
Bard College Bard College 

Bard Digital Commons Bard Digital Commons 

Senior Projects Spring 2024 Bard Undergraduate Senior Projects 

Spring 2024 

An Unsupervised Machine Learning Algorithm for Clustering Low An Unsupervised Machine Learning Algorithm for Clustering Low 

Dimensional Data Points in Euclidean Grid Space Dimensional Data Points in Euclidean Grid Space 

Josef Lazar 
Bard College 

Follow this and additional works at: https://digitalcommons.bard.edu/senproj_s2024 

 Part of the Analysis Commons, Applied Mathematics Commons, Applied Statistics Commons, 

Artificial Intelligence and Robotics Commons, Categorical Data Analysis Commons, Data Science 

Commons, Discrete Mathematics and Combinatorics Commons, Numerical Analysis and Scientific 

Computing Commons, Other Statistics and Probability Commons, and the Set Theory Commons 

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. 

Recommended Citation Recommended Citation 
Lazar, Josef, "An Unsupervised Machine Learning Algorithm for Clustering Low Dimensional Data Points 
in Euclidean Grid Space" (2024). Senior Projects Spring 2024. 164. 
https://digitalcommons.bard.edu/senproj_s2024/164 

This Open Access is brought to you for free and open 
access by the Bard Undergraduate Senior Projects at 
Bard Digital Commons. It has been accepted for inclusion 
in Senior Projects Spring 2024 by an authorized 
administrator of Bard Digital Commons. For more 
information, please contact digitalcommons@bard.edu. 

http://www.bard.edu/
http://www.bard.edu/
https://digitalcommons.bard.edu/
https://digitalcommons.bard.edu/senproj_s2024
https://digitalcommons.bard.edu/undergrad
https://digitalcommons.bard.edu/senproj_s2024?utm_source=digitalcommons.bard.edu%2Fsenproj_s2024%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/177?utm_source=digitalcommons.bard.edu%2Fsenproj_s2024%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/115?utm_source=digitalcommons.bard.edu%2Fsenproj_s2024%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/209?utm_source=digitalcommons.bard.edu%2Fsenproj_s2024%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=digitalcommons.bard.edu%2Fsenproj_s2024%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/817?utm_source=digitalcommons.bard.edu%2Fsenproj_s2024%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1429?utm_source=digitalcommons.bard.edu%2Fsenproj_s2024%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1429?utm_source=digitalcommons.bard.edu%2Fsenproj_s2024%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/178?utm_source=digitalcommons.bard.edu%2Fsenproj_s2024%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=digitalcommons.bard.edu%2Fsenproj_s2024%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=digitalcommons.bard.edu%2Fsenproj_s2024%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/215?utm_source=digitalcommons.bard.edu%2Fsenproj_s2024%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/184?utm_source=digitalcommons.bard.edu%2Fsenproj_s2024%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://digitalcommons.bard.edu/senproj_s2024/164?utm_source=digitalcommons.bard.edu%2Fsenproj_s2024%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@bard.edu
http://www.bard.edu/
http://www.bard.edu/


An Unsupervised Machine Learning
Algorithm for Clustering Low Dimensional

Data Points in Euclidean Grid Space

A Senior Project submitted to
The Division of Science, Mathematics, and Computing

of
Bard College

by
Josef Lazar

Annandale-on-Hudson, New York
May, 2024



ii



Abstract

Clustering algorithms provide a useful method for classifying data. The majority of well known
clustering algorithms are designed to find globular clusters, however this is not always desirable.
In this senior project I present a new clustering algorithm, GBCN (Grid Box Clustering with
Noise), which applies a box grid to points in Euclidean space to identify areas of high point den-
sity. Points within the grid space that are in adjacent boxes are classified into the same cluster.
Conversely, if a path from one point to another can only be completed by traversing an empty
grid box, then they are classified into separate clusters. GBCN requires two hyperparameters,
one to determine the size of the grid and the other to adjust noise sensitivity. I provide algo-
rithms and evaluation metrics to help the user determine appropriate hyperparameter values. I
performed experiments on synthetic and real world data sets using GBCN and other clustering
algorithms to evaluate GBCN’s effectiveness and efficiency. The results of these experiments
demonstrate that GBCN can effectively identify both globular and density-based clusters when
given the right hyperparameter values, and that these hyperparameter values can be discovered
using evaluation metrics.
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1
Introduction

Clustering, or cluster analysis, is a method of data analysis that attempts to sort data into

unordered classes, such that data points in each class share some commonality that separates

them from the points in other classes. Clustering algorithms are commonly used and studied in

the fields of statistics and machine learning, but are also broadly applied for their practical uses

across many scientific fields and other areas of inquiry that require data analysis.

Machine learning as a field exists within the intersection of artificial intelligence and statistics.

Generally, machine learning algorithms take a large data set as input and make predictions about

it, or generate similar data. The artificial intelligence aspect of it referrers to the fact that it

can learn from data and make human-like insights. The statistical aspect refers to the fact

that it uses mathematics to interpret and organize data. In fact, many algorithms, such as k-

nearest neighbors and k-means clustering, that are today considered canon in machine learning

algorithms, originated in statistics.

Broadly speaking, machine learning algorithms can be divided into two categories: super-

vised, and unsupervised, with semi-supervised algorithms and other variations laying on a

spectrum in between. Supervised algorithms are trained on inputted data, which contains the

information, known as labels, which we are trying to predict. The idea is that after seeing

enough examples, it will know how to predict labels on new data points. An example of this

1



2 INTRODUCTION

would be the Linear Regression algorithm which fits a line to a data set, and then uses the line

to predict labels (the y values) on new data points (inputted x values) with missing labels by

plugging them into the line equation. An algorithm that fits the line to the data, or more gener-

ally makes a function for predicting labels, is a machine learning algorithms. An outputted

line equation, or more generally a function that has been tuned to a training data set to be able

to predict labels of similar data points, is called a model.

Unsupervised algorithms on the other hand learn patterns exclusively on unlabeled data, and

in the case of clustering, the data they are learning on is the data they are making predictions

about. When this is the case, an implementation of the algorithm is a finished model. Still, their

performance can be evaluated by running them on labeled data sets and comparing the labels

predicted by the algorithm to the labels assigned in the data set (more on this in Chapter 4).

Many algorithms have parameters, called hyperparameters, that are not determined during

the learning process, but rather are chosen by the user. Both supervised and unsupervised

algorithms can have them. By examining how an unsupervised algorithm performs, given various

hyperparameter values, on a data set with known labels, the user can learn to make more

informed decision about which hyperparameter values to select when running the algorithm on

unlabeled data.

A visualization of the distinction between supervised and unsupervised algorithms can be seen

in Figure 1.0.1 from [14]. In the box on the right we see that the algorithm was given the label

(color) of each data point, and based on this information was able to draw a line according

to which it can classify new points whose labels are not known. In the box on the left we see

that the algorithm was only given the location of the points, not their labels, and used the

relationship of the points to each other to create its own classification labels.

1.1 Definitions of Clusters

A cluster, in machine learning, is a grouping of unlabeled data points. It is useful in situa-

tions where true labels of data points are not known. Researchers who collect data may seek
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Figure 1.0.1: Example of how supervised and Unsupervised learning works, adopted from page
5 of [14]

mathematical tools for automated classification and analysis of their data. For example a so-

ciological inquiry into a population may ask about peoples’ income, demographic information,

religious beliefs, and political views. People, represented as data points that occur near each

other may share some interesting properties, that are not shared by some other cluster of data

points further away. Based on this information, clustering algorithms could be used to divide

the population into political interest groups with distinct beliefs and priorities. This informa-

tion could be used by clever political strategists to create policy that reallocates resources from

clusters within the population whose support is not needed to the ones whose support is needed

to.

Along different areas of research, different notions of clusters may be of interest. In machine

learning globular clusters are thought of as having a circular shape and often, but not always,
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having increased density towards the center. This definition is inspired by the astronomical

definition of a globular cluster, which is a spheroidal conglomeration of stars that is bound

together by gravity. The starts seen in Figure 1.1.1 form an astronomical globular cluster.

A data set containing their locations would form a globular cluster by the machine learning

definition.

Figure 1.1.1: Messier 2, identified by NASA as a globular cluster. A data set containing the
locations of its start would also be a globular cluster, in the machine learning sense of the world

Density-Based clusters are another common notion of clusters. They do not take shape

into consideration, instead separating clusters in the data by areas of low point density. In

Figure 1.1.2 from [6] we see a map of New York City, where yellow areas indicate a lot of taxi

cab pick-ups on January 16th, 2016. The data set that this figure was derived from included
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Figure 1.1.2: Map of New York City, where yellow areas indicate a high amount of taxi cab
pick-ups on January 16th, 2016. The data set that this map was derived from included the
times at which the pick-ups occurred

the times at which the pickups occurred, so some dense yellow areas could be classified into

multiple clusters if there were distinct times of increased taxi pick-up activity separated by

times of low taxi pick-up activity. The New York City Department of Transportation may be

interested in identifying times and areas of high taxi pick-up activity to help it enact laws for

traffic management planning. In this case the clusters will rarely be circular. Thus an algorithm

that identifies clusters as continuous areas of high point density may prove to be more useful.

1.2 Background Information on Algorithms

Some noteworthy algorithms include k-means clustering, k-medians clustering, DBSCAN, and

k-nearest neighbors. I give a review of these algorithms to give the reader a general overview

of the variation of strategies that can be used to generate clusters and labels, and to show how

algorithms can be modified, optimized, and used for both supervised and unsupervised tasks.



6 INTRODUCTION

This review also gives relevant background information on the subject as a whole and on some

of the ideas that inspired this project.

1.2.1 Algorithm 1: k-Means Clustering

This unsupervised clustering algorithm sorts data into k clusters, trying to minimize the distance

between points in a cluster and the center of the cluster. Canon in cluster analysis, its simple and

efficient yet powerful design has made k-means clustering an easy go-to choice for tasks involving

clustering across many application. The original idea behind the algorithm is attributed to Polish

mathematician Hugo Dyonizy Steinhaus, who published a paper [23] in 1956 in French, where

he explained it and, sceptical of official government reporting, used it to estimate the number

of German soldiers killed during World War II. The word k-means is thought to have first been

used by James MacQueen, who independently discovered the algorithm and published it in an

article [13] in 1967. For more history on the origins of k-means clustering see [8].

The algorithm takes hyperparameter k as input and begins by randomly choosing k points,

“centroids,” in the space that the data set exists in. For each point in the data set it calculates

its distance from the centroids and assigns it to be in the cluster of the centroid that it is

closest to. Then it calculates the mean location of every cluster and moves the centroids to that

location. It once again iterates over the points, reclustering them based on the new centroids.

This process is repeated until points no longer change clusters between iterations, or until some

threshold amount of iterations has been reached. A visual example of k-means clustering can

be seen in Figure 1.2.1 from [27].

k-means clustering attempts to minimize square distance between points and their centroids.

Because of this it is excellent at finding globular clusters. It often struggles, however, with

identifying density-based clusters, whose points do not necessarily bare any relation to the

centroid of the cluster they were assigned to.



1.2. BACKGROUND INFORMATION ON ALGORITHMS 7

Figure 1.2.1: A data set in two dimensional Euclidean space being clustered with k-means
clustering for k = 2 in 4 iterations

1.2.2 Algorithm 2: k-Medians Clustering

This unsupervised clustering algorithm is similar to k-means clustering. It differs in that it

updates the value of a centroid by making its ith coordinate equal to the median value of the

ith coordinate of all points in its cluster. This way the coordinates of the centroid will have

always come from the data set (or be equal to the average of two values in the data set). This

can make k-medians the more reliable option for discrete and binary data. k-medians shows

how small changes to an existing algorithm to make it more suitable for different applications.

Unlike k-means clustering, k-medians optimizes for minimal Manhattan distance between points

and their centroids. This too causes for strong performance in globular cluster identification but

weak performance in density-based cluster identification.
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1.2.3 Algorithm 3: DBSCAN

Proposed in 1996 by Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu [4], DB-

SCAN (Density-Based Spatial Clustering of Applications with Noise) is an unsupervised clus-

tering algorithm that was specifically designed for finding clusters using a density-based under-

standing of what a cluster is. In this way it differs from the previous two algorithms. It also

differs from them in the fact that it recognizes that some data points may not be of interest

(fluke events, minor events that contradict a larger general trend, mistakes in data collection,

etc.) and has the ability to classify them separately as noise points, rather than as members of

a cluster.

DBSCAN takes two hyperparameters as input: ε and MinPts. It then separates all points in

the data set into three categories. Firstly, core points, which have at least MinPts points within

distance ε. Secondly, border points, which have fewer than MinPts points within distance ε, but

which have at least one core point within distance ε. Thirdly, noise points, which fewer that

MinPts points within distance ε and no core points within distance ε. All core points that are

within ε distance of each other get classified into the same cluster. Border points are classified

into the cluster of one of the core points within distance ε. A visualization of this can be seen

in Figure 1.2.2 from [21].

Figure 1.2.2: The picture on the left shows a data set. The picture in the middle shows how
DBSCAN would divide it into core points, border points, and noise points, given ε = 10 and
MinPts = 4. The picture on the right shows that subsequent clustering that DBSCAN would
generate
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1.2.4 Algorithm 4: k-Nearest Neighbors

Proposed in 1951 by Marcelo Beckmann, Nelson F. F. Ebecken, and Beatriz S. L. Pires de

Lima [1], the k-NN (k-nearest neighbors) algorithm is a supervised learning classifier, which

means that it takes a data set with known labels as input, and infers information from this data

set to predict labels for a second inputted data set where labels are not known. In the context

of this project we can think of the data set with labels as having been clustered, where points

that have the same label are in the same cluster.

The k-NN algorithm classifies the unlabeled data in the following way. It iterates over each

unlabeled point. For each one it computes the distance between it and all the labeled data

points. It takes the k closest labeled data points and among them finds the most frequent label.

This label is then assigned to the unlabeled point.

The suv data data set from [24] contains the following information about consumers: user

ID, gender, age, estimated salary, and whether or not they purchased as SUV. The last bit of

information is the label in this case. Using code from [11] we can apply k-NN with k = 5 to the

age and estimated salary information, to create the model seen in Figure 1.2.3 which predicts if

someone has bought an SUV. If then given a data set of consumers about whom we know their

age and estimated salary, but don’t know if they’re purchased as SUV, we can plot the points

into the model, and if a point is in the red region then most of the 5 nearest points in the labeled

data set will have not purchased SUVs, if in the green then most of the 5 nearest points in the

labeled data set will have purchased an SUV.
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Figure 1.2.3: k-NN model with k = 5 predicting if consumers have purchased an SUV based on
their age and estimated salary



2
Grid Box Clustering

Even though k-means clustering, k-median clustering, DBSCAN, and k-nearest neighbors are

commonly used, they may not always be the best clustering algorithms for all tasks. That is

why I decided to explore a different algorithm, called GBCN (Grid Box Clustering with Noise).

This chapter is the first of two chapters explaining how the GBCN algorithm works. I explain

here how grid boxes are constructed, how points are added to them, and finally how grid boxes

and points get clustered. In the next chapter I finish explaining GBCN by discussing how it

processes noise. I start this chapter with a simple explanation of how GBCN clusters grid boxes

and continue till the end with a deeper and more technical explanation.

GBCN is an unsupervised clustering algorithm. It clusters data sets whose data points all

exist in n-dimensional Euclidean space, for any n ∈ N. The algorithm begins by applying a

box grid to the Euclidean space. That is, if the space is one-dimensional, then the points lay

on a line, and the line is cut into segments of equal length, and the program figures out which

points are in which segments. Similarly, if the space is two-dimensional, then it divides it into

rectangular regions, and if it is three-dimensional, then it is cut into rectangular boxes. More

generally, an n-dimensional space will be partitioned into n-dimensional rectangular boxes. Each

of these segments (lines, rectangles, rectangular boxes, etc.) will be referred to as a grid box.

A visualization of this idea, up to three dimensions, can be seen in Figure 2.0.1 .

11



12 CHAPTER 2. GRID BOX CLUSTERING

Figure 2.0.1: Square grid being applied to points in R1 and R2

Once the data points have been sorted into grid boxes, the clustering process can begin. Boxes

are separated into non-empty ones containing at least one point, and empty ones. Two grid

boxes are considered neighbors if they share a corner, edge, surface, etc. As seen in Figure 2.0.2,

in one dimension, grid boxes can only share a corner; in two dimensions, grid boxes can share

a corner or an edge; in three dimensions, grid boxes can share a corner, an edge, or a surface;

and so on. If two boxes are neighboring, or connected through non-empty boxes, then they get

classified as being in the same box cluster. Conversely, if you can not traverse from one box to

another, without entering an empty box, then they will be classified as being in different box

clusters. All the points in a box cluster are then labeled as being in the same cluster of points.

A critical question arises: What size should the grid boxes be? The simple answer to this

question is that there is no correct answer that works every time. A size that is optimal for one

data set could perform very poorly for another data set. Later (see Chapter 4) we will discuss

methods for approximating the correct size for a given data set, but for now the basic idea is

that a good size will be small enough that there are empty grid boxes between points that are in
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Figure 2.0.2: Examples of how grid boxes can neighbor each other in 1, 2, and 3 dimensional
grid spaces

different clusters, but big enough that points within one cluster should either share grid boxes

or be in neighboring grid boxes.

2.1 Constructing Grid Boxes

GBCN has been implemented in Python. It begins by making a Grid class. The dimension of

the data set it will be applied to, the partitioning of the grid space, and the noise reduction

sensitivity (see Chapter 3) are determined during initialization by the constructor:

def __init__(self, width, dimension, noise_reduction)

The Grid class has attribute grid, which is a d-dimensional list, where d is the inputted

dimension. The contents of grid box b = (b1, b2, ..., bd) can be retrieved with

grid[b1][b2]...[bd]

Note that there is a bijection between grid boxes and elements in lists at grid’s lowest level.

The first (d− 1) layers of grid’s lists store references to other lists. Lists at the bottom of the

tree at layer d initially contain zeros until they are later replaced with lists of points that belong
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to the corresponding box. If an element of a list at the dth layer is a non-list value (including

the initial integer value zero) then it indicates that the corresponding grid box is empty.

Grid’s width input tells it how many times to partition each axis. width can be a positive

int or it can be a list of length d whose elements are positive ints. If width is an integer, then

each axis of the grid space will be cut into that integer amount of partitions. See Figure 2.1.1

for a code snippet example. If the inputted width is a list of integers, then after checking that

the length of width is equal to dimension, it cuts each dimension of grid into its corresponding

index in width amount of grid boxes. See Figure 2.1.2 for a code snippet example.

Figure 2.1.1: Visualization of Grid’s attribute grid, where the width input was an integer. It
has 3 dimensions, each of which are partitioned into 4 grids

Figure 2.1.2: Visualization of Grid’s attribute grid, where the width input was a list of integers.
It has 3 dimensions, grid has length 5, grid[i] has length 6, and grid[i][j] has length 4

The creation of the grid list is done recursively using the add dim len n(grid, n) function

seen bellow. It takes an incomplete grid (a grid that does not yet have the inputted amount of

dimensions) as its first input, and the desired amount of partitions in the dimension to be added

as its second input. Using the fact that every element at the bottom of the grid should be an

integer (or a float), it recursively iterates through the entire grid, replacing every int/float with

a list whose length is the second input and whose elements are all zero.

def add_dim_len_n(grid, n):

local_grid = grid.copy()
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#if at the lowest layer of the grid

if is_int_or_float(local_grid[0]):

#add a new layer containing n boxes and return

for i in range(len(local_grid)):

local_grid[i] = [0] * n

return local_grid

#if not yet at the lowest layer

elif is_list(local_grid[0]):

#recursively run this function one layer lower, then return

for i in range(len(grid)):

local_grid[i] = add_dim_len_n(local_grid[i], n)

return local_grid

#one of the two previous conditions should have been satisfied

#if not, check for errors

else:

raise Exception(

"every data type within the grid should be a list, int, or float")

This function is run d− 1 times where the input for grid is initially [0, 0, ..., w] or [0, 0,

..., w[0]] and subsequently the grid that the previous iteration returned. The input for n is

width (if width is an integer) or width[i] (if width is a list of integers), where i indicates the

iteration.

Theorem 2.1.1. The time and space complexity of constructing a d-dimensional grid, whose

width w is an integer, is Θ
(
wd
)
.

Proof. For the base case suppose d = 1. Then the grid is a one dimensional list of length w,

and the time and space complexity of constructing it is Θ(w) = Θ
(
wd
)
. For the inductive step

let d ∈ N and suppose that the time and space complexity of a d-dimensional grid is Θ
(
wd
)
.

Run the function add dim len n on the grid to increase it to a (d + 1)-dimensional grid. The
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function will recurse w times to get from the first layer to the second layer, w2 times to get from

the second layer to the third layer, all the way up to wd−1 times to get from the (d− 1)th layer

to the dth layer. In total

w1 + w2 + ...+ wd−1 =
d−1∑
i=1

wi

recursions will occur. Note

wd−1 < w1 + w2 + ...+ wd−1 < 2wd−1,

hence w1 +w2 + ...+wd−1 = Θ
(
wd−1

)
, so Θ

(
wd−1

)
will be the time and space complexity cost

of recursing through the grid.

When add dim len n gets to the bottom layer it does not recurse, instead it creates w lists of

length w that it adds to the grid. Since it gets to this layer wd−1 times, the time and space cost

will be Θ
(
wd−1w2

)
= Θ

(
wd+1

)
. Combine the cost of getting the initial d-dimensional grid, the

cost of recursing through it, and the cost of adding the new layer to find that a (d+1)-dimensional

grid has time and space complexity Θ
(
wd + wd−1 + wd+1

)
= Θ

(
wd+1

)
.

Theorem 2.1.2. The time and space complexity of constructing a d-dimensional grid, whose

width w⃗ = (w1, w2, ..., wd) is a list, is

Θ

(
d∏

i=1

wi

)
and O

(
max
wi∈w⃗

(wi)
d

)
,

assuming wi ≥ 2 for all i ∈ {1, 2, . . . , d}.

Proof. For the base case suppose d = 1. Then the grid is a one dimensional list of length w1,

and the time and space complexity of constructing it is

Θ (w1) = Θ

(
d∏

i=1

wi

)
.

For the inductive step let d ∈ N and suppose that the time and space complexity of a d-

dimensional grid is Θ
(∏d

i=1wi

)
. Run the function add dim len n on the grid to increase it to

a (d+ 1)-dimensional grid. The function will recurse w1 times to get from the first layer to the
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second layer, then w1 · w2 times to get from the second layer to the third, all the way up to

w1 · w2 · ... · wd−1 times to get from the (d− 1)th layer to the dth layer. In total

(w1) + (w1 · w2) + ...+ (w1 · w2 · ... · wd−1) =
d−1∑
i=1

 i∏
j=1

wj


recursions will occur. Note

(w1 · w2 · . . . · wd−1) < (w1) + (w1 · w2) + · · ·+ (w1 · w2 · . . . · wd−1) .

Note that we assumed wi ≥ 2 for all i ∈ {1, 2, ..., d}. From this we can deduce the following

2 (w1 · w2 · ... · wd−1) = (w1 · w2 · ... · wd−1) + (w1 · w2 · ... · wd−1)

≥ (w1 · w2 · ... · wd−1) + 2 (w1 · w2 · ... · wd−2)

= (w1 · w2 · ... · wd−1) + (w1 · w2 · ... · wd−2) + (w1 · w2 · ... · wd−2)

≥ (w1 · w2 · ... · wd−1) + (w1 · w2 · ... · wd−2) + 2 (w1 · w2 · ... · wd−3)

...

≥ (w1 · w2 · ... · wd−1) + ...+ (w1 · w2) + (w1)

Hence, we’ve proven that

(w1 · w2 · ... · wd−1) < (w1) + (w1 · w2) + ...+ (w1 · w2 · ... · wd−1) ≤ 2 (w1 · w2 · ... · wd−1) ,

so

(w1) + (w1 · w2) + ...+ (w1 · w2 · ... · wd−1) = Θ (w1 · w2 · ... · wd−1) = Θ

(
d−1∏
i=1

wi

)

will be the time and space complexity cost of recursing through the grid.

When add dim len n gets to the bottom layer it does not recurse, instead it creates wd lists

of length wd+1 that it adds to the grid. Since it gets to this layer w1 · w2 · ... · wd−1 times, the

time and space cost will be

Θ ((w1 · w2 · ... · wd−1) · wd · wd+1) = Θ (w1 · w2 · ... · wd+1) = Θ

(
d+1∏
i=1

wi

)
.
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Combine the cost of getting the initial d-dimensional grid, the cost of recursing through it, and

the cost of adding the new layer to find that a (d + 1)-dimensional grid has time and space

complexity

Θ

((
d∏

i=1

wi

)
+

(
d−1∏
i=1

wi

)
+

(
d+1∏
i=1

wi

))
.

Using the same logic that we used to prove that 2 (w1 · w2 · ... · wd−1) ≥ (w1 · w2 · ... · wd−1) +

...+ (w1 · w2) + (w1), we can prove that this complexity is equal to

Θ

(
d+1∏
i=1

wi

)
.

Note there is some i ∈ {1, 2, ..., d} such that wi ≥ wj for all j ∈ {1, 2, ..., d}. Then

(wi)
d ≥

d+1∏
j=1

wj ,

so

O

(
max
wi∈w⃗

(wi)
d

)
is a valid upper bound time and space complexity of constructing a d-dimensional grid.

In both the case where the width is an integer, and where the width is a list of integers, its

time and space complexity will grow exponentially as the number of dimensions increase. This

growth is prohibitive, and as a result my computer begins to run out of its 16GB of RAM when

computing 9-dimensional grids with 8 or more partitions per axis. The majority of this space

is being taken up by references to empty grid boxes. In Section 6.3 I discuss ways that this

problem could be improved. I show there, that in theory, the time and space complexity could

be reduced to O(nd + b log(b)), where n is the size of the data set, where d is the number of

dimensions that the data points exist in, and where b is the number of non-empty boxes in the

grid.

2.2 Adding Data Points into Grid Boxes

The Grid class has a data points attribute that stores the data set. Data sets can be added

to a Grid object using its add points method, which takes a data set as a two dimensional list
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as input. After a data set is inputted, it finds the most extreme points along each axis, saving

their values into the Grid object’s list attributes max coordinates and min coordinates.

From the user’s width input, the grid knows how many partitions each dimension should be

cut into. Once it has updated max coordinates and min coordinates, the length of a grid

box along axis i can be calculated by taking the difference between max coordinates[i] and

min coordinates[i] and dividing it by the number of partitions on axis i. These box widths

are stored as elements of Grid class’s box widths attribute.

Using this information add points can proceed to iterate over every point and, with the help of

the find grid box method, determine which grid box in grid it belongs in. The find grid box

method takes a point and a dimension as input. It returns the box coordinate, along the inputted

dimension, that the point belongs in. An example of this can be seen in Figure 2.2.1. Given

a point p⃗ = (p1, p2, ..., pd), its box coordinate BC along axis i, which has wi partitions, can be

found using the following equation:

BC(p⃗, i) =

⌊
pi −mini

maxi−mini
· wi

⌋
.

For points that are exactly on a partitioning line, they are assigned to the grid box with the

higher coordinate number. The one exception to this rule are points along the highest edge:

those are put into the lower box, as doing otherwise would cause an index error.

0

1

10(0, 0)

(3, 3)

(2.5, 1.5)

2

2

partitions per axis

dimensions of data set

noise reduction

Figure 2.2.1: Demonstration of the find grid box method: We can see that it correctly identi-
fied point (2.5, 1.5) as being in the box with index (2, 1)



20 CHAPTER 2. GRID BOX CLUSTERING

Once add points has determined a point’s box coordinate, it adds it to the grid using the

add point method. The add point method recursively iterates through a copy of the grid and

through the remaining box coordinates until both have run out, at which point the base case

has been reached and the point can be added to the current subgrid. The add point method

also updates Grid’s self explanatory box coordinate to points and point to box coordinate

dictionary attributes.

For all points p⃗ ∈ Rd, it is the case that the box index of p⃗ along any given axis can be

calculated in Θ(1) time, so the entire box coordinate of p⃗ can be calculated in Θ(d) time. The

time complexity of placing all points in a data set into a grid is therefore Θ(dn), where n is the

number of points the given data set. Keep in mind thought, that the value of d must be small,

as it is an exponent of complexity.

2.3 Clustering Points by Grid Boxes

Once a grid has been made, and the points have been added to it, the points can be clus-

tered. The cluster boxes method updates the box clusters attribute, which is a list where

every element is a box cluster, i.e. a list of box coordinates corresponding to boxes in the

same cluster. It starts by getting a list of non-empty grid boxes by getting the keys of the

box coordinate to points dictionary attribute.

Next it filters out the noise boxes (for more on that see Chapter 3). After that it iterates

over the remaining non-empty boxes. At the start of each iteration it pops a non-empty box,

creates a new cluster of boxes which initially contains just this popped box, and finds a list of its

neighboring boxes by using the find all neighbors method. The neighboring boxes get added

to a stack of neighbors. To find all the boxes that should be in this cluster, a nested iteration –

that terminates when the stack is empty – occurs. Every time a neighbor in the stack is found

to be among the unvisited non-empty boxes, it gets added to the cluster, removed from the non-

empty boxes list, and its neighbors are added to the stack of neighbors. When a stack becomes
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empty, the resulting box cluster is appended to the box clusters attribute. Pseudo-code can

be seen below, and a visual example of this algorithm can be seen in Figure 2.3.1.

while len(non_empty_boxes) > 0: #iterates over all non-empty, non-noise boxes

box = non_empty_boxes.pop()

cluster = [box]

#stores boxs that are potentially in the same cluster

neighbors = self.find_all_neighbors(box)

#repeats until all boxes in cluster have been found

while len(neighbors) > 0:

neighbor = neighbors.pop()

#have we found a neighbor who belongs into the cluster?

if self.box_non_empty(neighbor) and (not neighbor in cluster) and

(not neighbor in self.noise_boxes):

cluster.append(neighbor)

non_empty_boxes.remove(str(neighbor))

self.box_clusters.append(cluster)

return

The find all neighbors function takes some box coordinate a⃗ = (a1, a2, ..., ad) where ai ∈

{0, 1, ..., wi − 1} as input are returns a list containing

{⃗
b | bi ∈ {ai − 1, ai, ai + 1} and 0 ≤ bi < wi holds for all natural i ≤ d

}
.

The Python implementation of this method uses a recursive helper method that takes a box

coordinate and a dimension to alter as input. The base case is that the inputted dimension

is equal to the length of the box coordinates minus one, in which case it returns the following

three neighbors: the inputted box coordinate, the inputted box coordinate with the last index

incremented by one, and finally the inputted box coordinate with the last index decremented by

one. In the recursive case it changes the inputted box coordinate at index dimension by −1, 0,
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unvisited:
visited: 3C, 3B, 4C, 4D, 2C, 2D, 4A, 1B, 5A,
               6D, 9C, 8B, 8D, 9D, 9E
neighbors: []
box_cluster: []
box_clusters: [[3C, 3B, 4C, 4D, 2C, 2D, 4A,
                            1B, 5A], [6D], [9C, 8B, 8D
                            9D, 9E]]
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unvisited: 8B, 8D, 9D, 9E
visited: 3C, 3B, 4C, 4D, 2C, 2D, 4A, 1B, 5A,
               6D, 9C
neighbors: [8B, 8C, 8D, 9B, 9D, 10B, 10C, 10E]
box_cluster: [9C]
box_clusters: [[3C, 3B, 4C, 4D, 2C, 2D, 4A,
                            1B, 5A], [6D]]
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visited: 3C, 3B, 4C, 4D, 2C, 2D, 4A, 1B, 5A,
               6D
neighbors: [1A, 1B, 1C, 2A, 2B, 2C, 4A, 4B,
                       5A, 5B, 6A, 6B]
box_cluster: [6D]
box_clusters: [[3C, 3B, 4C, 4D, 2C, 2D, 4A,
                            1B, 5A]]
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Figure 2.3.1: Demonstration of how the cluster boxes method works on a toy data set. The
last few steps are skipped over

and 1, and recursively calls itself on each of the altered box coordinates, with the value of the

dimension increased by one.

The cluster points method updates the clustered points list attribute, which is a list

where every element is a point cluster, i.e. a list of points in the same cluster. It begins by

running the cluster boxesmethod to sort the boxes into box clusters. Next, it iterates over box

clusters, finding all the points in their boxes and adding them to a point cluster. For each box

cluster a corresponding point cluster is made, which gets appended to the clustered points

attribute.
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Theorem 2.3.1. Let d be the dimension of a data set with n points, and let b be the number

of non-empty boxes in the grid. The time complexity of the box clustering algorithm is O
(
n3d
)

and Θ
(
b3d
)
.

Proof. To asses the time complexity of the box clustering algorithm, note that it iterates over

every non-empty grid box once. Each time it iterates over a box, it computes all of its neighbors.

Every box has 3d − 1 neighbors, so the time complexity of finding a box’s neighbors is Θ
(
3d
)
.

This is done for each non-empty grid box, so the time complexity of the box clustering algorithm

is Θ
(
b3d
)
. The amount of non-empty grid boxes is at most the number of points in a given data

set, so O
(
n3d
)
also serves as a valid upper bound time complexity.

Like with constructing grids, the time complexity grows exponentially as the number of di-

mensions increases. For large dimensions a majority of the computed neighbors will be empty

grid boxes. For 10-dimensional data sets, each grid box will have more than 50, 000 neighbors.

For 20-dimensional data sets, each grid box will have more than 3 billion neighbors. In Chap-

ter 6.3 I propose an alternative method for finding neighbors which would in theory reduces

the time complexity of finding a grid box’s neighbors to Θ
(
blogx(3)

)
for some x ≥ 3, where b is

the number of non-empty grid boxes. This would also reduce the time complexity of finding all

non-empty grid box’s neighbors to Θ
(
b1+logx(3)

)
.

Given our definition of neighbors, one may justifiably ask how far apart can two points in

neighboring grid boxes be from each other, which is answered in the following theorem.

Theorem 2.3.2. Let p⃗ = (p1, p2, ..., pd) , q⃗ = (q1, q2, ..., qd) be data points in a d-dimensional data

set, whose width w⃗ = (w1, w2, ..., wd) is a list of integer, and whose minimum and maximum

coordinates along any axis i are mini and maxi respectively. If p⃗ and q⃗ are in neighboring grid

boxes, then their Euclidean distance is at most

2 ·

√√√√ d∑
i=1

(
maxi−mini

wi

)2

,
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and their Manhattan distance is at most

2
d∑

i=1

maxi−mini
wi

.

Proof. Note that the length of a grid box in this data set along some axis i ∈ {1, 2, ..., d} is

maxi−mini
wi

.

Also note that by both the Euclidean and Manhattan definition of distance, points p⃗ and q⃗ will

be furthest away from each other if their grid boxes, say b⃗p⃗ and b⃗q⃗ respectively, only share a

vertex, and if p⃗ and q⃗ are in the vertices of their boxes that are opposite the vertex where b⃗p⃗

and b⃗q⃗ touch. It follows for any axis i ∈ {1, 2, ..., d} the distance (Euclidean and Manhattan)

between pi and qi will be

|pi − qi| ≤
maxi−mini

wi
+

maxi−mini
wi

= 2 · maxi−mini
wi

.

If follows that the Euclidean distance dE between p⃗ and q⃗ is

dE (p⃗, q⃗) ≤

√√√√ d∑
i=1

(pi − qi)
2 =

√√√√ d∑
i=1

(
2 · maxi−mini

wi

)2

= 2 ·

√√√√ d∑
i=1

(
maxi−mini

wi

)2

,

and the Manhattan distance dM between p⃗ and q⃗ is

dM (p⃗, q⃗) ≤
d∑

i=1

|pi − qi| = 2
d∑

i=1

maxi−mini
wi

.



3
Handling Noise in Data

Many data sets contain unhelpful bits of information, known as noise. This can include fluke

events, minor events that contradict a larger general trend, errors in data collection, and other

bits of data that can not be understood or interpreted correctly. In the context of the GBCN

algorithm, noise would include points that don’t belong to any cluster, as well as individual

points, or small groups of points that are far away from the cluster that an ideal clustering

would put them in.

3.1 Noise Reduction

The GBCN algorithm has a built in technique for filtering out noise. Given some noise reduction

hyperparameter k ∈ N, it treats all grid boxes with k or fewer points in them as if they were

empty. This can eliminate minor outlying points, or for higher values of k, even remove a

cluttered background of noisy points. For clusters which are deemed (by the user or by true

labels) distinct, but which are connected by a narrow bridge of points, a good value of k will

disrupt such a bridge, but preserve a majority of the points in the clusters. When noise reduction

is applied, many points that otherwise would have been given a useful classification are at risk of

being incorrectly classified as noise. To compensate for this, there are algorithms for reclustering

noise points back into clusters.

25
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A visual explanation of how GBCN’s noise reduction works can be seen in Figure 3.1.1. It

demonstrates how sensitive GBCN is to hyperparameters. In the figure we see that dividing

each axis into 6 partitions with no noise reduction produces an ideal clustering, but reducing

the partition count by just one produces a useless clustering where all points are put into one

cluster. Still, this sensitive example is a lucky case, as there may be data sets where without

using noise reduction there would not be a partition count which produced an ideal clustering.

Note that the clusterings where there were 5 partitions and k was set to 1 or 2, and where there

were 6 partitions and k was set to 1, produced clusterings with the right number of clusters in

the right locations. Their only flaw was that they incorrectly classified some points as noise.

We will see in the next section that with noise reclustering techniques, these clusterings could

be used to produce ideal classification. Because of this, we can conclude that reclustering gives

the user more flexibility when choosing the width and noise reduction hyperparameters, and

broadens the domain of data sets that GBCN can give a useful clustering of.

k = 0 k = 1 k = 2 k = 3

k = 0 k = 1 k = 2 k = 3

w = 6

w = 5

Figure 3.1.1: Visual explanation of how different grid box widths (labeled w) and noise sensi-
tivities (labeled k) produce different clusterings
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In the Python implementation of the algorithm, the user assigns k to the noise reduction

parameter in Grid’s constructor. When points are clustered using the cluster points method,

grid boxes with fewer than k points are appended to Grid’s noise boxes attribute, rather

than to a list in box clusters and to clustered boxes. Likewise, the points in boxes that

have been deemed noise are appended to the noise points attribute rather than to a list in

point clusters and to clustered points.

3.2 Algorithms for Reclustering Noise

In this section I give three algorithms for reclustering noise points in GBCN. They are all

variants on each other, and take inspiration from k-NN. The first two reclustering algorithms,

when applied to the data set in Figure 3.1.1, would have successfully reclustered the noise

points in the clusterings which had three clusters. The last reclustering algorithm would have

consistently done so in the w = 6 and k = 1 cases, and would sometimes get it right in the other

two cases.

3.2.1 Noise Reclustering Algorithm 1: Nearest Neighbors With Euclidean Distance

The first noise reclustering algorithm takes a point and an integer k as input (not the same k as

we use for noise reduction), and finds the k points that are closest to the inputted point in terms

of Euclidean distance. The cluster whose points appear the most frequently among the k nearest

points is the one that the inputted point gets labeled as. Within the implemented code this

is handled by Grid’s reassign noise with knn euclidean distance method, which iterates

over every point in noise points, and uses the calculate cluster id with knn euclidean

method to find which cluster it belongs to. Each time a point is iterated over, a two element

list, with a reference to the point as the first element, and the cluster id as the second element

is created and appended to a list of point cluster pairs. This list of point cluster pairs is then

iterated over and the assign noise point to cluster method is used to assign the point to

the cluster it was determined to belong to.
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Initially I intended to find the cluster and assign the point to it in one iteration, but ultimately

decided against it, because for nearest neighbors I only wanted to consider points that were orig-

inally included in a cluster, not noise points from previous iterations whose cluster had already

been determined. This double iteration method insures that the algorithm is deterministic, as

the order in which noise points are iterated over has no impact on the result.

The calulate cluster id with knn euclidean function is a method in the Grid class that

takes a point and a k value as input and returns the index of a cluster in point clusters that

the inputted point should be assigned to. It finds this cluster by iterating over every clustered

point, using the math.dist function to calculate the Euclidean distance between it and the

inputted point. As it iterates it updates a list of the k nearest points. It then finds the cluster

whose points are most represented among the k nearest points and returns that clusters index.

In the case of a tie, it returns the cluster with the lower index.

The assign noise point to cluster function is a method in the Grid class that takes a

point and a point cluster id as input and makes all the necessary internal changes so that the

inputted point becomes a part of the cluster whose id was inputted. It begins by checking that

the inputted point is in noise points, raising an exception if it is not. Then it removes it from

noise points, appends it to clustered points, and to point clusters[point cluster id].

Note, the reassign noise with knn euclidean distance method iterates over every noise

point twice – a constant number of times, and for each noise point it iterates over every clustered

point once. The complexity of calculating the distance between a noise points and a clustered

point is dependent on the dimension of the space that the points exist in. Hence, the time

complexity of reclustering noise points using this nearest neighbors with Euclidean distance

algorithm is Θ(d · nnoise · nclustered).
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3.2.2 Noise Reclustering Algorithm 2: Nearest Neighbors With Manhattan Distance

This second algorithm for reclustering noise points is similar to the previous one in Subsec-

tion 3.2.1, but instead of Euclidean distance, Manhattan distance is used. Manhattan dis-

tance is defined as the sum of differences between two points along each axis.

In the implemented code, this is done by Grid’s reassign noise with knn manhattan distance

method, which utilizes the calculate cluster id with knn manhattan method. Instead of the

math.dist function it uses Grid’s manhattan distance method, which takes two points as in-

put and sums their differences along each axis. The time complexity of this algorithm is also

Θ(d · nnoise · nclustered).

3.2.3 Noise Reclustering Algorithm 3: Nearest Neighbors With Box Distance

This last reclustering algorithm is similar to the previous two, but instead of analyzing the dis-

tance between points, it analyzes the distance between grid boxes. More specifically, Box

distance is defined as the minimum number of boxes required to traverse (diagonally, or

orthogonally) to get from one box to another. In the implemented code, this is done by

Grid’s reassign noise with knn box distance method, which iterates over every grid box

in noise boxes, and uses the calculate cluster id with knn box distance method to find

which box cluster it belongs to. Each time a grid box is iterated over, a two element list, with

a reference to the box as the first element, and the cluster id as the second element is created

and appended to a list of box cluster pairs. This list of box cluster pairs is then iterated over

and the assign noise box to cluster method is used to assign the box to the cluster it was

determined to belong to.

The calculate cluster id with knn box distance function is a method in the Grid class

that takes a grid box and a k value as input and returns the index of a box cluster in

box clusters that the inputted grid box should be assigned to. It finds this cluster by it-

erating over every clustered grid box, using Grid’s box distance method to calculate the box

distance between it and the inputted box. As it iterates it updates a list of the k nearest boxes.
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It then finds the box cluster whose grid boxes occur most frequently among the k nearest grid

boxes and returns that box cluster index. In the case of a tie, it returns the box cluster with

the lower index.

The box distance method takes two grid boxes as input and returns the minimum number of

grid boxes that must be traversed to get from one to the other. As demonstrated in Figure 3.2.1,

for d dimensional boxes p⃗ and q⃗, this number is

max
0<i≤d

(|pi − qi|),

i.e. the difference between p⃗ and q⃗ along the axis where they differ the most.

Box distance: 1

Box distance: 2

Box distance: 3

Box distance: 4
Euclidean distance: 5.657
Manhattan distance: 8

Box distance: 4
Euclidean distance: 4.472
Manhattan distance: 6

Box distance: 4
Euclidean distance: 4
Manhattan distance: 4

Figure 3.2.1: The upper picture shows three levels of Box distance from a central box. The three
lower pictures show segmented paths from one box to another. Each segment increases the box
distance by one. Though the examples in the three lower pictures have different Euclidean and
Manhattan distances, their Box distances are equal
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The assign noise box to cluster function is a method in the Grid class that takes a grid

box and a box cluster id (box cluster index) as input and makes all the necessary inter-

nal changes so that the inputted grid box becomes a part of the box cluster whose id was

inputted, and so that all the points in the inputted box are reassigned to the point cluster

corresponding with the inputted box cluster. It begins by checking that the inputted grid box

is in noise boxes, raising an exception if it is not. Then it removes it from noise boxes, ap-

pends it to clustered boxes, and to box clusters[box cluster index]. Lastly it iterates over

all points in the inputted grid box, assigning them with the assign noise point to cluster

method to the point cluster that corresponds to the inputted box cluster id.

Note, the reassign noise with knn box distance function iterates over every noise box

twice – a constant number of times, and for each noise box it iterates over every clustered

box once. The complexity of calculating the distance between noise boxes and clustered boxes

is dependent of the dimension of the space that the boxes exist in. Lastly noise points are

iterated over and reassigned to point clusters. Hence, the time complexity of this method is

Θ(d · bnoise · bclustered+nnoise). Depending on how many points there are per non-empty grid box,

this time complexity can be significantly faster than the previous two algorithms. In the worst

case scenario there is a distinct box for every point, so O(d · nnoise · nclustered) is a valid upper

bound time complexity.
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4
Tuning Hyperparameters

Many machine learning algorithms work by having two algorithms operating in a symbiotic

relationship. Once generating results, the other evaluating the performance of those results

(sometimes referred to as a validation algorithm). The algorithm producing results changes its

parameters to improve the score generated by the evaluation metric. To give a less technical

analogy, it’s like a student looking over the teacher’s feedback on the previous test to figure

out how to get a higher score on the next test, an algorithm can learn and improve itself by

reciprocating to the feedback that it’s getting by the evaluation algorithm. GBCN is a result-

generating algorithm. The hyperparameters that we are interested in optimizing are the number

of partitions along its axes, and the noise reduction coefficient. The evaluating algorithms

used in this project are standard ones (perhaps with the exception of DBCV, discussed in

Subsection 4.1.4). Their use allows for stability and standardisation in evaluation, as well as

easy comparison to other clustering algorithms’ performances.

Evaluation is done very differently with supervised and unsupervised machine learning algo-

rithms. With supervised algorithms there are known ground truths, so the performance can be

measured very precisely and objectively. The goal is usually to build a model that can correctly

classify data where labels are not known. Often the challenge in those cases is to make an algo-

rithm that can fit, but not overfit, to data. With unsupervised algorithms there are no ground

33
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truths so there is a lot more ambiguity. How does one decide if a clustering is good or bad?

Often there is no objectively correct answer. Different clusterings will provide different insights

into a given data set. Some may be useful. Some may not be. It is important to note that an

unsupervised result-generating algorithm can be evaluated by both an extrinsic evaluation

metric which does not take ground truths into account, as well as by an intrinsic evaluation

metric – if ground truths are knows – which does take grown truths into account. Though it is

uncommon for data sets with known ground truths to be clustered by unsupervised algorithms

and evaluated by an intrinsic evaluation metric, this method can be useful, as it can provide

insights on hyperparameter optimization. Hyperparameter combinations on an extrinsic evalu-

ation metric of labeled data can be exhaustively tested to see what the best possible result that

an algorithm can generate is, when given optimal hyperparameters.

Different extrinsic evaluation algorithms will have different ideas about what a good clustering

looks like. They typically consider a combination of information when calculating a score, such

as how far are clusters’ points from the mean of their cluster. How close are points within a

cluster to other points of the same cluster, and how far away are they from points in other

clusters. Some evaluation algorithms focus on the shape of a clusters, while others may focus

on other things, such as the density. Many have biases which could, for example, cause them to

favor classifications with many small clusters, or, conversely, classifications with few big clusters.

Because of this wide variety, it is important for the data analyst to have some familiarity with

their data set, to know what kind of clusters they are looking for, and to know the biases of the

evaluation algorithm that they are using.

4.1 Clustering Evaluation Algorithms

4.1.1 Clustering Evaluation Algorithm 1: Silhouette Coefficient

Proposed in 1986 by Peter Rousseeuw [22], the silhouette coefficient is an extrinsic cluster

evaluation algorithm that takes a clustering of points in some metric space as input and returns

a score between −1 and 1 (inclusive). It positively ranks clusterings where clusters’ points
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are closer to other points of the same cluster, then to points of the nearest other cluster. If

the silhouette score is negative, then the clustering is very poor. A score close to 0 indicates

overlapping clusters. Positive silhouette scores are considered better than random, and 0.5 is

often used as a threshold above which a clustering is considered strong.

The silhouette coefficient requires that the clustering have at least 2 distinct clusters. It

calculates a score for each sample in the data set, and returns the mean of the sample scores as

the final silhouette score of the inputted clustering. Let DS be a clustered data set with nDS

points. For each point p⃗ ∈ DS, define ap⃗ to be the mean distance between p⃗ and all other points

in its cluster, and define bp⃗ to be the mean distance between p⃗ and all points in the nearest

cluster that p⃗ is not a part of (nearest, as in, the cluster that results in the lowest bp⃗ value).

Then the silhouette score sp⃗ of p⃗ is defined as

sp⃗ =
bp⃗ − ap⃗

max ap⃗, bp⃗
.

Thus, the silhouette score sDS of DS is defined as

sDS =

∑
p⃗∈DS

sp⃗

nDS
.

Because of its reliance on the mean distance between points within a cluster, the silhouette

coefficient will generally give high scores to globular clusters, such as the ones that k-means

clustering (explained in Subsection 1.2.1) generates, but may give low scores to good clusterings

which are not convex. This algorithm is implemented in the scikit-learn library [17].

4.1.2 Clustering Evaluation Algorithm 2: Calinski Harabasz Index

Proposed in 1974 by Tadeusz Caliński and Jerzy Harabasz [2], the Caliski Harabasz Index, also

known as the Variance Ratio Criterion, is an extrinsic cluster evaluation algorithm that takes

a clustering of points in some metric space as input and returns a score between 0 and infinity

(not inclusive), where the higher the score the better. It positively ranks clusterings that have

high dispersion between their clusters and low dispersion within their clusters. More specifically

it calculates the score by taking the ratio between the two.
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Let DS be a clustered data set with nDS points. Define k to be the number of distinct clusters

in DS and define C = {C1, C2, ..., Ck} to be the set of clusters in DS, where Cq is the set of all

points in cluster q for all q ∈ {1, 2, ..., k}. Furthermore, define nq to be the number of points in

cluster q, define c⃗q to be the center of cluster q (the mean location of all p⃗ ∈ Cq), and c⃗DS to

be the center of DS (the mean location of all p⃗ ∈ DS). Then the value of DS’s within-cluster

dispersion W is defined by

W =
k∑

q=1

∑
p⃗∈Cq

||p⃗− c⃗q||2
 ,

i.e. for each point, find the sum of squared differences between its coordinates and the coordi-

nates of the center of its cluster. Then W will be the sum of these values for every point. Next

note that the value of DS’s between-cluster dispersion B is defined by

B =
k∑

q=1

nq||⃗cq − c⃗DS ||2,

i.e for each cluster center, find the sum of squared differences between its coordinates and the

coordinates of the center of the data set and multiply it by the number of clusters. Then B will

be the sum of these values for every cluster. The Calinski Harabasz score sDS of DS is defined

as

sDS =
B(nDS − k)

W (k − 1)
.

Like the silhouette coefficient, Calinski Harabasz index is good at evaluating algorithms that

generate globular clusters, but struggles to give good scores to non-convex density based clus-

terings. This algorithm is implemented in the scikit-learn library [17].

4.1.3 Clustering Evaluation Algorithm 3: Davies-Bouldin Index

Proposed in 1979 by David L. Davies and Donald W. Bouldin [3], the Davies-Bouldin Index is

an extrinsic cluster evaluation algorithm that takes a clustering of points in Euclidean space as

input and returns a score between 0 and infinity (including 0), where a lower score indicates a

better clustering. It computes the score by taking the average similarity of every cluster to its

most similar cluster, where similarity is the ration of within-cluster distances to between-cluster
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distances. Thus, clusters whose points are relatively close to their cluster mean and far from

other clusters means will get good scores.

Let DS be a clustered data set. Define k to be the number of distinct clusters in DS and

define C = {C1, C2, ..., Ck} to be the set of clusters in DS, where Cq is the set of all points in

cluster q for all q ∈ {1, 2, ..., k}. Furthermore, define c⃗q to be the center of cluster q (the mean

location of all p⃗ ∈ Cq), define sq to be the mean distance between p⃗q and c⃗q for all pq ∈ Cq, and

define dij to be the Euclidean distance between c⃗i and c⃗j . Next let R : {1, 2, ..., k}2 → R be a

function of similarity between clusters defined by

R(i, j) =
si + sj
dij

.

Then the the Davies-Bouldin score sDS of DS is defined as

sDS =
1

k

k∑
i=1

max
j ̸=i

R(i, j).

As with the previous two evaluation metrics, Davies-Bouldin favors clusterings that contain

globular clusters and is not especially useful for evaluating non-convex clusters. This algorithm

is implemented in the scikit-learn library [17].

4.1.4 Clustering Evaluation Algorithm 4: DBCV

Proposed in 2014 by Davoud Moulavi, Pablo A. Jaskowiak, Ricardo J. G. B. Campello, Arthur

Zimek, and Jörg Sander [15], DBCV (Density-Based Cluster Validation), is an extrinsic cluster

evaluation algorithm that takes a distance function d, and a clustering of points in Rn for some

natural n as input and returns a score between −1 and 1, where the higher the score the better.

For each cluster, DBCV finds the area where its internal density is the lowest, and the area

between it and another cluster where density is the highest. Clusterings where clusters’ lowest

internal density is relatively high, and where the highest between cluster densities are relatively

low, will perform well.

Let DS be a clustered data set with nDS points. Define k to be the number of distinct clusters

in DS and define C = {C1, C2, ..., Ck} to be the set of clusters in DS, where Cq is the set of all
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points in cluster q for all q ∈ {1, 2, ..., k}. Furthermore, define nq to be the number of points in

cluster q, and define KNN(p⃗, i) to be the distance between p⃗ and its ith nearest neighbor. Let

aptscoredist : DS → R be a function, which takes a point p⃗ ∈ Cq as input and returns a value

that is inversely related to the point’s density in relation to all other nq − 1 points in Cq, be

defined by

aptscoredist(p⃗) =


nq∑
i=2

(
1

KNN(p⃗,i)

)d
ni − 1


− 1

d

.

Let dmreach : DS2 → R be a function, which takes two points as input and returns their mutual

reachability distance, be defined by

dmreach (p⃗i, p⃗j) = max {aptscoredist (p⃗i) , aptscoredist (p⃗j) , d (p⃗i, p⃗j)} .

Let GMRD(P ) be a complete graph with points in any inputted data set P as vertices, and

with the mutual reachability distance between the respective pair of points as the weight of each

edge. Let GMST (P ) be a minimum spanning tree of GMRD(P ). Short for Density Sparseness of a

Cluster, define DSC (Cq) to be the maximum edge weight of the internal edges of GMST (Cq) for

all clusters Cq ∈ C. Short for Density Separation of a Pair of Clusters, define DSPC (Ci, Cj) to

be the minimum reachability distance between the internal nodes of GMST (Ci) and GMST (Cj).

Next let s : C → R be a function, which gives a score to each cluster that, be defined by

s(Ci) =

min
1≤j≤k,j ̸=i

(DSPC (Ci, Cj))−DSC (Ci)

max

(
min

1≤j≤k,j ̸=i
(DSPC (Ci, Cj)) , DSC (Ci)

) .

Then the DBCV score sDS of DS is defined as

sDS =

i=k∑
i=1

|Ci|
|DS|

s(Ci).

This algorithm was implemented by Christopher Jenness, who kindly made it publicly avail-

able [12] via his GitHub profile. The most current version contains a bug, but there is an older

version from August 25th 2018 which works correctly. Unfortunately this implementation has

very slow run times for large data sets. The specifics are shown in Table 4.1.1. These run times
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nDS time

256 2s
512 7s
1024 38s 0.6min
2048 180s 3.0min
4096 1003s 16.7min

Table 4.1.1: DBCV run times for nDS sized data sets with intel(r) core(tm) i7-10510u cpu @
1.80ghz processor

make DBCV too slow to be used for exhaustive hyperparameter optimization tests. Another

Python implementation of this algorithm was created and made publicly available [25] by Felipe

Alves Siqueira. This version implements more speed optimization techniques and gives the user

the option to trade precision for better processing times. Unfortunately I was not able to get it

to run. Siqueira’s implementation is based on the original authors’ code [10], which was written

in MATLAB.

4.1.5 Clustering Evaluation Algorithm 5: Rand Index

Proposed in 1985 by Lawrence Hubert and Phipps Arabie [7], Rand Index is a intrinsic cluster

evaluation algorithm that takes a list of true labels and a list of predicted labels as input and

returns a score between 0 and 1 (inclusive), where higher scores indicate more similarity between

the two lists. It treats label permutations as equivalent, so predicted labels [0, 0, 0, 1, 1]

and [1, 1, 1, 0, 0] would both receive the same score.

Let DS be a data set with nDS points. Let T = {T1, T2, ..., Tn} be the set of ground truth

clusters inDS, where Tq is the set of all points in the ground truth cluster q for all q ∈ {1, 2, ..., n}.

Let P = {P1, P2, ..., Pm} be the set of predicted clusters in DS, where Pq is the set of all points

in the predicted cluster q for all q ∈ {1, 2, ...,m}.

Define a to be the number of point pairs p⃗i, p⃗j such that p⃗i, p⃗j ∈ Tq1 and p⃗i, p⃗j ∈ Pq2 for some

q1, q2 ∈ N. Define b to be the number of point pairs p⃗i, p⃗j such that p⃗i ∈ Tq1 and p⃗j /∈ Tq1 hold,

and p⃗i ∈ Pq2 and p⃗j /∈ Pq2 hold for some q1, q2 ∈ N. Lastly define c to be the total number of
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possible pairs of points in DS. Then

c =

(
nDS

w

)
=

nDS !

2! · (nDS − 2)!
=

nDS · (nDS − 1) · (nDS − 2)!

2 · (nDS − 2)!
=

(nDS)
2 − nDS

2
.

It follows that the Rand score sDS of DS is defined as

sDS =
a+ b

c
.

Note that if we think of a as being the number of true positives, and think of b as being

the number of true negatives, then it follows that c is the number of true positives, plus true

negatives, plus false positives, plus false negatives. Then the definition of rand score,

sDS =
a+ b

c
=

TP + TN

TP + TN + FP + FN
,

is equivalent to the definition of the accuracy evaluation metric. Therefore, the key insight that

Rand Index makes is its definition of what a true positive and what a true negative look like in

a cluster. This algorithm is implemented in the scikit-learn library [17].

4.2 Using Evaluation Metrics to Optimize Hyperparameters

GBCN is highly sensitive to hyperparameters. As seen previously in Figure 3.1.1, small changes

to the diameters of grid boxes and to noise sensitivity can make a big difference in the way the

data points get clustered. Each clustering that was generated in that figure would receive a

different score when scored by an evaluation algorithm. When the right evaluation algorithm is

chosen, the most desirable clustering should receive the highest score. In addition to quantifying

how good a clustering is, an evaluation metric can serve as a heuristic device to compare the

performances of different hyperparameter values. A method then for finding good clusterings is

to take different hyperparameter values to generate different clusterings, and choosing the one

that ranks higher than all others.

There are currently four functions implemented in my code that do exhaustive hyperparameter

evaluations:

optimize_parameters_for_extrinsic_metric
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optimize_parameters_for_extrinsic_metric_one_width

optimize_parameters_for_intrinsic_metric_one_width

optimize_parameters_for_DBCV_one_width

They all take as input a data set, its dimension, a minimum grid box width, a max-

imum grid box width, a minimum noise reduction, a maximum noise reduction, and

a figure title. In addition to that, the first three take an evaluation metric as in-

put, and optimize parameters for intrinsic metric one width takes true labels as input.

optimize parameters for DBCV one width does not take an evaluation metric, because it was

uniquely built to calculate the score of a clustering using DBCV, which, you will recall from

Chapter 4.1.4, is not implemented in any standard machine learning libraries. A noteworthy

difference between optimize parameters for extrinsic metric and the other three functions

is that the former computes every possible combination of grid box widths within the inputted

range, of which there are (wmax − wmin)
d, while the latter three simply iterate from the inputted

minimum grid box width till the maximum grid box width, using each number in between as the

amount of partitions on each axis for a total of wmax−wmin width hyperparameter combinations.

For each width value that the functions test, they test every noise sensitivity within the inputted

range. Therefore, though more thorough, optimize parameters for extrinsic metric per-

forms Θ
(
(wmax − wmin)

d (nrmax − nrmin)
)
clusterings, while the other three are exponentially

faster, performing just Θ ((wmax − wmin) (nrmax − nrmin)) clusterings. If the inputted data set

was two dimensional, then the functions produce a figure of the best ranked clustering that they

found.
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5
Results

In this chapter I evaluate the performance of GBCN. I compare it to k-means clustering and

DBSCAN. I run it on synthetic data sets from the scikit-learn package [17], as well as a real

world data set from the UCI Machine Learning Repository [16]. I use optimization techniques

to find good hyperparameter values.

5.1 Experiments With GBCN on Synthetic Data Sets

I used the following three lines of code to make my first three synthetic data sets from scikit-learn

noisy_circles = datasets.make_circles(n_samples=1500, factor=0.4, noise=0.05)

noisy_moons = datasets.make_moons(n_samples=1500, noise=0.05)

blobs = datasets.make_blobs(n_samples=1500, random_state=30)

They are two dimensional and a plot of them can be seen in Figure 5.1.1.

With the width hyperparameter set to 25 and the noise reduction hyperparameter set to 0,

GBCN gives a clustering of noisy circles that separates the two ring shaped groups of points.

I consider this clustering to be the one that best reflects the shape of the data. See a plot

of it in Figure 5.1.2. The silhouette, Calinski Harabasz, Davies-Bouldin, and DBCV scores of

this clustering are documented in Table 5.1.1 and can also be seen in the figure. Note that the

distance between the means of the two clusters is extremely small, and thus it makes sense that
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Noisy Circles Noisy Moons Blobs

Figure 5.1.1: noisy circles, noisy moons, and blobs data set generated by the scikit-learn
library

the Davies-Bouldin, and Calinski Harabasz scores are so low. The silhouette score does not take

into account the mean location of clusters, and thus its score, while not great, is a bit better.

The DBCV score on the other hand gives the clustering a very positive ranking. This makes

sense given that the density of points at any given area within a cluster is relatively high, and

given that the point density of areas between clusters is very low.

With the width hyperparameter set to [15, 25] and the noise reduction hyperparameter set to

0, GBCN gives a clustering of noisy moons that separates the two moon shaped groups of points.

In this case too I consider this clustering to be the one that best describes shape of the data.

See a plot of this clustering in Figure 5.1.3. We can see in Table 5.1.1 that the evaluation metric

scores of noisy moons are universally better than those of noisy circles. While the Calinski

Harabasz and Davies-Bouldin scores in noisy circles suggested that the clustering was bad,

the scores in noisy moons are within a range that deems them suitable to serve as heuristics,

i.e. alone it is difficult to tell how good they deem the clustering, but their comparison to scores

of other clusterings could be used to find the better clustering. noisy moons’s silhouette score

suggests that the clustering is better than random, but not much more than that. In contrast,

the DBCV score is strong.
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Figure 5.1.2: Applying GBCN to noisy circles. Each axis is partitioned 25 times to create
the grid lines marked in light gray. This choice of hyperparameters allows GBCN to generate a
clustering that accurately reflects the shape of the data

When noise reduction and width are both set to 15, applying GBCN to blobs produces the

clustering seen in Figure 5.1.4. Running

reassign_noise_with_knn_euclidean(1)

subsequently produces the clustering seen in Figure 5.1.5. I consider this to be one of the

clusterings that best reflects the shape of the data. I say ‘one of’ because there is some ambiguity

about the correct clustering of the points in the region where the blue and green clusters overlap.

Using other (see Section 3.2) reassignment methods with a variety of k values produced very

similar clusterings, with very similar scores. Some differed slightly in how they reassigned points

in the intersection of the overlapping clusters, yet they were similar enough that I would consider
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Figure 5.1.3: Applying GBCN to noisy moons. The horizontal axis is partitioned 15 times and
the vertical axis is partitioned 25 times to create the grid lines marked in light gray. This choice
of hyperparameters allows GBCN to generate a clustering that accurately reflects the shape of
the data

them all to be among the clusterings that best reflect the shape of the data. The evaluation

metric scores (see Table 5.1.1) of this clustering are in stark contrast with the scores of the

previous two clusterings. This is not too surprising, as the blobs data set is globular, and we

see that the evaluators that reward globular clustering gave it significantly higher scores than

they gave the previous data sets. This result shows that GBCN is capable of generating globular

clusterings, and suggests that there are evaluation metrics which could be used to help find the

hyperparameters that enable it to do so.

Silhouette Calinski Harabasz Davies-Bouldin DBCV

noisy circles 0.158609 0.001478 924.133425 0.551643
noisy moons 0.332471 979.448350 1.162008 0.579992

blobs 0.645515 4736.678512 0.497095 -0.668201

Table 5.1.1: Evaluation scores of the clusterings of the noisy circles, noisy moons, and blobs

data sets seen in Figure 5.1.2, Figure 5.1.3, and Figure 5.1.5
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Figure 5.1.4: Applying GBCN to blobs. Each axis is partitioned 15 times, to create the grid
lines marked in light gray. Noise sensitivity was set to be such that boxes with 15 or fewer points
were labeled as noise. This combination of grid an noise sensitivity was able to separate clusters
whose edges overlapped, while preserving each cluster’s dense central area

5.2 Experiments With k-Means Clustering and DBSCAN on Synthetic
Data Sets

In this section I use k-means clustering and DBSCAN to cluster the synthetic data sets and

measure their performance using the evaluation metrics. The effectiveness of these algorithms

can serve as a benchmark to compare GBCN to. The clusterings produced by k-means are

shown in Figure 5.2.1. The clusterings produced by DBSCAN are shown in Figure 5.2.2. The

evaluation scores of these clusterings are documented in Table 5.2.1 and can also be seen in the

figures.

The clusterings on the noisy circles and noisy moons data sets produced by k-means clus-

tering received substantially better silhouette, Calinski Harabasz, and Davies-Bouldin scores
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Figure 5.1.5: This clustering demonstrates how noise reclustering can be used to produce clus-
terings that accurately reflect the shape of data
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Figure 5.2.1: Clusterings of the synthetic data sets produced by k-means clustering
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Figure 5.2.2: Clusterings of the synthetic data sets produced by DBSCAN
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Algorithm Silhouette Calinski Harabasz Davies-Bouldin DBCV

noisy circles GBCN 0.158609 0.001478 924.133425 0.551643
noisy moons GBCN 0.332471 979.448350 1.162008 0.579992

blobs GBCN 0.645515 4736.678512 0.497095 -0.668201
noisy circles k-means 0.326368 775.536898 1.235537 -0.925415
noisy moons k-means 0.491728 2234.590238 0.777514 -0.888408

blobs k-means 0.646596 4762.155471 0.496639 -0.571451
noisy circles DBSCAN 0.158609 0.001478 924.133425 0.551643
noisy moons DBSCAN 0.332471 979.448350 1.162008 0.579992

blobs DBSCAN 0.671425 5313.181156 0.463251 -0.266398

Table 5.2.1: Evaluation metric scores of synthetic data clusterings using GBCN, k-means clus-
tering, and DBSCAN

than the ones produced by GBCN. Yet we see that these clusterings do not provide any useful

insights into the shape of the data. Hence, the validity of these metrics’ scores, on non-globular

shaped data sets, should be viewed skeptically. DBCV, on the other hand, correctly gave the

clusterings very low scores.

The clusterings on the noisy circles and noisy moons data sets produced by DBSCAN

were the same as the ones produced by GBCN, and thus received the same scores. The best

hyperparameters I could find for clustering blobs with DBSCAN, while attempting to classify

all points into three clusters, labeled most points along the edges of clusters as noise. When

calculating the scores for this clustering, I did not include the noise points. Because of this its

scores will be higher than if noise was reclustered, or if noise points were counted as their own

cluster.

GBCN, k-means, and DBSCAN all produced similar clusterings of blobs, and GBCN and

DBSCAN outperformed k-means clustering on the other two data sets. The effectiveness of

GBCN and DBSCAN was similar, but unlike DBSCAN, GBCN has built in noise reclustering

algorithms enabling it to produce accurate clusterings of blobs, which classify all points. Also

note from the original paper [4] that the time complexity of DBSCAN is O(n·log(n)) on average,

but O
(
n2
)
in the worst case. In Section 6.3 I prove that the time complexity of GBCN can be

reduced to O
(
nd+ b log(b) + b1+logx(3)

)
for some real x ≥ 3, which is faster on average when

d < log(n), and which is faster in the worst case when d < n.
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Note that GBCN’s clusterings of noisy circles and noisy moons accurately reflect the shape

of the data, and that the DBCV evaluator gave them both an unambiguously positive score. Also

note that the clusterings of noisy circles and noisy moons that k-means produced did not

accurately reflect the shape of the data, and that the DBCV evaluator gave these clusterings

very low scores. This serves as strong evidence that DBCV can accurately evaluate density-

based clusters, and suggests that the combination of GBCN and DBCV has a lot of potential

for finding density based clusters. This may be an area worth exploring further.

5.3 Using Evaluation Metrics to Optimize Synthetic Data Clustering

In this section I describe an experiment I conducted using a hyperparameter optimization func-

tions discussed in Section 4.2. I ran

optimize_parameters_for_extrinsic_metric_one_width

three times for each of the three synthetic data sets, optimizing for silhouette coefficient, Calinski

Harabasz index, and for Davies-Bouldin index. I set the minimum width to be 1, the maximum

width to be 100, the minimum noise reduction to be 0, and the maximum noise reduction to be

10. For noise reclustering I used

reassign_noise_with_knn_euclidean(1)

The results of this hyperparameter search is in Table 5.3.1.

Evaluation Metric Width Noise Red. Description

noisy circles Silhouette 46 4 18 clusters, far from optimal
noisy circles Calinski Harabasz 72 2 50+ clusters, far from optimal
noisy circles Davies-Bouldin 23 6 16 clusters, far from optimal
noisy moons Silhouette 52 8 2 clusters, good but not optimal
noisy moons Calinski Harabasz 51 4 35 clusters, far from optimal
noisy moons Davies-Bouldin 76 4 13 clusters, far from optimal

blobs Silhouette 26 8 optimal
blobs Calinski Harabasz 26 8 optimal
blobs Davies-Bouldin 59 0 3 big, many small clusters, good

Table 5.3.1: Using evaluation metrics to find hyperparameters of synthetic data sets. Optimal
in this case means that the clustering accurately described the shape of the data
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The silhouette, Calinski Harabasz, and Davies-Bouldin metrics did not prove useful for opti-

mizing GBCN hyperparameters to cluster noisy circles or noisy moons. The only arguably

good evaluator was silhouette score for noisy moons. It set width and noise reduction to be

very large values, causing the majority of points to be classified as noise, leaving just two small

clusters for noise to be reclustered to. The noise points were then reclustered, for the most part

in accordance with the clustering seen in Figure 5.1.3. The exception to this were the interior

tails of the moons, which were classified as being part of the other moon. In Table 5.3.1 I call this

clustering good because it has the correct amount of clusters, and about 75% of the points were

labeled correctly. None the less, this seems more like a fluke, then a reproducible phenomenon.

We can see in Table 5.3.1 that the silhouette, Calinski Harabasz, and Davies-Bouldin metrics

proved very useful when trying to optimize GBCN hyperparameters for clustering blobs. Two

of them were able to create clusterings that accurately reflected the shape of the data, and the

third, Davies-Bouldin, was able to make a reasonably good clustering in which the three clusters

were correctly identified, but where the points along the edges of blobs were often excluded and

formed their own little clusters. This may reflect a bias for larger quantities of small clusters in

the Davies-Bouldin evaluator.

5.4 Using Evaluation Metrics to Optimize Real World Data Clustering

I use the following lines of code to extract the Iris [5] data set from the UC Irvine Machine

Learning Repository

from ucimlrepo import fetch_ucirepo

iris = fetch_ucirepo(id=53)

Iris is a famous machine learning data set containing 150 data points, each representing an iris

flower. The labels of data points are their species. There are three different species, which each

appear 50 times. The data is 4-dimensional, where sepal length, sepal width, petal length, and

petal width are the axis. A visualization of this data set can be seen in Figure 5.4.1 by [20].

I begin the clustering by running
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Figure 5.4.1: Visualization of Iris data by [20]
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optimize_parameters_for_extrinsic_metric_one_width

on the Iris data three times, optimizing for silhouette coefficient, Calinski Harabasz index, and

Davies-Bouldin index. The width range is from 1 to 50, and the noise reduction range is from

0 to 5. I subsequently run

optimize_parameters_for_intrinsic_metric_one_width

on the Iris data, optimizing for Rand Index. The results of these hyperparameter searches are

documented in Table 5.4.1. We see there that when optimizing for silhouette score, GBCN was

Width Noise Red. Description

Silhouette 4 4 makes 2 clusters, separates setosa species
Calinski Harabasz 50 0 separates points into 143 clusters
Davies-Bouldin 50 0 separates points into 143 clusters

Rand 10 1 0.9 score, 5 near homogeneous clusters

Table 5.4.1: Using evaluation metrics to find hyperparameters of Iris data set

able to separate the Iris setosa species, marked in blue in Figure 5.4.1, from the versicolor and

virginica species, which it put into one cluster. Optimizing for the Calinski Harabasz and Davies-

Bouldin evaluation metrics failed to generate any meaningful hyperparameter values. The use of

the intrinsic Rand Index metric produced a very good clustering, proving that GBCN can cluster

the Iris data when the right hyperparameters are given. A detailed overview of the clustering

produced when optimizing for Rand is given in Table 5.4.2.

cluster index setosa versicolor virginica T
T+F

0 50 0 0 1

1 0 41 1 41
42 ≈ 0.98

2 0 5 38 38
43 ≈ 0.88

3 0 4 0 1

4 0 0 11 1

Table 5.4.2: The near homogeneous clustering of Iris data that GBCN produces when its width
is equal to 10 and its noise reduction is equal to 1

In conclusion, I have shown here that GBCN is an effective clustering algorithm, capable of

classifying both density-based and globular clusters when given the right hyperparameters. I

have presented evaluation metrics and algorithms to assist the user in discovering useful hyperpa-
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rameter values. GBCN has demonstrated some early success and a lot of potential in classifying

both synthetic and real world data sets, encouraging further exploration. GBCN struggles with

high dimensional data (read Chapter 6.3 to see this can be improved), but is highly efficient

on low dimensional data sets. The key areas of further research in the field that I see are:

improving and inventing new evaluation metrics for density-based notions of clusters, and dis-

covering efficient and effective parameter tuning techniques for discrete and non-differentiable

parameters.



6
Ideas Worth Exploring Further

This project has been a tremendous learning experience and has opened many new doors of

inquiry. I would be thrilled to see these ideas analyzed and explored further and I encourage

curious readers to reach out to me for collaboration. This section of the thesis is dedicated to an-

alyzing areas of further exploration, what could have been done differently in my implementation

of GBCN.

6.1 Adding Sophistication to hyperparameter optimization

Currently, the optimize parameters for extrinsic metrics function runs prohibitively

slowly for large width and noise reduction ranges. The set of possible hyperparameter com-

binations is very large and there may be more efficient methods for approximating them than

the currently implemented brute force methods.

An easy next step would be to start by trying a few hyperparameter value combinations that

are evenly spread out across the space of possibilities. Areas around the best performing areas

could then be recursively explored further. The amount of possible hyperparameter values would

be decreased to a fraction of itself with each recursion, causing a hyperparameter solution to be

found in logarithmic time.

The next possible avenue of exploration takes inspiration from how neural networks and how

they optimize their parameters. In the case of GBCN, the hyperparameters are discrete, so

57
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derivatives can not be taken over them. It may be possible though to reclaim the idea of moving

in the direction of the steepest slope. We could have a starting set of hyperparameters and

compute the evaluation metric scores that result from moving them in various directions. After

exploring a few of them we move in the direction that results in the greatest increase to the

evaluation score.

6.2 Changing definition of neighboring grids

Currently, two grid boxes are considered neighboring if all of their coordinates differ by no more

than 1. An additional neighbor sensitivity hyperparameter ns could be added that would require

that two boxes p⃗ = (p1, p2, ..., pd) and q⃗ = (q1, q2, ..., qd) have pi = qi for at least ns distinct

values i ∈ {1, 2, ..., d} for them to be considered neighbors.

As proven in Theorem 2.3.2, the maximum Euclidean distance that two neighboring points

can have is

2 ·

√√√√ d∑
i=1

(
maxi−mini

wi

)2

.

Adding an ns ≥ 1 value would reduce this maximum distance, but would also make it so that

two points could in theory have distance ε for any ε > 0 and not be classified as neighbors. This

would make the criteria for creating a cluster less sensitive and therefore could help with data

sets where the Box Clustering Algorithm has trouble separating distinct clusters.

Lastly, changing the definition of neighboring boxes to be less sensitive could help with pro-

cessing time. Currently, a d dimensional box will have 3d − 1 neighboring boxes, which is pro-

hibitively large even for relatively low dimensions, so an enhancement to the current definition

of neighboring could significantly improve the algorithm.

6.3 Optimization for High Dimensional Data Sets

The current implementation of GBCN has shown promising results on low dimensional data

sets, but its large time and memory cost for high dimensional data has proven prohibitive. I
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propose here an alternative way to implement the algorithm to significantly reduce its time and

space complexity on high dimensional data sets.

Start by making an empty set boxes and a hash table point to grid box. Iterate over

all points in the data set. For each point calculate its grid box and add it to boxes and

update point to grid box so that inputting the point as a key returns the grid box as a value.

This will take Θ(dn) time. Convert the boxes set to a list. Sort the grid boxes in boxes by

the value of their first coordinate. Among boxes whose first i coordinates are the same, the

i + 1th coordinate will determine their order. This can be done in O(b log(b)) time, where

b is the length of boxes. Next, make a hash table grid box to point where every box in

boxes is a key, and its corresponding value is initially an empty set. Iterate over every point.

For each one find its box in constant time using the point to grid box hash table and do

gird box to points[box].add(point). This will take Θ(n) time.

The data set, the boxes list, the point to grid box hash table, and the grid box to points

hash table are all we need to have a usable grid. Hence the Grid class can be optimized to not

have its d dimensional list grid. Thus a grid can theoretically be constructed in O(nd+b log(b))

time, vastly improving the currently implemented algorithm, whose time and space complexity

we proved is

Θ

(
d∏

i=1

wi

)
.

Note, the data set has space complexity Θ(n), the boxes list has space complexity Θ(b), the

point to grid box hash table has space complexity Θ(n), and the grid box to points hash

table has space complexity Θ(n + b), so the amount of space being used would be some small

multiple of n plus some small multiple of b.

Finding grid boxes’ non-empty neighbors can also be prohibitively expensive for large dimen-

sions, but once again a faster algorithm can be constructed. To find the neighbors of some grid

box b⃗ = (b1, b2, ..., bd), search through boxes to find the following six indexes: the first and last

grid box whose first coordinate is b1 − 1, the first and last grid box whose first coordinate is

b1, and the first and last grid box whose first coordinate is b1 + 1. Note, if it exists, then the
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first grid box whose first coordinate is b1 will have the same index – but incremented by one –

as the last grid box whose first coordinate was b1 − 1. The same holds for the last b1 and the

first b1 + 1. Hence, only 4 searches have to be done, and since boxes is sorted, each search will

take O(log(b)) time. Next make three sublists, each containing grid boxes starting with b1 − 1,

b1, and b1 + 1 respectively. Within each sublist repeat the process, searching for the indexes of

boxes whose second index is the first or last instance of b2− 1, b2, or b2+1. Repeat this process

all the way down to bd. The grid boxes you will be left with are all the grid boxes in boxes that

are neighboring b⃗.

This neighbor finding algorithm is recursive, and can be described by the following recurrence

relation

T (b) = 3T

(
b

x

)
+ 4 · log2(b),

where for each recursion x is defined such that b
x will be the number of grid boxes that get

passed down to one of the next recursions. Let f : R → R be defined by f(b) = 4 · log2(b).

Assume x ≥ 3. Given that 3 disjoint sublists are extracted from b grid boxes, and given that in

general there will be grid boxes that are not included in any sublists, this is a fair assumption

for us to make. Let ε ∈ (0, 3). Let y = logx(3− ε). Note y ∈ (0, 1). Then using L’Hôpital’s rule

we see that

lim
b→∞

log2(b)

by
= lim

b→∞

d
db [log2(b)]

d
db [b

y]

= lim
b→∞

1
ln(2)b

yby−1

= lim
b→∞

1
ln(2)byb1−y

y 1
b1−y

= lim
b→∞

1

ln(2)byb1−y
· b

1−y

y

= lim
b→∞

1

ln(2)byy

= 0.

Hence, we’ve shown that log2(b)
by converges to 0, so it must be the case that there is some B ∈ R

such that if b ≥ B, then log2(b)
by < 1, and therefore log2(b) < by, which implies that f(b) =
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4 log2(b) < 4by = 4blogx(3−ε). Hence f(b) = O
(
blogx(3−ε)

)
, which means, by the Master theorem

[26], that the time complexity of finding a box’s neighbor is Θ
(
blogx(3)

)
for some x ≥ 3.

To pay part of the box clustering processing time cost upfront, make a hash table called

grid box to neighbors. You could set the hash table to have b slots and make its hash function

return a grid box’s index in boxes. This would guarantee that it has no collisions, eliminating

the rare possibility of O(n) look up times. The drawback is that finding a grid box’s index in

the sorted boxes list would take O(log(b)) time, rather than the constant O(1) time it takes

a default hash function to compute a hash code. Once you’ve made your hash table, iterate

through boxes. For each box calculate its neighbors and do grid box to neighbors[box] =

neighbors. This will take Θ
(
b1+logx(3)

)
time. Further optimizations that take advantage of

knowing the neighbors of previously iterated boxes may also be worth exploring further.
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