
Bard College Bard College

Bard Digital Commons Bard Digital Commons

Senior Projects Spring 2017 Bard Undergraduate Senior Projects

Spring 2017

Design and Implementation of an Improved Android Application Design and Implementation of an Improved Android Application

for Bard Shuttle Services for Bard Shuttle Services

Chance O'Neihl Wren
Bard College

Follow this and additional works at: https://digitalcommons.bard.edu/senproj_s2017

 Part of the Computer and Systems Architecture Commons, Data Storage Systems Commons, Other

Computer Engineering Commons, and the Systems and Communications Commons

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Recommended Citation Recommended Citation
Wren, Chance O'Neihl, "Design and Implementation of an Improved Android Application for Bard Shuttle
Services" (2017). Senior Projects Spring 2017. 270.
https://digitalcommons.bard.edu/senproj_s2017/270

This Open Access work is protected by copyright and/or
related rights. It has been provided to you by Bard
College's Stevenson Library with permission from the
rights-holder(s). You are free to use this work in any way
that is permitted by the copyright and related rights. For
other uses you need to obtain permission from the rights-
holder(s) directly, unless additional rights are indicated by
a Creative Commons license in the record and/or on the
work itself. For more information, please contact
digitalcommons@bard.edu.

http://www.bard.edu/
http://www.bard.edu/
https://digitalcommons.bard.edu/
https://digitalcommons.bard.edu/senproj_s2017
https://digitalcommons.bard.edu/undergrad
https://digitalcommons.bard.edu/senproj_s2017?utm_source=digitalcommons.bard.edu%2Fsenproj_s2017%2F270&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/259?utm_source=digitalcommons.bard.edu%2Fsenproj_s2017%2F270&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/261?utm_source=digitalcommons.bard.edu%2Fsenproj_s2017%2F270&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/265?utm_source=digitalcommons.bard.edu%2Fsenproj_s2017%2F270&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/265?utm_source=digitalcommons.bard.edu%2Fsenproj_s2017%2F270&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/276?utm_source=digitalcommons.bard.edu%2Fsenproj_s2017%2F270&utm_medium=PDF&utm_campaign=PDFCoverPages
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://digitalcommons.bard.edu/senproj_s2017/270?utm_source=digitalcommons.bard.edu%2Fsenproj_s2017%2F270&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@bard.edu
http://www.bard.edu/
http://www.bard.edu/

Design and Implementation of an Improved Android

Application for Bard Shuttle Services

A Senior Project submitted to

The Division of Science, Mathematics, and Computing

of

Bard College

by

Chance Wren

Annandale-on-Hudson, New York

May, 2017

P a g e | 1

Abstract

With the growing population of Bard College, the need for the college’s shuttle system continues

to grow. As a result, enabling the Bard community to quickly and easily access the shuttle

schedules and times, has also become more important in the daily of life of Bard College's

inhabitants. Although Bard College has a mobile application for Android and iPhone mobile

devices alike, there was a growing demand for a new improved shuttle application for Android

mobile devices. This project seeks to improve the functionality, user friendliness, and availability

of shuttle schedules to the Bard Community, in the form of a new mobile application. This

project comprises of three parts: application design, implementation, and beta-testing. The

application design consists of the design and structure of the user interface and backend

database. The implementation consists of what tools were crucial to the development of the

application, such as the type of database used to store shuttle information, the programming

language used, and the development environment, just to name a few. Lastly, beta-testing

consisted of a small group of Bard students that volunteered to use an early version of the

application for a specified amount of time to provide feedback for possible changes and

improvements.

P a g e | 2

Table of Contents
Abstract .. 1

Acknowledgements .. 3

Chapter 1: Introduction .. 4

 1.1 Problem Description .. 4

 1.2 Project Goals ... 5

 1.3 Contributions ... 6

Chapter 2: Background ... 7

2.1 Previous Bard Shuttle Application .. 7

2.2 Resources and Tools.. 8

2.3 SQL/SQLite and Online Database Connection .. 10

2.4 Android Studio Integrate Development Environment (IDE) ... 11

2.5 Github.. 12

Chapter 3: Mobile Application Design ... 14

3.1 Use Case Diagrams .. 14

3.2 SQLite Database Setup and Structure ... 17

3.3 User Interface (UI) Design ... 20

3.4 User Interface Technical Implementation .. 22

3.5 SQLite Database Implementation ... 34

3.6 Alarm Services Implementation .. 46

Chapter 4: Conclusion .. 53

4.1 Beta Tester Feedback and Limitations .. 53

4.2 Future Work .. 56

Appendices ... 58

A Functions for AlertDialogs for CampusShuttle class ... 58

B Android Studio Interface Images .. 59

C Android Studio Emulator Images ... 60

D Bard College Shuttle Github Repository .. 62

Bibliography.. 63

P a g e | 3

Acknowledgements

I would first like to thank my friends and family whose love and support for me thus far has

enabled me to pursue my passions throughout my life and especially my college career. I would

also like to thank Sven Anderson for teaching an amazing course on Android Application

Development, without which my project wouldn’t have been possible. Lastly, I also want to

extend my heartfelt appreciation and gratitude for my supervisor Khondaker Salehin who

guidance, expertise, and encouragement were vital to the completion of this project.

P a g e | 4

1
Introduction

1.1 Problem Description

Since enrolling at Bard College, the shuttle services have played a pivotal role in the

quality of campus life for not only students like myself, but teachers and other Bard College staff

alike. Bard College currently offers two mobile applications for easy access to its shuttle

schedule. One is present on the iPhone and the other on Android devices, with each helping to

provide students and staff with a more user-friendly way of viewing the campus shuttle schedule.

Both have room for various changes and improvements, but since my expertise is limited to that

of the Android device platform, it will be the sole focus of my project. The current Bard College

shuttle application available for Android devices is simple, user-friendly and provides up-to-date

shuttle arrival and departure times based on the user’s selected start and destination point.

Unfortunately, although simple and easy to use, the current shuttle app user interface needs to be

updated to better fit the resolution of newer devices and android operating systems. Secondly,

since the shuttle app is maintained by an individual that no longer attends Bard College in some

instances it has taken weeks, sometimes months for the application to be updated to the new

school year’s shuttle schedule and times, and as of 2017 the current shuttle application no longer

provides any shuttle times. Thirdly, the current shuttle application only provides shuttle times for

the local Campus Shuttle whose route extends from the town of Tivoli to the Hannaford’s

supermarket. Although Bard College offers shuttle services to local train stations, Rhinebeck,

P a g e | 5

Woodbury Commons Mall, Kingston Mall, and special shuttle schedules for the L&T program,

summer and winter break, neither current mobile application give users the option of viewing

their shuttle times. Lastly, Although Bard College maintains the available list of shuttle times on

their transportation website, the college does not natively maintain the shuttle application for

android devices themselves.

1.2 Project Goals

The goals of this project are to create a new and improved version of the Bard College

Shuttle mobile application for android devices. This new mobile application seeks to address and

fix several if not all of the issues with the original application, while at the same time providing a

few much-needed enhancements. The new shuttle application will have an updated user interface

and icon, one whose colors and orientation represent Bard College to the best of its fashion. It

will also include the local Campus Shuttle schedule and times, in addition to at least but not

limited to the Weekend Train Shuttle Schedule, Area Shuttle Schedule and the Dutchess County

Loop Bus Schedule that travels to and from Bard College. Several of these schedule additions are

contingent on whether or not I will be able to find and/or construct a method by which the Bard

College transportation department can update the schedule for the mobile application themselves.

In the event that I cannot, the Campus Shuttle schedule, and Loop Bus schedule will be provided

only. In addition, users will be able to set an alarm to remind themselves of their selected shuttle

arrival or departure time for any and all shuttle schedules that are included in the application.

The code for the application, which was programmed in Java will also be available for Bard

College Affiliates via Github, an online open-source repository, should the need for any changes

or improvements arise after my graduation. Lastly, I will utilize the Google Play Store, the

official app store for Android smartphones and tablets to host the final version of my application

P a g e | 6

for download.

1.3 Contributions

Though the idea for the project was conceived by myself, it would not have been possible

without first taking a course on Android Mobile Application Development taught by Professor

Sven Anderson. In addition, various open source tools such as Github, an online open-source

repository that allowed me to store and share my code as needed, Android Studio, the official

integrated development environment (IDE) for the Android platform by Google were all

essential resources that without which, the project would not have been possible.

P a g e | 7

2
Background

2.1 Previous Bard Shuttle Application

Prior to beginning my project and initial design of the new shuttle app, I felt that it was

crucial that I first examine the previous application in terms of its current design and how it

operated, such as the methods used to store the shuttle data and the way in which it was coded.

The previous Bard Shuttle app is presented below in Figures 2.0.1 and 2.0.2:

Figure 2.0.1. Bard Shuttle Schedule Icon Figure 2.0.2. Bard Shuttle Schedule UI

P a g e | 8

The look, feel and goal of the previous application was quite simple. The user simply

opened the application, selects their starting point and destination and the nearest arrival time for

the shuttle would be displayed along with a list of all future arrival times. To my surprise, I later

discovered that the earlier shuttle application had been created by a previous Computer Science

major like myself for their senior project, who graduated years prior. This would make the

application that they designed several years old. I wasn’t unable to get into contact with the

student that designed it, so as a result, I could not examine their code and programming of the

previous application in depth. Fortunately, I noticed that the shuttle application was not

connected to an online database and I surmised that the previous shuttle application was either

using an SQLite database to store shuttle times or storing shuttle times within the application

itself by some other means.

2.2 Resources and Tools

One of the reasons I assumed that the previous Bard Shuttle Application utilized an

SQLite database was because the application did not require an internet connection to access or

update the shuttle schedule. In addition, any changes that may have been made to the Campus

Shuttle schedule over the past 4 years required users to download an application update from the

Google Play Store. This means that the shuttle schedule was likely directly stored within the

application itself, and as a result did not require a connection to the internet when users used the

application.

SQL (pronounced "ess-que-el") stands for Structured Query Language and is used to

communicate with a database. According to ANSI (American National Standards Institute), it is

the standard language for relational database management systems. [2] SQLite, on the other

P a g e | 9

hand, is a much more compact library. With all features enabled, the library size can be less than

500KB (Kilobytes), depending on the target platform, which is extremely small for a database.

The most important advantage of SQLite databases is that they can be stored and read directly

from the devices that may be stored on without the need of an online server, which in this case

would the mobile app. [1]

In order for the project to be at all possible, it required a powerful yet intuitive enough

development environment to code the application. The development environment of choice was

Android Studio, the official integrated development environment for Android devices. Although

coding the app single-handedly, the popularity of Android Studio made it easy to learn new

coding concepts, how to use the environment, as well as its powerful design tools for the user

interface. There were also an innumerable amount of texts, forums, and online tutorials available

to help me cut my learning curve, but it was still very much a challenge. Lastly, I used a web-

based version control repository known as Github to incrementally save any changes or

advancement I made to the application during its creation. Since I wanted the opportunity for

other students of Computer Science to be able to make changes or improvements to the

application after my graduation, the use of Github was crucial. To clarify, other programmers

won’t be able to make changes to what I have already coded within the application, but they will

be able to make copies of the code for their own use. This way the integrity of my own project

remains very much intact. Changes that I make to the application’s code on Github will not

affect the final version of the new shuttle app that will be available on the Google Play Store

where users will be able to download my application as well as millions of others.

P a g e | 10

2.3 SQL/SQLite and Online Database Connection

The ideal configuration for the new Bard Shuttle Application would be to connect the

application to an online SQL database to access and display the shuttle times and schedules,

while also allowing a small version of the database to be downloaded onto the device in the

event that the device cannot connect to the internet to access the database. An SQL database is

relational database meaning that it is structured to recognize relations among stored items of

information. The relations that are shared among information within the database is entirely up to

the user that designs it. For instance, imagine a supermarket had various customers and every

customer was known by his or her customer ID and naturally every customer would have had a

history of purchases that they have completed over a given course of time.

 Figure 2.0.3 SQL Database Relationship Example

Take figure 2.0.3 above as a small example of our database that will consist of customers and

orders. If a customer wanted to return an item to our store we would first need to access our

database to verify their purchase. This would involve looking for their order via their customer

ID and then simply finding and displaying every order associated with that customer’s ID.

Customer Table

Customer ID

Last Name
First Name

Address Order Table

Order ID

Customer ID

Date

Amount

P a g e | 11

Finding information within a relational database like SQL involves having the user to Query the

database. A query is an inquiry into the database using a SELECT statement. A query is used to

extract data from the database in a readable format according to the user's request. [3] The

SELECT statement for our example SQL database in Figure 2.0.3 would the following:

SELECT * FROM Order Table, Order ID, Date, Amount, WHERE Customer ID (ID used for

search) LIKE (Matches) ‘Customer ID’

Within this query, the asterisk simply selects all columns within the given table, so instead of the

asterisk, one could simply have used Customer ID to specify that our search would be limited to

that single column. Directly after the term “FROM” we specify which table we are going to pull

the information we need from. In this case, we would need to find and read the “Order ID”,

“Date”, and “Amount”, FROM the Order Table as long the Customer ID within Order Table

matches the one from our customer. As straightforward as accessing an SQL database may seem,

looking up information in a much bigger database can become very complicated, very quickly. In

the example used with simply a single customer and order, we only used two tables of

information to encompass the database. If we were using a SQL database for a thousand or

millions of customers the number of tables would dramatically increase.

2.4 Android Studio Integrated Development Environment (IDE)

 Although there were other development environments to develop the application such as

Eclipse, which has been and in some places still is a widely-used Android development

environment, learning Android Studio offered a unique balance between simplicity and power.

Android Studio offered great options to plan and customize the user interface (UI) of the new

shuttle application, excellent organization of Java classes, consisting of thousands of lines of

P a g e | 12

code, and also enabled me to connect directly to my personal repository on Github in order to

save my daily or weekly changes and improvements to the application. This was extremely

useful when my personal computer wasn’t available. With Android Studio, I was able to securely

download my project at its current state and continue to work on it on any Mac or PC that had

Android Studio installed. (Appendix B) Using Android Studio’s Android Emulator, I was able to

test and run my application on a virtual android device directly on my desktop, eliminating the

need for a physical android device during various stages of my project. (Appendix C) What was

most useful about this tool was that since I would not know the current version of the Android

operating system that my user’s android device would have I believed it was important that my

application was able to run on android devices and operating systems that may be several years

old. Android Studio allowed me to emulate dozens of different android devices of varying

capabilities in order to ensure backward and future compatibility of the new Bard shuttle

application with newer Android devices.

2.5 Github

As the world’s leading software development platform, with a community of over 21

million people and over 56 million projects being hosted, GitHub was the online repository of

choice for my particular project. During the initial planning for the application, GitHub became a

great source to find, test and look at other open-source shuttle mobile applications projects that

had been done by other students and small organizations. One of the key features of GitHub that

was crucial to building the shuttle application was Version Control. Version control is a system

that records changes to a file or set of files over time so that you can recall specific versions later.

[4] This unique feature also lets you and others work together on projects from anywhere. These

features also include the use of “Branches” that allow you or collaborators of the project to easily

P a g e | 13

work on and save different versions of the same project or code in different “Branches”. Since I

was the only developer for my project I only required one main branch to maintain. Other

branches would have been useful, but normally if I did not like a change that was made to the

code I could easily reverse those changes using the Version Control system that was able to

connect to the Android Studio IDE, via the internet. One would assume that it would useful to

create at least two branches of my project one consisting of the version of the application geared

toward connecting to an online server and another not. Instead, in order to make it a little

simpler, I disabled certain functions and wrote the code in such a way that when an online

connection to an SQL server is required modification to the current code will be easier. Most

importantly, all code for the project is well commented and explained so functions written within

the code will be easy to understand and modify as needed. A screenshot of this project’s Github

repository can be seen in Appendix D.

P a g e | 14

3
Mobile Application Design

 Chapter 3 will provide initial design steps and implementation of the shuttle application.

With thousands of lines of code spread across numerous files and Java classes, only samples of

code used to implement the most important designs and functionalities will be discussed in

detail. By the conclusion of this chapter, even those that are not avid programmers or familiar

with databases will have a firm grasp of how the application operates systematically. More

detailed views of the code will be provided in the Appendix.

3.1 Use Case Diagrams

In order to clearly illustrate the mobile application model, Use Case Diagrams are used.

Use Case Diagrams are used simply depict the actions or sequence of actions that Users, the

individual using the application, will take to use the mobile application. One Use Case would

involve the android device of the user simply retrieving shuttle information directly from an SQL

Database via an internet server as presented in Figure 3.0.1.

P a g e | 15

Assuming that the SQL database has been created by the administrator via a laptop or desktop

computer, they can view or edit the database when the need arises. With the shuttle application

installed on their android mobile devices, users are able to request shuttle arrival times and other

needed information from the SQL database via an internet connection. In addition, the user’s

shuttle application will download a copy of the shuttle database directly onto the device as well

in the form of an SQLite database. This way users will have constant access to the database of

shuttle schedules as a contingency if internet access is somehow not available.

 Another Use Case involves a simpler setup, with the shuttle application only having

access to the shuttle schedules via an SQLite database, a database directly stored within the

shuttle application itself. Figure 3.0.2 below illustrates this Use Case well.

Figure 3.0.1. Use Case Diagram for SQL Database Connection

P a g e | 16

 Unlike the previous Use Case, in order for the shuttle schedule to be updated, it will

require the application's code to be accessed via the Android Studio IDE. This way the SQLite

database that was created and edited on the administrator desktop can be stored within the

application itself. Once changes to the shuttle schedule or another feature of the application are

made the updated version of the application must be uploaded to the Google Play Store via an

internet connection. In order for the user to have the updated version of the application or shuttle

schedule, they must download the updated version of the application from the app store. This

process may be slightly less efficient since one must re-download the entire shuttle application

for a simple schedule change, but it is much easier to maintain without the need for an online

server.

Figure 3.0.2. User Case Diagram for SQLite Database Connection

P a g e | 17

3.2 SQLite Database Setup & Structure

Typically, the creation of an SQLite database involves the use of command line prompts

in order to create and add data to a database. This process can be extremely time-consuming

especially if the database in question is quite large. In order to combat this, there are numerous

free and paid tools available on the internet that can allow one to create and maintain an SQL or

SQLite database easily without lengthy code writing. My tool of choice for the creation of the

database for this project was SQLite Manager, an add-on program that is used in conjunction

with Mozilla Firefox. As the name suggests SQLite Manager allows a user to manage any

SQLite database on their respective computer. This tool allowed me to cut the creation time of

the shuttle schedule database in half by allowing me to input shuttle times into a Microsoft Excel

Comma Separated Value file or CSV for short. Then SQLite Manager allows me to then convert

the CSV file into an SQLite database with a few simple clicks. Once the file is converted and

open within SQLite Manager the database can be edited easily using its simple interface. (Figure

3.0.26)

Once the file was converted I could still easily reorganize the data as I saw fit and add stop

Figure 3.0.26 Stops_Table for shuttle stop names in excel (Left), Converted table in SQLite Manager
(Right)

P a g e | 18

names as needed. A function was written within the code that accesses the database for the

names of the campus shuttle stops to be used as selection options within the application.

 Using a copy of the Bard College shuttle schedule available on the Bard Transportation

website I simply typed in the shuttle times into Microsoft Excel in the format shown in Figure

3.0.27.

The structure that was chosen for the database was largely contingent on what would work most

seamlessly with Java and what would require less code overall. As seen in Figure 3.0.27 the

Figure 3.0.27 Campus Shuttle times for Saturday via Microsoft Excel

P a g e | 19

shuttle times were saved in a 24hr format so that I would be able to easily determine for users

which shuttle times were in the Morning and Afternoon. This option allowed coding to be much

simpler. Had I chosen to store the shuttle times in a 12hr format or added an ‘AM’ or ‘PM’ next

to the shuttle time, I wouldn’t have been able to perform simple computation needed for the

shuttle alarm functionality because the shuttle times would be read as Strings and not Integers by

Java. Although I could have written more code to simply locate the number within each cell and

convert them into integers, it would have required more complicated and lengthy code to be

written.

Because SQL is a relational database each set of shuttle times needed to correspond with

a particular start and destination point. That is why in Figure 3.0.27 each cell within the stop_id

column contains the name of a potential start and destination point that may be chosen by the

user. Put simply, the list of the shuttle times shown to the user is dependent upon which start and

destination point they choose. So, if I users starting point was Tivoli and their destination point

was Campus Road, every shuttle arrival time pertaining to that combination of shuttle stop

names would be presented to the user. The only drawback was the amount of time it took to type

the shuttle information within each cell since there are ten shuttle stops and the arrival times can

range from none to 20, just over one thousand rows of data were needed for the Campus Shuttle

database. The initial creation of the database was tedious, but adding or deleting new stops and

shuttle times won’t nearly take as much time.

Lastly, in another effort to simplify the Java code for accessing the database every shuttle

schedule was separated into separate tables based on the day of the week and whether or not the

P a g e | 20

current semester was Fall or Spring. An example of this can be seen in Figure 3.0.28.

Taking this approach allowed me to steer clear of using extremely long and complicated SQL

query SELECT statements to sort through the data had I included all the shuttle times in one

giant table.

3.3 User Interface (UI) Design

 The user interface of the previous Bard Shuttle Application was great in terms of its

simplicity but was lacking largely in terms of the number of the shuttle schedules and

functionality offered to users. If the new shuttle application was going to include more features it

needed a slightly more robust user interface. I first began my design with the initial shuttle

selection screen that would be presented to the users upon opening the application as presented

in Figure 3.0.3.

Figure 3.0.28 List of tables in test database via SQLite Manager UI

P a g e | 21

Although the final User Interface turned out slightly different, many aspects remained the same.

A user would simply choose which shuttle service they needed and would then be presented with

an option to choose a starting point and destination. Once their start and destination point is

chosen users will then be presented with a Listview that displays a particular shuttle’s arrival

times for the day. A Listview is simply a view that shows items in a vertically scrolling list. If a

User wishes to view the full list of shuttle arrival times that may have already past then they will

have the option of viewing that list via the “All Shuttle Times” button.

Furthermore, in the event that a user wanted more shuttle information that the application

Figure 3.0.3 Shuttle Selection Menus

P a g e | 22

did not directly provide I wanted users to be able to easily visit the Bard College Transportation

website. The website would include temporary changes to the Shuttle Schedules and/or delays

due to inclement weather that the shuttle application will not have. An easy way to implement

this would be simply providing another button that opens a web browser already installed on the

user’s device that takes them to the transportation website. Already, the primary selection menu

is cluttered with arguably an unappealing display of simple buttons but my final implementations

on section 3.4 address those concerns.

3.4 User Interface Technical Implementation

Ultimately, I decided that the best option for the initial shuttle selection menu was a

Navigation Drawer and Alert Dialogs for starting and destination point selection as demonstrated

in Figures 3.0.4 and 3.0.5.

P a g e | 23

Figure 3.0.4 Navigation Drawer (Left) & Starting/Destination Point Selection (Right)

Figure 3.0.5 Start and Destination AlertDialog (Left) and Shuttle Times Listview (Right)

P a g e | 24

In order to implement the Navigation Drawer as presented in Figure 3.0.4, construction of

its own independent Java Class named ShuttleSelectionDrawer was necessary. This Java Class

provides any Java code that deals with user interactions and functionality of the Navigation

Drawer. The code presented in Figure 3.0.6 are all components, if you will, of the function

public class ShuttleSelectionDrawer extends AppCompatActivity

 implements NavigationView.OnNavigationItemSelectedListener {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_shuttle_selection_drawer); //

 Toolbar toolbar = (Toolbar) findViewById(R.id.toolbar);

 setSupportActionBar(toolbar);

 // Default built-in Navigation Drawer layout

 DrawerLayout drawer = (DrawerLayout) findViewById(R.id.drawer_layout);

 ActionBarDrawerToggle toggle = new ActionBarDrawerToggle(this, drawer,toolbar,

 R.string.navigation_drawer_open, R.string.navigation_drawer_close);

 drawer.setDrawerListener(toggle);

 toggle.syncState();

 NavigationView navigationView = (NavigationView)findViewById(R.id.nav_view);

 navigationView.setNavigationItemSelectedListener(this);

 navigationView.getMenu().getItem(0).setChecked(true);

 //Opens Navigation Drawer as soon as App starts by selecting the Campus

Shuttle option first

 FragmentManager fragmentManager = getFragmentManager();

 fragmentManager.beginTransaction().replace(R.id.content_frame, new

CampusShuttle()).commit();

 drawer.openDrawer(Gravity.LEFT); //Navigation Drawer open from left side of

screen.

 }

Figure 3.0.6 onCreate() function of ShuttleSelectionDrawer Java Class onCreate()

In congruence with several other Java classes, when the application is started all of the Layouts

(visual structure for a user interface presented in an XML file) are invoked and the Navigation

Drawer consisting over our custom shuttle options is presented. This single function also allows

the developer to change whether the Navigation Drawer appears on the left side of the device

screen as seen in Figure 3.0.4 or on the right side. Even more important, the placement of

buttons, a background picture, and general layout aspects are defined in separate XML (Layout)

files. The options to choose a particular shuttle are defined within the

P a g e | 25

activity_shuttle_selection_drawer_drawer.xml file presented below.

<?xml version="1.0" encoding="utf-8"?>

<menu xmlns:android="http://schemas.android.com/apk/res/android">

 <group android:checkableBehavior="single">

 <item

 android:id="@+id/activity_campus_shuttle"

 android:icon="@drawable/ic_directions_bus_black_24dp"

 android:title="Campus Shuttle"/>

 <item

 android:id="@+id/activity_area_shuttle"

 android:icon="@drawable/ic_directions_bus_black_24dp"

 android:title="Area Shuttle"/>

 <item

 android:id="@+id/activity_loop_bus"

 android:icon="@drawable/ic_directions_bus_black_24dp"

 android:title="Loop Bus"/>

 <item

 android:id="@+id/activity_train_shuttle"

 android:icon="@drawable/ic_train_black_24dp"

 android:title="Weekend Train Shuttle"/>

 </group>

 <item android:title="More Information">

 <menu>

 <item

 android:id="@+id/transportation_website"

 android:icon="@drawable/ic_info_black_24dp"

 android:title="Bard Transportation"/>

 </menu>

 </item>

</menu>

Figure 3.0.7 activity_shuttle_selection_drawer_drawer.xml

One can observe in the XML code, that every shuttle option within the Navigation

Drawer in Figure 3.0.4 directly corresponds with the items defined with the

activity_shuttle_selection_drawer_drawer.XML file. Other things such as icons, text size and

color, and selection order can all be modified within this file and others like it.

P a g e | 26

Upon selection of a shuttle service, users will then need to be redirected to the Activity

that allows them to view shuttle times for a particular shuttle service. More importantly, every

shuttle option presented in Figure 3.0.4 and the activity_shuttle_selection_drawer_drawer.XML

file corresponds with a separate Java Class as seen in Figure 3.0.8.

Figure 3.0.8 Application Classes via Android Studio IDE

A function located within our ShuttleSelectionDrawer Java Class named

onNavigationItemSelected, respectively, that is primarily comprised of conditional if statements

are programmed to open a particular shuttle class upon being pressed, such as the

CampusShuttle, LoopBus, AreaShuttle and TrainShuttle. In order to provide the best

P a g e | 27

@SuppressWarnings("StatementWithEmptyBody")

@Override

public boolean onNavigationItemSelected(MenuItem item) {

 // Handle navigation view item clicks here.

 int id = item.getItemId();

 FragmentManager fragmentManager = getFragmentManager();

 if (id == R.id.activity_campus_shuttle) {

 fragmentManager.beginTransaction().replace(R.id.content_frame, new

CampusShuttle()).commit();

 } else if (id == R.id.activity_area_shuttle) {

 fragmentManager.beginTransaction().replace(R.id.content_frame, new

AreaShuttle()).commit();

 } else if (id == R.id.activity_train_shuttle) {

 fragmentManager.beginTransaction().replace(R.id.content_frame, new

TrainShuttle()).commit();

 } else if (id == R.id.transportation_website) {

 Intent intent = new Intent (Intent.ACTION_VIEW,

Uri.parse("http://blogs.bard.edu/transportation/"));

 startActivity(intent);

 }

 DrawerLayout drawer = (DrawerLayout) findViewById(R.id.drawer_layout);

 drawer.closeDrawer(GravityCompat.START);

 return true;

}

Figure 3.0.9 onNavigationItemSelected() function in ShuttleSelectionDrawer Java Class

user experience and further future-proof the application for easy and possibly more robust

changes in the future I chose to have each shuttle service be a separate Fragment. A Fragment is

usually used as part of an activity's user interface and contributes its own layout to the activity.

To provide a layout for a fragment, you must implement the onCreateView() callback method,

which the Android system calls when it's time for the fragment to draw its layout.[5] Although

there is no rule that you should use only use fragments as opposed to Activities (a single screen

with a user interface just like window or frame), Google states that it is much better to use

fragments wherever it is possible. This is primarily for the sake of simplicity. An Activity is a

single screen with a user interface, meaning that you can only display one single activity on the

screen at a time. In order to switch to another activity, they must kill their current activity and

start another.

Rather than start a brand-new activity every time, every shuttle service fragment is in a

P a g e | 28

sense swapped out with another when its corresponding button is pressed. Imagine having a wall

in a home that only has enough space for one picture frame, but you only have room for one

picture and every time you wanted to see a new picture on the wall you would have to swap out

the entire picture frame that contains a new photo. Rather than buying a new frame for every

picture, Fragments allow you to reuse a single frame but simply swapping the picture when you

want to view another. Hence, Fragments act in the same way as Activities on a surface level but

operate differently on a systematic level.

Furthermore, Fragments also allow multiple activities to run simultaneously on a single

screen, depending on a developer’s need. In the code shown in Figure 3.0.9, each Java Class

created for a shuttle service is its own Fragment and each fragment is called upon or opened

when its corresponding button is clicked. There aren't any clear gains in performance, but given a

few modifications to the code utilizing fragments will allow easier User Interface compatibility

with Android Tablets, which have much bigger screens and are more capable of handling more

on-screen activities given the bigger screen real estate.

In order to select a starting and destination point. I decided to use an AlertDialog. An

AlertDialog box is a special dialog box that is displayed in a graphical user interface typically

when something unexpected has occurred that requires immediate user action. [6] In our case,

the display of the AlertDialog box will be completely expected and won’t necessarily be used in

the case of an error. Instead, I have used the AlertDialog box as a means for users to choose their

starting point and destination. Within the activity_campus_shuttle.XML file in Figure 3.0.10 the

final layout for the application is presented and completely follows my initial plans for the layout

presented earlier in section 3.3.

P a g e | 29

It is important to note that I did, in fact, use Buttons for users to press when choosing their start

and destination point. The reason I am bringing this to your attention is because to more

experienced android application developers it would appear that I am utilizing what are called

Spinners as my means of start and destination selection as indicated by the small downwards

pointing arrows. (Figure 3.0.10) In short, Spinners are simply drop down menus in which a user

may simply view or select from a list of given options. The only drawback to using Spinners is

the difficulty of using multiple spinners simultaneously in my implementation. The first problem

with using two Spinners was that upon choosing a shuttle service the application would

automatically select the first option from the list of choices a user had to pick from. Secondly, in

Figure 3.0.10 Campus Shuttle Layout via activity_campus_shuttle.xml

P a g e | 30

order to fix the first issue and also have each Spinner prompt the user to choose an option, it

would involve heavily modifying the built-in code for the Spinners. Thirdly, since I wanted to

pull shuttle times from the SQLite database based on two options, the start and destination point.

Using Spinners would only allow the user to request shuttle times from the database once and

wouldn’t allow the user to request other shuttle times until they restarted the application. To fix

this issue would involve writing more code and modifying more built-in functions.

In order to avoid such problems, I decided to use two Buttons and upon pressing either

Button an AlertDialog is presented. This AlertDialog box then prompts the user to choose a

starting point and destination from the list provided as presented in Figure 3.0.11.

Once the user chooses their start and destination, the SQLite database is accessed and the

user is presented with a list of future shuttle arrival times beginning with the nearest time first.

Figure 3.0.11 Alertdialog for Starting and Destination Selection

P a g e | 31

This is demonstrated in Figure 3.0.12.

Upon choosing their start and destination, the shuttle times presented to the user will differ

depending on the current time of day and the particular day of the week. This ensures that useless

shuttle times (i.e. shuttle times that have passed) are not displayed. If there are more available

shuttle times than what the user’s screen can accommodate then users will be able to scroll

through the list of times up or down with simple finger gestures. The XML code for the Listview

for the full layout will be shown in Figure 3.0.13. Since the XML code and layouts of all shuttle

services are very similar, the XML code for the Campus Shuttle Service will only be presented

Figure 3.0.12 available shuttle arrival based on time and start/destination points

P a g e | 32

here. An individual will only need a firm grasp of a single layout in order to master them all,

intuitively.

P a g e | 33

<?xml version="1.0" encoding="utf-8"?>

<RelativeLayout

 xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:id="@+id/activity_campus_shuttle"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:paddingBottom="@dimen/activity_vertical_margin"

 android:paddingLeft="@dimen/activity_horizontal_margin"

 android:paddingRight="@dimen/activity_horizontal_margin"

 android:paddingTop="@dimen/activity_vertical_margin"

 tools:context="com.example.wren.bardcollegeshuttle.CampusShuttle">

 <LinearLayout

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:orientation="vertical"

 android:weightSum="1"

 tools:ignore="UselessParent">

 <Button

 android:id="@+id/start_button"

 style="@style/Widget.AppCompat.Spinner.Underlined"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:text="@string/startingPoint"

 android:textSize="16sp"

 />

 <Button

 android:id="@+id/dest_button"

 style="@style/Widget.AppCompat.Spinner.Underlined"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:layout_marginTop="20dp"

 android:text="@string/destPoint"

 android:textSize="16sp"/>

 <LinearLayout

 android:layout_width="match_parent"

 android:layout_height="319dp"

 android:orientation="horizontal">

 <ListView

 android:id="@+id/times_listView"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:layout_marginTop="10dp"

 android:choiceMode="singleChoice"

 android:listSelector="@android:color/darker_gray"/>

 </LinearLayout>

 <Button

 android:id="@+id/allShuttleTimesButton"

 android:layout_width="match_parent"

 android:layout_height="43dp"

 android:layout_weight="0.82"

 android:text="ALL SHUTTLE TIMES"

 android:textColor="#000000"/>

 </LinearLayout>

</RelativeLayout>

Figure 3.0.12 Full Campus Shuttle Service XML Layout via activity_campus_shuttle.xml

P a g e | 34

3.5 SQLite Database Implementation

In the final implementation of the shuttle application, an SQLite database was used.

Implementation of an SQLite database involved the creation and use of three particular classes:

Database, DbBackend, and DbObject, all of which are interconnected and rely on an exchange

public class Database extends SQLiteAssetHelper {

 private static Database mInstance = null;

 private static final String DATABASE_NAMES = "TestDB5.sqlite";

 private static final int DATABASE_VERSION = 1;

 public static Database getInstance(Context ctx) {

 // Use the application context, which will ensure that you

 // don't accidentally leak an Activity's context.

 // See this article for more information: http://bit.ly/6LRzfx

 if (mInstance == null) {

 mInstance = new Database(ctx.getApplicationContext());

 }

 return mInstance;

 }

 public Database(Context context) {

 super(context, DATABASE_NAMES, null, DATABASE_VERSION);

 }

}

Figure 3.0.13 Java code for Database class

of necessary information concerning the database in order to access it. The Database class

presented in Figure 3.0.13.

The Database class although small is often required in order to utilize an SQL or SQLite

database. It only consists of a single function that is designed to gather the necessary information

of a database before attempting to establish a connection. The function requires a database name

which is ‘TestDB5.SQLite”, a version number which is ‘1’, and the context, which is the current

state of the database. When attempting to use an SQLite database one only needs to have a copy

of this class and provide the name of the database in which they are using. The SQLite file must

P a g e | 35

be stored in the “Assets” folder within Android Studio after opening the project. This is also

shown in Figure 3.0.14. The folder paths within Figure 3.0.14 can also be manually created by

the user if they are not already present.

The code within the DbObject class in Figure 3.0.15 simply establishes a connection to

the SQLite database. The code operates in three simple steps. First, it gathers the required

database information we collected in the previous Database class within the DbObject function

via dbhelper = new Database (context), which references our previous Database class.

Secondly, the following line of code, this.db = dbHelper.getReadableDatabase();, pulls the

“readable” database found in the Database class and stores it into the variable this.db. Lastly, the

connection to the SQLite database “TestDB5.sqlite” is established via the getDbConnection()

function, in which this.db, the variable set to our “readable” database, is returned and the data is

ready to be utilized.

Figure 3.0.14 Location of SQLite Database file via Android Studio Project

P a g e | 36

public class DbObject {

 public static Database dbHelper;

 private SQLiteDatabase db;

 public DbObject(Context context) {

 dbHelper = new Database(context);

 this.db = dbHelper.getReadableDatabase();

 }

 public SQLiteDatabase getDbConnection(){

 return this.db;

 }

 public void closeDbConnection(){

 if(this.db != null){

 this.db.close();

 }

 }

}

Figure 3.0.14 Java code for DbObject Class

Once the connection to our database has been established we can then begin viewing and even in

some cases changing or manipulating data. For the purposes of this mobile application no code

was written that helps add new data to our database. The code has only been written simply to

access the database, read and sort the data, use it for needed calculations, filter out useless data

and then allow the user to view it. The data within the SQLite database used for this mobile

application are simply names of shuttle stops, dates and times. Utilization of the data read from

the database will be made possible from functions created in DbBackend class shown in Figure

3.0.15.

Similar to that of the XML layouts of the shuttle service, each shuttle service will follow a

similar coding format as well. In order to fully complete each shuttle service, the first step was to

write functions to populate the shuttle stops by accessing the database. In Figure 3.0.16 there are

two functions that populate the shuttle stops, one for the starting points and one for the

destination points.

P a g e | 37

public String populateStartStops(){

 final DbBackend dbBackend = new DbBackend(getActivity());

 final String[] stopLists = dbBackend.getShuttleStops(databaseTableName);

//populates list of stops

 Button startButton = (Button) getActivity().findViewById(R.id.start_button);

 startButton.setOnClickListener(new View.OnClickListener() {

 public void onClick(View view) {

 AlertDialog.Builder builder = new AlertDialog.Builder(getActivity());

 builder.setTitle("Choose a Starting Point:");

 builder.setItems(stopLists, new DialogInterface.OnClickListener() {

 @Override

 public void onClick(DialogInterface dialog, int which) {

 // the user clicked on stopLists[which]

 startStop = stopLists[which].toString();

 TextView startButtonTextView = (TextView)

getActivity().findViewById(R.id.start_button);

 startButtonTextView.setText(startStop);

 startButtonClicked = true;

 twoButtonClicks();

 }

 }

);

 builder.show();

 }

 });

 return startStop;

}

public String populateDestStops(){

 final DbBackend dbBackend = new DbBackend(getActivity());

 final String[] stopLists = dbBackend.getShuttleStops(databaseTableName);

//populates list of stops

 Button destButton = (Button) getActivity().findViewById(R.id.dest_button);

 destButton.setOnClickListener(new View.OnClickListener() {

 public void onClick(View view) {

 AlertDialog.Builder builder = new AlertDialog.Builder(getActivity());

 builder.setTitle("Choose a Destination:");

 builder.setItems(stopLists, new DialogInterface.OnClickListener() {

 @Override

 public void onClick(DialogInterface dialog, int which) {

 // the user clicked on stopLists[which]

 destStop = stopLists[which].toString();

 TextView destButtonTextView = (TextView)

getActivity().findViewById(R.id.dest_button);

 destButtonTextView.setText(destStop);

 destButtonClicked = true;

 twoButtonClicks();

 }

 }

);

 builder.show();

 }

 });

 return destStop;

}

Figure 3.0.16 Functions that populate AlertDialogs for Start and Destination stops via CampusShuttle
class

P a g e | 38

Since the DbBackend class is the class needed to access and use the data gathered from the

SQLite database, a method to access functions between separate Java classes is needed. Within

the Campus Shuttle class the following lines of code:

final DbBackend dbBackend = new DbBackend(getActivity());

final String[] stopLists = dbBackend.getShuttleStops(databaseTableName); //populates

list of stops

allows one to access the getShuttleStops() function located within the DbBackend class (Figure

3.0.17) that populates the AlertDialogs in the CampusShuttle class with the names of the shuttle

stops.

public class DbBackend extends DbObject {

 public DbBackend(Context context) {super(context);}

 // Function to populate dialog window with Bard College Shuttle Stops for selected

database

 public String[] getShuttleStops(String databaseTableName){

 String query = "Select * from '"+databaseTableName+"'";

 Cursor cursor = this.getDbConnection().rawQuery(query, null);

 ArrayList<String> spinnerContent = new ArrayList<String>();

 if(cursor.moveToFirst()){

 do{

 String word =

cursor.getString(cursor.getColumnIndexOrThrow("stop_name"));

 spinnerContent.add(word);

 }

 while(cursor.moveToNext());

 }

 cursor.close();

 String[] allStops = new String[spinnerContent.size()];

 allStops = spinnerContent.toArray(allStops);

 return allStops;

 }

Figure 3.0.17 getShuttleStops() function via DbBackend class

As mentioned in previous sections, shuttle information of the different shuttle services have been

stored within the same database, but simply within different tables. This way the data is simple

and well organized. In order for the CampusShuttle class to call the getShuttleStops() function

and populate the necessary AlertDialogs, a specific table name is needed. For Campus Shuttle

P a g e | 39

stops the table “Stops_Table” is the table that needs to be accessed within the database. Once the

name of the table that needs to be accessed is provided then the function getShuttleStops() is

called and the list of shuttle stop names is stored within a list. Next, that list is returned to the

CampusShuttle class where the function was called from and the code shown in Figure 3.0.16

simply acts to display that list in the AlertDialog. The AlertDialog is also programmed to

respond to selections made by the user that allows them to choose their desired starting point and

destination. Lastly, the list of next shuttle arrival times is only populated on screen if both a

starting point and destination are selected.

 Furthermore, the SQLite database must once again be accessed to present shuttle arrival

times to the user. This is done by the populateFutureTimes() function shown in Figure 3.0.18.

public void populateFutureTimes(){

 ListView popFutureTimesListView = (ListView)

getActivity().findViewById(R.id.times_listView);

 final DbBackend dbBackend = new DbBackend(getActivity());

 final String [] newTimes = dbBackend.getFutureTimesForStartAndDest(startdestStop);

//populates ListView

 final ArrayAdapter<String> timeAdapter = new ArrayAdapter<String>(getActivity(),

android.R.layout.simple_list_item_checked, newTimes);

 popFutureTimesListView.setAdapter(timeAdapter);

 popFutureTimesListView.setOnItemClickListener(new

AdapterView.OnItemClickListener() {

 @Override

 public void onItemClick(AdapterView<?> parent, View view, int position, long

id) {

 Toast.makeText(getActivity(), newTimes[position] + " Shuttle Selected",

Toast.LENGTH_SHORT).show();

 setAlarmDialogBox(newTimes[position]);

 }

 });

}

Figure 3.0.18 populateFutureTimes() function via CampusShuttle class

This function acts extremely similar to get populateShuttleStops() function, only this time a list

of future shuttle arrival times is presented to the user within a Listview. Retrieving future shuttle

arrival times is done by the getFutureTimesForStartAndDest() function located in the

P a g e | 40

DbBackend class shown in Figure 3.0.19.

//Function to List Future Times for Start and Destination

public String [] getFutureTimesForStartAndDest(String startdestStop){

Figure 3.0.19 getFutureTimesForStartAndDest() function via DbBackend class

The getFutureTimesForStartAndDest() function is quite lengthy, but its task is rather important.

The getFutureTimesForStartAndDest() function takes care of the following tasks:

1. Retrieving the current local time

2. Accessing the shuttle times that correspond with the particular day of the week (i.e Mon.-

Wed, Thur.-Fri. Sat., and Sunday)

3. Filtering through the list of shuttle times by only adding shuttle arrival times that have

not passed yet

4. Converting list of shuttle times from 24hr format to 12hr format and returning the final

list of shuttle arrival times to the CampusShuttle class to be displayed

P a g e | 41

1. Retrieving the current local time (Figure 3.0.19-1)

//Function to List Future Times for Start and Destination

public String [] getFutureTimesForStartAndDest(String startdestStop){

 ArrayList<String> timeArray = new ArrayList<String>();

 //Get current hour and min

 Integer currentHour = 0;

 Integer currentMinute = 0;

 String currentHr = "";

 String currentMin= "";

 String currentTime= "";

 int cHour = 0;

 int cMinute = 0;

 String selectCurrentTimeQ = "SELECT STRFTIME('%H','NOW','LOCALTIME') AS HOUR,

STRFTIME('%M','NOW','LOCALTIME') AS MINUTE ";

 Cursor cur = this.getDbConnection().rawQuery(selectCurrentTimeQ,null);

 String[] currentTimeSplit = new String[2];

 if(cur.moveToFirst()) {

 currentHour = Integer.parseInt(cur.getString(0));

 currentMinute = Integer.parseInt(cur.getString(1));

 currentTime = currentHour + ":" + currentMinute;

 currentTimeSplit = currentTime.split(":");

 currentHr = (currentTimeSplit[0]);

 currentMin = (currentTimeSplit[1]);

 cHour = Integer.parseInt(currentHr);

 cMinute = Integer.parseInt(currentMin);

 }

Figure 3.0.19-1 Code of getFutureTimesForStartAndDest() function for retrieving current local time

In order to properly return the filtered list of shuttle arrival times to the user, we must use the

following standard SQL query to retrieve the local current time from the database using the

following line of code:

String selectCurrentTimeQ = "SELECT STRFTIME('%H','NOW','LOCALTIME') AS HOUR,

STRFTIME('%M','NOW','LOCALTIME') AS MINUTE ";

Storing our SELECT statement in a string saves us the trouble of typing such a long query again.

Next, we then establish a connection to the database to begin reading data, while simultaneously

creating an object known as a Cursor to reverse the database on a row by row basis. This is

P a g e | 42

shown with following line of code:

Cursor cur = this.getDbConnection().rawQuery(selectCurrentTimeQ,null);

In this scenario, a cursor enables the rows in a result set (a set of data rows) to be processed

sequentially. In SQL procedures, a cursor makes it possible to define a result set and perform

complex logic on a row by row basis. [7] In other words, since the only piece of data we want at

the moment is the local time this is will be read as a single row of data from the SQLite database.

Lastly, in Figure 3.0.19-1 we check to see if there is a first row of data present, which will be the

local time, and if so we simply parse the current local hour and minute into integers to be used

later on in the function.

if(cur.moveToFirst()) {

 currentHour = Integer.parseInt(cur.getString(0));

 currentMinute = Integer.parseInt(cur.getString(1));

 currentTime = currentHour + ":" + currentMinute;

 currentTimeSplit = currentTime.split(":");

 currentHr = (currentTimeSplit[0]);

 currentMin = (currentTimeSplit[1]);

 cHour = Integer.parseInt(currentHr);

 cMinute = Integer.parseInt(currentMin);

}

2. Accessing the shuttle times that correspond with the particular day of the week (Figure

3.0.19-2)

Once we have retrieved the current local time, the next step is to access the proper table of

shuttle arrival times within the SQLite database based on the day of the week. To check the

particular of the week I used the following function:

P a g e | 43

//Function to check current day of week. (i.e Monday, Tuesday,

// etc and returns a corresponding number)

public Integer dayOfWeek(){

 Calendar calendar = Calendar.getInstance();

 int weekDay = calendar.get(Calendar.DAY_OF_WEEK);

 return weekDay;

}

The dayOfWeek() function will return a number that corresponds with a particular day of the

week.(i.e. 5 = Thursday, 6 = Friday, and etc.) As seen in Figure 3.0.19-2, this function is used in

conjunction with several if statements that use a particular SELECT statement based on the day

of the week to choose which table of shuttle arrival times to access within the SQLite database.

String selectDatabaseTimeQ = "";

if (dayOfWeek() == 5 || dayOfWeek() == 6){ //Thursday or Friday

 //if dayofweek is thursday or friday query thursday and friday night time schedule

 selectDatabaseTimeQ = "SELECT * FROM Time_Table_Thur_Fri as TT WHERE TT.stop_id

LIKE '"+startdestStop+"' ";

}else if (dayOfWeek() == 7){ //Saturday

 //if day of week is saturday query saturday time schedule

 selectDatabaseTimeQ = "SELECT * FROM Time_Table_Saturday as TT WHERE TT.stop_id

LIKE '"+startdestStop+"' ";

}else if(dayOfWeek() == 1){ //Sunday

 //if day of week is sunday query sunday time schedule

 selectDatabaseTimeQ = "SELECT * FROM Time_Table_Sunday as TT WHERE TT.stop_id LIKE

'"+startdestStop+"' ";

}else{

 //else query regular monday through Wed. schedule

 selectDatabaseTimeQ = "SELECT * FROM Time_Table_Mon_Wed as TT WHERE TT.stop_id

LIKE '"+startdestStop+"' ";

}

Figure 3.0.19-2 Conditional Statements used to access the correct table in the database via DbBackend
class

3. Filtering through the list of shuttle times by only adding shuttle arrival times that have

not passed yet (Figure 3.0.19-3)

The next step is to only return shuttle arrival times that have not passed yet to the user. This

involves a filtering process shown in Figure 3.0.19-3. Similar to the previous step once the

P a g e | 44

if (cursor1.moveToFirst()){

 String[] databaseTimeSplit = new String[2];

 if(cursor1.moveToFirst()) {

 do {

 String time =

cursor1.getString(cursor1.getColumnIndexOrThrow("shuttle_time"));

 //add AM to morning time && add PM to afternoon time

 databaseTimeSplit = time.split(" ");

 databaseHr = (databaseTimeSplit[0]);

 databaseMin = (databaseTimeSplit[1]);

 databaseHour = Integer.parseInt(databaseHr);

 databaseMinute = Integer.parseInt(databaseMin);

 if (databaseHour >= 12) {

 databaseTime = databaseHour + ":" + databaseMinute + " PM";

 } else{

 databaseTime = databaseHour + ":" + databaseMinute + " AM";

 }

 //only add times that haven't passed yet

 if (databaseHour >= cHour)

 {

 if(databaseHour > cHour) {

 time = databaseTime;

 databaseTimes.add(time);

 }

 if(databaseHour == cHour && databaseMinute > cMinute) {

 time = databaseTime;

 databaseTimes.add(time);

 }

 }

 if(databaseHour == 0 || databaseHour == 1 || databaseHour == 2){

 time = databaseTime;

 databaseTimes.add(time);

 }

 }

 while (cursor1.moveToNext()) ;

 }

Figure 3.0.19-3 Code that only adds shuttle arrival times that have not passed yet to a particular list.

proper query SELECT statement for a particular day is chosen every shuttle arrival time

associated with the starting and destination point chosen by the user is read as long as the Cursor

has a row of data left to traverse. As the Cursor traverses through each shuttle arrival time, the

hour and min data within the database is converted to an integer and then compared to the

current hour and current min. If the shuttle arrival time within the database has not already

passed then it is added to a list that will be later presented back to the user on their screen.

P a g e | 45

4. Converting list of shuttle times from 24hr format to 12hr format (3.0.19-4)

Just before the filtered list of shuttle arrival times is given back to the user for viewing every

time is first converted into a 12hr format. The primary reason I decided to store shuttle times for

the database in a 24hr format is because had they been saved in the database in a 12hr format

there wouldn’t be any way for the device nor SQLite database to determine which time was in

the morning or afternoon. (i.e. AM or PM) By using a 24hr time format within the database I am

easily able to determine whether or not a time is for the morning or afternoon since hours from 0

to 11 are AM(Morning) times and hours from 12 to 23 are PM(Afternoon).

for (int i = 0; i < databaseTimes.size(); i++) {

 try {

 final SimpleDateFormat sdf = new SimpleDateFormat("HH:mm ");

 final Date dateObj = sdf.parse(databaseTimes.get(i));

 if (!timeArray.contains(new SimpleDateFormat("h:mm a").format(dateObj))){

 timeArray.add(new SimpleDateFormat("h:mm a").format(dateObj));

 }else{

 continue;

 }

 } catch (final ParseException e) {

 e.printStackTrace();

 }

 }

}

cursor1.close();

String[] allListView = new String[timeArray.size()];

allListView = timeArray.toArray(allListView);

return allListView;

Figure 3.0.19-4 Code used to convert shuttle arrival times from 24hr format to 12hr format

Once the time has been converted into its proper 12hr format for the user it is then stored into a

list, which is named allListView in Figure 3.0.19-4. This final list of shuttle times is then passed

back to the CampusShuttle class and then displayed on the screen, which gives users the

following result.

P a g e | 46

3.6 Alarm Services Implementation

One of the key functionalities that I wanted to offer for the new shuttle application was the

ability to set alarms to remind users of a shuttle’s arrival. For the Campus Shuttle service, users

are given the option to set an alarm between 1 and 60 minutes before a shuttle’s arrival. Users

are presented with the option to set an alarm by simply selecting a shuttle arrival time from the

list provided as demonstrated in Figure 3.0.20.

P a g e | 47

Figurer 3.0.20 Shuttle Reminder AlertDialog 1

The user would simply choose their desired reminder time, press ‘Set Reminder’, which presents

an AlertDialog reminding users of the time they have chosen for their alarm to sound. Depending

on the user’s device settings their devices will either vibrate or play their default notification

sound, while also providing them with a notification in the notification bar as shown in Figure

3.0.21.

P a g e | 48

Figure 3.0.21 Shuttle Reminder AlertDialog 2

Although there are two functions within the CampusShuttle class that are responsible for

AlertDialogs pertaining to the alarms, those will be available in the Appendix A. The focus of

this section will be the following functions:

1. oneTimeAlarm()

2. setOneTimeAlarm()

3. notificationAlert()

P a g e | 49

These are the paramount functions that are most important when attempting to understand at

least on a surface level how the application works.

1. oneTimeAlarm ()

The oneTimeAlarm() function located in the CampusShuttle class is quite simple. (Figure 3.0.22)

Once a user has chosen their shuttle reminder time, the oneTimeAlarm() function retrieves the

current date from the SQLite database via a function within the DbBackend class. Next, the

current time of the day, minutes chosen by the user and the current date are used as parameters

for the setOneTimeAlarm() function located within the AlarmManagerBroadcastReceiver class

to set the alarm.

/**

 * This function is used to set one time Alarm based on the time and date

 * selected by the user

 */

public void onetimeTimer() {

 final DbBackend dbBackend = new DbBackend(getActivity());

 selectedDate = dbBackend.getSQLDate();

 alarm = new AlarmManagerBroadcastReceiver();

 Context context = getActivity().getApplicationContext();

 if (!alarm.equals(null)) {

 busAlarmTime = alarm.setOneTimeAlarm(context, time, setMinuteForAlarm,

selectedDate);

 alarmSetAlertDialogBox(busAlarmTime);

 } else {

 Toast.makeText(context, "Alarm needs parameter", Toast.LENGTH_LONG).show();

 }

}

Figure 3.0.22 oneTimeAlarm() function via Campus Shuttle class

2. setOneTimeAlarm ()

The code shown in Figure 3.0.23 looks as simple just as much as looks daunting. Using the

current time, date and number of minutes chosen by the user, the setOneTimeAlarm() function is

P a g e | 50

called when the 'Set Reminder' Button is pressed. It sets the Alarm for a specific time which is

equal to Bus time minus the minutes chosen by the user before which Alarm should ring or

vibrate the device. The function is also responsible for creating the needed PendingIntent for the

alarm notification.

/**

 * This is the function which is called on click of 'Set Alarm' Button. It

 * sets the Alarm for time which is equal to Bus time minus the minutes

 * before which Alarm should ring.

 *

 * @param context

 * Application Context

 * @param time

 * Bus Time selected by the user

 * @param beforeMinutes

 * Minutes before the Bus timing when the Alarm should start

 * Ringing

 * @param selectedDate

 * Date selected for setting Alarm

 */

public String setOneTimeAlarm(Context context, String time, int beforeMinutes, String

selectedDate) {

 Log.i("AlarmManagerBroadcastReceiver.setOneTimeAlarm()::", "Setting the Alarm");

 SimpleDateFormat simpleDateFormat = new SimpleDateFormat("hh:mm a");

 Date date = null;

 try {

 date = simpleDateFormat.parse(time);

 } catch (ParseException e) {

 Log.e("AlarmManagerBroadcastReceiver.setOneTimeAlarm()::",

 "Error occurred while Parsing the Bus time, " + e.getMessage());

 }

 alarmManager = (AlarmManager) context.getSystemService(Context.ALARM_SERVICE);

 Intent intent = new Intent(context, AlarmManagerBroadcastReceiver.class);

 intent.putExtra(ONE_TIME, Boolean.TRUE);

 intent.putExtra(BUS_TIME, time);

 Calendar calender = Calendar.getInstance();

 calender.setTime(new Date(selectedDate));

 PendingIntent pendingIntent = PendingIntent.getBroadcast(context, 0, intent, 0);

 calender.set(Calendar.HOUR, date.getHours());

 calender.set(Calendar.MINUTE, date.getMinutes() - beforeMinutes);

 Log.i("AlarmManagersetOneTimeAlarm()::", "Alarm set for : " + calender.getTime());

 alarmManager.set(AlarmManager.RTC_WAKEUP, (calender.getTimeInMillis()),

pendingIntent);

 return calender.getTime().toString();

}

Figure 3.0.23 setOneTimeAlarm() Function via AlarmManagerBroadcastReceiver class

P a g e | 51

3. notificationAlert ()

In order for an alarm to be set what is called PendingIntent must be created and passed to the

AlarmManagerBroadcastReceiver class. A PendingIntent which is given to another application

grants a particular application “permission” to perform the operation you have specified [8]. The

operation we have specified for the shuttle application to perform is to sound an alarm at a

specified time, turn on a LED light notification (if the device has the capability) and present the

user with a notification within their devices taskbar. (Figure 3.0.24) The code is presented in

Figure 3.0.25 to ensure a surface level understanding at least for non-programmers.

Figure 3.0.24 Shuttle Arrival Notification via Android Device Notification Drawer

P a g e | 52

/**

 * This function displays a notification in the task bar and also plays an alert

 * sound and vibration for alarm.

 *

 * @param context

 * Context of the application

 * @param intent

 * Intent of the application

 */

public void notificationAlert(Context context, Intent intent) {

 Bundle extras = intent.getExtras();

 if(intent != null)

 {

 NotificationManager mNotifyMgr =

 (NotificationManager)

context.getSystemService(Context.NOTIFICATION_SERVICE);

 NotificationCompat.Builder mBuilder = (NotificationCompat.Builder) new

NotificationCompat.Builder(context)

 .setSmallIcon(R.drawable.ic_launcher)

 //example for large icon

 .setLargeIcon(BitmapFactory.decodeResource(context.getResources(),

R.drawable.ic_launcher))

 .setContentTitle("Bard College Shuttle Alert")

 .setContentText("Time to go your bus will leave at: " +

extras.getString(BUS_TIME))

 .setOngoing(false)

 .setPriority(NotificationCompat.PRIORITY_DEFAULT)

 .setAutoCancel(true);

 Intent i = new Intent(context, AlarmManagerBroadcastReceiver.class);

 pendingIntent = PendingIntent.getActivity(context, 0, i,

PendingIntent.FLAG_ONE_SHOT);

 // example for blinking LED

 mBuilder.setLights(Color.RED, 200, 500);

 mBuilder.setSound(Settings.System.DEFAULT_NOTIFICATION_URI); //default

notification sound

 mBuilder.setContentIntent(pendingIntent);

 mNotifyMgr.notify(12345, mBuilder.build());

 Vibrator vibrator = (Vibrator)

context.getSystemService(Context.VIBRATOR_SERVICE);

 // Start without a delay

 // Vibrate for 200 milliseconds

 // Sleep for 200 milliseconds

 //repeat 3 times

 long[] pattern = {0, 200, 200, 200, 200, 200, 200};

 // The '0' here means to repeat indefinitely

 // '0' is actually the index at which the pattern keeps repeating from (the

start)

 // To repeat the pattern from any other point, you could increase the index,

e.g. '1'

 vibrator.vibrate(pattern,-1);

 }

}

Figure 3.0.25 notificationAlert() function via AlarmManagerBroadcastReceiver class

P a g e | 53

4
Conclusion

4.1 Beta Tester Feedback & Limitations

 Although the Bard Shuttle Application may have come a long way in terms of

improvements I felt that it was important to ask for feedback from at least a small number of

students. This way I could get an idea of what aspects of the application were limited and what

aspects could undergo further changes and improvements. So, I asked my beta-testers to

complete a brief survey of their experience using the application. The results were the following:

Figure 4.1: Question 1, How satisfied were you with using the New Bard Shuttle App? (7 Responses)

P a g e | 54

Figure 4.2: Question 2, How satisfied were you with using the New Bard Shuttle App? (7 Responses)

Figure 4.3: Question 3, How would you rate the usefulness of the shuttle reminder functionality? (7
Responses)

P a g e | 55

Figure 4.4 Question 4, How satisfied were you with the overall experience using the application? (7
Responses)

Figure 4.5: Question 5, If you have used the previous Bard Shuttle Application offered on Android Devices
how would you rate the improvements the new application offers compared to the previous one? (7

Responses)

Overall the feedback on the application was positive and in term of comments and possible

improvements the following were noted:

1. Addition of Loop Bus Schedule

2. Rotating the device after selecting a start and destination point restarts the

application

3. Once an Alarm has been set, there is no way to unset the alarm

P a g e | 56

4. Only one alarm can be set at a time and you can’t view the alarm that you set for

later

5. Show estimated arrival time for destination

Although there were only seven beta-testers, I received invaluable feedback. All were satisfied

with the UI and out of the five concerns noted by the beta-testers, some have the potential to be

fixed rather quickly depending on the implementation. During the remainder of my enrollment at

Bard College, I plan to address as many of these problems as possible before my graduation. If

not, there will be room for other programs to make additions to the application upon contacting

me.

4.2 Future Work

 My ultimate goal was to have an operational user case from section 3.1 Figure 3.0.1 that

depicted the Bard Shuttle Application accessing an online SQL database in order to receive

necessary shuttle times and information. Unfortunately, this would have required either an

individual staff member or Bard College department such as the I.T or Transportation

department to update the database every year. This final implementation would have been ideal

since those responsible for updating the database would never need to access the shuttle

application’s programming code. The only reason the code would need to be accessed was in the

case of a bug or if the addition or change of a feature was necessary. Until a connection to an

online SQL database is possible an SQLite database will be used, but this will in turn only allow

users to have access to the Campus Shuttle and Loop Bus services since their schedules are

highly unlikely to be changed. In the event that the shuttle schedules are changed post-

P a g e | 57

graduation, I will only need to update the database from my personal computer and push an

application update to the Google Play Store for users.

 Working on this project has been not only been my most exciting projects in my college

career, but it has also been a learning experience of a lifetime. Completion of this project has

sparked my interest in Mobile Application Development and now I plan on pursuing a career in

the field as well as in Technology Consulting, which deals heavily with technology

implementation similar to my senior project, but on a much larger scale.

P a g e | 58

Appendix

Appendix A: Functions for AlarmDialogs for CampusShuttle class

/**

 * This function displays an Alert Dialog Box with Number Picker, So

 * users can choose the number of minutes for which they want to set their alarm

 * The minutes users can choose from are from 1-60

 * @param busTime

 * This parameter holds the value of time for which alarm is set

 */

public void setAlarmDialogBox(final String busTime){

 final NumberPicker numberPicker = new NumberPicker(getActivity());

 numberPicker.setMaxValue(60);

 numberPicker.setMinValue(1);

 AlertDialog.Builder builder = new AlertDialog.Builder(getActivity());

 builder.setView(numberPicker);

 builder.setTitle("Set Reminder for Shuttle");

 builder.setPositiveButton("SET REMINDER", new DialogInterface.OnClickListener() {

 @Override

 public void onClick(DialogInterface dialog, int which) {

 setMinuteForAlarm = numberPicker.getValue();

 time = busTime;

 Log.i("setAlarmDialogBox::", "Time:" + time);

 Log.i("setAlarmDialogBox::", "BusTime:" + busTime);

 onetimeTimer();

 }

 });

 builder.setNeutralButton("CANCEL", new DialogInterface.OnClickListener(){

 @Override

 public void onClick(DialogInterface dialog, int which) {

 dialog.cancel();

 }

 });

 builder.create();

 builder.show();

}

/**

 * This function displays an Alert Dialog Box with 'Ok' button, informing

 * user that alarm has been set for the selected date and time

 * @param busTime

 * This parameter holds the value of time for which alarm is set

 */

private void alarmSetAlertDialogBox(String busTime) {

 AlertDialog.Builder alertDialogBuilder;

 alertDialogBuilder = new AlertDialog.Builder(getActivity());

 alertDialogBuilder.setTitle("Bard College Shuttle Alert ");

 alertDialogBuilder.setMessage("Your alarm is set for: " +

busTime).setCancelable(false)

 .setPositiveButton("OK", new DialogInterface.OnClickListener() {

 public void onClick(DialogInterface dialog, int id) {

 dialog.cancel();

 }

 });

 AlertDialog alertDialog = alertDialogBuilder.create();

 alertDialog.show();

}

P a g e | 59

Appendix B: Android Studio Interface Image

P a g e | 60

Appendix C: Android Studio Emulator Images

P a g e | 61

P a g e | 62

Appendix D: Github Repository Image

P a g e | 63

Bibliography

[1] "About SQLite". Sqlite.org. N.p., 2017. Web. 6 Apr. 2017.

[2] "What Is SQL". SQL Course. Web. 6 Apr. 2017.

[3] Stephens, Ryan K, Arie Jones, and Ronald R Plew. Sams Teach Yourself SQL In 24 Hours.

3rd ed. Print.

[4] “1.1 Getting Started - About Version Control." Git. GITHUB, n.d. Web. 23 Apr. 2017.

[5] “Fragments." Android Developers. N.p., n.d. Web. 23 Apr. 2017.

[6] "AlertDialog." Android Developers. N.p., n.d. Web. 23 Apr. 2017.

[7] "Part 1: How cursors work." SearchSQLServer. N.p., n.d. Web. 23 Apr. 2017.

[8] "PendingIntent." Android Developers. N.p., n.d. Web. 23 Apr. 2017.

	Design and Implementation of an Improved Android Application for Bard Shuttle Services
	Recommended Citation

	tmp.1493774809.pdf.NTXd8

