 Defining Share Strings

In this section, we will define all of the terms needed in order to define share string and prove

several propositions that will aid us in using them.

Proposition 3.1.1. Let C ⊆ Zd
2 be a k-cap of dimension d. Let B ⊆ C be a basis of C. Then

1. |B| = d+ 1.

2. Points in C −B may be written as odd sums of between 5 and d+ 1 points in B.

3. |C −B| = k − d− 1.

Proof. (1) Because C is a cap of dimension d (as opposed to a cap in dimension d), it follows

that C spans a d-flat. Because B is an affine basis for C, Property 2.3.2 tells us that B contains

d+ 1 elements.

(2) Because the points in C are in the span of the points in B, the points in C −B are affine

combinations of the points in B. From Lemma 2.3.3 we know that points in C −B are sums of

odd numbers of points in B. Such sums cannot contain more than d+1 basis points since there

are only d+1 points in the basis. There cannot be points in C −B equal to a single (sum of 1)

point in B since Property 2.2.3 tells us the two points would be equal, indicating that a point

in B is equal to a point in C −B which is not possible. Let s ∈ C −B. Suppose for the sake of

17



18 CHAPTER 3. SHARE STRINGS

contradiction that s is a sum of 3 points a, b, c ∈ B where s = a + b + c. Then from Property

2.2.3 we get that s+ (a+ b+ c) = a+ b+ c+ (a+ b+ c) = (a+ a) + (b+ b) + (c+ c) = 0. Then

s, a, b, and c form a quad which contradicts the fact that C is a cap. Thus points in C −B may

not be written as sums of 3 points in B. Thus points in C −B may be written as odd sums of

between 5 and d+ 1 points in B.

(3) Because B ⊆ C it follows that B ∩ C = B. Thus |C − B| = |C| − |C ∩ B| = |C| − |B| =

k − (d+ 1) = k − d− 1.

In order to better understand how these new definitions and properties will allow us to craft

share strings, we will use a rolling example to visualize the definitions and properties to come.

Example 3.1.2. Let C ⊆ Z7
2 be an 11-cap of dimension 7. Then there exists a basis B ⊆ C with

8 points b1, . . . , b8 ∈ B. There are 11 − 7 − 1 = 3 points s1, s2, s3 ∈ C −D that are dependent

upon the basis and thus may be written as odd sums of between 5 and 8 basis points. Thus our

two sum sizes may be either 5 or 7. Below is an arbitrary depiction of what the sums may look

like:

s1 = b1 + b2 + b4 + b5 + b7

s2 = b1 + b3 + b4 + b5 + b6 + b7 + b8

s3 = b2 + b3 + b4 + b7 + b8

The fact that points are there own additive inverses is very important to many of the properties

and theorems that will come later in the project. We will take a look at how this fact and

Property 2.2.3 affects the structure of sums of points. Take s1 from our example:

s1 = b1 + b2 + b4 + b5 + b7

Using Property 2.2.3 we can see that

s1 + (s1) = b1 + b2 + b4 + b5 + b7 + (s1)

=⇒ 0 = b1 + b2 + b4 + b5 + b7 + s1.
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We will refer to any set of i points that sum to 0 as an i-point dependency. To take it further,

any arrangement of the points in a sum will produce equivalent results:

s1 + b1 = b2 + b4 + b5 + b7

s1 + b1 + b2 = b4 + b5 + b7

s1 + b1 + b2 + b4 = b5 + b7

b5 + b1 + b4 = b7 + s1 + b2

...

Throughout the rest of the project, we will omit plus and minus signs from our sums of points

since it is the only binary operation we use. If a, b, c ∈ Zd
2 and a + b = c we will say ab = c to

make the visualization of sums easier. We will also often denote numbered basis points bi and

bj as just i and j for the same reason (although this we will indicate every time). We will also

write sums with each basis point in a visual column. For example, we will write the sums

s1 = b1 + b4 + b5 + b6 + b8

s2 = b1 + b2 + b3 + b4 + b6 + b8 + b9

s3 = b2 + b5 + b7 + b8 + b9

as

s1 = 1 4 5 6 8
s2 = 1 2 3 4 6 8 9
s3 = 2 5 7 8 9

This will make it easier to visualize sumsets and how many of each basis point is shared by the

sumsets of a cap.

Definition 3.1.3. Let C ⊆ Zd
2 be a k-cap of dimension d. Let B be a basis of C. Let b ∈ B

and let s ∈ C −B. Let r = k − d− 1.

1. Let S = {b1, . . . , bn} be the set of basis points that sum to s. We define S to be the the

sumset of s. When working with multiple points in C −B, we will denote the sumset of

a dependent point si ∈ C −B as Si.
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2. We denote the set of sumsets of C −B as SCB.

3. Let Sb ⊆ SCB be be the set of sumsets that contain b.

4. Any sumsets that contain b are said to share b.

5. |Sb| is the share value of b. We say that b is a |Sb|-share.

△

The sumset of a point in C − B is the set of basis points in its sum. We are ultimately

referring to points in the same sumsets as being shared by those sumsets to more exclusively

define the property. Since each basis point will be shared by some number of sumsets, we define

that number to be the basis point’s share value. If a basis point is shared by 4 sumsets, we will

call that point a 4-share.

Proposition 3.1.4. Let C ⊆ Zd
2 be a k-cap of dimension d. Let B be a basis of C. Let b ∈ B.

Let si ∈ C −B where i ∈ {1, . . . , k − d− 1}.

1. Si ⊆ B.

2. |Si| is odd and 5 ≤ |Si| ≤ d+ 1.

3. si =
∑

p∈Si
p.

4. |SCB| = k − d− 1

5. 0 ≤ |Sb| ≤ k − d− 1.

Proof. (1), (2), (3). These properties follow directly from definition 3.1.3.

(4) There exists a unique sumset for each point in C −B so |SCB| = |C −B| = k − d− 1.

(5) Given there are k−d−1 sums in SCB it follows that each point can be shared by anywhere

between 0 and k − d− 1 sums.

Example 3.1.5. (Continuation of Example 3.1.2) The sumsets for our points s1, s2, s3 are

S1 = {b1, b2, b4, b5, b7}
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S2 = {b1, b3, b4, b5, b6, b7, b8}

S3 = {b2, b3, b4, b7, b8}

and we can easily see that each sumset is a subset of the B. The set of sumsets of C − B is

SCB = {S1, S2, S3}. We can see that b5 is shared by S1 and S2 so Sb5 = {S1, S2} and b5 is a

2-share. The rest of the share values of the in-points will be between 0 and 3 since there are 3

sums in SCB.

Definition 3.1.6. Let C ⊆ Zd
2 be a k-cap of dimension d. Let B be a basis of C. Let b ∈ B.

Let s1 ∈ C −B. Let i ∈ {1, . . . , k − d− 1}.

1. We denote Xi ⊆ B to be the set of i-shares in B.

2. |Xi| is the i-count of C −B. The we denote |Xi| as xi.

3. The share string of a cap is the finite sequence (x0, x1, . . . , xk−d−1). We denote the share

string of cap C with respect to B as ψC
B .

△

To put plainly, the share string of a cap C with basis B with r sumsets is a string (x0, . . . , xr)

where each entry xi is the number of basis points that are shared by i of the sumsets in SCB.

We are defining Xi to be the set of the xi basis points that are shared i times which we may

periodically refer to as the count set.

Example 3.1.7. (Continuation of Example 3.1.2) We can filter each basis point into their

respective “count sets”:

X0 = ∅

X1 = {b6}

X2 = {b1, b2, b3, b5, b8}

X3 = {b4, b7}.
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Taking the cardinalities of these sets gets us our i-counts to which we can determine our share

string:

x0 = |X0| = 0, x1 = |X1| = 1, x2 = |X2| = 5, x3 = |X3| = 2,

ψC
B = (x0, x1, x2, x3) = (0, 1, 5, 2).

Thus the share string for our cap C with respect to basis B is (0, 1, 5, 2). We prove later that

(0, 1, 5, 2) is a possible share string for 11-caps of dimension 7.

We have now fully defined share strings, but how exactly will they help us in determining the

maximal cap sizes in different dimensions?

Theorem 3.1.8 (The Share String Theorem). If there exists a share string for k-caps of di-

mension d but none for (k + 1)-caps of dimension d then M(d) = k.

Proof. Suppose there exist share strings for k-caps of dimension d but not for (k + 1)-caps of

dimension d. Then there exists a k-cap C ⊆ Zd
2 of dimension d with basis B with a share string

ψC
B . Because there are no share strings for (k + 1)-caps of dimension d it follows that there are

no (k+1)-caps of dimension d. According to Definition 2.3.4 we can conclude that C is maximal

so M(d) = k.

We now have a definitive way of determining the maximal cap sizes for given dimensions. If

we can prove that there exist no share strings for a cap size in a given dimension, we know

that the next smallest cap size must be maximal (assuming there exist caps of that size in said

dimension). The question now is how we go about proving whether or not any given share

string can map to a cap or not. While showing that a cap that can map to a given share string

is necessary for proving that said share string is viable for caps, we are really only going to

care about proving that certain share strings cannot possibly map to caps. A lot of our proofs

will distinguish “possible” and“impossible” share strings, where impossible strings cannot have

any caps mapped to them and possible ones are not proved to be impossible (even if they are

impossible). Methods on how to determine whether or not a string maps to an existing cap can

be found in Appendix A.1.
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3.2 Sum Decompositions

Before getting into the theorems that shave off string possibilities, we first have to grasp what

the nature of the possibilities will look like for different cap sizes in relation to the dimension

spanned by the cap. In our rolling example, we somewhat arbitrarily chose two 5-sums and

one 7-sum. For every n dependent points in a cap, share strings may exist for every possible

combination of possible sum-sizes such that there are n total. For example, in dimension 8,

there will be 9 basis points which will allow for sumsets to have 5, 7, or 9 points. 11-caps of

dimension 8 with two sums, for example, will have 6 options for sum sizes: 5 and 5, 7 and 7, 9

and 9, 5 and 7, 7 and 9, and 5 and 9. We will need to distinguish the options for different sum

sizes when determining the options for possible share strings of caps in given dimensions.

Definition 3.2.1. Let C ⊆ Zd
2 be a k-cap of dimension d where d ≥ 4. Let B be a basis for C.

Let r = k − d− 1 and let z be the greatest odd integer less than or equal to d+ 1.

1. Let S be the sumset of a point s ∈ C − B where |S| = i. We refer to both S and s as

i-sums.

2. The sum decomposition of C −B, denoted DC
B, is defined as

DC
B = (5n1 , 7n2 , . . . , z

n z−3
2 )

where ni is the number of (3 + 2i)-sums in SCB.

3. The decomposition value of DC
B denoted |DC

B| is defined as

|DC
B| =

z−3
2∑

i=1

(2i+ 3)ni

if SCB ̸= ∅ and |DC
B| = 0 if SCB = ∅.

△

Before anything else, we will want to relate the decomposition value to the set of sumsets as

it will be necessary for proving Theorem 3.3.3.
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Lemma 3.2.2. Let C ⊆ Zd
2 be a k-cap of dimension d with basis B. Let r = k − d − 1 and

suppose {S1, . . . , Sr} = SCB. Then

|DC
B| =

r∑
i=1

|Si|

Proof. Observe that the decomposition value is 5n1+7n2+ · · ·+ zn z−3
2

where ni is the number

of (2i+3)-sums in S. Knowing that each g-sum contains g points, the sum of the cardinalities of

each g-sum will be g times the number of g-sums which is exactly (2i+3) · ni where 2i+3 = g.

Thus the sum of the cardinalities of all r sums of SCB is equal to
∑ z−3

2
i=1 (2i+ 3)ni = |DC

B|. Thus

|DC
B| =

r∑
i=1

|Si|

The following theorem provides us with the possible sum decompositions for a cap of a given

size and dimension.

Theorem 3.2.3 (The Decomposition Theorem). Let C ⊆ Zd
2 be a k-cap of dimension d with

basis B. Then the possibilities for the sum decomposition DC
B = (5n1 , 7n2 , . . . , z

n z−3
2 ) where z is

the greatest odd integer less than or equal to d+ 1 are the non-negative integer solutions to the

equation

n1 + · · ·+ n z−3
2

= k − d− 1.

Proof. This follows directly from the fact that there are k − d − 1 sumsets in SCB and any

combination of sum-sizes are possible in theory. Knowing there can be anywhere from 0 to

k−d−1 sumsets of any size (of which there are z−3
2 sizes) such that the total number of sumsets

is equal to k − d − 1, it follows that the possibilities for the sum decompositions of C − B are

the non-negative integer solutions to the equation

n1 + · · ·+ n z−3
2

= k − d− 1.

What this theorem tells us is there there will be several cases for sum decompositions when

looking at caps. Given that we have k − d − 1 sums that we are dividing into z−3
2 sum sizes,
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we can use the familiar box and ball problem that asks how many ways there are to arrange

x balls into y boxes. In total, there will be
(k−d−2− z−3

2
k−d−1

)
cases for sum decompositions when

searching for the share strings of k-caps of dimension d (where z is the greatest odd number less

than or equal to d+1). If we know that there are q sum sizes and r sumsets, then the number

of possible sum decompositions is
(
r+q−1

r

)
. Luckily, there are generally many cases that cannot

exist because of restrictions on larger sums.

Example 3.2.4. Let C ⊆ Z8
2 be a 15-cap of dimension 8 with basis B. Then there will be(k−d−2− z−3

2
k−d−1

)
=
(15−8−2− 9−3

2
15−8−1

)
=
(
8
6

)
= 28 possible sum decompositions. We can also come to this

conclusion from the fact that |B| = d + 1 = 9 so SCB can contain 5,7, and 9-sums. Since there

are |SCB| = 15 − 8 − 1 = 6 sumsets and 3 sum sizes it follows that there will be
(
6+3−1

6

)
= 28

possible sum decompositions. We can list the possible options required from The Decomposition

Theorem to verify:

(56), (76), (96)

(55, 71), (55, 91), (51, 75), (75, 91), (51, 95), (71, 95),

(54, 72), (54, 92), (52, 74), (74, 92), (52, 94), (72, 94)

(54, 71, 91), (51, 74, 91), (51, 71, 94)

(53, 72, 91), (53, 71, 92), (52, 73, 91), (51, 73, 92), (52, 71, 93), (51, 72, 93),

(53, 73), (53, 93), (73, 93)

(52, 72, 92)

Luckily, we will prove in Chapter 5 that there can be at most one 9-sum, at most four 7-sums,

and no pairings of a 9 and 7-sum in dimension 8. Thus our list will diminish to

(56), (55, 71), (55, 91), (54, 72), (53, 73), (52, 74)

which is a much more manageable list of decompositions to explore.

Definition 3.2.5. Let k, d ∈ N and suppose k ≥ d+ 1.
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1. We denote the set of share strings for k-caps of dimension d as γdk .

2. Suppose d ≥ 4. We denote the set of share strings for k-caps of dimension d with string

decomposition D as γdk(D).

3. We denote the set of possible i-counts that arise in γdk as Xd
k (i).

△

For every dimension and cap size, there will be a finite set of possible share strings that we

denote as γdk . We can further divide our sets by the different sum decompositions of the strings

which we denote as γdk(D). Once we determine the possible share strings for a cap size in a given

dimension, we can also determine what the possible xi values are. Table 4.4.2 provides a list of

the sets of possible i-counts for caps of dimension 7.

Lemma 3.2.6. Let k, d ∈ N and suppose k ≥ d+ 1. Let i ∈ {0, . . . , k − d− 1}.

1. Xd
k (i) ⊆ {0, . . . , d+ 1}.

2. If γdk = ∅ and γdk−1 ̸= ∅ then M(d) = k − 1.

Proof. (1). Given that there are d+1 basis points of which anywhere between 0 and d+1 can

be shared by i sumsets in SCB, it follows that Xd
k (i) ⊆ {0, . . . , d+ 1}.

(2). If a k-cap of dimension d exists then there will exist a share string in γdk . Thus if γdk is

empty then there exist no k-cap of dimension d. Then there cannot exist caps of dimension d of

greater size than k−1 since there are no k sized subcaps that can possibly exist. If γdk−1 ̸= ∅ then

there exists a share string for a (k− 1)-cap of dimension d, and since there exist no (k+n)-caps

of dimension d where n ∈ N ∪ {0} it follows that k-caps of dimension d are maximal.

The second fact from lemma 3.2.6 is another way of interpreting the Share String Theorem

that we will use when proving the maximal cap sizes for dimensions.
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3.3 Two Important Theorems for Using Share Strings

We now understand how to determine the share string of a cap given a basis and a set of

dependence relations (or sums). The main goal, however, is to determine the maximal cap sizes

for different dimensions which we will prove by determining the impossibility of share strings

for caps in said dimension. We know that given a cap size k and a dimension d, there will be

k− d entries in the share strings and each entry can be anywhere from 0 to d+1. Thus we have

(d+ 1)k−d possibilities which with high dimensions and cap sizes is a lot to look at.

Could the string (9, 2, 6, 12, 0, 1) map to an existing 19-cap of dimension 13? None of the

entries are less than 0 or greater than d + 1 = 13 + 1 = 14 so we can’t rule it out from that

property. However, seeing that we have only 14 basis points to work with and that x3 = 12, all

but two of the basis points must be 3 shares and yet the string tells us that there are several

0, 1, 2, and 5-shares in the basis. Thus it is not possible for (9, 2, 6, 14, 0, 1) to map to a cap

of dimension 13. We will prove in general that the sum of the entries of a share string must be

equal to the number of basis points.

Theorem 3.3.1. Let C ⊆ Zd
2 be a k-cap of dimension d with basis B. Let r = k − d− 1. Then

r∑
i=0

xi = d+ 1.

Proof. We will first prove that the Xi’s are a disjoint partition of B by proving
⋃r

i=0Xi = B

and then proving that all Xi’s are disjoint.

Suppose for the sake of contradiction that B −
⋃r

i=0Xi ̸= ∅. Then there exists a point b ∈ B

such that b ̸∈
⋃r

i=0Xi. Then |Sb| ̸∈ {0, . . . , r} which is a contradiction since there exists a share

value in {0, . . . , r} for every point in B from Definition 3.1.6. Thus B −
⋃r

i=0Xi = ∅.

Suppose for the sake of contradiction that
⋃r

i=0Xi − B ̸= ∅. Then there exists point b and

some n ∈ {0, . . . , r} such that b ∈ Xn and b ̸∈ B which is a contradiction since Xn ⊆ B which

we know from Proposition 3.1.4. Thus
⋃r

i=0Xi −B = ∅. Thus

B =

r⋃
i=0

Xi.
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Let m,n ∈ {0, · · · , r} where m ̸= n. Suppose for the sake of contradiction that Xm ∩Xn ̸= ∅.

Then there exists a point b such that b ∈ Xm and b ∈ Xn. Then m = |Sp| = n ̸= m which is a

contradiction so Xm ∩Xn = ∅.

Thus, we can conclude that the set of Xi’s are a disjoint partition of B. Thus

d+ 1 = |B| =

∣∣∣∣∣
r⋃

i=0

Xi

∣∣∣∣∣ =
r∑

i=0

|Xi| =
r∑

i=0

xi.

Now we know that the entries of a share string have to add up to one greater than the

dimension. This gives us enough information to find the share strings for caps of dimensions

0-3.

Theorem 3.3.2. Let d ∈ {0, 1, 2, 3}. Then M(d) = d+ 1.

Proof. Let C ⊆ Zd
2 be a k-cap of dimension d with basis B. Then |B| = d + 1 ≤ 4. Because

there are not enough basis points to form a sum, it can only be the case that k − d− 1 = 0 so

k = d+ 1.

Using Theorem 3.3.1 we get that x0 = d + 1 = k so ψC
B = (d + 1). Suppose M(d) > d + 1.

Then there exists a (d + 2)-cap C ⊆ Zd
2 indicating that there will be (d + 2) − d − 1 = 1 sum

which we determined cannot be the case. Thus M(d) = d+ 1.

We can archive sets of possible share strings given a cap size and dimension. In this case, the

possible cap size and maximal cap size are both 1 plus the dimension:

d γdd+1 M(d)

0 {(1)} 1

1 {(2)} 2

2 {(3)} 3

3 {(4)} 4

Our archive will become more fruitful once we begin to work in dimensions that actually

allow for sums to be produced. Our full archive up until 15-caps of dimension 8 can be found

in Appendix A.2
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Could the string (0, 3, 6, 2, 1) with the sum decomposition (52, 91, 111) map to an existing 16

cap of dimension 11? We can see that the sum of the entries is equal to 12 which is one greater

than the dimension so the string cannot be ruled out by Theorem 3.3.1. The decomposition

value, equal to 5+5+9+11 = 30, indicates that the basis points will be shared across the sums

30 times. Looking at the string, we can decipher that 3 basis points will be shared by one sum,

6 will be shared by two (totalling 12 shares), 2 will be shared by three (totaling 6 shares) and 1

will be shared by four, totalling 3+12+6+4=25 shares across the sums which is contradictory

to the 30 we require given our sum decomposition. We will prove that the decomposition value

must be equal to the sum of each i-count multiplied by i.

Theorem 3.3.3. Let C ⊆ Zd
2 be a k-cap of dimension d with basis B. Let r = k − d− 1. Then

|DC
B| =

r∑
i=1

i · xi.

Proof. Let S = SCB and let D = DC
B. Let S1, . . . , Sr be the sumsets of S. Let p ∈ B and let

S ∈ SCB.

Observe that if p ∈ S then |{p} ∩ S| = 1 and if p ̸∈ S then |{p} ∩ S| = 0. Thus we can

count the number of points in S using the equation |S| =
∑

b∈B |{b} ∩S|. Thus we can sum the

cardinalities of each sum with the following equation:

r∑
i=1

|Si| =
r∑

i=1

∑
b∈B

|{b} ∩ Si| =
∑
b∈B

r∑
i=1

|{b} ∩ Si|.

because p is shared by |Sp| sumsets of the r sumsets, we can deduce that
∑r

i=1 |{p}∩Si| = |Sp|.

Thus
r∑

i=1

|Si| =
∑
b∈B

|Sb|.

From Lemma 3.2.2 we know that D =
∑r

i=1 |Si| =
∑

b∈B |Sb|. Using the fact that the Xi’s

form a disjoint partition of B which was proved in Theorem 3.3.1, we can conclude that

D =
∑
b∈B

|Sb| =
r∑

i=0

∑
b∈Xi

|Sb| =
r∑

i=0

xi∑
j=1

i =
r∑

i=1

i · xi.
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Theorems 3.3.1 and 3.3.3 give us enough information about the requirements for share strings

for us to begin looking at the next set of dimensions with relative ease. We will first want to

prove a simple fact about r-counts.

Theorem 3.3.4. Let C ⊆ Zd
2 be a k-cap of dimension d with basis B. Let r = k − d− 1. Then

xr ≤ min{|S1|, . . . , |Sr|}.

Proof. The value of xr is the number of basis points that are shared by all the sumsets in

SCB. Thus xr must be less than or equal to the size of the smallest sumset or else there would

be more points shared by said sumset than it’s cardinality which is not possible. Thus xr ≤

min{|S1, . . . , Sr|}.

This theorem is relatively intuitive and only gives only a little bit more information regarding

the r-count. However, it can come in handy when whittling down the options for possible share

strings of caps whose sizes are small relative to their dimensions.

Theorem 3.3.5. M(4) = 6.

Proof. Let C ⊆ Z4
2 be a k-cap of dimension 4 with basis B = {b1, . . . , b5} and share string

ψC
B = (x0, . . . , xk−5). Let S = SCB and let D = DC

B. Then k ≥ |B| = 5 and all sumsets are 5-sums

and D = (5k−5).

Suppose k = 5. Then from Theorem 3.3.1 we get that x0 = 5 so ψC
B = (5). Thus γ45 = {(5)}.

Suppose k = 6. Then |S| = 6 − 4 − 1 = 1 so there is one 5-sum S ∈ S. From Theorem 3.3.3

we get that x1 = |DC
B| = |S| = 5. Theorem 3.3.1 tells us that x0 + x1 = 5 so x0 = 0. Thus

ψC
B = (0, 5) and γ46 = {(0, 5)}.

Suppose k = 7. Then |S| = 7− 4− 1 = 2 so there are two 5-sums S1, S2 ∈ S. From Theorem

3.3.3 we get that x1 + 2x2 = |DC
B| = |S1| + |S2| = 10 and from Theorem 3.3.1 we get that

x0 + x1 + x2 = 5. By rearranging our equations, we can see that

5− x0 − x2 = x1 = 10− 2x2.

Theorem 3.3.4 tells us that x2 ≤ 5 and so by using the fact that x0 ≥ 0, we get that

5 ≥ x2 = x0 + 5 ≥ 5
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so x2 = 5 and x0 = x1 = 0. This indicates that both sumsets share all 5 basis points b1, . . . , b5 ∈

B. Thus s1 = b1 + · · ·+ b5 = s2 which contradicts the fact that the points in C −B are distinct

so there are no share strings for 7-caps of dimension 4. Thus the Share String Theorem allows

us to conclude that M(4) = 6.

We can add the following sets to our archive:

γ45 = {(5)} γ46 = {(0, 5)}

3.4 Dimension 5 and Some More Important Theorems

In the max-cap proof of dimension 4, we showed that if two 5-sums shared 5 basis points, then

the respective dependent points would be equal which we are assuming not to be the case when

looking for possible caps. We can generalize this fact about any two like-sized sums as well as

any two sums that have a size difference of 2.

Theorem 3.4.1. Let i, j ≥ 5 be odd integers where j = i+ 2.

1. Any two i-sums can share at most i− 2 points in a cap.

2. An i and a j sum can share at most i− 1 points in a cap.

Proof. (1). Suppose there exist a cap C ⊆ Zd
2 of dimension d with basis B with two i-sums

S1, S2 ∈ SCB that share more than i−2 points. We start with the fact that an i-sum can share no

more than i points. Suppose for the sake of contradiction that S1 and S2 share exactly i points.

Then there exists i points b1, . . . , bi ∈ S1∩S2 where s1 = b1+ · · ·+bi = s2 Which contradicts the

fact that the points in C−B are distinct. Thus no two i-sums can share more than i−1 points.

Suppose S1 and S2 share i− 1 points. Then there exists i− 1 points b1, . . . , bi−1 ∈ S1 ∩S2 and a

point p ∈ S1−S2 and a point q ∈ S2−S1 where s1 = p+b1+· · ·+bi−1 and s2 = q+b1+· · ·+bi−1.

Thus

s1 + p = b1 + · · ·+ bi−1 = s2 + q

so the points in {s1, s2, p, q} ⊆ C form a quad which is a contradiction since we defined C to be

a cap. Thus any two i-sums can share at most i− 2 points.
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(2). Suppose there exist a cap C ⊆ Zd
2 of dimension d with basis B with an i-sum Si ∈ SCB

and a j-sum Sj ∈ SCB that share more than i − 1 points. We start with the fact that an i-sum

can share at most i points. Suppose Si and Sj share exactly i points. Then there exists i points

b1, . . . , bi ∈ Si∩Sj and two points p, q ∈ Sj−Si where si = b1+· · ·+bi and sj = b1+· · ·+bi+p+q

so

si = b1 + · · ·+ bi−1 = sj + p+ q

so the points in {si, sj , p, q} ⊆ C form a quad which is a contradiction since we defined C to be

a cap. Thus an i-sum and a j-sum can share at most i− 1 points.

Theorem 3.4.2 (The Dimension 5 Theorem). M(5)=7.

Proof. Let C ⊆ Z5
2 be a k-cap of dimension 5 with basis B. Let S = SCB and let D = DC

B. Then

k ≥ |B| = 6 and all sums are 5-sums and D = (5k−6).

Suppose k = 6. Then from Theorem 3.3.1 we get that x0 = 6. Thus ψC
B = (6) and γ56 = {(6)}.

Suppose k = 7. Then |S| = 7− 5− 1 = 1 so there exists one sum S ∈ S and D = (51). From

Theorem 3.3.3 we get that x1 = |D| = |S| = 5. Then x0 = 1 so ψC
B = (1, 5) and γ57 = {(1, 5)}.

Suppose k = 8. Then |S| = 8 − 4 − 1 = 2 so there are two 5-sums S1, S2 ∈ S and D = (52).

From Theorem 3.3.3 we get that x1 + 2x2 = |D| = |S1|+ |S2| = 10 and from Theorem 3.3.1 we

get that x0 + x1 + x2 = 6. By rearranging our equations we can see that

10− 2x2 = x1 = 6− x0 − x2.

Theorem 3.4.1 tells us that x2 ≤ 3 (since no two 5-sums can share more than 3 points) and

using the fact that x0 ≥ 0 we get that

3 ≥ x2 = x0 + 4 ≥ 4

which is a contradiction so C cannot be a cap. Thus γ58 = ∅ and the Share String Theorem tells

us that M(5) = 7.

We can add the following sets to our archive.
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γ56 = {(6)} γ57 = {(1, 5)}

X5
6 (0) = {6} X5

7 (0) = {1} X5
7 (1) = {5}

In some of the proofs to come, we will be given information by the share string of a cap about

the properties of subsets of the cap. While relatively intuitive, we will want to prove that a

subset of a cap must also be a cap.

Definition 3.4.3. Let C ⊆ Zd
2 be a k-cap of dimension d. Let C ′ ⊆ C. We define C ′ to be a

subcap of C. △

Theorem 3.4.4. Let C ⊆ Zd
2 be a k-cap of dimension d with basis B. Let C ′ be a subcap of C.

1. If C is a cap then C ′ is a cap.

2. If C ′ is not a cap then C is not a cap.

Proof. (1). Suppose for the sake of contradiction that C ′ is not a cap. Then there exists a

quad {a, b, c, d} ∈ C ′ ⊆ C so there exists a quad in C which contradicts the fact that C is a cap.

Thus any subcap must be a cap. (2) is proved by the contrapositive of this proof.

In many of the theorems to come, we will prove or disprove things about share strings that

will involve looking at subcaps.

Theorem 3.4.5. Let k, d ∈ N where k ≥ d + 1 ≥ 5. Let n ∈ N. If n < k −M(d − 1) − 1 then

Xd
k (n) ⊆ {0}.

Proof. We will prove this theorem using the contrapositive. Suppose that Xd
k (n) ̸⊆ {0}. Be-

cause Xd
k (n) ⊆ {0, . . . , d+ 1} there exists some non zero integer between 1 and d+ 1 in Xd

k (n).

Thus there exists a k-cap C ⊆ Zd
2 of dimension d with a basis B with share string ψC

B such that

0 < xn < d + 1. Because xn > 0 it follows that there exists a point b ∈ B such that |Sb| = n.

Thus there exists k − d − 1 − n sumsets in SCB that do not share b. Let A ⊆ C − B be the

set of dependent points that do not contain b in their sums. Then A is in the affine span of



34 CHAPTER 3. SHARE STRINGS

B − {b}. Let C ′ = A ∪ (B − {b}). Because A ⊆ C and B − {b} ⊆ C it follows that C ′ ⊆ C

so Theorem 3.4.4 tells us that C ′ is a cap and B − {b} is a basis for C ′. Then C ′ spans a

(|B − {b}| − 1) = ((d + 1) − 1 − 1) = (d − 1)-flat. Therefore C ′ is affinely equivalent to a cap

that spans dimension d − 1. Using the fact that A and B − {b} are disjoint, we can conclude

that |C ′| = |A∪B−{d}| = |A|+ |B−{b}| = (k− d− 1−n)+ (d+1− 1) = k−n− 1. It follows

that C ′ is affinely equivalent to a (k−n− 1)-cap of dimension d− 1. Thus k−n− 1 ≤M(d− 1)

so n ≥ k −M(d− 1)− 1. By contrapositive, if n < k −M(d− 1)− 1 then Xd
k (n) ⊆ {0}.

Example 3.4.6. Suppose C ⊆ Z7
2 is a 12-cap of dimension 7 with basis B = {b1, . . . , b8} (we

will refer to bi as i) where

s1 = 1 2 3 4 5
s2 = 1 2 3 6 7
s3 = 1 3 5 6 7
s4 = 1 2 4 6 8

We can see that the share string for this cap is ψC
B = (0, 1, 3, 3, 1). Since x1 = 1 < 2 = 12−9−1

where 12 is the cap size and 9 is the maximal cap size of the previous dimension it should follow

that C is not a cap from Theorem 3.4.5.

We can visualize Theorem 3.4.5 using our sums to better understand what it is saying. Know-

ing that S4 is the only sumset that shares b8, we can take a subset of C, namely C − {b8, s4},

that can be spanned by B−{b} since none of the other three dependence relations depend on b8.

Because B′ uses only 7 points to span the other 3, we can deduce that it spans a 6-flat, meaning

C ′ is affinely equivalent to a 10-cap of dimension 6. However, we’ve proved that M(6) = 9 so a

set of 10 points in dimension 6 cannot possibly be a cap so C ′ is not a cap. Theorem 3.4.4 then

allows us to conclude that C cannot possibly be a cap.

The fact proved in Theorem 3.4.5 is very useful when it comes to reducing the cases for

share string possibilities when looking at higher cap sizes relative to the dimension. Knowing

that entry places less that k −M(d − 1) − 1 must be zero (or not exist), there can be at most

M(d−1)−d share string entries that will be non-zero which heavily limits the number of possible

string cases.
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The next theorem we will prove will be the first we have that will be able to invalidate share

strings using the possible share strings of previous cap sizes of the same dimension. Given that

we will have more facts of this nature, it will be useful to actually find all of the share strings

for the different cap sizes of each dimension for disproving later cases.

Theorem 3.4.7. Let C ⊆ Zd
2 be a k-cap of dimension d with basis B with share string

(x0, . . . , xr).

1. xr ≤ max(Xd
k−1(r − 1)).

2. If xr = max(Xd
k−1(r − 1)) then xr−1 = 0.

Proof. (1). Let n = max(Xd
k−1(r − 1)). Then n is the maximum number of basis points in a

(k− 1)-cap of the same dimension that can be shared by all r− 1 sumsets of said cap. Suppose

for the sake of contradiction that xr > n. Then there are more than n basis points shared by

all r sumsets of C − B. Let s ∈ C − B and let C ′ = C − {s}. Then C ′ is a (k − 1)-cap of

dimension d with basis B where all r − 1 sumsets of C ′ − B share more than n points which

is a contradiction since n is the greatest number of points that can be shared by all sumsets of

(k − 1)-caps of dimension d. Thus it must be the case that xr ≤ max(Xd
k−1(r − 1)).

(2). Let n = max(Xd
k−1(r − 1)). Suppose for the sake of contradiction that xr = n and

xr−1 > 0. Then there exists n basis points shared by all sumsets of C−B and at least one basis

point b that is shared by all but one sumset S ∈ SCB. Let C ′ = C−{s}. Then C ′ is a (k− 1)-cap

of dimension d with basis B and all of the sumsets of C ′ −B share b. Because there are n point

in B shared by all sums of C−B (which does not include b) it must be the case that those same

points are also shared by all of the sumsets of C ′−B. Thus there are at least n+1 basis points

shared by all sums of C ′−B which is a contradiction since (k− 1)-cap of dimension d can share

at most max(Xd
k−1(r − 1)) = n points. Thus it cannot be the case that xr = n and xr−1 > 0 so

it must be the case that xr−1 = 0 if xr = max(Xd
k−1(r − 1)).

As we have seen throughout our max-cap proofs for each dimension, the number of share

strings to check increases as well as the number of possible share strings that prove to be valid.
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This makes sense, as the possibilities for different kinds of caps will increase as the dimension

increases and more possible sum arrangements arise. This leads us to begin asking things like

for how many dimensions will we be able to use share strings to prove the max-cap size with

the theorems we have? We will see to what extent our theorems get us through dimensions 6

through 8 in the next chapter.



4
Dimensions 6 and 7

4.1 Dimension 6 and the “Sum All” Theorem

Before proving the Dimension 6 Theorem, we must prove a theorem that eliminates caps de-

pending on the size of the point dependency that results when all the points in the sumsets are

added. We know that there can be no 2 or 4 point dependencies in our caps since they’d indicate

that either two points are equal or a quad is present. We will show that it is sometimes possible

to tell if either of these dependencies will show up in a cap using its share string.

Theorem 4.1.1. Let (x0, . . . , xr) be the share string of set C ⊆ Zd
2 with respect to basis B.

1. If r +
∑

i odd xi = 4 then C is not a cap.

2. If r +
∑

i odd xi = 2 then C is not a cap.

Proof. From the hypothesis we know that there are r dependent points that make up the set

C − B. The sum of these dependent points will be equal to the sum of the basis points shared

by the respective sumsets of each dependent point as per Proposition 3.1.4. From The Even

Odd Theorem we know that the basis points shared by an odd number of sums will be added

an odd number of times and thus result in themselves while those shared by an even number of

sums will be added an even number of times and thus get cancelled out. Thus the sum of the r

affinely dependent points in C−B will equal the sum of the basis points that are shared an odd

37
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number of times. There are
∑

i odd xi basis points shared an odd number of times so the size

of the resulting point dependency will be r +
∑

i odd xi. If there are 4 points in the dependency

then a quad exists in C and if there are 2 points in the dependency then the two points in C

are equal. Both of these cases are not possible if C is a cap. Thus if r +
∑

i odd xi is equal to 4

or 2 then C is not a cap.

Example 4.1.2. Suppose C ⊆ Z7
2 is an 11-cap of dimension 7 with basis B = {b1, . . . , b8} and

share string ψC
B = (0, 1, 7, 0). Then there are 3 dependent point s1, s2, s3 ∈ C − B. The string

tells us that there are 7 basis points shared by two sumsets and 1 basis point shared by one

of the sumsets. The sums may look something like the following arrangement (where we are

denoting bi as i):

s1 = 1 2 3 4 5
s2 = 1 2 3 6 7
s3 = 4 5 6 7 8

By adding the points in C−B we get s1+s2+s3 = b8 which indicates that s1, s2, s3, and b8 form

a quad so C cannot be a cap. Because b8 was the only basis point shared by an odd number of

sumsets, it is the only point that is not cancelled out in the sum of the basis points. We can

also see that r +
∑

i odd xi = 3 + 1 = 4 which verifies that our equation gives us the size of the

point dependency when we add the points in C −B. Thus when we “sum all” of the dependent

points of a supposed cap and are left with a 2 or 4 point dependency, we can conclude that the

share string of the cap will be impossible and thus the sum of the number of dependent points

and the odd-shares cannot be 2 or 4.

Theorem 4.1.3 (The Dimension 6 Theorem). M(6) = 9.

Proof. Let C ⊆ Z6
2 be a k-cap of dimension d with basis B. Let S = SCB and let D = DC

B. Then

k ≥ |B| = 7 and sums in S are either 5-sums or 7-sums.

suppose k = 7. Then from Theorem 3.3.1 we get that x0 = 7. Thus ψC
B = (7) and γ67 = {(7)}.

Suppose k = 8. Then S = 8 − 6 − 1 = 1 so there exists one sum S ∈ S. The Decomposition

Theorem tells us that the possible sum decompositions are (51) and (71). Case 1: Suppose

D = (51). Then from Theorems 3.3.1 and 3.3.3 we get that x0 + x1 = 7 and x1 = |D| = |S| = 5
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k γ6k
7 (7)
8 (2, 5), (0, 7)
9 (0, 4, 3)

Figure 4.1.1: Share Strings of Dimension 6

so x0 = 2. Thus ψC
B = (2, 5) and γ68(5

1) = {(2, 5)}. Case 2: Suppose D = (71). Then from

Theorems 3.3.1 and 3.3.3 we get that x0 + x1 = 7 and x1 = |D| = |S| = 7 so x0 = 0. Thus

ψC
B = (0, 7) and γ68(7

1) = {(0, 7)}.

Suppose k = 9. Then S = 9− 6− 1 = 2 so there exist two sum S1, S2 ∈ S. Theorem 3.3.1 tells

us that x0 + x1 + x2 = 7. From Theorem 3.4.5 we can conclude that x0 = 0 since all xi’s where

i < k −M(d − 1) − 1 = 9 − 7 − 1 = 2 must be equal to 0 so x1 + x2 = 7. The Decomposition

Theorem tells us that our options for sum decompositions are (52), (51, 71), and (72). Case 1:

Suppose D = (52). Then from Theorem 3.3.3 we get that x1 + 2x2 = |D| = 10 so x1 = 4 and

x2 = 3 and thus ψC
B = (0, 4, 3) and γ69(5

2) = {(0, 3, 4)}. Case 2: Suppose D = (51, 71). Then

Theorem 3.3.3 tells us x1 + x2 = |D| = 12 so x1 = 2 and x2 = 5. Thus the 5-sum and the 7-sum

share 5 points which is not possible from Theorem 3.4.1 so γ69(5
1, 71) = ∅. Case 3; Suppose

DC
B = (72). We can easily see that both 7 sums must share the seven basis points in B. This is

a contradiction since Theorem 3.4.1 tells us any two 7-sums can share at most 5 points. Thus

γ69(7
2) = ∅.

Suppose k = 10. Then S = 10 − 6 − 1 = 3 so there exist three sums S1, S2, S3 ∈ S. From

the k = 9 case we saw that no 9-caps with 7-sums exist so the only possible sum decomposition

is (53) and {S1, S2, S3} must all be 5-sums. Then from Theorems 3.3.1 and 3.3.3 we get that

x0 + x1 + x2 + x3 = 7 and x1 + 2x2 + 3x3 = |D| = 15. From Theorem 3.4.5 we can conclude

that x0 = x1 = 0 since all xi’s where i < k −M(d − 1) − 1 = 10 − 7 − 1 = 2 must be equal to

0. Thus x2 + x3 = 7 and 2x2 + 3x3 = 15 so ψC
B = (0, 0, 6, 1). Theorem 4.1.1 tells us that ψC

B

cannot be a possible share string since k − d− 1 +
∑

i oddxi
= 10− 6− 1 + 1 = 4 indicating any

set of points that can map to ψC
B will necessarily contain a quad. Thus γ610 = ∅ so The Share

String Theorem tells us that M(6) = 9.
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While not the focus of this project, we can determine that (0, 7) will map to a complete 8-cap

of dimension 6. Let C ⊆ Z6
2 be an 8-cap of dimension 6 with basis B and share string (0, 7).

Then DC
B = (71) meaning the single point s ∈ C − B is a 7-sum. Because there are no sum

decompositions with 7-sums for 9-caps, it follows that there is no point p ∈ Z6
2 − C such that

C ∪ {p} is a cap since it would require that both s and p be 5-sums which is not the case due

to s being a 7-sum. Thus 8-caps that map to (0,7) are complete.

4.2 8, 9, and 10-Caps of Dimension 7

Due to the increase in share string possibilities, we will break up theM(7) theorem into separate

proofs. We will first prove a general theorem that tells us what all the share strings with non-zero

x0’s will be in a dimension as it pertains to the previous dimension.

Theorem 4.2.1. Let k, d ∈ N. Suppose k ≥ d + 1 ≥ 5. Let r = k − d − 1. Let n, x1, . . . , xr ∈

{0, . . . , d+ 1}. Suppose n > 0. Then (n, x1, . . . , xr) ∈ γdk if and only if (0, x1, . . . , xr) ∈ γd−n
k−n.

Proof. =⇒ Suppose (n, x1, . . . , xr) ∈ γdk . Then there exists a k-cap C ⊆ Zd
2 of dimension d

with basis B such that ψC
B = (n, x1, . . . , xr). Then there exists a set P of n points in B that

are not shared by any sumsets in SCB. Because none of the points in C − B are dependent

upon the points in P , it follows that B − P is a basis for C − B. Thus C − P is a |C − P | =

|C| − |P | − |P −C| = (k− n)-cap spanned by |B −P | = |B| − |P | − |P −B| = d+1− n points,

meaning C − P spans a (d− n)-flat. Therefore C − P is affinely equivalent to a k − n cap that

spans dimension d−n. Let {X ′
0, . . . , Xr} be the count sets of C−P with respect to B. Because

the the sumsets of of C−B are spanned by B−P it follows that X ′
i = Xi for 1 ≤ i ≤ r. We can

conclude that X ′
0 = ∅ since we subtracted all of the basis points that were not shared by any

sums when creating C − P . C − P must be a cap since it is a subset of C. Thus there exists a

(k − n)-cap of dimension d− n with share string (0, x1, . . . , xr), meaning (0, x1, . . . , xr) ∈ γd−n
k−n.

⇐= Suppose (0, x1, . . . , xr) ∈ γd−n
k−n. Then there exists a (k − n)-cap C ⊆ Zd−n

2 of dimension

d − n with basis B such that ψC
B = (0, x1, . . . , xr). It follows that there must be a (k − n)-cap

C ′ ⊆ Zd
2 with basis B′ that spans a (d− n)-flat in dimension d such that ψB′

C′ = (0, x1, . . . , xr).
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Thus there are n points P = {p1, . . . , pn} ⊆ Zd
2 that are affinely independent of each other and

the points in C ′ meaning C ′ ∪P is a |C ′ ∪P | = |C ′|+ |P | − |C ′ ∩P | = (k− n+ n) = k-cap that

spans dimension (d− n) + n = d. The points in P are thus not shared by any of the sumsets of

the points in C ′−B′ so SC′∪P
B′∪P = SCB. Let X ′

0, . . . , X
′
r be the share sets of C

′− (B′∪P ). Suppose

for the sake of contradiction that X ′
i ̸= Xi for some 1 ≤ i ≤ k − d − 1. Then there exists a

point b ∈ B ∪ P that are shared by i sumsets in SC′∪P
B′∪P by not in SCB, or vice versa, which is a

contradiction since we showed that SC′∪P
B′∪P = SCB. Thus X ′

i = Xi for 1 ≤ i ≤ k − d− 1. Observe

that X ′
0 = X0 ∪ P since X0 are the points in B′ that are not shared by any sumsets of SC′∪P

B′∪P

and P are the points we added to C ′ that were independent of any points in C ′ and thus are not

shared by any sumsets of SC′∪P
B′∪P . Thus x

′
0 = |X0∪P | = |X0|+|P |−|X0∩P | = 0+n+0 = n. Thus

there exists a k-cap of dimension d with the share string (n, x1, . . . , xr) so (n, x1, . . . , xr) ∈ γdk .

Therefore (n, x1, . . . , xr) ∈ γdk if and only if (0, x1, . . . , xr) ∈ γd−n
k−n.

This theorem is useful because when all of the possible share strings of a dimension are known,

then all of the share strings with x0 ̸= 0 in the next dimension are also known. This fact, like

many of the others we have proved, reduces the amount of cases that need to be checked by

allowing us to set x0 = 0 for the remainder of our calculations.

Lemma 4.2.2. (8), (1, 7), (3, 5), and (1, 4, 3) are all the share strings for caps of dimension 7

such that x0 ̸= 0.

Proof. Let C ⊆ Z7
2 be a k-cap of dimension d with basis B. Suppose x0 > 0. Then from

Theorem 4.2.1 and referring to Figure 4.1.1 we get that ψC
B could be equal to (8), (1, 7), (3, 5),

or (1, 4, 3) and no other share strings with x0 ̸= 0 exist.

Now when searching for share strings, we do not have to worry about the case in which x0 = 0

which effectively eliminates an entire variable from cases and thus allowing for less cases to be

checked. We will also want to know in advance if we can exclude any sum decompositions from

our search to limit the number of cases we have to check.

Lemma 4.2.3. A set of sumsets of a cap of dimension 7 cannot contain more than one 7-sum.
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Proof. Let C ⊆ Z7
2 be a k-cap of dimension d with basis B = {b1, . . . , b8}. Suppose there are

two 7-sums S1, S2 ∈ SCB. Then S1 and S2 each share all but one point in B. Without loss of

generality suppose b1 ̸∈ S1 and b2 ̸∈ S2. Then six points, namely b3, . . . , b8 are shared by S1

and S2 which is a contradiction since Theorem 3.4.1 tells us that any two 7-sums can share at

most 5 points. The same logic can be used to show that a similar contradiction will arise both

sumsets exclude the same basis point. Thus a set of sumsets of a cap of dimension 7 cannot

contain more than one 7-sum.

With this fact, we can see that the sum decomposition of a cap of dimension 7 will contain at

most one 7-sum, so there will be at most 2 possibilities for sum decompositions when working

in dimension 7. More explicitly, with a sum decomposition for a k-cap of dimension 7 where

D = (5n1 , 7n2), it will either be the case that n1 = k − d− 2 and n2 = 1, or n1 = k − d− 1 and

n2 = 0.

Theorem 4.2.4. γ78 = {(8)} and γ79 = {(3, 5), (1, 7)}.

Proof. Let C ⊆ Z7
2 be an 8-cap of dimension 7 with basis B. From Theorem 3.3.1 we get that

x0 = 8 so there are no share strings other than (8) for 8-caps of dimension 7.

Let C ⊆ Z7
2 be a 9-cap of dimension 7 with basis B such that x0 = 0. Then |SCB| = 9−7−1 = 1

so there exists one sum S ∈ SCB and it is either the case that DC
B is equal to (51) or (71). Thus

|DC
B| = 5 or |DC

B| = 7. From Theorem 3.3.1 and 3.3.3 we get that x0+x1 = 8 and that x1 = |DC
B|.

Because there is no solution for x1 when x0 = 0 we can conclude that there are no strings other

than (3, 5) and (1, 7) for 9-caps of dimension 7.

Theorem 4.2.5. γ710 = {(1, 4, 3), (0, 6, 2), (0, 4, 4)}

Proof. Let C ⊆ Z7
2 be an 10-cap of dimension 7 with basis B such that x0 = 0. Let S = SCB

and let D = DC
B. Then |S| = 10− 7− 1 = 2 meaning there are 2 sums S1, S2 ∈ S. The possible

sum decompositions are (52), (51, 71), and (72) from The Decomposition Theorem. From Lemma

4.2.3 we know there can be at most one 7-sum in S so it cannot be the case that D = (72).
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From Theorem 3.3.1 and 3.3.3 we get that x1 + x2 = 8 and x1 + 2x2 = |D|. For D =

(52) we get that ψC
B = (0, 6, 2) and for D = (51, 71) we get that ψC

B = (0, 4, 4). Thus γ710 =

{(1, 4, 3), (0, 6, 2), (0, 4, 4)}.

We now get to a point where we are repeating the same algorithm over and over again to

find possible share strings while only changing a few simple parameters. We can use a computer

program to calculate the possibilities for caps in the manner we have been doing without having

to spend all of our time doing algebra. We use variations of the Processing code in Figure 4.2.1

to compute the possible share strings given a dimension, cap size, and sum decomposition with

the constraints of Theorems 3.3.1, 3.3.3, 3.4.5 4.1.1, and 4.3.1. Later variations will also include

Theorem 4.3.3.

4.3 11-Caps and the Pair-Share Theorem

In the proof for 11-caps, we will run into a case for a share string that we can rule out not by

Theorem 4.1.1 but by a slightly different property that uses the same logic which we will prove

next.

Theorem 4.3.1. Let C ⊆ Z7
2 be a k-cap of dimension 7 with basis B. Then it cannot be the

case that

k +
∑
i odd

xi = 18.

Proof. Suppose for the sake of contradiction that k +
∑

i odd xi = 18. Because |C − B| =

|C|− |B| = k−8 we can conclude that |C−B|+
∑

i odd xi = 10 which indicates that the number

of points in C − B added to the number of basis points with odd share-values is 10. The Even

Odd Theorem tells us that the sum of the points in C −B will be equal to the sum of the basis

points with odd share values. This of course indicates there is a 10 point dependency in C that

includes the dependent points and the basis points with odd share values. From Theorem 3.4.4

we know that these 10 points form a 10-cap which we will call C ′. Because M(6) = 9 it cannot

be the case that C ′ span a dimension lower than 7 so it must span dimension 7. Thus there exists
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int d = 7; //dimension

int k = 11; //cap size

int n1 = 2; //number of 5-caps

int n2 = 1; //number of 7-caps

int dv; //decomposition value

dv = 5*n1 + 7*n2;

r = k - d - 1;

for(int x0=0; x0<=d+1; x0++){ //r+1 for loops should be used

for(int x1=0; x1<=d+1; x1++){ //unless Theorem 3.4.5 is taken

for(int x2=0; x2<=d+1; x2++){ //into consideraiton

for(int x3=0; x3<=d+1; x3++){

for(int x4=0; x4<=d+1; x4++){

for(int x5=0; x5<=d+1; x5++){ //Theorem

if((x0 + x1 + x2 + x3 + x4 + x5 == d+1 ) //3.3.1

&& (x1 + 2*x2 + 3*x3 + 4*x4 + 5*x5 == dv) //3.3.3

&& (k-d-1 + x1 + x3 + x5 != 4 ) //4.1.1

&& (k-d-1 + x1 + x3 + x5 != 2 ) //4.1.1

&& (k-d-1 + x1 + x3 + x5 != 10 ) //4.3.1 (d = 7 only)

&& (x0 == 0) ){ //3.4.5

println(x0, x1, x2, x3, x4, x5);

}}}}}}}

Figure 4.2.1: The share string finder: a Processing code that computes the possible share strings
of a given cap size, dimension, and sum decomposition. This specific code computes the possible
share strings for 11 caps of dimension 7 with the sum decomposition (52, 71).
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a basis B′ for C ′ with 8 points meaning there exists 10− 8 = 2 sumsets S1, S2 ∈ SC′
B′ . Knowing

that there can be at most one 7-sum in the set of sumsets of a cap of dimension 7, we know that

at least one of S1 and S2 is a 5-sum, say S1. Then there exists 5 basis points b1, . . . , b5 ∈ B′ such

that s1 = b1 + · · ·+ b5. Observe that there exists 3 other basis points {b6, b7, b8}. We know that

the points in C ′ sum to 0 so s2 + b6 + b7 + b8 = s2 + b6 + b7 + b8 + (s1 + b1 + · · ·+ b5) = 0. Thus

s2, b6, b7, and b8 form a quad meaning C ′ is not a cap and thus C is not a cap which contradicts

our hypothesis. Thus it cannot be the case that k +
∑

i odd xi = 18.

Theorem 4.3.2. γ711 = {(0, 2, 5, 1), (0, 3, 3, 2), (0, 1, 5, 2)}.

Proof. Let C ⊆ Z7
2 be an 11-cap of dimension 7 with basis B. Let S = SCB and let D = DC

B.

Then S = 11−7−1 = 3 meaning there are 3 sums in S. Thus the options for sum decompositions

are (53), (52, 71), (51, 72), and (73). The latter two decompositions cannot exist from Theorem

4.2.3.

Case 1: Suppose D = (53). Then |D| = 15. Using our share string finder, we get that the

options for possible share strings are (0, 3, 3, 2) and (0, 2, 5, 1), and (0, 4, 1, 3). Observe that

18 = 11 + 4 + 3 = k +
∑

i odd xi so Theorem 4.3.1 tells us that (0, 4, 1, 3) is not a possible share

string for C.

Case 2: Suppose D = (52, 71). Then |D| = 17. Using our share string finder, we get that the

options for possible share strings are (0, 2, 3, 3) and (0, 1, 5, 2). We will disprove the possibility

of (0, 2, 3, 3) in example 4.3.4 using the Pair-Share Theorem.

The next theorem will look at how the sum decomposition and the share string of a cap must

adhere to a certain property. When any basis point is shared by two or more sumsets, we can

calculate the number of pairs of sumsets that share the point. For example if a basis point b is

a 4-share, then there are 4 sums that share b and
(
4
2

)
= 6 pairs of sumsets that share b. If the 4

sums are S1, . . . , S4, then

b ∈ S1 ∩ S2, b ∈ S1 ∩ S3, b ∈ S1 ∩ S4
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b ∈ S2 ∩ S3, b ∈ S2 ∩ S4, b ∈ S3 ∩ S4.

When looking at any pair of sums, we can use the facts from Theorem 3.4.1 to deduce how

many possible “pair-shares” a sum decomposition can allow. For example, if a decomposition

has two 5-sums and two 7-sums, then the two 5 sums can share at most 3 points, the two 7 sums

can share at most 5 points, and the pairs of one 5 and one 7-sum can share at most 4 points

between them of which there are n1×n2 = 2×2 = 4 pairs. Thus, the sum decomposition allows

for 3 + 5 + 4(4) = 24 of these pair-shares to accumulate between the sumsets.

While a sum decomposition tells us the maximum possible number of pair-shares of a cap, a

share string contains the information to tell us exactly how many pair-shares will arise in the

cap. For each xi, there are
(
i
2

)
pairs of sums that will share each i-share and thus there will be

exactly
r∑

i=2

xi

(
i

2

)
pair-shares between the r sumsets. Knowing how many pair-shares are allowed by the sum

decomposition, we know that such number must be greater or equal to the value of the above

equation. Say the share string of our cap with sum-decomposition (52, 72) is (0, 2, 1, 2, 3). Seeing

that
∑4

i=1 xi = 8 we can conclude that (0, 2, 1, 2, 3) is a potential 12-cap of dimension 7. We

can’t immediately discard the string simply by looking at the x4 value since sets of 5 and 7-sums

are allowed to share up to 3 points collectively. However, we can see that there will exist

4∑
i=2

xi

(
i

2

)
= x2

(
2

2

)
+ x3

(
3

2

)
+ x4

(
4

2

)
= 1(1) + 2(3) + 3(6) = 25

pair-shares which is greater than the greatest possible number allowed by the sum decomposition

(24) which tells us the string cannot exist. We will now prove this fact for any sum decomposition

for a cap of given size of a given dimension.

Theorem 4.3.3 (The Pair-Share Theorem). Let C ⊆ Zd
2 be a k-cap of dimension d where

DC
B = (5n1 , 7n2 , . . . , z

n z−3
2 ) where z is the greatest odd integer less than or equal to d+ 1. Then

ψC
B is only a possible share string if
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z−3
2∑

i=1

(2i+ 1)

(
ni
2

)
+

z−5
2∑

i=1

(2i+ 2)nini+1 +

z−7
2∑

i=1

( z−3
2∑

j=i+2

(2i+ 3)ninj

)
≥

r∑
i=2

xi

(
i

2

)
.

Proof. We can count the number of possible pair-shares allowable by a sum-decomposition by

counting the number of shares allowed by pairs of sums that are the same size, sums of size

difference 2, and sums of size difference 4 and greater.

From Theorem 3.4.1 we know that any two g-sums can share at most g− 2 points. Thus each

pair of the ni total (2i+ 3)-sums in SCB can share at most 2i+ 1 points with each other. There

are
(
ni
2

)
pairs of (2i + 3)-sums. Therefore there are a maximum of (2i + 1)

(
ni
2

)
shares between

pairs of like size sums. Thus there are a maximum of

z−3
2∑

i=1

(2i+ 1)

(
ni
2

)
possible shares between pairs of like-size sums in SCB.

From Theorem 3.4.1 we know that any g and g + 2-sums can share at most g − 1 points.

Thus each pair of the ni total (2i + 3)-sums and ni+1 total (2i + 5)-sums in SCB can share no

more than g − 1 points. In total, there are nini+1 pairs of sums that contain a unique pairing

of a (2i+ 3)-sum and a (2i+ 5)-sum. Therefore there are a maximum of (2i+ 2)nini+1 shares

between such pairs. Therefore there are a maximum of

z−5
2∑

i=1

(2i+ 2)nini+1

possible shares between pairs of sumsets with a size difference of 2 in SCB.

Given that there are no universal sharing restrictions between sums with a size difference of

4 or greater, we can conclude that such sums can only share as many points as the size of the

smallest sum. Thus each pair of the ni total (2i+3)-sumsets and the ni+1+ k
2
total (2i+5+ k)-

sumsets in S can share a maximum of 2i+ 3 points. There are nini+1+ k
2
pairs of such sets, and

thus the culmination of such pairs can have at most inini+1+ k
2
shares. In order to add together

the maximum number of possible shares by such pairs of sums, we will, for each sum size 2i+3

of S such that there is a sum of size 4 or greater, add the maximum number of shares by such



48 CHAPTER 4. DIMENSIONS 6 AND 7

pairs of sums for all sums of size of 4 or greater. Since z−3
2 is the greatest sum size, only sums

up to size z−7
2 will be able to share points with sums of size 4 or greater. Thus there are a

maximum of
z−7
2∑

i=1

( z−3
2∑

j=i+2

(2i+ 3)ninj

)

possible shares between pairs of sumsets with a size difference of 4 or greater in SCB.

Collectively, there are at most

z−3
2∑

i=1

(2i+ 1)

(
ni
2

)
+

z−5
2∑

i=1

(2i+ 2)nini+1 +

z−7
2∑

i=1

( z−3
2∑

j=i+2

(2i+ 3)ninj

)

possible pair shares between pairs of sumsets in SCB given by the requirements of DC
B. Thus, this

value must then be greater than the exact number of pair-shares which we can figure out using

ψC
B . For each point b ∈ Xi, b is shared by i sums. Between such sums there are

(
i
2

)
total pairs

of sums that share p. Given that there are xi basis points in Xi, we can conclude that there are

xi
(
i
2

)
total pair-shares involving xi-shares. Thus there are exactly

r∑
i=2

xi

(
i

2

)
total pair-shares of SCB. Thus for ψC

B to be a possible share string it must be the case that

z−3
2∑

i=1

(2i+ 1)

(
ni
2

)
+

z−5
2∑

i=1

(2i+ 2)nini+1 +

z−7
2∑

i=1

( z−3
2∑

j=i+2

(2i+ 3)ninj

)
≥

r∑
i=2

xi

(
i

2

)
.

Example 4.3.4. Take the share string (0, 2, 3, 3) which maps to an 11-cap of dimension 7. Our

decomposition value is
∑3

i=1 i · xi = 1(2) + 2(3) + 3(3) = 17 which is equal to 5ni + 7n2 which

indicates that our sum decomposition must be (52, 7). The two 5-sums can share at most 3

points with each other and can each share at most 4 points with the 7-sum per Theorem 3.4.1.

Thus there are at most 11 shares possible within the sum decomposition. Knowing 7 is the

greatest sum-size in DC
B We can use the formula to verify:

2∑
i=1

(2i+ 1)

(
ni
2

)
+

1∑
i=1

(2i+ 2)nini+1 +

0∑
i=1

(
2∑

j=i+2

(2i+ 3)ninj

)
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= (2 · 1 + 1)

(
2

2

)
+ (2 · 2 + 1)

(
1

2

)
+ (2 · 1 + 2)2 · 1 = 11.

Looking at our string, we can see that there are two 1-shares which aren’t shared by any pairs

of sums. The three 2-shares are each shared by exactly 1 pair of sums, and the three 3-shares are

shared by exactly
(
3
2

)
= 3 pairs of sums. Thus the string requires that there are 3(1)+3(3)=15

shares between pairs of sums which is greater than the maximum number of shares possible

given the sum decomposition of the cap. We can use the formula to verify:

r∑
i=2

xi

(
i

2

)
=

3∑
i=2

xi

(
i

2

)
= x2

(
2

2

)
+ x3

(
3

2

)
= 3(1) + 3(3) = 15 > 11.

Therefore, the string (0, 2, 3, 3) is not a possible for 11-caps of dimension 7.

We can try to construct a cap C with basis B where ψC
B = (0, 2, 3, 3) to better visualize why

it is impossible. Since x3 = 3 we know there exists 3 basis points b1, b2, b3 ∈ B shared by all

sumsets s1, s2, s3 ∈ SCB. By denoting bi as i, we can start off by writing

s1 = 1 2 3
s2 = 1 2 3
s3 = 1 2 3

Without loss of generality, we can assume S1 will be the 7-sum. Then we know that S2 and S3

cannot share any more points with each other since 5-sums can share at most 3 points. Since

x2 = 3 there exists 3 basis points b4, b5, b6 ∈ B shared by 2 sums in SCB. We know that they

each must be shared by S1 and one of {S2, S3} since S2 and S3 cannot share any more points

together. Thus two of the 2-shares would have to be shared by one of the 5-sums, say S2, which

would look like the following:

s1 = 1 2 3 4 5 6
s2 = 1 2 3 4 5
s3 = 1 2 3 6

Thus one of the 5-sums (S2) and the 7-sum (S1) will inevitably be forced to share 5 points which

is not possible from Theorem 3.4.1 so there cannot exist a cap with the share string (0, 2, 3, 3).

4.4 12-Caps and the Dimension 7 Theorem

Theorem 4.4.1. γ712 = {(0, 0, 5, 2, 1), (0, 0, 4, 4, 0), (0, 0, 3, 4, 1)}.
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Proof. Let C ⊆ Z7
2 be a 12-cap of dimension 7 with basis B. Let S = SCB and let D = DC

B.

Then |S| = 12− 7− 1 = 4 meaning there are 4 sums in S. Using Theorem 4.2.3 we can conclude

that D = (54) or D = (53, 71).

Case 1: suppose D = (54). Using our share string finder, we get that the options for valid

share strings are (0, 0, 5, 2, 1) and (0, 0, 4, 4, 0).

Case 2: suppose D = (53, 71). Using our share string finder, we get that the op-

tions for possible share strings are (0, 0, 3, 4, 1) and (0, 0, 4, 2, 2). The latter string is not

possible from Theorem 3.4.7 since x4 = 2 = max(X7
11(3)) and x3 ̸= 0. Thus γ712 =

{(0, 0, 5, 2, 1), (0, 0, 4, 4, 0), (0, 0, 3, 4, 1)}.

In theory, the equation in Theorem 4.3.3 can be implemented into the code in Figure 4.2.1

that we are using to calculate strings. My amateur computer science abilities at the moment are

unfortunately not practiced enough to code the entire equation with the program I am using.

However, it is manageable to hand calculate the pair-share values for each string decomposition

and compare it to the value given by the share string within the code. It just takes a little more

time depending how complicated the decompositions are (which will not be very complicated

even in dimension 8). Thus, our share string finder code will include Theorem 4.3.3 throughout

the rest of the project.

Theorem 4.4.2 (The Dimension 7 Theorem). M(7) = 12.

Proof. Suppose there exists a 13-cap C ⊆ Z7
2 of dimension 7 with basis B. Let S = SCB and let

D = DC
B. Then |S| = 13− 7− 1 = 5 meaning there are 5 sums in S. Using Lemma 4.2.3 we can

conclude that D = (55) or D = (54, 71).

Case 1: suppose D = (55). Using our share string finder, we get that the only possible share

string is (0, 0, 0, 7, 1, 0).

Case 2: suppose D = (54, 71). Using our share string finder, we get that there are no possible

share strings with sum decomposition (54, 71).
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Thus it must be the case that ψC
B = (0, 0, 0, 7, 1, 0). Then DC

B = (55) so there exist five 5-sums

S1, . . . , S5 ∈ S with respective sum points s1, . . . , s5 ∈ C − B. There exists one 4-share p ∈ X3

shared by all but one sum, say S1, in S. We can then conclude that the rest of the points in B are

3-shares. Since S1 is a 5-sum, there exists 5 points a, b, c, d, e ∈ X3 such that S1 = {a, b, c, d, e}.

Our sums as we have constructed them up to this point will look like the following:

s1 = a b c d e
s2 = p
s3 = p
s4 = p
s5 = p

Then there remain two basis points f, g ∈ X3 that are each shared by three of the four sums

in S− {S1}. Thus there exists one sum in S− {S1}, say S4, that does not share f and one sum

in S − {S1}, say S5, that does not share g. Thus there are at least two sums, namely S2 and

S3 that both share p, f and g. Since no two 5-sums can share more than 3 points from 3.4.1 it

follows that the remaining points shared by S2 and S3 are not shared by both S2 and S3. Thus

there are 4 points in {a, b, c, d, e}, such that two of them, lets say a and b, are shared by S2 and

two of them, lets say c and d, are shared by S3. Our sums as we have constructed them up to

this point will look like the following:

s1 = a b c d e
s2 = p f g a b
s3 = p f g c d
s4 = p
s5 = p

We can see that s1+ s2+ s3 = e which indicates s1, s2, s3, and e form a quad. In other words,

the dependent point who’s sumset does not share the 4-share (s1) and the two dependent points

who’s sumsets share both of the other two points excluded by S1 (s2, s3) will form a quad with

the point shared by s1 but not s2 or s3 (e). Thus C cannot be a cap so (0, 0, 0, 7, 1, 0) is not a

possible share string. Thus γ713 = ∅ so M(7) = 12.

We have now proved that the maximal cap size of dimension 7 is 12. Hooray! Table 4.4.1

contains all of the possible share strings for caps of dimension 7 and Table 4.4.2 provides the

sets of possible i-counts. There ended up being only one share string that our general theorems
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k γ7k
8 (8)
9 (3, 5), (1, 7)
10 (0, 6, 2), (0, 4, 4), (1, 4, 3)
11 (0, 2, 5, 1), (0, 3, 3, 2), (0, 1, 5, 2)
12 (0, 0, 5, 2, 1), (0, 0, 4, 4, 0), (0, 0, 3, 4, 1)

Table 4.4.1: Share strings of dimension 7

cap size i-count sets

8 X7
8 (0) = {8}

9 X7
9 (0) = {1, 3}

X7
9 (1) = {5, 7}

10 X7
10(0) = {0, 1}

X7
10(1) = {4, 6}

X7
10(2) = {2, 3, 4}

11 X7
11(0) = {0}

X7
11(1) = {1, 2, 3}
X7

11(2) = {3, 5}
X7

11(3) = {1, 2}
12 X7

12(0) = {0}
X7

12(1) = {0}
X7

12(2) = {3, 4, 5}
X7

12(3) = {2, 4}
X7

12(4) = {0, 1}

Table 4.4.2: The sets of possible i-counts for share strings of dimension 7

up to this point could not eliminate. However, the “brute force” method we used to disprove

the possibility of (0,0,0,7,1) is sufficient when there aren’t too many cases.
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Dimension 8

5.1 General Theorems and Results of Dimension 8

We saw in the previous chapters that finding the possible share strings of the different cap sizes

in a dimension could help us eliminate strings in later cap sizes. What would happen if we were

to skip the lower cap sizes and go straight to the size we think is lowest size that is greater

than the max-cap? Knowing there exists 18-caps of dimension 8 and that there has yet to be an

example of a 19-cap found, we will first attempt to prove that M(8) = 18 by showing that there

exist no possible share strings for 19-caps of dimension 8 without using an archive of known

share strings of previous cap sizes. Before jumping straight into our attempt, we will want to

prove some other things to make the search easier.

With k − d− 1 = 19− 8− 1 = 10 sumsets and 3 sum-sizes (3, 5, and z=9 being the highest)

in 19-caps of dimension 8, there are, in theory, a total of

(
k − d− 2 + z−3

2

k − d− 1

)
=

(
19− 8− 2 + 9−3

2

19− 8− 1

)
=

(
12

10

)
= 66

possible sum decompositions to choose from according to Theorem 3.2.3. This is a lot of cases

that would take a very long time to go through. The following three lemmas will help us narrow

down the possibilities for our sum decompositions.

53
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Lemma 5.1.1. There cannot exist sum decomposition of dimension 8 with both a 7-sum and a

9-sum.

Proof. Suppose for the sake of contradiction that there exists a k-cap C ⊆ Z8
2 of dimension 8

with basis B such that SCB has at least one 7-sum S1 and at least one 9-sum S2. We know that

the 9-sum will share all 9 basis points in B and will thus share all of the points shared by the

7-sum meaning S1 and S2 share 7 points collectively. Theorem 3.4.1 tells us that a 7-sum and a

9-sum can share at most 6 points which is a contradiction since we deduced they share 7. Thus

there cannot exist sum decomposition of dimension 8 with both a 7-sum and a 9-sum.

Lemma 5.1.2. There can exist at most one 9-sum in a sum decomposition of dimension 8.

Proof. This lemma can easily be proved using the same logic used to prove Lemma 5.1.1.

Lemma 5.1.3. There can exist at most four 7-sums in a sum decomposition of dimension 8.

Proof. Suppose for the sake of contradiction that there exists a k-cap C ⊆ Z8
2 of dimension

8 with basis B that has more than four 7-sums in SCB. Then There exists at least five 7-sums

S1, . . . , S5 ∈ SCB. Let C ′ = B ∪ {s1, . . . , s5} and let (x0, . . . , x5) = ψC′
B . Then DC′

B = (75).

Observe that

7−3
2∑

i=1

(2i+ 1)

(
ni
2

)
+

7−5
2∑

i=1

(2i+ 2)nini+1 +

7−7
2∑

i=1

( 7−3
2∑

j=i+2

(2i+ 3)ninj

)

=

2∑
i=1

(2i+ 1)

(
ni
2

)
+

1∑
i=1

(2i+ 2)nini+1 +
0∑

i=1

(
2∑

j=i+2

(2i+ 3)ninj

)

= 5

(
5

2

)
+ 0 + 0 = 50.

From Theorem 4.3.3 we know that

4∑
i=2

xi

(
i

2

)
≤ 50.
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int d = 8; //dimension

int k = 19; //cap size

int r; //number of sums

int n1 = 6; //number of 5-sums

int n1 = 4; //number of 7-sums

int dv; //decomposition value

int ps; //pair-shares allowed by sum decomposition

dv = 5*n1 + 7*n2;

r = k - d - 1;

ps = 171; //hand calculated using equaiton in Theorem 4.3.3

for(int x6=0; x6<=d+1; x6++){ //Theorem 3.4.5 tells us that

for(int x7=0; x7<=d+1; x7++){ //only x6 through x10 will be

for(int x8=0; x8<=d+1; x8++){ //non-zero

for(int x9=0; x9<=d+1; x9++){

for(int x10=0; x10<=d+1; x10++){ //Theorem

if( (x6 + x7 + x8 + x9 + x10 == d+1 ) //3.3.1

&& (6*x6 + 7*x7 + 8*x8 + 9*x9 + 10*x10 == dv) //3.3.3

&& (15*x6 + 21*x7 + 28*x8 + 36*x9 + 45*x10 <= ps){ //4.3.3

println("0 0 0 0 0 0", x6, x7, x8, x9, x10);

}}}}}}}

Figure 5.1.1: Share String Finder code for possible 19-caps of dimension 8 with sum decompo-
sition (56, 74)

By implementing this equation into our share string finder code, we can conclude that there

are no possible share strings for C ′. Thus no more than four 7-sums can exist in the set of

sumsets of a cap of dimension 8.

Thus, in dimension 8, there exists no sum decompositions with more than one 9-sum, with

more than four 7-sums, or with both a 7-sum and a 9-sum.

Theorem 5.1.4.

γ819 ⊆ {(0, 0, 0, 0, 0, 0, 9, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, 7, 2, 0, 0, 0),

(0, 0, 0, 0, 0, 0, 8, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 5, 4, 0, 0, 0),

(0, 0, 0, 0, 0, 0, 6, 2, 1, 0, 0), (0, 0, 0, 0, 0, 0, 7, 0, 2, 0, 0),



56 CHAPTER 5. DIMENSION 8

(0, 0, 0, 0, 0, 0, 7, 1, 0, 1, 0), (0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 1).

Proof. Suppose C ⊆ Z8
2 is a 19-cap of dimension 8 with Basis B. Let S = SCB and let D = DC

B.

Then S = 19− 8− 1 = 10 so there are 10 sums in S. Using Lemmas 5.1.1, 5.1.2, and 5.1.3 and

the Decomposition Theorem, we can conclude that our possibilities for sum decompositions are

(510), (59, 91), (59, 71), (58, 72), (57, 73), and (56, 74).

From Theorems 3.3.1 and 3.3.3 we get that x0 + · · · + x10 = 9 and x1 + · · · + 10x10 = |DC
B|.

Since 6 = 19− 12− 1 = 19−M(7)− 1 it follows from Theorem 3.4.5 that x0 = · · · = x5 = 0 so

x6 + · · ·+ x10 = 9 and 6x6 + · · ·+ 10x10 = |D|. By rearranging our equations we can see that

6x6 + · · ·+ 10x10 − 6(x6 + · · ·+ x10) = |D| − 6(9)

=⇒ x7 + 2x8 + 3x9 + 4x10 = |D| − 54.

Because all i-counts are non-negative it follows that 0 ≤ x7 + 2x8 + 3x9 + 4x10 = |D| − 54 so

|D| ≥ 54. Thus it cannot be the case that D = (510) or D = (59, 71). Using the code in Figure

5.1, we can conclude that the possible share strings for C −B are

(58, 72), (59, 91)

(0,0,0,0,0,0,9,0,0,0,0)

(57, 73)

(0,0,0,0,0,0,7,2,0,0,0)
(0,0,0,0,0,0,8,0,1,0,0)

(56, 74)

(0,0,0,0,0,0,5,4,0,0,0)
(0,0,0,0,0,0,6,2,1,0,0)
(0,0,0,0,0,0,7,0,2,0,0)
(0,0,0,0,0,0,7,1,0,1,0)
(0,0,0,0,0,0,8,0,0,0,1)

From here, none of our theorems rule out any of the strings (at least those not pertaining

to the share strings from previous cap sizes). However, given that there are only 8 possibilities

(technically 9 because one of them is possible under two different sum decompositions), we can

attempt to disprove each string individually.
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Lemma 5.1.5. (0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 1) ̸∈ γ819.

Proof. Suppose there exists a 19-cap C ⊆ Z8
2 of dimension 8 with basis B with share string

ψC
B = (0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 1). Let S = SCB and let D = DC

B. Then D = ((56, 74)) so there

exists four 7-sums S1, S2, S3, S4 ∈ S and six 5-sums S5, S6, S7, S8, S9, S10 ∈ S. There exists a

10-share t ∈ X10 and eight 6-shares a, . . . , h ∈ X6. Then each 7-sum will share t and 6 other

points in B − {t}. Given |B − {t}| = 8 it follows that each 7 sum will exclude exactly 2 points

from B − {t}.

We will show in the next two paragraphs that each point in B − {t} is excluded by exactly

one 7-sum. We will use our share string archive to aid our proof unlike in the proof of Theorem

5.1.4.

Without loss of generality, suppose for the sake of contradiction that a point a ∈ B − {t} is

excluded by two 7-sums in S, say S1 and S2. Given that each 7-sum excludes two basis points,

S1 and S2 will each exclude one other point, say b and c respectively, from B−{a, t}. Thus a, b,

and c are excluded by one or both of S1 and S2. Because S1 and S2 do not exclude any more

basis points, it follows that d, e, f, g, h, t ∈ S1 ∩ S2 which is a contradiction since Theorem 3.4.1

tells us that any two 7-sums can share at most 5 basis points. Thus each point in B −{t} must

be excluded from one or zero 7-sums.

Without loss of generality suppose a point a ∈ B − {t} is excluded from none of the 7-sums

in S. Then both a and t are shared by the four 7-sums. Let C ′ = B ∪ {s1, s2, s3, s4}. Then,

drawing from our table in Appendix A.2, we can conclude that ψC′
B ∈ γ813(7

4) = {(0, 0, 0, 8, 1)}

so ψC′
B = (0, 0, 0, 8, 1). Thus all 4 sums must share exactly one point collectively which is a

contradiction since they share two points, a and t. Thus each point in B − {t} is excluded by

exactly one 7-sum. Thus the 2 points excluded by each 7-sum are shared by the other three.

Without loss of generality assume S1 = B − {a, b}, S2 = B − {c, d}, S3 = B − {e, f}, and

S4 = B − {g, h}. Our sums as we have constructed them up to this point will look like the

following:
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s1 = t a b c d e f
s2 = t a b c d g h
s3 = t a b e f g h
s4 = t c d e f g h
s5 = t

...
s10 = t

Observe that a 5-sum in S cannot share all 5 of its points with any single 7-sum in S due

to 3.4.1. Thus each 5-sum must share at least one point excluded by each of the four 7-sums.

Because all sums share t and each 5-sum has 4 remaining points to share, it must be the case

that, for each 5-sum, the 4 remaining points shared are excluded by exactly one 7-sum. In other

words, each 5-sum will share t, one of a and b, one of c and d, one of e and f , and one of g and

h.

We will now show that there must exist a pair of 5-sums in S that share exactly 3 points.

Suppose for the sake of contradiction that any two 5-sums share at most 2 points. because each

point in B − {t} is a 6-share and is shared by exactly three of the 7-sums, it follows that each

point in B−{t} will be shared by exactly three of the 5-sums. Without loss of generality suppose

a is shared by S5, S6, and S7. Then S5, S6, and S7 share 2 points, namely t and a, and thus

no two of them can share any more points in common. Because each of the 3 sums must share

3 more points each that are not shared by the other two, it follows that there must be 9 other

points in B − {t, a} shared by the sums which is impossible since |B − {t, a}| = 7. Thus there

must be at least one pair of 5-sums, say S5 and S6, that share 3 points. Knowing they share t,

we know they must share two points in B − {t} that are not excluded by the same 7-sum, say

a and c. Our sums as we have constructed them up to this point will look like the following:

s1 = t a b c d e f
s2 = t a b c d g h
s3 = t a b e f g h
s4 = t c d e f g h
s5 = t a c
s6 = t a c

The remaining portion of the proof will show that the remaining points shared by s5 and s6

will force them to form a quad with the two 7-sums that both share a and c, namely s1 and s2.
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We deduced above that no two points shared by a 5-sum in S may be excluded from a single

7-sum (it could not be the case, for example, that both a and b are shared by S5 and S6 since

both a and b are excluded by S4). This indicates that S5 and S6 share points together that

are excluded by the remaining two 7-sums, namely S3 and S4. Thus S5 must share one point

excluded from S3 and one point excluded from S4, say e and g, and S6 must share the other

point excluded from S5 and the other point excluded from S6, namely f and h. Our sums as we

have constructed them up to this point will look like the following:

s1 = t a b c d e f
s2 = t a b c d g h
s3 = t a b e f g h
s4 = t c d e f g h
s5 = t a c e g
s6 = t a c f h

Thus s1s2s5s6 = 0 which indicates that s1, s2, s3, and s4 form a quad. In other words, the two

5-sums that share 3 points in common, the two points 6-shares (a and c) and the 10-share (t),

will necessarily form a quad with the the two 7-sums (s1 and s2) that both share the two 6-shares

shared by the two 5-sums (a and c). Thus C cannot be a cap so (0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 1) ̸∈

γ819.

So far, this is the only complete proof that we have of the impossibility of any of the remaining

share strings. We do, however, have proofs of a similar fashion as Lemma 5.1.5 in progress as

well as proofs that could potentially utilize our archive of existing share strings up to 18-caps

(which we have yet to find all of).
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6
Conclusion and Future Work

6.1 Share String Equivalencies

One of the crucial aspects of mapping caps to share strings is the fact that the strings are

dependent on an arbitrary basis for the cap. Can a single cap map to multiple share strings

through different bases? We can look at an example to see that there are indeed caps that can

map to different share strings by changing bases.

Example 6.1.1. Let C ⊆ Z7
2 be a 10-cap of dimension 7 with the share string ψC

B = (0, 6, 2)

for some basis B. Then there exists two 5-sums S1, S2 ∈ SCB. There exists two points a, b ∈ B

that are shared by both sums and 3 points c, d, e ∈ S1 − S2 and 3 points f, g, h ∈ S2 − S1. Our

sums will look like the following:

s1 = a b c d e
s2 = a b f g h

By adding these sums we get

s1 s2 = c d e f g h

We can rearrange the s1 sum to show that a = s1bcde and we can rearrange the addition of

the sums to show that f = s1s2cdegh. Let B′ = {s1, s2, b, c, d, e, g, h}. Then C − B′ = {a, f}.

Because both a and f are dependent upon the points in B′ and |B′| = 8 = d+1, we can conclude

61
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that B′ must be a basis for C. Then SCB = {A,F} = {{s1, b, c, d, e}, {s1, s2, c, d, e, g, h}} so

ψC
B′ = (0, 4, 4). Thus there exists bases for C that map C to both (0, 6, 2) and (0, 4, 4).

One thing to note about the process of creating a new basis for a cap using the sums of the

dependent points is that when we added the two sums, we gained more information about the

point dependencies of the cap. We know that caps will have a basis as well as dependent points

that form point dependencies with the basis points (which are our sums), but there will often

exist many more point dependencies that can be found by adding different combinations of the

point dependencies we already have.

Conjecture 6.1.2. Let C ⊆ Zd
2 be a k-cap of dimension d with basis B where k > d + 1. Let

r = k − d− 1.

1. There are 2r − 1 point dependencies that define the cap that can be found by taking all

possible sums of the points in C −B.

2. Each point in C will be shared by 2r−1 of the point dependencies.

Proof. (1). We know there exist r point dependencies such that the points in C −B for some

basis B are each shared once. Then there are
(
r
2

)
ways to add any two of the dependencies,(

r
3

)
ways to add three and so forth until we add all r dependencies. Observe that each point

dependency will have some unique pairing of points in C −B that cannot be duplicated in any

other dependencies so we can conclude that no two point dependencies will contain the same

points. There cannot be any additional dependencies since that would mean there are additional

points that are dependent upon the points in our initial basis which cannot be the case. Thus

there will be exactly
r∑

i=1

(
r

i

)
= 2r − 1

point dependencies that define a cap.

(2). Proof to come.

Given that we need r sumsets to achieve a share string, there will be
(
2r−1
r

)
possible arrange-

ments of r sums using the 2r − 1 dependencies (including our initial arrangement). It is not the



6.2. ONE BIG EXAMPLE 63

Figure 6.2.1: Quads Deck of dimension 7

case that all of these arrangements will be able to map to a cap, however we have found through

trial and error that more than one arrangement will often work. This raises some questions:

How many different arrangements of point dependencies can sufficiently map to share strings?

Can two different bases map the same cap to the same share string? If a cap with share string

ψ can map to another share string ψ′, will all caps that map to ψ be able to map to ψ′ and vice

versa? If the answer to the last question is both yes and provable, then one can disprove the

possibility of several share strings that can map to each other by only disproving one. If we can

prove that the remaining strings for 19-caps of dimension 8 can all be mapped to by the same

cap through a change of basis then we can conclude that none of them are possible since we’ve

proved one of them is impossible. A potential term for share strings that can map to the same

cap through a change of bases could be equivalent share strings that are connected through

share string equivalencies. We are, of course, open to other terminologies too.

6.2 One Big Example

While we’ve seen a lot of examples throughout this project, it may be useful to see an example of

a cap that relates a set of Quad cards directly to a share string. Figure 6.2.1 shows a Quads deck

of dimension 7 where the additional half attribute is the option for a light or a dark background.

The following table shows how we will map the additional half attribute to Z2.
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Attribute 0 1

Background Color White Black

We will order our background state at the end of the the attributes found in Table 2.2.1 where

(Number, Color, Shape, Background)⊆ Z7
2 will be the mappings to our dimension 7 Quads deck.

A card will have a white background if the last term is 0 and a black background if the last

term is 1.

Example 6.2.1. Suppose we are playing Quads with the dimension 7 deck and lay out the

following 12 cards:

We can use our mapping found in Table 2.2.1 and the one above to determine the points of

our cards which we will display respective to our layout and call C:

C = {(0100111), (0101101), (1011110), (0100011),

(1011001), (1110000), (0111011), (1110001),

(1001001), (1001010), (0100101), (1111101)}

After a bit of searching, we find a basis B for our set (which we have asterisked in out layout)

and can then also determine C −B:

B = {a =(1011110), b =(0100011), c =(1110000), d =(0111011),

e =(1001001), f =(1001010), g =(0100101), h =(1111101)}

C −B = {s1 =(0101101), s2 =(1110001), s3 =(1011001), s4 =(0100111)}
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We can then figure out the the sums for our points in C −B :

(0100101)
(1111101)

(1110000) (1011110) (1110000) (1011110)
(1001010) (1001010) (0111011) (0100011)
(1111101) (0100011) (1001010) (1110000)
(0100011) (0111011) (0100101) (0111011)

+(1001001) (1111101) (1111101) (1001001)

(0101101) (1110001) (1011001) (0100111)

=⇒

s1 = b c e f h
s2 = a b d f h
s3 = c d f g h
s4 = a b c d e g h

We can see that our sum decomposition is DC
B = (53, 71) which we know is a valid possibility

for 12-caps of dimension 7. We can put each basis point into its respective count set:

X0 = ∅

X1 = ∅

X2 = {a, e, g}

X3 = {b, c, d, f}

X4 = {h}

Thus the share string for our cap is ψC
B = (0, 0, 3, 4, 1) which is a possible share string for

dimension 7. One thing to observe is that we have not proved that a set of points is necessarily

a cap just because it maps to a possible share string. For example, if our sums looked like the

following,

s1 = a b c d e f g
s2 = a b c d e
s3 = a b d f h
s4 = a c e g h

we could deduce that {s1, s2, f, g} forms a quad despite the fact that this the share string for

these sums would be (0, 0, 3, 4, 1) which we know is possible. However, for our cap C, we can
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look at all the point dependencies taken from sums of the dependent points that Conjecture

6.1.2 tells us will give us all the defining dependencies of the cap. We will refer to si as i.

1 = bcefh 2 = abdfh 3 = cdfgh 4 = abcdegh
12 = acde 13 = bdeg 14 = adfg 23 = abcg
24 = cefg 34 = abef 123 = aeg 234 = deh
341 = ach 412 = bgh 1234 = bcdf

We can see that there are only 6 and 8 point dependencies so there are no quads or equal

points and thus our layout is a cap.

6.3 Conclusion

In conclusion, we proved using share strings that the maximal cap size in dimension 7 is 12 and

reduced the number of possible share strings for 19-caps of dimension 8 to just the seven in

Table 1.0.2. We also proved the maximal cap sizes for previous dimensions which verified the

results of [3]. Seeing that we were able to prove the impossibility of one of the remaining strings

in dimension 8, we are led to think that the others can be proven impossible through similar

means. While not directly considered in this project, it could be possible to program a code

that checks all of the possibilities for arrangements of sums that adhere to a given share string

to see if any of them form caps or not. We also have yet to find all of the possible share strings

for all 15 to 18-caps of dimension 8 which, as we saw in several of our theorems, could help us

knock of even more of our remaining cases.

We’ve seen that the number of possible share strings increases at a relatively steep rate with

four possibilities in dimension 6, twelve possibilities in dimension 7, and over one hundred twenty-

five possibilities for just 9 through 14-caps of dimension 8. This tells us that calculating all of

the possible share strings of a given dimension with certainty would be an incredibly lengthily

process as we look at greater and greater dimensions. However, we gain insight into just how

many different caps and different types of caps there are in greater dimensions which may be

a factor in proving things about caps no matter what strategies we use. We also proved many

general theorems that shaved off a majority of the possibilities we looked at and left us with a



6.3. CONCLUSION 67

still relatively small number of cases to check (1 case in dimension 7 and 9 cases in dimension

8).
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Appendix A
Finding Existing Caps and Share String Archives

A.1 Finding Caps Using the Qap Visualizer

As we explained at the end of Section 3.1, we only really cared about proving that strings are

impossible as opposed to proving there exist caps that can map to possible share strings. In this

section, we will show methods of finding existing caps given a share string.

For any dimension, the set

B = {0, (100 . . . ), (010 . . . 0), (001 . . . 0), . . . , (0 . . . 010), (0 . . . 001)}

is a basis that spans said dimension. With an arbitrary cap C with basis B = {b1, . . . , bn} and

set C − B = {s1, . . . , sr}, we can arbitrarily equate the elements of B to the points in B and

determine s1, . . . , sr using our sums.

Take, for example, the share string (0, 4, 3) which maps to a 9-cap C = {a, b, c, d, e, f, g, s1, s2}

of dimension 6. An arrangement of sums could look like the following:

s1 = a b c d e
s2 = a b c f g

where {d, e, f, g} = X1 and {a, b, c} = X2. We can take any mapping of the points in B to B

such as the following:

a = (000000), b = (100000), . . . , g = (000001)
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Figure A.1.1: Formation of a 6-cap of dimension 4 using the Qap Visualizer

It then follows that s1 = (111100) and s2 = (110011). Thus with basis B, the cap

{(000000), (100000), (010000), (001000), (000100), (000010), (000001), (111100), (110011)} maps

to the share string (0,3,3,2).

It is easy to see that all the points in our cap are distinct, but in order to verify that there

are no quads we must, in theory, take every combination of 4 points and check whether or not

there exists a quad. While there are likely ways to quicken this process, it still is not very time

friendly.

The Qap Visualizer is a web-based app that represents Zd
2 using rectangular grids divided

into squares that represent each element of Zd
2. The user may select boxes they would like

include in their cap which will show green diamonds. With enough points selected, there will be

points outside the cap that will necessarily form a quad with the points already in the cap which

we call exclude points. Boxes with exclude points will show a red number that indicates the

number of quads that will be formed if said point were to be added to the current cap. The user

may continue adding to the cap until all the remaining points are no longer usable, indicating

that the cap is complete.
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Figure A.1.2: A basis for dimension 6 in the Qap Visualizer

Figure A.1.1 shows an example of how the Qap Visualizer can be used to construct a 6-cap

of dimension 4. The red 1’s indicate that adding that point to the cap would form 1 quad with

3 of the points in the cap. All the 1s turn to 2s once the 6-cap is formed because each of the 10

exclude point forms a quad with two disjoint sets of 3 points in the cap of which there happen

to be
(
6
3

)
÷ 2 = 10 unique partitions (cool!).

Once one develops a familiarity with the Qap Visualizer, they can find caps without having

to use vectors. Figure A.1.2 is a typical basis used for dimension 6 since determining the other

points of the cap using basis sums is relatively easy compared to other bases we could choose.

We can then choose some arbitrary mapping of our basis points in B as shown in Figure A.1.3.

With practice, one can learn how to determine what boxes correspond to each set of odd sums of

basis points. For now, We may use the aid of Figure A.1.4 to determine which boxes correspond

to s1 and s2 which we see in Figure A.1.5.

With the help of the Qap Visualizer, we can easily find existing caps without having to work

directly with elements of Zd
2.
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Figure A.1.3: The points in B mapped to the Qap Visualizer basis

Figure A.1.4: The sumsets of the additional points that can be added to the cap
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Figure A.1.5: Cap C represented by the Qap Visualizer

A.2 Archive of Possible Share Strings

A.2.1 Dimensions 0-7

All sum decompositions can be determined by each share string in Dimensions 0-7 so we will

omit them.

d (d+ 1)-caps

0 (1)
1 (2)
2 (3)
3 (4)

cap-size d = 4

5 (5)
6 (0,5)

cap-size d = 5

6 (6)
7 (1,5)

cap-size d = 6

7 (7)
8 (2,5), (0,7)
9 (0,4,3)
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cap-size d = 7

8 (8)
9 (3,5), (1,7)
10 (1,4,3), (0,6,2), (0,4,4)
11 (0,2,5,1), (0,3,3,2), (0,1,5,2)
12 (0,0,5,2,1), (0,0,4,4,0), (0,0,3,4,1)

A.2.2 Dimension 8

9-caps

no sums (9)

10-caps

(51) (4,5)
(71) (2,7)
(91) (0,9)

11-caps

(52) (0,8,1), (1,6,2), (2,4,3)
(51, 71) (0,6,3), (1,4,4)
(72) (0,4,5)

(51, 91) (0,4,5)

12-caps

(53) (0,3,6,0,), (0,4,4,1), (0,5,2,2), (0,6,0,3), (1,2,5,1), (1,3,3,2)
(52, 71) (0,2,6,1), (0,3,4,2), (0,4,2,3), (1,1,5,2)
(51, 72) (0,1,6,2), (0,2,4,3)
(52, 91) (0,1,6,2), (0,2,4,3)
(73) (0,0,6,3)

13-caps

(54) (0,0,7,2,0),(0,1,5,3,0),(0,1,6,1,1),(0,2,3,4,0),(0,2,4,2,1),
(0,2,5,0,2),(0,3,1,5,0),(0,3,2,3,1),(0,3,3,1,2),(0,4,0,4,1),

(1,0,4,4,0),(1,0,5,2,1)

(53, 71) (0,0,5,4,0),(0,0,6,2,1),(0,1,3,5,0),(0,1,4,3,1),(0,1,5,1,2),
(0,2,1,6,0),(0,2,2,4,1),(0,2,3,2,2),(0,2,4,0,3),(1,0,3,4,1),

(52, 72) (0,0,3,6,0),(0,0,4,4,1),(0,0,5,2,2),(0,1,1,7,0),(0,1,3,3,2),
(0,2,0,6,1)

(53, 91) (0,0,3,6,0),(0,0,4,4,1),(0,0,5,2,2),(0,1,2,5,1),(0,1,3,3,2)

(51, 73) (0,0,2,6,1),(0,0,3,4,2)

(74) (0,0,0,8,1)
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14-caps

(55) (0,0,2,7,0,0),(0,0,3,5,1,0),(0,0,4,3,2,0),(0,0,4,4,0,1),(0,0,5,1,3,0),
(0,0,5,2,1,1),(0,0,6,0,2,1),(0,0,6,1,0,2),(0,1,0,8,0,0), (0,1,1,6,1,0),
(0,1,2,4,2,0),(0,1,2,5,0,1),(0,1,3,2,3,0),(0,1,3,3,1,1) (0,1,4,0,4,0),

(0,1,4,1,2,1)

(54, 71) (0,0,0,9,0,0),(0,0,1,7,1,0),(0,0,2,5,2,0),(0,0,2,6,0,1),(0,0,3,3,3,0),
(0,0,3,4,1,1),(0,0,4,1,4,0),(0,0,4,2,2,1),(0,0,4,3,0,2), (0,0,5,0,3,1)*
(0,1,0,6,2,0),(0,1,0,7,0,1),(0,1,1,4,3,0),(0,1,1,5,1,1), (0,1,2,2,4,0)

(0,1,2,3,2,1),(0,1,3,0,5,0)

(54, 91) (0,0,0,7,2,0),(0,0,1,5,3,0),(0,0,1,6,1,1),(0,0,2,3,4,0),
(0,0,2,4,2,1),(0,0,2,5,0,2),(0,0,3,1,5,0),(0,0,3,2,3,1), (0,1,0,4,4,0),

(0,1,0,5,2,1)

(53, 72) (0,0,0,7,2,0),(0,0,0,8,0,1),(0,0,1,5,3,0), (0,0,1,6,1,1),(0,0,2,3,4,0)
(0,0,2,4,2,1),(0,0,2,5,0,2),(0,0,3,1,5,0),(0,0,3,2,3,1),(0,1,0,4,4,0),

(0,1,0,5,2,1),(0,1,1,2,5,0)

(52, 73) (0,0,0,5,4,0),(0,0,0,6,2,1),(0,0,0,7,0,2),(0,0,1,3,5,0), (0,0,1,4,3,1),
(0,0,2,1,6,0)

(51, 74) (0,0,0,3,6,0)

(75) ∅

15-caps

(56) (0,0,0,6,3,0,0),(0,0,0,7,1,1,0),(0,0,0,8,0,0,1),(0,0,1,4,4,0,0),(0,0,1,5,2,1,0)
(0,0,1,6,0,2,0),(0,0,1,6,1,0,1)

(55, 71) to be figured out

19-caps

(58, 72), (59, 91) (0,0,0,0,0,0,9,0,0,0,0)

(57, 73) (0,0,0,0,0,0,7,2,0,0,0), (0,0,0,0,0,0,8,0,1,0,0)

(56, 74) (0,0,0,0,0,0,5,4,0,0,0), (0,0,0,0,0,0,6,2,1,0,0), (0,0,0,0,0,0,7,0,2,0,0)
(0,0,0,0,0,0,7,1,0,1,0)

We note (0, 0, 5, 0, 3, 1) because we think it is impossible however the proof is still in progress.
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