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Abstract

Tverberg’s theorem states that given a set S of T (r, d) = (r − 1)(d + 1) + 1 points in Rd,
there exists a partition of S into r subsets whose convex hulls intersect. A feature of Tverberg’s
theorem is that T (r, d) is tight, so in this senior project we investigate Tverberg-type results
when |S| < T (r, d). We found that in R2, given a set S of T (r, 2) − 2 = 3r − 4 points, and
assuming r = r1r2, there exists a partition of S into r sets such that when grouped into r1
collections of r2 sets, the convex hulls of each collection overlap, and we can find the vertex set
of a regular r1−gon with one point from the intersection of each collection. We also show that
given a similar construction but with |S| = 3r − 6, we can find the vertices of an r1−gon in the
intersections of convex hulls, with vertices on an ellipse, and other nice regularity properties.
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1
Introduction

In 1921 Radon published a theorem that is now foundational in convex geometry. It states

that given a set S of d + 2 points in Rd, there exists a partition of S into two subsets whose

convex hulls intersect. In 1966 Tverberg generalized this result to partition S by an arbitrary

number of subsets (2.0.3). His theorem states that, for any r ≥ 2, and given a set S of T (r, d) =

(r − 2)(d+ 1) + 1 points in Rd, there exists a partition of S into r subsets such that all of their

resulting convex hulls intersect (2.0.4).

An important aspect of Tverberg’s theorem is that T (r, d) (called Tverberg’s number 2.0.6) is

tight, meaning almost any set with fewer points can’t be partitioned as in Tverberg’s theorem

(2.0.8). This leads us to wonder, with a smaller number of points than what Tverberg’s theorem

requires, what can we conclude? In the pursuit of some answers to the above question, we use

an alternative description of Tverberg’s theorem that we can more easily manipulate in order

to draw conclusions for collections of points where Tverberg’s theorem fails.

In Chapter 2, we show how Tverberg’s theorem can be restated such that instead of picking

points in a plane, we’re choosing an arbitrary affine map from a simplex to Rd (2.0.18). For

even d, this reformulation in terms of affine maps allows us to break them up into maps from a

simplex to R2 ∼= C.
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In Chapter 3, we discuss finite Fourier analysis on finite abelian groups, which we use to

construct a basis for particular affine maps that we can identify with these smaller affine maps

from a simplex to C. This basis allows us to deconstruct any of the smaller Tverberg-type affine

maps to C (3.3.4), and by extension any affine map from a simplex to R2d ∼= Cd.

In Chapter 4 we demonstrate how this Fourier deconstruction of affine maps can be used

to obtain Tverberg-type theorems. We show all affine maps are completely determined by the

coefficients of their Fourier decompositions, then it can be proven exactly which coefficients

need to be eliminated to produce a full Tverberg partition (4.1.1). Intuitively eliminating more

coefficients from a decomposition imposes a strong condition on the function and therefore

requires a greater number of initial points. Thus, the question of how many points are required

for a conclusion becomes a question of how many coefficients were eliminated from the Fourier

decomposition of the affine map. With this in mind, we can eliminate fewer coefficients than

are required for a Tverberg partition in order to conclude something about a smaller number of

initial points. Eliminating one coefficient less than for a Tverberg partition leads us to a different

kind of partition called a regular r−gon partition ([1] Theorem 1.1). Geometrically, in an r−gon

partition, instead of finding the same point in r convex hulls (an intersection), you find r points,

one from each convex hull, that form the vertex set of a regular r−gon (4.3.4). We then use

Theorem 3.1 from paper [1] to give us the conditions under which we can make a selection of

coefficients vanish (restated in 4.3.1). This theorem implies that an r−gon partition can occur

in R2 when given 3r − 4 = T (r, 2)− 2 points (4.3.5).

In Chapter 5 we prove a main result of this senior project, concerning the sub r−gon partition.

The same number of coefficients are eliminated as for a regular r−gon partition, but because of

the coefficients we chose to have vanish, we can create overlap in some convex hulls, and find a

point from each intersection of convex hulls to form the vertex set of a regular r1−gon, where

r1 is a factor of r. More specifically,

Theorem 1.0.1. (5.0.4) If r = r1r2, almost any set of 3r − 4 points in R2 can be partitioned

into r subsets, A1
1, . . . , A

1
r2 , . . . , A

r1
1 , . . . , A

r1
r1, such that
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(a) ∩r2i=1Conv(A1
i ) 6= ∅, . . . ,∩

r2
i=1Conv(Ar1i ) 6= ∅, and

(b) there exists a set of points y1 ∈ ∩r2i=1Conv(A1
i ), . . . , yr1 ∈ ∩

r2
i=1Conv(Ar1i ) which form the

vertex set of a regular r1−gon

This generalizes the regular r−gon result since it can be recovered when r1 = r and r2 = 1.

In Chapter 6 we look at extensions of the r−gon result, as well as our sub r−gon result, to

higher dimensions. These results are similar to the ones of two cartesian dimensions, only instead

of finding just regular polygons, we find analogous partitions for products of polygons in R2d,

called multiprisms (6.1.5). We also give results for sub r−gon partitions in R2d.

In Chapter 7 we ask, as we did initially with Tverberg’s theorem, what can be said for

collections of points even smaller than required for an r−gon partition. Our second major result

comes with the introduction of elliptical r−gons. The points of a regular r−gon lie on a circle. The

points of an elliptical r−gon lie on an ellipse, in addition to having some other nice symmetries

(7.1.4). For instance, when r is even, opposing edges will have the same length and be parallel.

Specifically we have the following result:

Theorem 1.0.2. (7.2.4) Given almost any set S of 3r−6 points in R2, we can partition S into

r subsets A1, . . . , Ar such that there exist points y1 ∈ Conv(A1), . . . , yr ∈ Conv(Ar) that form

the vertex set of an elliptical r−gon.

Finally, we also have results analogous to Chapter 5 for elliptical sub r−gons, once again

getting the points from the intersections of convex hulls.



4 INTRODUCTION



2
Convex Geometry Background

First, we introduce the reader to the topic with contextual definitions and theorems in convex

geometry. Then we’ll be able look at Radon’s theorem, and Tverberg’s generalization thereof.

Definition 2.0.1. We call A ⊂ Rd convex if given any two points, x, y ∈ A, then the line

segment joining them is also in the subset, i.e. {tx+ (1− t)y|0 ≤ t ≤ 1} ⊂ A.

In R2 convex sets can be demonstrated pictorially.

Figure 2.0.1. Convex
Set Example

Figure 2.0.2. Convex
Set Non-Example

Given any two points inside of a disk, the line segment joining them will also be contained

disk. In Figure 2.0.2 we see a subset of R2 in which there exist two points in the subset whose

line segment is not contained in the set, implying that the set is not convex.

Definition 2.0.2. Given a set, S, of points in Rd, the convex hull of this set, denoted Conv(S),

is the intersection of all convex sets containing S.
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The convex hull of a set of points is the smallest convex set containing all those points. In

R2 this results in a line segment or a polygon whose vertices are points from S (Though not

necessarily all of the points from S, e.g. The convex hull of three colinear points is a line).

Examples of convex hulls for sets of 2 and 3 points are shown below.

Figure 2.0.3. Two
sets of points

Figure 2.0.4. Two
convex hulls

The convex hull of the two orange points is a line, and the convex hull of the three blue

points is a triangle. Note that the three blue points in Figure 2.0.9 are affinely independent (see

Definition 2.0.14 below), and if they weren’t then their convex hull would be a line segment

instead. With this we can understand Radon’s thoerem.

Theorem 2.0.3 (Radon’s Theorem). For any set, S ⊂ Rd, where |S| = d + 2, there exist

A1, A2 ⊂ Rd, where A1 ∪A2 = S, and A1 ∩A2 = ∅, such that Conv(A1) ∩ Conv(A2) 6= ∅.

This means that given d+ 2 points in Rd, we can partition them into two sets whose convex

hulls intersect. In R2 this can happen in one of two ways.

Figure 2.0.5. First
scenario points

Figure 2.0.6. First
scenario convex hulls

Figure 2.0.7. Second
scenario points

Figure 2.0.8. Second
scenario convex hulls
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The two cases are distinguished by the the convex hulls chosen for them to overlap. In Figure

2.0.5 we see a collection 4 points in R2, and in Figure 2.0.6 we see that those points have been

partitioned into one set of three points and a singleton set such that the convex hulls of those

sets overlap. In the second scenario, Figure 2.0.7 and Figure 2.0.8, we can see that it was instead

required to partition the four points into two sets of two whose convex hulls cross each other.

Radon’s result was later generalized by Tverberg into r disjoint sets.

Theorem 2.0.4 (Tverberg’s Theorem). For any set, S ⊂ Rd, where |S| = (r−1)(d+1)+1, there

exist pairwise disjoint subsets A1, . . . , Ar ⊂ Rd, where ∪ri=1Ai = S, such that ∩ri=1Conv(Ai) 6= ∅.

This is called an r−fold tverberg partition.

Informally, this means that given (r − 1)(d+ 1) + 1 points in Rd, we can partition them into

r sets whose convex hulls intersect.

Remark 2.0.5. The number of points required for Tverberg an Radon are the minimum. The

same is true for any greater set of points, because adding more points only makes convex hulls

larger, which will not hinder their overlapping. We’ll discuss the implications of this more shortly.

What ‘minimum’ means in this case will be explained further below.

The following is an example of Tverberg’s theorem with d = 2 and r = 3. Note that this

means (r − 1)(d+ 1) + 1 = (2)(3) + 1 = 7 points are required.

Figure 2.0.9. Set of 7
points

Figure 2.0.10.
3−fold Tverberg
intersection

Note that we recover Radon’s theorem when r = 2. The required number of points for a

tverberg partition will be of significant interest to us in this paper. For this reason, we define

this number.
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Definition 2.0.6. The number of required points for a r−fold Tverberg partition, T (r, d) =

(r − 1)(d+ 1) + 1, is called Tverberg’s Number.

Definition 2.0.7. We say a statement is almost always true if it occurs always except on a

set of measure zero.

Definition 2.0.8. If a statement is dependent on a number N , then N is tight if the statment

is almost always false given n < N .

Remark 2.0.9. An important feature of T (r, d) is that it is tight. Thus given almost any

collection of points less than T (r, d), we cannot find a full Tverberg partition.

We illustrate with an example. Tverberg’s number being tight indicates that you almost always

fail to get a 2−fold Tverberg partition given less than T (2, 2) = 4 points in R2. Consider the

following case in which we can Tverberg partition 3 points.

Figure 2.0.11. 3 points with 2-fold Tver-
berg partition Figure 2.0.12. Tverberg partition

It can be seen pictorially, that in order to get a 2−fold Tverberg partition with 3 points, it

is necessary for the those three points to be colinear, as the points in 2.0.11 are. Since this is

a very specific orientation for the points have relative to one another, it follows that for most

sets of 3 points we would fail to get a 2−fold Tverberg partition. The same is true for T (r, d) in

higher dimension, or with greater r.

Tverberg’s theorem can be understood in other contexts as well. For that we’ll need some

more definitions.
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Definition 2.0.10. Let V be a vector space, and ~u ∈ Rd. Then A = V +~u, is an Affine Space.

Affine spaces can be described as shifted vector spaces.

Definition 2.0.11. Let X be an affine space. A convex combination of v1, · · · , vn ∈ X is a

linear combination
∑n

i=1 tivi, where ti ≥ 0 and
∑n

i=1 ti = 1.

This leads us to an alternate description of convex hull.

Proposition 2.0.12. Let X be an affine space, and Y be the set containing all convex combi-

nations of v1, · · · , vn ∈ X. Then Y = Conv({v1, . . . , vn}).

Proof. Let Y be the set of all convex combinations of v1, · · · , vn ∈ X. Thus Y =

{
∑n

i=1 tivi| for all sets of ti ≥ 0 where
∑n

i=1 ti = 1}. If we express the edge between vi and vj ,

as tivi+tjvj where tj = 1−ti, we can see that this edge is contained in Y . Similarly, if we consider

the convex combination of a third vp, and the edge tivi+tjvj . Assuming tp, t
′ ≥ 0, and tp+t′ = 1,

it follows tpvp+t′(tivi+tjvj) = tpvp+t′tivi+t
′tjvj and tp+t′ti+t

′tj = (1−t′)+t′ti+t
′(1−ti) = 1.

Therefore, the line connecting vj and any point on the edge tivi+tjvj is contained Y . Expanding

to the total of n initial points, it follows that Y contains all lines between those points, all lines

between points on those lines, and so on. Since Y contains all edges between points it contains,

it follows that it is convex, Y ⊃ Conv({v1, . . . , vn}). But also, since the convex hull must contain

all edges between its points, it follows that it must also contain all convex combinations of those

points and therefore Y ⊂ Conv({v1, . . . , vn}). Thus Y = Conv({v1, . . . , vn})

Definition 2.0.13. Let X and Y be affine spaces. The map f : X → Y is an affine map if

f(t1v1 + · · · + tnvn) = t1f(v1) + · · · + tnf(vn) for v1, · · · , vn ∈ X, and t1, · · · , tn ∈ R, where

t1 + · · ·+ tn = 1.

Note that this implies that, with an affine map, convex combinations in X are mapped to

convex combinations in Y . However, it is also important to note that the definition 2.0.13 includes

ti 6∈ [0, 1]. This means the definition of affine maps is more general than just sending convex
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combinations to convex combinations. These maps send points in X to points in Y , lines in X

to lines in Y , etc.. Affine maps also preserve parallel lines.

Definition 2.0.14. The points x0, · · · , xn ∈ Rk are Affinely Independent if x1 − x0, x2 −

x0, · · · , xn − x0 are linearly independent.

Now we define the simplex, which is a triangle generalized to arbitrary dimensions.

Definition 2.0.15. A N−Simplex (symbolized by 4N ) is the Convex Hull of N + 1 affinely

independent points in Rd for d ≥ N .

For example, a 0−simplex is a point, a 1−simplex is a line segment, a 3−simplex is a triangle,

and so on. In the case of the 3−simplex, it is clear that it’s vertices and edges are subsets of it.

The following generalizes this concept.

Definition 2.0.16. A k−face of a N−simplex is the convex hull of k + 1 of the N orignal

affinely independent points. Thus a k−face is a k−simplex.

By 2.0.12, the N−Simplex made from a set of affinely independent points, x1, · · · , xN+1 ∈ RN

is the set of all convex combinations of those points:

4N = {a1x1 + · · ·+ ak+1xN+1|ai ≥ 0 ∀i, and a1 + · · ·+ aN+1 = 1} (2.0.1)

As the the only convex combination of a point is itself, the 0−faces of 4N are the vertices

x1, · · · , xN+1. Similarly, the 1−faces are the line segments between any two vertices, and a

k−face is the convex combination of k vertices.

Now we can restate Radon’s theorem in terms of affine maps. If X is an affine space, and

v1, · · · , vn ∈ X, then for an affine map f , by definition (2.0.13) it follows f(
∑n

i=1 tivi) =∑n
i=1 tif(vi). Therefore f is completely determined by the images of v1, · · · , vn. For this reason

we can equate arbitrary points in Rd with affine maps from a simplex.

Theorem 2.0.17 (Affine Radon Theorem). Let 4d+1 be a (d + 1)−dimensional simplex. For

any affine map f : 4d+1 → Rd, there exist two disjoint faces σ1, σ2 of 4d+1 such that the images

of the faces overlap, i.e. f(σ1) ∩ f(σ2) 6= 0.
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We show two examples with affine maps f and g, where d = 2, below.

Figure 2.0.13. Affine Radon First Scenario

Figure 2.0.14. Affine Radon Second Scenario

Above we see two scenarios in which an affine map is mapping faces of a 3−simplex onto the

plane.

In Figure 2.0.13, given the images of the points a, b, c, and d, the selection of disjoint faces

of the simplex, Conv({a, b, c}) and Conv({d}), allowed the images of those faces to overlap, i.e.

f(Conv({a, b, c})) ∩ f(Conv({d})) 6= ∅. In Figure 2.0.14, the affine map g mapped a, b, c, and d

differently than f . This required a different selection of disjoint faces of the simplex, Conv({a, c})

and Conv({b, d}). With this choice, we see that f(Conv({a, c})) ∩ f(Conv({b, d})) 6= ∅

In the original formulation of Radon’s theorem, points in the plane were chosen arbitrarily,

in this version, the affine map is arbitrary, and consequently maps the vertices of the simplex

onto the plane arbitrarily. Thus Affine maps from an N−simplex to Rd are equivalent to N + 1

points in Rd.
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We noted earlier that in two dimensions there are two types of intersections that one can get

with Radon’s theorem (Figures 2.0.6 and 2.0.8). This is reflected in the affine version, because

there are only two ways to pick two disjoint faces of a 3−simplex.

Similarly, we can restate Tverberg’s Theorem in terms of affine maps.

Theorem 2.0.18 (Affine Tverberg Theorem). Let r ≥ 2, and d ≥ 1. Now let N = (r−1)(d+1),

and 4N be a N−dimensional simplex. For any affine map f : 4N → Rd, there exist r pairwise

disjoint faces, σ1, · · · , σr of 4N such that the images of the faces all overlap, f(σ1)∩· · ·∩f(σr) 6=

∅.

Here we see N = T (r, d)−1 because the N−simplex has N+1 = T (r, d) points, as Tverberg’s

original theorem requires. As T(r, d) is tight, so is N . In this paper we will explore conclusions

that can be drawn with smaller N .



3
Fourier Analysis for Finite Abelian Groups

In this chapter we set up a finite Fourier basis to deconstruct affine maps like the ones found in

the Affine Tverberg (Theorem 2.0.18). This is all in the effort to produce Tverberg-type results

when N < T (r, d) − 1. It is important to note that the results in this chapter are not unique

to this senior project, and are standard. The following is one reference for this material [2]. I

include them because they were new to me, and if the reader chooses to read through them, they

give a better understanding of why we are able to get the results we do in subsequent chapters.

Section 3.1 and 3.2 set up for Section 3.3, which has the main result of this chapter that will be

referenced frequently.

3.1 Groups and Operations

The affine maps we’re hoping to deconstruct map from a simplex to C. In chapter 4 we’ll be

able to associate points chosen from pairwise disjoint faces of a simplex with the elements of

finite abelian groups. For this reason, since groups have regularity we can exploit, we’ll be able

perform finite Fourier analysis on maps from G to C instead. First, we’ll define a set of such

maps.

Definition 3.1.1. Let G be a finite abelian group. Define L2(G) = {All maps f |f : G→ C}.
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The set L2(G) can be shown to be a complex vector space under function addition and scalar

mutiplication (Note that a complex vector space is a vector space whose field of scalars is the

complex numbers). This follows from the definitions of function addition and scalar multiplica-

tion of functions.

Remark 3.1.2. It can actually be shown that L2(G) is isomorphic to the set of all linear

combinations of group elements, C[G] = {
∑

g∈G λgg|λg ∈ C}. Specifically, by letting λg = f(g)

for any f : G→ C, L2(G) can be identified with C[G].

This chapter focuses on establishing a basis for L2(G) so that we can decompose its elements.

For our later work, like verifying the orthonormality of the elements of our basis, we will need

to define an inner product for L2(G).

Definition 3.1.3. For f1, f2 ∈ L2(G), let

〈f1, f2〉 = 1
|G|
∑

g∈G f1(g)f2(g).

Note that f2(g) ∈ C, and f2(g) denotes the complex conjugate of f2(g).

It can be shown that this inner product is:

(a) anti-commutative: 〈f1, f2〉 = 〈f2, f1〉 for all f1, f2 ∈ L2(G).

(b) Positive definite: 〈f, f〉 ≥ 0 for all f ∈ L2(G), and 〈f, f〉 if and only if f = 0.

(c) Linear/Conjugate Linear: For all f1, f2, f2 ∈ L2(G), 〈f1, f2 + f3〉 = 〈f1, f2〉+ 〈f1, f3, 〉, and

〈f1 + f2, f3〉 = 〈f1, f3〉 + 〈f2, f3, 〉, and for λ ∈ C, 〈λf1, f2〉 = λ〈f1, f2〉 and 〈f1, λf2〉 =

λ〈f1, f2〉

Our inner product being positive definite helps us define a norm on L2(G).

Definition 3.1.4. The L2−norm is defined as ||f || =
√
〈f, f〉



3.2. INTRODUCING H1(G) 15

3.2 Introducing H1(G)

In this section we introduce the set that will become our basis for L2(G). Interestingly this set

will be made up of homomorphisms χ : G→ S1 where S1 is the unit circle in C. First we’ll give

this set a name.

Definition 3.2.1. Let G be a finite abelian group. We define H1(G) = {Homomorphisms χ :

G→ S1}.

This is a very general definition though. In order for this set to be useful to us, we’ll need a

better picture of what it’s elements look like. We’ll find an equivalent formulation in this section.

We now introduce a set of complex numbers important for this.

Definition 3.2.2. The m-th roots of unity are complex numbers c satisfying cm = 1.

Equivalently, these are the complex numbers
(
e

2πi
m

)k
= cos

(
2πk
m

)
+ i sin

(
2πk
m

)
for some inte-

ger 0 ≤ k < m.

We show an alternative view of H1(G). We first set this up for cyclic G.

Let G ∼= Zm be a cyclic group, and define

ωm = e
2πi
m (3.2.1)

(Note that ωm is one of the mth roots of unity).

For each 0 ≤ ε < m, define χε : Zm → C? by

χε(k) = [ωεm]k for all k ∈ Zm. (3.2.2)

Theorem 3.2.3. Let m ≥ 1. Then H1(Zm) = {χε|ε ∈ Zm}.

Proof. (⊂) Let ε be an integer such that 0 ≤ ε < m. Let a, b ∈ Zm. It follows that

χε(a+ b) = [ωεm]a+b = ωεa+εbm = ωεam · ωεbm = χε(a) · χε(b).

Thus χε is a homomorphism for any arbitrary 0 ≤ ε < m. Since χε : Zm → C?, by the definition

of H1(Zm) it follows that χε ∈ H1(Zm). Hence {χε|0 ≤ ε < m} ⊂ H1(Zm).
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(⊃) Let f ∈ H1(G). Thus f : Zm → C? is a homomorphism. It follows that

f(1)m = f(1) · f(1) · · · f(1)

= f(1 + 1 + · · ·+ 1) since f is a homomorphism

= f(m)

= f(0) since f maps from Zm

= 1 as any homomorphism maps 0 to 1

We can conclude, by definition, that f(1) is an mth root of unity. Thus f(1) =
(
e

2πi
m

)ε
= ωεm

for some 0 ≤ ε < m. Now, consider for some k ∈ Zm

f(k) = f(1)k since f is a homomorphism

= (ωm)k as shown above

= χε(k).

It follows that f ∈ {χε|0 ≤ ε < m}. Hence H1(Zm) ⊂ {χε|0 ≤ ε < m}.

Thus, since each is contained in the other, we conclude that H1(Zm) = {χε|0 ≤ ε < m}.

Now we can set this up for arbitrary G. Let G ∼= ⊕rj=1Zmj be an arbitrary finite abelian

group. A new function to facilitate the correspondence between G and H1(G) can be defined as

follows. For ε = (ε1, · · · , εr) ∈ G, define

χε(k1, · · · , kr) =

r∏
j=1

χεj(kj) for all (k1, . . . , kr) ∈ G. (3.2.3)

Given this new function, the proof of Theorem 3.2.4, is similar to the proof of Theorem3.2.3.

Theorem 3.2.4. Let G ∼= ⊕rj=1Zmj . Then H1(G) = {χε|ε ∈ G}.

The above implies a bijective correspondence between G and H1(G). It can actually be proven

that H1(G) is a group under function multiplication, and that there exists an isomorphism be-

tween G to H1(G). Importantly for this senior project however, Theorem3.2.4 gives us concrete,

defined functions to work with in showing H1(G) is a basis.
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3.3 Verifying H1(G) as a Basis

We will now show that H1(G) forms an orthonormal basis for L2(G). This means the elements

are orthogonal to each other, of unit length, and span L2(G). We will use the norm we defined

earlier (3.1.4) to check if the elements are of unit length.

Proposition 3.3.1. Let G ∼= Zm. The elements in {χε|ε ∈ G} are orthonormal.

Before proving this, we’ll need to verify the following lemma.

Lemma 3.3.2.

1

m

m−1∑
k=0

ωkεm =

{
0 if ε 6= 0

1 if ε = 0

Proof. Let ωm = e
2πi
m , and let 0 ≤ ε < m. Note that if ε = 0, It follows that

1

m

m−1∑
k=0

ωkεm =
1

m

m−1∑
k=0

ω0
m =

1

m

m−1∑
k=0

1 =
1

m
(m) = 1.

Now suppose that ε 6= 0. We continue with cases. Either ε and m are relatively prime, or they

are not.

Case 1: Suppose ε and m are relatively prime. Then(
1

m

m−1∑
k=0

ωkεm

)
(1− ωεm) =

1

m
(1 + ωεm + · · ·+ ω(m−1)ε

m )(1− ωε)

=
1

m
(1− ωmεm )

=
1

m
(1− 1) By the definition of the mth root of unity

= 0.

It follows that either 1
m

∑m−1
k=0 ω

kε
m = 0 or 1−ωεm = 0. Since ε and m are relatively prime, and

ε 6= 0, it follows that ωεm = e
2πiε
m 6= 1. Therefore 1−ωεm can’t be zero, and 1

m

∑m−1
k=0 ω

kε
m must be

zero.

Case 2: Now suppose that ε and m are not relatively prime. Since they have a common

factor, it follows that there exists b < m such that (b,m) = 1, and bε/m = c ∈ Z. Thus
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ωεbm = ωmcm = (ωcm)m = 1. In other words the order of ωεm is b < m. It follows that(
1

m

m−1∑
k=0

ωkεm

)
(1− ωbm) =

1

m
(1 + ωεm + · · ·+ ω(m−1)ε

m )(1− ωbm)

=
1

m
(1 + ωεm + · · ·+ ω(b−1)ε

m + · · ·+ 1 + ωεm + · · ·+ ω(b−1)ε
m )(1− ωbm)

since the order of ωεm is b

=
1

b εc
(1 + ωεm + · · ·+ ω(b−1)ε

m )
( ε
c

)
(1− ωbm)

since bε/c = m

=
1

b
(1 + ωεm + · · ·+ ω(b−1)ε

m )(1− ωbm)

=
1

b
(1− ωbεm)

=
1

b
(1− 1)

= 0.

By the same reasoning as the previous case, it follows 1
m

∑m−1
k=0 ω

kε
m = 0.

Now to the proof of 3.3.1.

Proof. (Unit) Let ε ∈ G. It follows that

〈χε, χε〉 =
1

|G|
∑
k∈G

χε(k)χε(k)

=
1

|G|
∑
k∈G

1

Since χε can be shown to be the inverse of χε

=
1

|G|
|G|

= 1.

Thus ||χε|| =
√
〈χε, χε〉 = 1 (3.1.4). This implies that all elements of H1(G) are of unit length.

(Pairwise Orthogonality) Let ε, δ ∈ G = Zm. Consider

〈χε, χδ〉 =
1

|G|
∑
k∈G

χε(k)χδ(k) =
1

m

∑
k∈G

ωεkmω
δk
m =

1

m

∑
k∈G

ω(ε−δ)k
m .

By lemma 3.3.2 it follows that if ε 6= δ, then 〈χε, χδ〉 = 0. It follows that the elements of H1(G)

are pairwise orthogonal.
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This orthogonality gives our basis contender another nice quality, that is the linear indepen-

dence of its elements. The proof quickly follows, so we don’t show it here.

Now that we know H1(G) has the nice properties of a basis, like orthonormality and linear

independence, we need to show that it is indeed a basis. The final step in doing so is the

demonstration of span. This is done by taking an arbitrary element of L2(G) and showing that

it can be written as a linear combination of the basis functions. In this case however, we’ll need

to clarify what the coefficients of this linear combination will look like beforehand.

Lemma 3.3.3. Let f ∈ L2(G). If f =
∑

ε∈G cεχε, then cε = 〈f, χε〉.

Proof. Let δ ∈ G. It follows that

〈f, χδ〉 =
〈∑
ε∈G

cεχε, χδ

〉
=
∑
ε∈G

cε

〈
χε, χδ

〉
by the linearity of the inner product

= 0 + 0 + · · ·+ cδ + · · ·+ 0 since 〈χε, χδ〉 = 0 unless δ = ε, in which case 〈χε, χδ〉 = 1

= cδ

Thus if f can be expressed as a linear combination
∑

ε∈G cεχε, then cε = 〈f, χε〉.

With this lemma to inform what the coefficients will look like, we can prove span. We show

this for arbitrary G.

Theorem 3.3.4. Let G ∼= ⊕rj=1Zmj . If f ∈ L2(G), then f can be written as a linear combination

of elements in H1(G), f =
∑

ε∈G cεχε with cε = 〈f, χε〉 = 1
|G|
∑

g∈G f(g)χε(g).
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Proof. Let f ∈ L2(G), Then for h ∈ G∑
ε∈G

cεχε(h) =
∑
ε∈G

( 1

|G|
∑
g∈G

f(g)χ−1ε (g)
)
χε(h)

By Lemma 3.3.3

=
1

|G|
∑
ε∈G

∑
g∈G

f(g)

r∏
j=1

χεj (gj)

r∏
j=1

χεj (hj)

=
1

|G|
∑
ε∈G

∑
g∈G

f(g)

r∏
j=1

χεj (gj)χεj (hj)

=
1

|G|
∑
ε∈G

∑
g∈G

f(g)

r∏
j=1

ω
εjgj
mj ω

εjhj
mj

=
1

|G|
∑
ε∈G

∑
g∈G

f(g)

r∏
j=1

ω
mj−εjgj
mj ω

εjhj
mj

by the properties of complements of roots of unity

=
1

|G|
∑
ε∈G

∑
g∈G

f(g)

r∏
j=1

ω
mj−εj(gj−hj)
mj

=
1

|G|
∑
ε∈G

∑
g∈G

f(g)

r∏
j=1

ω
εj(gj−hj)
mj

=
1

|G|
∑
g∈G

∑
ε∈G

f(g)

r∏
j=1

ω
εj(gj−hj)
mj

since the sums of G are finite

=
1

|G|
∑
g∈G

f(g)
∑
ε∈G

r∏
j=1

ω
εj(gj−hj)
mj

since f(g) is constant in a sum of ε

=
1

|G|
∑
g∈G

f(g)
∑

ε1∈Zm1

∑
ε2∈Zm2

· · ·
∑

εr∈Zmr

(
ω
ε1(g1−h1)
m1 · ωε2(g2−h2)m2 · · ·ωεr(gr−hr)mr

)
=

1

|G|
∑
g∈G

f(g)
∑

ε1∈Zm1

ω
ε1(g1−h1)
m1

∑
ε2∈Zm2

ω
ε2(g2−h2)
m2 · · ·

∑
εr∈Zmr

ω
εr(gr−hr)
mr

=
1

|G|

(
0 + 0 + · · ·+ f(h)

∑
ε1∈Zm1

ω
ε1(h1−h1)
m1

∑
ε2∈Zm2

ω
ε2(h2−h2)
m2 · · ·

∑
εr∈Zmr

ω
εr(hr−hr)
mr + · · ·+ 0

)
since

∑
ε∈m

ω
ε(g−h)
m = 0 unless g = h

=
1

|G|

(
0 + 0 + · · ·+ f(h)

∑
ε1∈Zm1

1
∑

ε2∈Zm2

1 · · ·
∑

εr∈Zmr

1 + · · ·+ 0
)

=
1

|G|

(
f(h) ·m1 ·m2 · · ·mr

)
=

1

|G|

(
f(h) · |G|

)
= f(h).
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Since this is true for all h ∈ G, it follows that any f ∈ L2(G) can be expressed as a linear

combination χε ∈ H1(G). This implies that H1(G) spans L2(G).

Thus, with span, linear independence, and orthogonality, we can conclude that H1(G) is a

complete orthonormal basis of L2(G). We can deconstruct any element of L2(G) = {all f : G→

C} into a linear combination of elements in H1(G).

Remark 3.3.5. It is important to note that this decomposition is unique.

This result is crucial for every following result in this senior project.
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4
Applying Fourier

4.1 Fourier Applied to Affine Tverberg

Let us look again at the affine version of Tverberg’s theorem (2.0.18), and see what the impli-

cations for a Tverberg partition are if it is achieved using a decomposed affine map. We’ll look

at the cyclic case in two dimensions, but otherwise set things up the same way as the theorem.

Let r ≥ 2, and d = 2. Now let N = (r − 1)(d + 1), and 4N be a N−dimensional simplex.

Let G ∼= Zr, and f : 4N → R2 ∼= C be an affine map. Consider the set {σg}g∈G, of r pairwise

disjoint faces of 4N , that are parameterized by G. Let {xg}g∈G be a collection of points from

4N , also parameterized by G, where xg ∈ σg for all g ∈ G. We define

F : G→ C by g 7→ f(xg). (4.1.1)

Then, by Theorem3.3.4, it follows

f(xg) = F (g) =
∑
ε∈G

cεχε(g) for all g ∈ G. (4.1.2)

This map is well defined because we are already indexing our points xg from the simplex by

elements of G. Then, the decomposition comes directly from our choices of domain and range

(3.3.4).
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With this new function and our Fourier decomposition we can effectively deconstruct the

affine maps presented in the affine version of Tverberg’s theorem (2.0.18). We can now learn

what a Tverberg partition means in the context of such a decomposition.

Theorem 4.1.1. Let G = Zr for r ≥ 2. Let f : 4N → C be an affine map. Let σ1, . . . , σr be

r disjoint faces of 4N . Then there exists a set of r points {xg}g∈G such that xg ∈ σg for all

g ∈ G, such that f(x1) = . . . = f(xr) if and only if given the Fourier decomposition of F from

4.1.1, cε = 0 for all ε ∈ G− {0}.

Proof. Let G = Zr.

(⇐=) Suppose cε = 0 for all ε 6= 0. It follows that for g ∈ G

f(xg) = F (g)

=
∑
ε∈Zr

cεχε(g)

= c0χ0(g)

= c0(ω
0
m)g

= c0.

Note that c0 is just a constant coefficient, and therefore all the points {xg}g∈G map to the same

point. Since f(x1) = . . . = f(xr), and xg ∈ σg, it follows that f(x1) ∈ (f(σ1) ∩ . . . ∩ f(σr)) 6= ∅.

This implies a full Tverberg partition.

( =⇒ ) Now, suppose {xg}g∈G gives a Tverberg partition. Then there must exist an element

in f(σ1) ∩ . . . ∩ f(σr). Or, equivalently, f(xg) = c for all g ∈ G and some constant c. Therefore
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for g ∈ G

c = F (g)

=
∑
ε∈G

cεχε(g)

= c0χ0(g) +
∑

ε∈G−{0}

cεχε(g)

= c0 +
∑

ε∈G−{0}

cεχε(g) since χ0(g) = 1

Since c0 = c, and cε = 0 for all ε 6= 0 is a viable decomposition, by the uniqueness of these

Fourier decompositions, it follows that it is the only one.

A more general case with an arbitrary even dimension can be proven by splitting up affine

maps f : 4N → Cd into fi : 4N → C. This technique will be explored further later in the paper,

when we construct higher dimensional structures.

This demonstrates how the Fourier coefficients determine the characteristics of the function

they are used to deconstruct. We will see more of this shortly.

4.2 Regular r-gon partitions

An interesting consequence of the Fourier basis we’ve chosen to deconstruct our maps is the ease

with which it can describe regular polygons. Before we start to describe how this is, let us show

what a regular polygon looks like as it will be represented by our basis.

Consider the set of the rth roots of unity (3.2.1)

{
ωkr

}r−1
k=0

=
{
e

2πik
r

}r−1
k=0

=

{
cos

(
2πk

r

)
+ i sin

(
2πk

r

)}r−1
k=0

.

This cosine and sine will give the x and y values of points on the unit circle (in C), determined

by the input angle. Notice that k varies between 0 and r−1, implying 0 ≤ 2πk
r < 2π for every k,

and that each of these angles will be unique in the set. Moreover, the ascending integer values

of k, ensure that every point is a 2π
r rotation of the previous point. Since these points are on the
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unit circle, it follows that their distance from the origin doesn’t change with k. The regularity

of their angle, and placement on the unit circle imply that
{
ωkr
}r−1
k=0

forms the vertex set of a

regular r−gon.

However, we want an arbitrary r−gon. If we multiply every vertex by eiθ for some θ ∈ R, then

we get

{
eiθωkr

}r−1
k=0

=
{
eiθe

2πik
r

}r−1
k=0

=
{
e(

2πk
r

+θ)i
}r−1
k=0

.

This adds θ to the angle of every point, preserving their relative position, but rotating the

imagined polygon by θ. To scale the shape to an arbitrary size, we can simply multiply by a

nonzero scalar s ∈ R − {0}, to get {seiθωkr }r−1k=0. Finally, we can displace all the vertices, and

therefore the location of the r−gon, by adding an arbitrary complex number c ∈ C to the

vertices, {c+ seiθωkr }r−1k=0. These transformations allow us to express an r−gon of arbitrary size,

orientation, and position. Note that adding an extra power j ∈ N to the mth root of unity only

changes which vertices the individual values of k map to, as long as j and r are relatively prime

((r, j) = 1). We record this observation as a remark

Remark 4.2.1. Let r ≥ 3. The vertex set of an arbitrary regular polygon with r sides, some

rotation, some location, and some size, in the complex plane is {c + sωkjr }rk=0 with c ∈ C,

s ∈ C− {0}, and j ∈ N such that (r, j) = 1.

Now we show when such a regular r−gon shows up in the context of the affine maps from the

previous section. It is important to note that this is a result in the cyclic case, where G = Zr,

and with dimension d = 2.

Proposition 4.2.2. [1] Let G = Zr for r ≥ 3 and j ∈ N such that (j, r) = 1. Let f : 4N → C

be an affine map. There exists a set of r points {xg}g∈G such that xg ∈ σg for all g ∈ G, where

σg are disjoint faces, such that {f(xg)}g∈G is the vertex set of a regular r-gon if and only if in

the decomposition of F from 4.1.1 (1) cε = 0 for all ε 6= 0, j, and (2) cj 6= 0.
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Proof. ( ⇐= ) Suppose cε = 0 for all ε 6= 0, j and cj 6= 0 where j ∈ N such that (j, r) = 1. it

follows that

f(xh) = F (h)

=
r−1∑
ε=0

cεχε(h) because F has a Fourier decomposition

= c0 + cjχj(h) since cε = 0 for all ε 6= 0, j

= c0 + cjω
hj
r by definition of χε.

Thus {f(xg)}g∈G = {c0 + cjω
gj
r }g∈G defines the vertex set of an arbitrary, regular r-gon, by

4.2.1.

( =⇒ ) Now, suppose that {f(xg)}g∈G is the vertex set of a regular r-gon. It follows by 4.2.1

that f(xg) = c+ zωjgr for r ≥ 3, c ∈ C, z ∈ C− {0}, and j ∈ N such that (r, j) = 1, and g ∈ G.

F (g) = f(xg) by definition of F

= c+ zωjgr

= c+ zχj(g) +
∑

ε∈G−{o,j}

0 · χε(g)

Since F must have a Fourier decomposition, F (g) =
∑

ε∈G cεχε(g), and since that decompo-

sition is unique, it follows that c0 = c ∈ C, cj = z ∈ C− {0}, and cε = 0 for all ε 6= 0, j.

4.3 Coefficient elimination

The results of the previous two sections are very closely tied to which Fourier coefficients we

commit to being zero. The question then becomes, when are those coefficients zero? Under what

circumstances will we be able to find a regular r−gon? The following Theorem4.3.1 from [1]

helps us answer this question.

Up until now, in our use of the Tverberg type setup we have considered affine maps f : 4N →

C. However, we will later consider questions in higher dimensions too. Tverberg’s theorem is

shown in arbitrary dimension after all. For our purposes we will consider even dimension, because
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we can use a direct equivalency to products of C. With affine maps to Cd it is important to

notice that we can rewrite them in terms of smaller maps to C that we’re more familiar with.

Thus given f : 4N → Cd, it follows f = (f1, . . . , fd) where fi : 4N → C. Then, as in 4.1.1 we

can define

Fi : G→ C such that g 7→ fi(xg). Then each Fi has a Fourier decomposition Fi =
∑
ε∈G

ci,εχε.

(4.3.1)

Now we can introduce a helpful theorem.

Theorem 4.3.1. [1] Let G = ⊕dj=1Zmj for d ≥ 1. Choose sets Si ⊂ G− {0} for 1 ≤ i ≤ d. Let

m = |G| and s =
∑d

j=1 |Sj |. Let N = 2s + m − 1 and f : 4N → Cd be an affine map. Then

there exists a set of points {xg}g∈G, where xg ∈ σg for all g ∈ G and the σg are disjoint, such

that if we have the decomposed maps Fi, as shown in 4.3.1, the following is true:

(a) for all 1 ≤ i ≤ d, ci,ε = 0 for all ε ∈ Si

(b) for almost every f , ci,ε 6= 0 for all ε 6∈ Si an all 1 ≤ i ≤ d.

(c) If N < 2|S|+m− 1, then (a) fails for almost every f (N is tight).

This theorem allows us to find an N for which we will almost always get our desired decom-

position of F .

An important aspect of 4.3.1 is that it’s statement is true for ‘almost every’ affine map. This

helps us define a generic affine map.

Definition 4.3.2. [1] Let G = ⊕rj=1Zmj with r ≥ 1 and f : 4N → Cd be an affine map.

Let m = |G|. Then f is Fourier generic if given any collection of subsets {Si}ri=1, where

Si ⊂ G − {0} and where s =
∑d

j=1 |Sd| with N < 2s + m − 1, there do not exist disjoint

faces, σ1, . . . , σr, and a set of points {xg}g∈G where xg ∈ σg, such that when we consider the

decomposition of Fi from 4.3.1, we have ci,ε = 0 for all ε ∈ Si and all 1 ≤ i ≤ r.
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A fourier generic map is the name for a typical affine map in the setting of Theorem4.3.1.

This means that in Theorem4.3.1, given a Fourier generic map from an N−simplex whose N

is too small, you cannot eliminate all the coefficients in S. Importantly, this also means that

with an N that is big enough, a Fourier generic map will not eliminate too many coefficients.

This means that generically we only eliminate the coefficients we intend to. As we will see later

when we partially recover Tverberg’s theorem, this property will be what recovers the tightness

of Tverberg’s number. It will also enforce new tight numbers of points for our own results. This

sense of a generic function will be useful later as we generate further results using 4.3.1.

As an example of the utility of this new theorem, we can see that we recover part of Tverberg’s

theorem if we choose G = Zr with r ≥ 2, S = G− {0} and d = 1. In this case

N = 2|S|+ r − 1 = 2(|G| − 1) + r − 1 = 3r − 3.

Note that N = (r−1)(2+1) which is the two dimensional case of the affine version of Tverberg’s

Theorem2.0.18. Let f : 4N → C be an affine map. Thus if we take F : G → C (4.1.1) with

the Fourier decomposition F =
∑

ε∈G cεχε . By 4.3.1 it follows that there exists a set of points

{xg}g∈G from r pairwise disjoint faces of 4N such that cε = 0 for all ε ∈ S by . By 4.1.1 it

follows that we have a full Tverberg partition.

Remark 4.3.3. Note that Theorem 4.3.1 implies N = 3r − 3 = T (r, d) − 1 is tight, meaning

that with n < N a Fourier generic map will not admit a full Tverberg partition.

Now that we’ve recovered something we already knew, let’s investigate when the regular

r−gons we described in section 4.2 show up. We claim

Theorem 4.3.4. [1] Let G = Zr for r ≥ 3, and N = 3r− 5. Now let 4N be an N−dimensional

simplex. Let f : 4N → R2 be a Fourier generic affine map. There exist r points {xg}g∈G where

xg ∈ σg for all g ∈ G and the σg are disjoint, such that {f(xg)}g∈G forms the vertex set of a

regular r−gon.

Proof. Let r ≥ 3, G = Zr and S = G − {0, j} for some j ∈ N such that (r, j) = 1. Let

N = 2|S|+ r − 1 = 2(r − 2) + r − 1 = 3r − 5, and f : 4N → C be a Fourier generic affine map.
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Consider r pairwise disjoint faces of 4N , σ1, . . . , σr. By 4.3.1, there almost always exist a set of

points {xg}g∈G, where xi ∈ σi, so that in the Fourier decomposition of the map F from 4.1.1,

we know cε = 0 for all ε ∈ G − {0, j}. Because f is fourier generic, it follows that cj 6= 0. It

follows by 4.2.2 that in this case {f(xg)}g∈G is the vertex set of a regular r−gon.

In much the same way that we can restate Tverberg’s theorem in a setting of affine maps,

we can restate 4.3.4 in a context of convex hulls. Note that since the domain of f in 4.3.4 is an

N−dimensional simplex which implies that from the geometric point of view N+1 = 3r−5+1 =

3r − 4 points are needed.

Theorem 4.3.5. [1] Almost any set of 3r − 4 points in R2 can be partitioned into r disjoint

sets, A1, . . . , Ar, such that there exist r points, x1 ∈ Conv(A1), . . . , xr ∈ Conv(Ar), which form

the the vertex set of a regular r−gon.

We call an application of 4.3.5 a regular r−gon partition. Notice that at a dimension d = 2,

Tverberg’s number T (r, d) = 3r−2, which is greater than the number of points (3r−4) required

for an r−gon partition (4.3.5). Since T (r, d) is tight, this result (4.3.5) also sheds interesting

light on what can be said about collections of points smaller than T (r, d). It’s also important

to note that by 4.3.1, the requirement of 3r − 4 points for a regular r−gon partition is tight as

well.
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Regular Sub r−gons

It was shown in [?leinersimon], that given 3r − 4 points in R2 partitioned into r subsets so

that one can find the vertex set of a regular r−gon with one vertex from each of their convex

hulls. But now we ask what other types of partitions there are given the same 3r − 4 points.

Definition 5.0.1. Let r = r1r2, and S be a set of points in R2. A sub r−gon partition of S is

a partition of S into r sets, grouped into r1 collections of r2 sets, A1
1, . . . , A

1
r2 , . . . , A

r1
1 , . . . , A

r1
r2 ,

such that

a) ∩r2i=1Conv(A1
i ) 6= ∅, . . . ,∩

r2
i=1Conv(Ar1i ) 6= ∅, and

b) there exist points y1 ∈ ∩r2i=1Conv(A1
i ), . . . , yr1 ∈ ∩

r2
i=1Conv(Ar1i ) that form the vertex set of

a regular r1−gon.

First we show what a sub r−gon partition is equivalent to in the affine formulation, with our

Fourier decomposition.

Proposition 5.0.2. Let G = Zr for r ≥ 3, where r = r1r2, and N ∈ N. Let f : 4N → C be

an affine map. Consider r disjoint faces of 4N grouped into r1 collections of r2 faces, C1 =

{σ0, σr1 , · · · , σ(r2−1)r1}, · · · , Cr1 = {σr1−1, · · · , σ(r1−1)+(r2−1)r1}. Let {xg}g∈G be a set of points

from 4N such that xg ∈ σg for all g ∈ G. For some j ∈ N such that (r1, j) = 1, we can say that
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given the Fourier decomposition of the map F from 4.1.1, (1) cε = 0 for all ε 6= 0, jr2, and (2)

cjr2 6= 0 if and only if

a) ∩σ∈C1f(σ) 6= ∅, · · · ,∩σ∈Cr1f(σ) 6= ∅, and

b) f(x0) ∈ ∩σ∈C1f(σ), · · · , f(xr1−1) ∈ ∩σ∈Cr1f(σ) are the vertices of a regular r1-gon.

Proof. ( =⇒ ) Let j ∈ N such that (j, r1) = 1. Suppose cε = 0 for all ε 6= 0, jr2 and that cjr2 6= 0.

It follows that for g ∈ G

f(xg) = F (g)

=
∑
ε∈G

cεχε(g) since F : G→ C, we use Thm 3.3.4

= c0 + cjr2χjr2(g) since all other cε’s are zero by assumption

= c0 + cjr2ω
jr2g
r

= c0 + cjr2e
2πigjr2
r1r2

= c0 + cjr2ω
gj
r1

Since g will run through all r = r1r2 elements of G = Zr, and there are only r1 distinct powers

of ωr1 , it follows that in many cases multiple points from the simplex will map to the same point

in C. We investigate where and how these overlaps happen. Since f(xg) = c0 + cjr2ω
gj
r1 we can

see

f(xg+nr1) = c0 + cjr2ω
(g+nr1)j
r1

= c0 + cjr2ω
gj
r1ω

nr1j
r1

= c0 + cjr2ω
gj
r1

= f(xg)

Notice that because of the root of unity, only 0 ≤ n ≤ r2 − 1 give unique results. Therefore,

since n can be one of r2 values, every point in {f(xg)}r1−1g=0 is getting mapped onto by r2 points

from the simplex, and the indices of these points differ by multiples of r1,

f(xg) = f(xg+r1) = · · · = f(xg+(r2−1)r1).
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It follows that

f(σg) ∩ f(σg+r1) ∩ . . . ∩ f(σg+(r2−1)r1) 6= ∅

This means that the images of the faces in the collection Cg+1 overlap. It follows that

∩σ∈C1f(σ) 6= ∅, · · · ,∩σ∈Cr1f(σ) 6= ∅.

Now, if we consider the points f(x0) ∈ ∩σ∈C1f(σ), . . . , f(xr1−1) ∈ ∩σ∈Cr1f(σ), they will all

be distinct. Moreover, since we showed f(xg) = c0 + cjr2ω
gj
r1 , they will form the vertex set of a

regular r1-gon.

( ⇐= ) Suppose ∩σ∈C1f(σ) 6= ∅, . . . ,∩σ∈Cr1f(σ) 6= ∅,

and f(x0) ∈ ∩σ∈C1f(σ), . . . , f(xr1−1) ∈ ∩σ∈Cr1f(σ) are the vertices of a regular r1-gon.

It follows that {f(xg)}r1−1g=0 = {c+ zωjgr1}r1−1g=0 with (j, r1) = 1 and z 6= 0, by 4.2.1. Therefore

F (g) = f(xg)

= c+ z(ωjr1)g

= c+ z
(
e

2πijr2
r1r2

)g
= c+ z(ωjr2r )g

= c+ zχjr2(g)

=
r−1∑
ε=0

cεχε(g) where c0 = c, cjr2 = z, and cε = 0 for ε 6= 0, jr2

This shows that F (g) can be expressed in our usual Fourier decomposition as
∑

ε∈G cεχε(g) with

cε = 0 for all ε 6= 0, jr2. By the uniqueness of the Fourier decomposition, it follows that this one,

with cε = 0 unless ε = 0, jr2 is the only decomposition.

Now we can use Theorem 4.3.1 to show under what circumstances we can find sub r−gon

partitions.

Theorem 5.0.3. Consider G = Zr where r = r1r2. Let N = 3r − 5 and let f : 4N → C be a

Fourier generic affine map. Then there exist r disjoint faces in 4N , grouped into r1 collections

of r2 faces, C1 = {σ0, σr1 , · · · , σ(r2−1)r1}, · · · , Cr1 = {σr1−1, · · · , σ(r1−1)+(r2−1)r1} such that:
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a) ∩σ∈C1f(σ) 6= ∅, · · · ,∩σ∈Cr1f(σ) 6= ∅, and

b) there exist points y1 ∈ ∩σ∈C1f(σ), · · · , yr1 ∈ ∩σ∈Cr1f(σ) that are the vertices of a regular

r1-gon.

c) The dimension of the simplex, N is tight.

Proof. Let G = Zr, where r = r1r2, and S = G−{0, jr2}. Let N = 2|S|+r−1 = 2(r−2)+r−1 =

3r − 5, and f : 4N → C be a Fourier generic affine map. By Theorem 4.3.1 there exist r

pairwise disjoint faces of 4N , {σg}g∈G, and a set of points, {xg}g∈G, where xg ∈ σg, such

that for the Fourier decomposition of the map F from 4.1.1, we have cε = 0 for ε ∈ S. Since

f is fourier generic, cε = 0 unless ε = 0, jr2. By Theorem 5.0.2 it follows that ∩σ∈C1f(σ) 6=

∅, · · · ,∩σ∈Cr1f(σ) 6= ∅ and f(x0) ∈ ∩σ∈C1f(σ), · · · , f(xr1−1) ∈ ∩σ∈Cr1f(σ) are the vertices of a

regular r1-gon.

To prove (c) note that if the simplex had dimension n < N = 2|S|+ r − 1, then by 4.3.1 the

above would fail since f is Fourier generic. Thus N is tight.

Note that N being tight holds for all our results, since it is a direct consequence of Theorem

4.3.1. Since the proof will always be the same, we’ll omit stating it explicity in theorems in later

on.

Again, just as we can state Tverberg’s theorem in terms of both affine maps, and convex hulls,

we can restate this theorem in terms of convex hulls too. Since the domain of the affine map f

in 5.0.3 is a simplex with dimension N = 3r− 5, it follows that we’ll need N + 1 = 3r− 4 points

in the plane to create that simplex and find an r1−gon in the intersection of convex hulls.

Theorem 5.0.4. Let r ≥ 3 and r1, r2 ∈ Z such that r1r2 = r. Almost any set of 3r−4 points in

R2 can be partitioned into r sets, A1
1, . . . , A

1
r1 , . . . , A

r1
1 , . . . , A

r1
r2, such that there exist r1 points,

y1 ∈ ∩r2i=1Conv(A1
i ), . . . , yr1 ∈ ∩

r2
i=1Conv(Ar1i ), that form the vertex set of a regular r1−gon.

Moreover, almost any collection of fewer points can’t be a sub r−gon partition.

This result gives us a more general understanding of what’s going on than the r−gon partition

we proved in the previous section (4.3.5). Indeed, if either r1 or r2 equal 1, then we recover
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Theorem 4.3.5. What is also interesting is that there is no change to the number of points

required. You need 3r−4 points no matter the choice of r1 and r2. This means that given 3r−4

points in the plane, you can almost always form a regular polygon with vertices whose number

is a factor of r.

What follows is an example of the versatility sub r−gon partitions provide. This example will

be for r = 12, and therefore T (12, 2)− 2 = 32 points in R2.

Figure 5.0.1. An arbitrary set of 32 points

Now, since 12 = 4 · 3, we should be able to find a square in the intersection of convex hulls.

Figure 5.0.2. Z12 Sub square partition

Here we see the overlapping collections of convex hulls distinguished by their colors, and the

vertices of the square being taken from the overlap of the convex hulls of each collection. Of

course, since 12 = 3 · 4 we should be able to find a regular triangle in the intersection of convex

hulls too.



36 5. REGULAR SUB R−GONS

Figure 5.0.3. Z12 Sub triangle partition

It is interesting to notice how even though this result is with a smaller number of points than

Tverberg’s original theorem, we find the vertices of this r1−gon from what could almost be

described as ‘mini’ Tverberg partitions.
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Multi Dimensional Applications

So far we’ve discussed Tverberg type results in the two dimensional plane. Tverberg’s theorem

(2.0.4) is, however, stated for the more general Rd. This leads us to ask how the two dimensional

polygon results of the previous chapter may be extended to multiple dimensions. Our transition

to higher dimensions will also involve using more general finite abelian groups, rather than just

cyclic ones as before.

6.1 Multiprism

Ironically, the quickest application of what we know is also the hardest to visualize. Let’s begin

by defining what what type of object we’ll be looking for:

Definition 6.1.1. A Polytope is the convex hull of some finite set of points in Rd.

This is a general object in d dimensions. We’ll be focused on a particular kind of polytope,

one that is the product of shapes in lower dimensions. To express this, we introduce some new

notation. Let Pr denote a regular r − gon for r ≥ 3, and let P2 denote a line segment.

Definition 6.1.2. Let ri ≥ 3 for all i. A Multiprism in R2d+k is P = Pr1 × . . .× Prd × P k2 for

some k ≥ 0.
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Multiprisms are polytopes which are the cartesian product of two dimensional polygons and

line segments.

Note that the cartesian product adds the dimension of the sets it’s applied to. This is why, if

P = Pr1 × . . .× Prd for ri ≥ 3, then P has dimension 2d. Similarly, if we were to also include a

product of k lines segments to get P = Pr1 × . . .× Prd × P k2 for some k ≥ 0, this multiprism P

would have dimension 2d+ k, as shown in the definition.

Like polygons in R2, multiprisms are made of smaller components.

Definition 6.1.3. A k−face of a d−dimensional polytope is a k−dimensional polytope subset

of the d−polytope.

So the 0−faces are the vertices, the 1−faces are the edges, etc.

Definition 6.1.4. A facet of a d−dimensional polytope is a (d− 1)−face.

The facets of a cube, for example, are the square 2−faces on its exterior.

Remark 6.1.5. We’re considering multiprisms, which are special polytopes. It’s important to

note that if we look at P = Pr1 × . . . × Prd × P k2 , then the k−faces are constructed using the

faces of the component Pri and P2 (the entire polygons, edges, or vertices). So a k−face of P is

the product of 0−faces, 1−faces, and 2−faces of Pri and the edges P2.

It follows that the vertices of a multiprism are all the possible cartesian products of vertices

of the component Pri and P2. as in Figure 6.1.1

As an example of a multiprism, we could consider a P3 × P2.

Figure 6.1.1. Triangular prism
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As we can see, this is a three dimensional regular triangular right prism. The facets on the

side are rectangles, while the facets on the top on bottom are equilateral triangles.

Given a 4−dimensional multiprism P = P4 × P3, we won’t be able to present an image of it,

but we can describe it’s faces.

(3−faces) It’s facets should be 3−dimensional prisms, so they’ll be products of 1 and 2 dimen-

sional faces from P4 and P3. It follows that the two facets of P are a right prism with a square

base, and a right prism with a triangular base.

(2−faces) It’s 2−faces will be products of 1−dimensional faces from P4 and P3, or the 2−face

of one times the vertices of the other. The products of edges from P4 and P3 give us 4 · 3 = 12

2−faces. Then P4 times the vertices of P3 will give us 3 2−faces, while P3 times the vertices of

P4 will give us 4 2−faces. Thus in total P has 12 + 3 + 4 = 19 2−faces.

(1−faces) It’s 1−faces will be products of 1−faces in one, and 0−faces in the other. Taking

vertices from P4 and edges from P3, we get 4 · 3 = 12 edges. Then taking vertices from P3 and

edges from P4, we get 3 · 4 = 12 edges. Thus P has 12 + 12 = 24 edges.

(0−faces) Finally, the 0−faces will be products of the 0−faces from both. Thus P has 4·3 = 12

vertices.

6.2 Finding Multiprisms

Previously we used cyclic groups of order r in the construction of our Fourier basis and the

subsequent regular r−gons and sub r−gons in R2 ∼= C. In multiple dimensions we’ll use a more

general group structure, G = ⊕dj=1Zmj . Because our previous work used maps onto the complex

plane, this initial result will be deconstructing maps to Cd ∼= R2d. Notice that this means we are

only considering multiprisms occuring in even dimension.
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Theorem 6.2.1. Let G = ⊕dj=1Zmj for d ≥ 1. Let m = |G| and N = 2(m − 2)d + m − 1. Let

mi = m1
im

2
i for all 1 ≤ i ≤ d. Let f : 4N → Cd be a Fourier generic affine map. Then there

exist m disjoint faces of 4N , {σg}g∈G, such that

(a)
⋂
b∈⊕dj=1Zm2

j

f
(
σp+(b1m1

1,...,bdm
1
d)

)
6= ∅ for all p ∈ ⊕dj=1Zm1

j
, and

(b) There exists a set of points {yp}p∈⊕dj=1Zm1
j

, where yp ∈
⋂
b∈⊕dj=1Zm2

j

f
(
σp+(b1m1

1,...,bdm
1
d)

)
for all p ∈ ⊕dj=1Zm1

j
, and {yp}p∈⊕dj=1Zm1

j

is the vertex set of P = Pm1
1
× . . . × Pm1

d
where

each regular m1
i−gon is parallel to a C−plane generated by a standard basis vector.

In much the same way as the points of a sub r−gon (4.3.5) are taken from the intersection

of convex hulls in C, the points in this vertex set of a multiprism in Cd will be taken from the

intersection of convex hulls in Cd, only these convex hulls will be polytopes.

Let us run through an example for clarity. Let G = Z6 ⊕ Z4. Then, |G| = 6 · 4 = 24, and let

N = 2((24) − 2)2 + (24) − 1 = 991. then we pick any generic affine map from 4N to C2 ∼= R4.

Given such a setup, we can find 24 disjoint faces of 4N , whose images overlap in 6 collections

of 2 · 2 = 4 each, and we can find vertices of a P3 × P2 multiprism with one vertex from each

overlap. But, we could also choose a different set of disjoint faces so that the images of the faces

overlap in 8 collections of 3 · 1 = 3, and in the overlaps of their images we find the vertices of a

P2 × P4 multiprism.

Now we proceed to the proof of Theorem 6.2.1.
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Proof. For 1 ≤ k ≤ d let j(k) = (0, . . . , 0, jk, 0, . . . , 0) where (m1
k, jk) = 1. We choose a collection

of sets, Si = G− {0,m2
i j

(i)}. Let s =
∑d

j=1 |Si| = (|G| − 2)d = (m− 2)d, and N = 2s+m− 1.

By theorem 4.3.1 it follows that there exist m disjoint faces of 4N , {σg}g∈G, and a set of points

{xg}g∈G where xg ∈ σg, such that if p ∈ G, then

f(xp)

= (f1(xp), f2(xp), . . . , fd(xp))

= (F1(p), F2(p), . . . , Fd(p))

from 4.3.1

=

(∑
ε∈G

c1,εχε(p),
∑
ε∈G

c2,εχε(p), . . . ,
∑
ε∈G

cd,εχε(p)

)
=
(
c1,0χ0(p) + c1,m2

1j
(1)χm2

1j
(1)(p), c2,0χ0(p) + c2,m2

2j
(2)χm2

2j
(2)(p), . . . , cd,0χ0(p) + cd,m2

dj
(d)χm2

dj
(d)(p)

)
by 4.3.1 since ck,ε = 0 for all ε ∈ Sk

=
(
c1,0 + c1,m2

1j
(1)χm2

1j
(1)(p), c2,0 + c2,m2

2j
(2)χm2

2j
(2)(p), . . . , cd,0 + cd,m2

dj
(d)χm2

dj
(d)(p)

)
since χ(0,...,0)(p) =

d∏
j=1

χ0(p) =
d∏
j=1

1 = 1

=
(
c1,0 + c1,m2

1(j1,...,0)
χm2

1(j1,...,0)
(p), c2,0 + c2,m2

2(0,j2,...,0)
χm2

2(0,j2,...,0)
(p), . . . , cd,0 + cd,m2

d(0,...,jd)
χm2

d(0,...,jd)
(p)
)

=

(
c1,0 + c1,m2

1j
(1)

d∏
t=1

χ
m2

1j
(1)
t

(pt), c2,0 + c2,m2
2j

(2)

d∏
t=1

χ
m2

2j
(2)
t

(pt), . . . , cd,0 + cd,m2
dj

(d)

d∏
t=1

χ
m2
dj

(d)
t

(pt)

)
by 3.2.3 where j(1) =

(
j
(1)
1 , . . . , j

(1)
d

)
, p = (p1, . . . , pd)

=
(
c1,0 + c1,m2

1j
(1)χ

m2
1j

(1)
1

(p1), c2,0 + c2,m2
2j

(2)χ
m2

2j
(2)
2

(p2), . . . , cd,0 + cd,m2
dj

(d)χ
m2
dj

(d)
d

(pd)
)

because j
(k)
t = 0 unless t = k by construction, and χ0(pt) = 1

=
(
c1,0 + c1,m2

1j
(1)χm2

1j1
(p1), c2,0 + c2,m2

2j
(2)χm2

2j2
(p2), . . . , cd,0 + cd,m2

dj
(d)χm2

djd
(pd)

)
=
(
c1,0 + c1,m2

1j
(1)ω

m2
1j1p1

m1
1m

2
1
, c2,0 + c2,m2

2j
(2)ω

m2
2j2p2

m1
2m

2
2
, . . . , cd,0 + cd,m2

dj
(d)ω

m2
djdpd

m1
dm

2
d

)
=
(
c1,0 + c1,m2

1j
(1)ω

j1p1
m1

1
, c2,0 + c2,m2

2j
(2)ω

j2p2
m1

2
, . . . , cd,0 + cd,m2

dj
(d)ω

jdpd
m1
d

)
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Now we have a description of what our points map to, but we still to show what points overlap

in the image. Let b = (b1, . . . , bd) and t = (b1m
1
1, . . . , bdm

1
d). Consider

f(xp+t) =
(
c1,0 + c1,m2

1j
(1)ω

j1(p1+b1m1
1)

m1
1

, . . . , cd,0 + cd,m2
dj

(d)ω
jd(pd+bdm

1
d)

m1
d

)
=
(
c1,0 + c1,m2

1j
(1)ω

j1p1
m1

1
ω
j1b1m1

1

m1
1

, . . . , cd,0 + cd,m2
dj

(d)ω
jdpd
m1
d
ω
jdbdm

1
d

m1
d

)
=
(
c1,0 + c1,m2

1j
(1)ω

j1p1
m1

1
(1), . . . , cd,0 + cd,m2

dj
(d)ω

jdpd
m1
d

(1)
)

=
(
c1,0 + c1,m2

1j
(1)ω

j1p1
m1

1
, . . . , cd,0 + cd,m2

dj
(d)ω

jdpd
m1
d

)
= f(xp)

This described the overlapping images. Since mi = m1
im

2
i for all i, it follows that the ith slot

in the tuple has m2
i possible multiples of m1

i . Therefore, the ith slot contributes m2
i overlapping

points. Since xg ∈ σg, it follows

⋂
b∈⊕dj=1Zm2

j

f
(
σp+(b1m1

1,...,bdm
1
d)

)
6= ∅ for all p ∈ G.

We can also conclude that

{f(xg)}g∈⊕dj=1Zm1
j

⊂ {f(xg)}g∈G

are a set of non overlapping points.

From 4.2.1 we know that for e 6= 0, c ∈ C, the set {c + eωap
m1
i
}p∈Z

m1
i

where (a, p) = 1, is the

vertex set of a regular m1
i−gon. Consider

{f(xg)}g∈⊕dj=1Zm1
j

=
{(
c1,0 + c1,j(1)ω

j1g1
m1

, c2,0 + c2,j(2)ω
j2g2
m2

, . . . , cd,0 + cd,j(d)ω
jdgd
md

)}
g∈⊕dj=1Zm1

j

Since f is Fourier generic, we know that c1,j(1) , . . . , cd,j(d) 6= 0, and thus we can see that each

place in the tuple will form the vertex set of its own m1
i−gon. Therefore the set of points as a

whole will form a multiprism in Cd. Because each mi−gon is only represented in the ith tuple

spot, it follows that every mi−gon will be parallel to the C−plane generated by the standard

basis vector of the ith slot.
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6.3 Sub r−gons in Cd

In extending our work from the two dimensional plane to Cd we may also ask if a more direct

conversion is possible. Under what conditions can we find a sub r−gon in Cd. There turn out to

be a couple answers to this question.

6.3.1 Arbitrary sub r−gon

Because we’re looking for a sub r−gon partition, despite being in Cd, we’ll still use a cyclic group.

Notice however, that the dimension of the simplex needed (and consequently the number points

needed in a geometric setting) will remain the same as with the multiprism. This is because

we’re still eliminating all but two coefficients from every spot in the tuple.

Theorem 6.3.1. Let G = Zm with m ≥ 3. Let m = n1n2, and N = 2(m − 2)d + m − 1.

Let f : 4N → Cd be a Fourier generic affine map. Then there exists m disjoint faces of 4N ,

{σg}g∈G such that

(a)
⋂n2−1
j=0 f(σg+jn1) 6= ∅ for all 0 ≤ g < n1, and

(b) There exist a set of points {yg} where yg ∈
⋂n2−1
j=0 f(σg+jn1) for all 0 ≤ g < n1, and {yg}

is the vertex set of a regular n1−gon.

Proof. Let j ∈ Z such that (n1, j) = 1. We choose a collection of sets, Si = G − {0, jn2}. Let

s =
∑d

j=1 |Si| = (m − 2)d, and N = 2s + m − 1. Let f : 4N → Cd be a Fourier generic affine

map. By theorem 4.3.1 it follows that there exist m disjoint faces of 4N and a set of points

{xg}g∈G from distinct faces such that if p ∈ G, then



44 6. MULTI DIMENSIONAL APPLICATIONS

f(xp) = (f1(xp), f2(xp), . . . , fd(xp))

= (F1(p), F2(p), . . . , Fd(p))

from 4.3.1

=

(∑
ε∈G

c1,εχε(p),
∑
ε∈G

c2,εχε(p), . . . ,
∑
ε∈G

cd,εχε(p)

)
= (c1,0χ0(p) + c1,n2jχn2j(p), c2,0χ0(p) + c2,n2jχn2j(p), . . . , cd,0χ0(p) + cd,n2jχn2j(p))

by 4.3.1 since ck,ε = 0 for all ε ∈ Sk

= (c1,0 + c1,n2jχn2j(p), c2,0 + c2,n2jχn2j(p), . . . , cd,0 + cd,n2jχn2j(p))

since χ0(p) = ω0
m=1

=
(
c1,0 + c1,n2jω

n2jp
m , c2,0 + c2,n2jω

n2jp
m , . . . , cd,0 + cd,n2jω

n2jp
m

)
= (c1,0, c2,0, . . . , cd,0) +

(
c1,n2jω

n2jp
m , c2,n2jω

n2jp
m , . . . , cd,n2jω

n2jp
m

)
= (c1,0, c2,0, . . . , cd,0) + ωn2jp

n1n2
(c1,n2j , c2,n2j , . . . , cd,n2j)

= (c1,0, c2,0, . . . , cd,0) + ωjpn1
(c1,n2j , c2,n2j , . . . , cd,n2j)

Let ~c0 = (c1,0, c2,0, . . . , cd,0) and ~c1 = (c1,n2j , c2,n2j , . . . , cd,n2j). Then the set {f(xg)}g∈G =

{~c0 + ωjgn1~c1}g∈G. We’re looking for a sub r−gon, so we know there’s going to be some overlap.

But what points overlap? For p ∈ G and k ∈ Z, consider

f(xp+kn1) = ~c0 + ωj(p+kn1)
n1

~c1

= ~c0 + ωjpn1
ωkn1
n1
~c1

= ~c0 + ωjpn1
(1)~c1

= f(xp).

Of course, since the points {xg}g∈G are parametrized by G = Zm, and m = n1n2, it follows

that 0 ≤ k < n2. Therefore With the same argument as

f(xp) = f(xp+n1) = . . . = f(xp+(n2−1)n1
).
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Since each point comes from a distinct disjoint face, it follows that

n2−1⋂
j=0

f(σg+jn1) 6= ∅ for all 0 ≤ g < n1.

Thus we can take the following set of distinct points.

f(xg) ∈
n2−1⋂
j=0

f(σg+jn1) for all 0 ≤ g < n1.

Since ωjgn1 = e
2πijg
n1 , it follows that ~c0 +ωjgn1~c1 is a rotation of ~c1 by 2πjg

n1
radians and translation

by ~c0. It follows that {f(xg)}g∈G = {~c0 + ωjgn1~c1}g∈G will form a regular n1−gon in Cd, parallel

to 〈~c1〉 = {λ~c1|λ ∈ C}.

6.3.2 Parallel Sub r−gon

Theorem 6.3.1 gives a sub r−gon partition on an arbitrary plane. This leads us to wonder if

we could find a sub r−gon partition on a plane of our choosing. For this result we will require

an intermediary lemma. The lemma will be similar to Theorem 6.3.1, only we’ll be eliminating

more coefficients in order to have a stronger condition on the orientation of the sub r−gon in

Cd. Of course this also results in the dimension of the simplex, N , being larger. In the geometric

setting this means that we’ll have to have more points initially in Cd in order to find a sub

r−gon in the intersection of convex hulls.

Lemma 6.3.2. Let G = Zm with m ≥ 3. Let n1, n2 ∈ Z such that m = n1n2, and N =

2(m−2)(m−1)d−1 +m−1. Let f : 4N → Cd be a Fourier generic affine map. Then there exist

m pairwise disjoint faces of 4N , {σg}g∈G such that

(a)
⋂n2−1
j=0 f(σg+jn1) 6= ∅ for all 0 ≤ g < n1, and

(b) There exist a set of points {yg} where yg ∈
⋂n2−1
j=0 f(σg+jn1) for all 0 ≤ g < n1, and {yg} is

the vertex set of a regular n1−gon parallel to the complex plane generated by the standard

basis vector (1, 0, . . . , 0) ∈ Cd.

Proof. Let j ∈ Z such that (n1, j) = 1. We choose a collection of sets where S1 = G− {0, n2j},

and for i > 1, Si = G− {0}. Let s =
∑d

j=1 |Si| = (m− 2)(m− 1)d−1, and N = 2s+m− 1. Let
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f : 4N → Cd be a Fourier generic affine map. By theorem 4.3.1 it follows that there exist m

disjoint faces of 4N and a set of points {xg}g∈G from distinct faces such that if p ∈ G, then

f(xp) = (f1(xp), f2(xp), . . . , fd(xp))

= (F1(p), F2(p), . . . , Fd(p))

from 4.3.1

=

(∑
ε∈G

c1,εχε(p),
∑
ε∈G

c2,εχε(p), . . . ,
∑
ε∈G

cd,εχε(p)

)
= (c1,0χ0(p) + c1,n2jχn2j(p), c2,0χ0(p), . . . , cd,0χ0(p))

by 4.3.1 since ck,ε = 0 for all ε ∈ Sk

= (c1,0 + c1,n2jχn2j(p), c2,0, . . . , cd,0)

since χ0(p) = ω0
m=1

=
(
c1,0 + c1,n2jω

n2jp
m , c2,0, . . . , cd,0

)
= (c1,0, c2,0, . . . , cd,0) +

(
c1,n2jω

n2jp
m , 0, . . . , 0

)
= (c1,0, c2,0, . . . , cd,0) + ωn2jp

n1n2
(c1,n2j , 0, . . . , 0)

= (c1,0, c2,0, . . . , cd,0) + ωjpn1
(c1,n2j , 0, . . . , 0)

If we define ~c0 = (c1,0, c2,0, . . . , cd,0) and ~c1 = (c1,n2j , 0, . . . , 0), then {f(xg)}g∈G = {~c0 +

ωj1g1n1 ~c1}g∈G. With the same argument as in the proof of 6.3.1, we can conclude

f(xp) = f(xp+n1) = . . . = f(xp+(n2−1)n1
).

And since each point comes from a distinct disjoint face, it follows that

n2−1⋂
j=0

f(σg+jn1) 6= ∅ for all 0 ≤ g < n1.

Thus we can take the following set of distinct points.

f(xg) ∈
n2−1⋂
j=0

f(σg+jn1) for all 0 ≤ g < n1.
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Just as in the proof of 6.3.1 it follows that {f(xg)}n1−1
g=0 = {~c0 + ωj1g1n1 ~c1}n1−1

g=0 is the vertex

set of an n1−gon. In this case however ~c1 = (c1,n2j , 0, . . . , 0) = c1,n2j (1, 0, . . . , 0). This indicates

~c1 lies on the C−plane 〈(1, 0, . . . , 0)〉 = {λ(1, 0, . . . , 0)|λ ∈ C}. What makes the above n1−gon

interesting is that since it’s made by multiplying the vector ~c1 by a complex number, it too

lies on 〈(1, 0, . . . , 0)〉. Thus, when translated by ~c0, we can conclude that {f(xg)}n1−1
g=0 = {~c0 +

ωj1g1n1 ~c1}n1−1
g=0 is parallel to 〈(1, 0, . . . , 0)〉.

Since (1, 0, . . . , 0) is a standard basis vector of Cd, we can ask if we can find a sub r−gon that

is parallel to any given complex plane. In order to prove this we’ll need an understanding of

what it means to be perpendicular. For this reason we introduce

Definition 6.3.3. Let ~u = (u1, . . . , ud) and ~v = (v1, . . . , vd) be two vectors in Cd. The Hermi-

tion Inner Product is defined as 〈~u,~v〉C = u1v1 + . . .+ udvd.

Note that on the real axes this is the same inner product as in Rd. Additionally, just as in

Rd, in Cd two vectors are defined to be orthogonal when their Hermition Inner product is zero.

With this new inner product we can establish a couple new terms.

Definition 6.3.4. Let ~v ∈ Cd, and 〈~v〉 = {λ~v|λ ∈ C} be the linear subspace generated by ~v.

Then the Orthogonal Complement of 〈~v〉 is 〈~v〉⊥ = {~w ∈ Cd|〈~w,~v〉C = 0}.

Definition 6.3.5. A Unitary Map is a complex linear map L : Cd → Cd such that

〈L(~u), L(~v)〉 = 〈~u,~v〉 for all ~u,~v ∈ Cd.

Theorem 6.3.6. Let G = Zm with m ≥ 3. Let n1, n2 ∈ Z such that m = n1n2, and N = 2(m−

2)(m−1)d−1+m−1. Choose a linear C−plane generated by a nonzero ~v ∈ Cd, 〈~v〉 = {λ~v|λ ∈ C}.

Let f : 4N → Cd be a Fourier generic affine map. Then there exist m pairwise disjoint faces of

4N , {σg}g∈G, such that

(a)
⋂n2−1
j=0 f(σg+jn1) 6= ∅ for all 0 ≤ g < n1, and

(b) There exist a set of points {yg} where yg ∈
⋂n2−1
j=0 f(σg+jn1) for all 0 ≤ g < n1, and {yg}

is the vertex set of a regular n1−gon parallel to the complex plane 〈~v〉.
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Proof. Let 〈~v〉 = {λ~v|λ ∈ C} be some arbitrary complex plane generated by a nonzero vector

~v = (v1, . . . , vd) ∈ Cd.

Let Φ : Cd → Cd be a unitary map that sends (1, 0, . . . , 0) to ~v, and the remaining standard

basis vectors of Cd to the mutually orthogonal vectors in the orthogonal complement of 〈~v〉.

Since Φ is linear and f is affine, which is an offset linear map , it follows that their composition

(Φ−1 ◦ f) : 4N → Cd, is affine.

Our previous work in 6.3.2 has shown that for p ∈ G

(Φ−1 ◦ f)(xp) = (c10 + c1jω
jp
n1
, c20, . . . , c

d
0)

Note that this is an n1−gon in a complex plane parallel to 〈(1, 0, . . . , 0)〉 = {λ(1, 0, . . . , 0)|λ ∈

C}.

It follows that

f(xp) = Φ((c10 + c1jω
jp
n1
, c20, . . . , c

d
0))

= Φ((c10, c
2
0, . . . , c

d
0) + ωjpn1

c1j (1, 0, . . . , 0))

= Φ((c10, c
2
0, . . . , c

d
0)) + Φ(ωjpn1

c1j (1, 0, . . . , 0))

= Φ((c10, c
2
0, . . . , c

d
0)) + ωjpn1

c1jΦ((1, 0, . . . , 0)) since Φ is unitary

= Φ((c10, c
2
0, . . . , c

d
0)) + ωjpn1

c1j~v by construction of Φ

Since f is Fourier generic, it follows that it cannot have a full Tverberg partition. Thus if

c1j = 0, then f would always map to the constant Φ((c10, c
2
0, . . . , c

d
0)), and therefore admit a full

Tverberg partition. Since this would be contradictory, we conclude that c1j 6= 0.

The same argument used in the proof of 6.3.1 allows us to conclude that

n2−1⋂
j=0

f(σg+jn1) 6= ∅ for all 0 ≤ g < n1

Similarly, the set {f(xg)}n1−1
g=0 = {Φ((c10, c

2
0, . . . , c

d
0)) + ωjgr c1j~v}

n1−1
g=0 will then give us distinct

values which form the vertex set of a regular n1−gon parallel to 〈~v〉.



7
Elliptical Polygons

Until now our work has focused on results related to r−gon and sub r−gon partitions. These

polygonal partitions came from asking what can be said about collections of points smaller than

the Tverberg number (2.0.6). In the two dimensional case, Tverberg’s theorem (2.0.4) states that

we can find an r−fold Tverberg partition given T (r, 2) = 3r− 2 points in R2, and that this fails

for almost any collection of fewer points. Our main sub r−gon result (4.3.5) then claimed that

given a generic set of 3r−4 points in R2, where r = r1r2, we can partition the set into r subsets,

and find the vertex set of a regular r1−gon where each vertex is taken from the intersection of

r2 convex hulls. Again this fails for almost any collection of fewer points (4.3.1). This reduction

in the required number of points is directly correlated with the number of coefficients of our

Fourier decompositions we had vanish via theorem 4.3.1. Eliminating more coefficients reduces

the number of terms in the sum and makes it easier to parse out where our affine map is sending

points, but this also increases the dimension of the required simplex, and therefore the number of

required initial points in the plane. One might now ask what can be said about an even smaller

collection of points than required for a regular sub r−gon partition. We’ll now investigate this

question.
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7.1 Elliptical r−gons

In this chapter, instead of finding a regular polygon whose points lie on a circle, we’ll be finding

special polygons with points on an ellipse.

Definition 7.1.1. An Ellipse in C with foci F1, F2 ∈ C, and a major axis of length s ∈ R>0 is

described by the set E(F1, F2) = {z| |z − F1|+ |z − F2| = s}.

An example ellipse is shown below.

Figure 7.1.1. Ellipse

Notice that if F1 = F2, then The ellipse equation becomes |z − F1| = s/2, which means the

set describes a circle of radius s/2, centered at F1. Also note that if the distance between F1

and F2 equals the length of the major axis, then E(F1, F2) is a line segment. This degenerate

case of an ellipse will have implications for results later in this chapter.

Now we need to know what a set of points on an ellipse is in terms of the elements of our

Fourier basis, roots of unity.

Proposition 7.1.2. Let r > 2 be an integer, let c0 ∈ C, and let j ∈ Zr such that (r, j) = 1.

Let c1 = r1e
iθ1, and c2 = r2e

iθ2 be non zero complex numbers. Let F1 = 2
√
r1r2e

i
(
θ1+θ2

2

)
,

F2 = −2
√
r1r2e

i
(
θ1+θ2

2

)
. Then the set of points {c0 + c1ω

jg
r + c2ω

−jg
r }g∈Zr lie on the ellipse

E(F1 + c0, F2 + c0) = {z| |(z − c0)− F1|+ |(z − c0)− F2| = 2(r1 + r2)}.

Remark 7.1.3. Consider the case where |c1| = r1 = r2 = |c2|. Then Since F1 = −F2, the

distance between F1 and F2 is 2|F1| = 2

∣∣∣∣2√r1r2ei( θ1+θ22

)∣∣∣∣ = 4r1. Also note that the major axis
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is of length 2(r1 + r2) = 4r1. Thus this is the degenerate case of an ellipse in which the set is a

line segment. Moreover, if |c1| 6= |c2|, then you get a genuine ellipse.

Proof. We’ll show that the points described above satify the equation of our given ellipse, and

are therefore situated on it.

Let p ∈ Zr and zp = c0 + c1ω
jp
r + c2ω

−jp
r . It follows that

|(zp − c0)− F1|+ |(zp − c0)− F2|

= |(c0 + c1ω
jp
r + c2ω

−jp
r − c0)− F1|+ |(c0 + c1ω

jp
r + c2ω

−jp
r − c0)− F2|

= |c1ωjpr + c2ω
−jp
r − F1|+ |c1ωjpr + c2ω

−jp
r − F2|

=

∣∣∣∣c1ωjpr + c2ω
−jp
r − 2

√
r1r2e

i
(
θ1+θ2

2

)∣∣∣∣+

∣∣∣∣c1ωjpr + c2ω
−jp
r −

(
−2
√
r1r2e

i
(
θ1+θ2

2

))∣∣∣∣
=

∣∣∣∣r1eiθ1ωjpr + r2e
iθ2ω−jpr − 2

√
r1r2e

i
(
θ1+θ2

2

)∣∣∣∣+

∣∣∣∣r1eiθ1ωjpr + r2e
iθ2ω−jpr + 2

√
r1r2e

i
(
θ1+θ2

2

)∣∣∣∣
=

∣∣∣∣r1eiθ1ωjpr + r2e
iθ2ω−jpr − 2

√
r1r2e

i
(
θ1+θ2

2

)
ω
jp
2
− jp

2
r

∣∣∣∣+

∣∣∣∣r1eiθ1ωjpr + r2e
iθ2ω−jpr + 2

√
r1r2e

i
(
θ1+θ2

2

)
ω
jp
2
− jp

2
r

∣∣∣∣
=

∣∣∣∣∣
(
√
r1e

iθ1
2 ω

jp
2
r −

√
r2e

iθ2
2 ω

−jp
2

r

)2
∣∣∣∣∣+

∣∣∣∣∣
(
√
r1e

iθ1
2 ω

jp
2
r +

√
r2e

iθ2
2 ω

−jp
2

r

)2
∣∣∣∣∣

=

∣∣∣∣√r1e iθ12 ω jp
2
r −

√
r2e

iθ2
2 ω

−jp
2

r

∣∣∣∣2 +

∣∣∣∣√r1e iθ12 ω jp
2
r +

√
r2e

iθ2
2 ω

−jp
2

r

∣∣∣∣2
=

∣∣∣∣√r1e iθ12 ω jp
2
r

∣∣∣∣2 −√r1e iθ12 ω jp
2
r
√
r2e

iθ2
2 ω

−jp
2

r −
√
r1e

iθ1
2 ω

jp
2
r
√
r2e

iθ2
2 ω

−jp
2

r +

∣∣∣∣√r2e iθ22 ω−jp
2

r

∣∣∣∣2
+

∣∣∣∣√r1e iθ12 ω jp
2
r

∣∣∣∣2 +
√
r1e

iθ1
2 ω

jp
2
r
√
r2e

iθ2
2 ω

−jp
2

r +
√
r1e

iθ1
2 ω

jp
2
r
√
r2e

iθ2
2 ω

−jp
2

r +

∣∣∣∣√r2e iθ22 ω−jp
2

r

∣∣∣∣2
since |z1 + z2|2 = (z1 + z2)(z1 + z2) = (z1 + z2)(z1 + z2) = |z1|2 + z1z2 + z1z2 + |z2|2

= 2

∣∣∣∣√r1e iθ12 ω jp
2
r

∣∣∣∣2 + 2

∣∣∣∣√r2e iθ22 ω−jp
2

r

∣∣∣∣2
= 2

∣∣∣√r1e iθ12 ei jp/2r ∣∣∣2 + 2
∣∣∣√r2e iθ22 ei−jp/2r

∣∣∣2
= 2

∣∣∣∣√r1ei( θ12 +
jp/2
r

)∣∣∣∣2 + 2

∣∣∣∣√r2ei( θ22 − jp/2r )∣∣∣∣2
= 2(
√
r1)

2 + 2(
√
r2)

2

= 2(r1 + r2)
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Since this satifies the equation of our chosen ellipse, it follows that this point lies on the ellipse,

zp ∈ E(F1+c0, F2+c0). Since this is true for any p ∈ Zr, it follows that {c0+c1ω
jg
r +c2ω

−jg
r }g∈Zr =

{zg}g∈Zr ⊂ E(F1 + c0, F2 + c0).

Now we know that the points {c0 + c1ω
jg
r + c2ω

−jg
r }g∈Zr lie on an ellipse. It follows that they

form the vertex set of an r−gon, except in the degenerate case where the ellipse set is a line

segment. In the non-degenerate case, we define these special r−gons.

Definition 7.1.4. Let c0 ∈ C, and let c1, c2 ∈ C − {0} such that |c1| 6= |c2|. Let r ≥ 2 and

j ∈ Zr such that (j, r) = 1. If p(g) = c0 + c1ω
jg
r + c2ω

−jg
r , define an Elliptical r−gon to be the

convex hull of the set of points {p(g)}g∈Zr .

Because they are described using roots of unity, Elliptical r−gons have some symmetry prop-

erties in addition to being on an ellipse.

Proposition 7.1.5. Consider any p from 7.1.4. For any t, the midpoint between p(g + t) and

p(g − t) is on the line segment between c0 + (p(g)− c0) and c0 − (p(g)− c0).

Proof. Let g, t ∈ Zr. Consider

p(g + t) + p(g − t) = c0 + c1ω
j(g+t)
r + c2ω

−j(g+t)
r + c0 + c1ω

j(g−t)
r + c2ω

−j(g−t)
r

= 2c0 + c1ω
jg+jt
r + c2ω

−jg−jt
r + c1ω

jg−jt
r + c2ω

−jg+jt
r

= 2c0 + c1ω
jg
r ω

jt
r + c2ω

−jg
r ω−jtr + c1ω

jg
r ω
−jt
r + c2ω

−jg
r ωjtr

= 2c0 + c1ω
jg
r ω

jt
r + c2ω

−jg
r ω−jtr + c1ω

jg
r ω
−jt
r + c2ω

−jg
r ωjtr

= 2c0 + (c1ω
jg
r + c2ω

−jg
r )(ωjtr + ω−jtr )

= 2c0 + (c1ω
jg
r + c2ω

−jg
r )

(
ei
jt2π
r + ei

−jt2π
r

)
= 2c0 + (c1ω

jg
r + c2ω

−jg
r )

(
2Re

(
ei
jt2π
r

))
= 2c0 + (p(g)− c0)2 cos

(
jt2π

r

)
.
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From this it follows that the midpoint satisfies

p(g + t) + p(g − t)
2

= c0 + (p(g)− c0) cos

(
jt2π

r

)
. (7.1.1)

As −1 ≤ cos
(
jt2π
r

)
≤ 1, we can conclude that 7.1.1 implies that the midpoint of p(g + t) and

p(g − t) is somewhere along the line between c0 + (p(g)− c0) and c0 − (p(g)− c0).

An example of Proposition 7.1.5 is shown with an elliptical 5−gon in Figure 7.1.3 below.

Figure 7.1.2. An example of an elliptical 5−gon

In this case we see that c0 = 0, which means the ellipse is centered at the origin. The ellipse

is in black, and the orange lines outline the corresponding elliptical polygon with points on that

ellipse. This showcases a point p(g), and how the midpoint between p(g+ 1) and p(g− 1) lies on

the line extending between p(g) and −p(g). A nonzero c0 would simply shift this entire diagram,

by c0, away from the origin.

We also show this example for a different g, to demonstrate 7.1.5 working for multiple points.

Figure 7.1.3. Alternate example of an elliptical 5−gon

When r is even, there are other properties we can find among Elliptical r−gons.

Proposition 7.1.6. Consider a p from 7.1.4 with r = 2m. Then the midpoint of p(g) and

p(g +m) is c0 for all g ∈ Zr.
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Proof. Note that since (j, r) = 1 and r is even, we can conclude that j is odd. It follows that for

g ∈ Zr

p(g) + p(g +m)

= c0 + c1ω
jg
r + c2ω

−jg
r + c0 + c1ω

j(g+m)
r + c2ω

−j(g+m)
r

= 2c0 + c1ω
jg
r + c2ω

−jg
r + c1ω

jg
r ω

jm
r + c2ω

−jg
r ω−jmr

= 2c0 + c1ω
jg
r + c2ω

−jg
r + c1ω

jg
r ω

jm
2m + c2ω

−jg
r ω−jm2m

= 2c0 + c1ω
jg
r + c2ω

−jg
r + c1ω

jg
r (−1)j + c2ω

−jg
r (−1)−j

= 2c0 + c1ω
jg
r + c2ω

−jg
r + c1ω

jg
r (−1) + c2ω

−jg
r (−1)

because j is odd

= 2c0.

It follows that

p(g) + p(g +m)

2
= c0. (7.1.2)

This indicates that every vertex of the elliptical r−gon has an opposing vertex with which it

shares the midpoint c0.

An example of this property can be observed in Figure 7.1.4.

The final symmetry we’ll show is related. Again, if p is constructed as in 7.1.4 but with even

r.

Proposition 7.1.7. Consider some p from 7.1.4 with r = 2m. Then for all g, k ∈ Zr the edge

between p(g) and p(k) is parallel and has the same length as the edge between p(g + m) and

p(k +m).

Proof. For g, k ∈ Zr,

p(g)− p(g +m) = 2c0 by 7.1.2

= p(k)− p(k +m).
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From the above it follows that

p(g)− p(k) = p(g +m)− p(k +m). (7.1.3)

The difference between two points in the complex plane yields what can be thought of as the

vector between them. Therefore 7.1.3 indicates that opposing edges are equal and parallel.

In particular, we are interested in k = g + 1. Then Proposition 7.1.7 tells us that the edge

between p(g) and p(g + 1) is parallel and has equal length to the edge between p(g + m) and

p(g + m + 1). This indicates that opposing edges on an elliptical r−gon of even r, have equal

length and are parallel.

We can see an example of this phenomenon (along with Proposition 7.1.6) in the depiction of

an elliptical 8−gon below.

Figure 7.1.4. An example of an elliptical 8−gon with symmetries

7.2 Finding Elliptical r−gons

An important note to make about the points p(g) = c0 + c1ω
jg
r + c2ω

−jg
r is that the exponent of

the second root of unity is the negative of the first. Since j ∈ Zr, this means −j is equivalent to

an integer 0 ≤ d < r where j + d = r = 0 ∈ Zr. Now we can see under what circumstances we

can find these special polygons.

Theorem 7.2.1. Let G = Zr with r ≥ 3, and N = 2(r−3)+r−1 = T (r, 2)−5. Let f : 4N → C

be a Fourier generic affine map. Then there exists a set of points {xg}g∈G from distinct disjoint

faces of 4N such that {f(xg)}g∈G is the vertex set of an Elliptical r−gon or are all colinear.
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Proof. Let j ∈ Zr such that (r, j) = 1, and S = G − {0, j,−j}. Let N = 2|S| + |G| − 1 =

2(r− 3) + r− 1 = 3r− 7, and f : 4N → C be a Fourier generic map. By theorem 4.3.1 it follows

that there exist r disjoint faces of 4N and a set of points {xg}g∈G from distinct faces such that

if p ∈ G, then

f(xp) = F (p) from equation 4.1.1

=
∑
ε∈Zr

cεχε(p) by 3.3.4

= c0 + cjχj(p) + c−jχ−j(p) by 4.3.1

= c0 + cjω
jp
r + c−jω

−jp
r

We know cj , c−j 6= 0 because f is Fourier generic. Since we do not know if |cj | = |c−j |, it

follows that {f(xg)}g∈G is either the vertex set of an Elliptical r−gon, by definition 7.1.4, or it’s

a set of colinear points (7.1.3).

Intuitively it makes sense that as we eliminate fewer coefficients from our Fourier decom-

position, and consequently require fewer initial points, we get a weaker result. However, it is

fascinating to see that given only T (r, 2)−5 points, we can still find nice r−gons with interesting

symmetries. This is 4 fewer points than for a Tverberg partition, and 2 fewer than for a regular

r−gon partition.

As with Theorem 5.0.3 we can again get a more general sub r−gon result of this type.

Theorem 7.2.2. Let G = Zr with r ≥ 2. Let r1, r2 ∈ Z such that r = r1r2, and N =

2(r − 3) + r − 1 = T (r, 2) − 5. Let f : 4N → C be a Fourier generic affine map. Then

there exist r pairwise disjoint faces of 4N that we can group into r1 collections of r2 faces,

C1 = {σ0, σr1 , · · · , σ(r2−1)r1}, · · · , Cr1 = {σr1−1, · · · , σ(r1−1)+(r2−1)r1} such that:

a) ∩σ∈C1f(σ) 6= ∅, · · · ,∩σ∈Cr1f(σ) 6= ∅, and

b) there exist points y1 ∈ ∩σ∈C1f(σ), · · · , yr1 ∈ ∩σ∈Cr1f(σ) that form the vertex set of an

Elliptical r1−gon or are colinear.
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Proof. Let j ∈ Zr1 such that (r1, j) = 1, and S = G− {0, jr1,−jr1}. Let N = 2|S|+ |G| − 1 =

2(r− 3) + r− 1 = 3r− 7, and f : 4N → C be a Fourier generic map. By theorem 4.3.1 it follows

that there exist r disjoint faces of 4N , {σg}g∈G, and a set of points {xg}g∈G where xg ∈ σg,

such that if p ∈ G, then

f(xp) = F (p) from equation 4.1.1

=
∑
ε∈Zr

cεχε(p) by 3.3.4

= c0 + cjχj(p) + c−jr2χ−jr2(p) by 4.3.1

= c0 + cjω
jr2p
r + c−jω

−jr2p
r

= c0 + cjω
jr2p
r1r2 + c−jω

−jr2p
r1r2

= c0 + cjω
jp
r1 + c−jω

−jp
r1

Because f maps to r1th roots of unity and there are r points in {xg}g∈G, we’re going to get

some overlap in the image. Thus we ask where the overlap occurs. Consider for p ∈ G and n ∈ Z

f(xp+nr1) = c0 + cjω
j(p+nr1)
r1 + c−jω

−j(p+nr1)
r1

= c0 + cjω
jp
r1ω

nr1
r1 + c−jω

−jp
r1 ωnr1r1

= c0 + cjω
jp
r1 + c−jω

−jp
r1

= f(xp).

Thus f(xp) = f(xp+r1) = . . . = f(xp+(r2−1)r1). It follows that ∩r2−1n=0 σp+nr1 6= ∅ for all p ∈

G. We can also conclude that the images of the first r1 points, {xg}r1−1g=0 do not overlap. We

know cj , c−j 6= 0 since f is Fourier generic. Since we don’t know if |cj | = |c−j |, it follows that

{f(xg)}r1−1g=0 is the vertex set of an Elliptical r1−gon, by definition 7.1.4, or is a set of colinear

points (7.1.3).
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Remark 7.2.3. Both Theorem 7.2.1 and Theorem 7.2.2 include a case in which the images of

the points from the simplex are colinear. However, we believe it can be shown that for almost any

3r − 6 points, an ellitical sub r−gon partition (and elliptical r−gon partition) exists where the

points are not colinear and instead form the vertex of an elliptical polygon. We don’t prove this,

because it involves the proof of Theorem 4.3.1 ([1]) which we didn’t go into in this senior project.

Intuitively, it’s because colinearity is equivalent to the condition |cj | = |c−j |. This imposes an

extra condition on the Fourier coefficients, thereby requiring an additional dimension of the

N−simplex if f is generic.

Note that N = 3r − 7 is tight for elliptical r−gons or sub r−gons, as it was for regular sub

r−gons. We didn’t include this in their theorems, but the proof is the same as in Theorem 5.0.3.

As we’ve done with the original sub r−gon, we can state theorems 7.2.1 and 7.2.2 in terms of

convex hulls.

Theorem 7.2.4. Let r ≥ 3. Almost any set of 3r − 6 points in R2 can be partitioned into r

disjoint sets A1, . . . , Ar such that there exist x1 ∈ Conv(A1), . . . , xr ∈ Conv(Ar) that form the

vertex set of an elliptical r−gon, or are colinear.

And similarly

Theorem 7.2.5. Let r ≥ 3 and r = r1r2. Almost any set of 3r − 6 points in R2 can be

partitioned into r1 collections of r2 disjoint sets, A1
1, . . . , A

1
r2 , . . . , A

r1
r , . . . , A

r1
r2 such that there

exist x1 ∈ ∩r2i=1Conv(A1
i ), . . . , xr1 ∈ ∩

r2
i=1Conv(Ar1i ) that form the vertex set of an elliptical

r1−gon, or are colinear.

We can illustrate these theorems with examples.

Theorem 7.2.4 states that with almost any collection 3(4) − 6 = 12 − 5 = 6 points in R2,

we can find either the vertex set of an elliptical 4 − gon (a parallelogram), or a set of colinear

points. Though as we noted in 7.2.3, we believe the former is almost always true. An elliptical

4−gon can happen in one of two ways.
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Figure 7.2.1. Case 1: Six arbitrary points Figure 7.2.2. Case 1: Elliptical 4−gon

We see that taking the points in Figure 7.2.1, we can group the points into four collections,

two collections of 2 points and two collections of 1 point. We can then find the vertex set of the

Elliptical 4−gon in Figure 7.2.2 with points from the convex hulls of those collections.

In the second case, shown in Figures 7.2.3 and 7.2.4, the points are instead grouped into three

collections of 1 point, and one collection of 3 points.

Figure 7.2.3. Case 2: Six arbitrary points Figure 7.2.4. Case 2: Elliptical 4−gon

Similarly, Theorem 7.2.5 states that with almost any collection of 3(10) − 6 = 30 − 6 = 24

points in R2, we can find an elliptical 5−gon in the intersection of convex hulls.
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Figure 7.2.5. Twenty four arbitrary points Figure 7.2.6. Elliptical 5−gon

Here, we see that with the points in Figure 7.2.5 we can group them into 10 collections of

points such that the convex hulls of collections intersect in pairs, and we can find the vertex set

of an Elliptical 5−gon in the intersections of those convex hulls. The end result is depicted in

Figure 7.2.6.
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