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Abstract

Given finite number of masses in the Euclidean space, one could ask is if possible to equipartition
these masses into equal parts. Fixing the collection of masses, and the amount of hyperplanes,
the equipartition-ability depends on the dimension, and there exists a dimension of such equipar-
tition is possible. In this paper, topology and combinatorics method are used for estimating the
lower bound and upper bound of the dimension. In particular, we are looking equipartition
problem together with Cascading Makeev Constrain: Given two vector in Zk, ~m = (m1, . . . ,mk)
and ~̀= (`1, . . . , `k) such that 1 ≤ `i ≤ k + 1− i, so that for any `i of {Hi, . . . ,Hk} hyperplanes
equipartition each of the mi measures.
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1
Introduction

In this chapter, we are going build up the tools we are using to solve the Hyperplane equipar-

tition problem. First, there are many different way to represent collection of hyperplanes in

the Euclidean space. Section 1.1 is about the some background of the Equipartition problem.

We are going introduces some the simple case of the hyperplane parturition problem, i.e. what

is call “ham sandwich problem”. Also, we are going to mention the hyperplane equipartition

In the section 1.2, we are going to topologize the space of hyperplane. Such topology over the

hyperplanes will introduces senses of symmetry, i.e. we are going to discuses group actions on

the set of hyperplane. In section 1.3, we are going to discuss the general frame work for Fourier

analysis for finite Abelian group. We are going to study about function from finite Abelian

group G to C. Then, introduce the characters, which offer an orthonormal basis for the function

space. Section 1.4 is some result and tools follow from the generalized theory of Fourier analysis

for finite Abelian group. In particular, in this section, we are going to study the finite Abelian

group Zk2, for k ∈ N. In section 1.5 we shall introduce measures, i.e. collection of masses. Then,

we shall offer conditions when the given collection of hyperplanes equipartition the collection of

masses. In section 1.6, we are going to introduces some machinery form equivariant topology.

This allowed us the solve some of the mass equipartition problems.
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1.1 Background

Hyperplane equipartition question in topology and measure theory. It is has many applications

to combinatorial geometry and discrete geometry. It is a generalization of “Ham Sandwich

Problem” [10], which as follows:

Question 1: Let µ1, . . . , µn be measures in Rn, it is possible to divide all of µi in half with a

single (n− 1)−dimensional hyperplane?

In question 1, when we choose n = 3, we are considering three masses µ1, µ2, µ3 in R3, together

with plane. (The three measures could be viewed as two chunks of bread with a chunk of ham —

a sandwich, with a single cut that bisect the three piece simultaneously.) The case for n = 3, is

proposed by Hugo Steinhaus and proved by Stefan Banach. The proof relies on the Borsuk-Ulam

Theorem [6].

Theorem 1.1.1 (Borsuk-Ulam Theorem). Let f : Sn → Rn be a continuous function. Then,

there exists an x ∈ Sn such that f(−x) = f(x).

The proof of Question 1, uses the fact that (n − 1)−dimensional hyperplane could be rep-

resented by points on the sphere Sn−1. This allowed us to define map from Sn−1 to Rn−1,

and apply Borsuk-Ulam Theorem. (We are going to proof Question 1 in section 1.2.) The

Ham Sandwich Problem, could be generalized into the following problem, which is Hyperplane

Equipartition Problem [1]:

Question 2. (Grünbaum-Ramos.) Let M = {µ1, . . . , µm} be collection of measures on Rn. Let

H = {H1, . . . ,Hk} be a collection of hyperplane in Rn. What is the minimal dimension n such

that Hi ∈ H divide µj ∈M simultaneously, for all 1 ≤ i ≤ k and 1 ≤ j ≤ m.

Observe that Question 1 is a special case for Question 2, where when the collection of hyper-

plane |H| = 1, i.e. we are only considering one hyperplane in Rn. The solution for Question 2

could be deduced by using Question 1. The main different between Question 1 and Question 2 is

that the number of regions are different. In general, if the dimension is large enough, given the
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collection H = {H1, . . . ,Hk}, there will be 2k distinct regions. However, similar method could

be applied.

1.2 Configuration Space: the space of Hyperplane

In this section, we are going to study configuration space [1, Section 3.1]. We shall fix n ∈ N,

the dimension of the Euclidean space. We are going to consider hyperplanes in Rn. Let H be

hyperplane in Rn. Notice that H is a n−1 dimensional linear subspace of Rn. Then, we have H⊥

is one dimensional, which span by some unit vector ~N . The unit vector ~N satisfies the properties

that 〈~v, ~N〉 = 0, for all ~v ∈ H. Notice that H is not necessary a linear space, in particular H

might not go through ~0. Then, the distance of H from the origin is |Proj ~N (~p)|, for some point

p ∈ H. In particular, we could write H = ~N⊥ + c ~N , where c = |Proj ~N (~p)|.

Now, we could partition the points of Rn into three category, based on the value of 〈~v, ~N〉, for

the given ~N . (Observe that 〈~v, ~N〉 could less than 0, greater than 0, or equal to 0.) Let H be a

hyperplane in Rd. Let ~N be the unit normal vector of H. We denote

H0 = {~u | 〈 ~N, ~u〉 ≥ c}, and H1 = {~u | 〈 ~N, ~u〉 ≤ c}.

We call {H0, H1} the half spaces indexed by Z2. (defined in [1, Section 3]) Notice that there

are two distinct unit normal vector for given hyperplane H, call them ~N, ~N ′. We know that

~N = − ~N ′. We know that 〈~v, ~N ′〉 = 〈~v,− ~N〉 = −〈~v, ~N〉. This means, the two half spaces

{H0, H1} of H are dependent on the choice of the normal unit vector of H. (In general, when

we consider H = {H1, . . . ,Hk} a collection of hyperplanes, there is also a permutation action

on the set of hyperplanes. Together with negation action, the full action denoted as S±k in [1].)

Proposition 1.2.1. Let H be a hyperplane in Rd. Let {H0, H1} bet the half spaces of H. Then

Z2 acts on {H0, H1} by negation.

Proof. Let ~N, ~N ′ be the two unit normal vector of H, such that ~N = − ~N ′. Then, there exists

c ∈ R such that H = ~N⊥+c ~N or H = ~N ′⊥−c ~N ′. Let {H0, H1} and {H ′0, H ′1} be the half spaces

of represented by ~N and ~N ′, respectively. Without loss of generality, let ~u ∈ H0. Then, we have
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〈 ~N, ~u〉 ≥ c. Then, when we negate, we have 〈 ~N ′, ~u〉 = −〈 ~N, ~u〉 ≤ −c. Hence, we have ~u ∈ H ′1.

Similarly, we have H1 = H ′0. Thus, we have negation Z2 acts on {H0, H1} by negation.

Since we know that H = ~N⊥ + c ~N , we have ~N = (a1, a2, . . . , an) ∈ Rn, and c ∈ Rn. We

shall consider ~h = (a1, a2, . . . , an, c) ∈ Rn+1. Then, we have H could be represented by vector

in ~h/‖~h‖ ∈ Sn. By proposition 1.2.1, such vector representation is not unique, if ~h is a represen-

tation of H, then, we have −~h is also representation of H. Thus, pairs of antipodal points on

Sn in Rn+1, where we could view the space of the hyperplane in Rn as the Sn/Z2. Furthermore,

we could view the two half space could be viewed as a parametrization by the space Sn. This is

also introduced in [1], for ~h = ( ~N, c) ∈ Sn.

H0(~h) = {~u ∈ Rn | 〈~u, ~N〉 ≥ c}; H1(~h) = {~u ∈ Rn | 〈~u, ~N〉 ≥ c}.

In some sense, we are abusing the fact that space of hyperplane H ⊆ Rn is in fact represented

by ~N × R ∈ Sn−1 × R, up to negation actions on Sn−1 × R. Observe that Sn−1 × R infinite

cylinder, which is not isomorphic to Sn. (We have to add to points to the infinite cylinder, the

two points at infinity.) Thus, when we look at the south pole and the north pole of Sn, i.e. the

points (~0, 1) and (~0,−1). Notice that

H0(~0, 1) := {~u ∈ Rn | 〈~u,~0〉 ≥ 1} = ∅; H1(~0, 1) := {~u ∈ Rn | 〈~u,~0〉 ≤ 1} = Rn.

This is could be view as the ”hyperplane” at infinity, (which is not quite a hyperplane.) Similarly,

we have (~0,−1) is also represents the hyperplane at infinity, with a different choices the normal

vector.

In general, we are going to consider finite collect hyperplanes. We shall use H = {H1, . . . ,Hk}

to denote the collection of hyperplanes. Since Hi could be view as point in Sn, we could view

H as points in (Sn)k, i.e. k-fold product of n-sphere. The hyperplane Hi gives us half spaces

{H0
i , H

1
i } indexed by Z2, for i ∈ {1, . . . , k}. We have H1, H2, . . . ,Hk partition the Rd into 2k

disjoint regions. Each regions could be indexed by ε ∈
⊕k

i=1 Z2, where for ε = (ε1, ε2, . . . , εk), for

some εi ∈ Z2. Let {Rg}g∈Zk
2

be disjoint regions determined by H. Since {Rg}g∈Zk
2

determined
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by H, hence {Rg}g∈Zk
2

is parametrized by space (Sn)k, where for ~h = ( ~h1, . . . , ~hk) ∈ (Sn)k.

Rg(~h) :=
k⋂
i=1

Hgi(~hi). (1.2.1)

Similarly, we could talk about symmetry of the space (Sn)k. By Proposition 1.2.1, we have

the group
⊕k

i=1 Z2 acts on (Sn)k. Geometrically, the action of
⊕k

i=1 Z2 interchanges the ith half

spaces (reflection along the hyperplane ith) when εi = 1, and fix the ith half spaces when εi = 0.

Thus we have
⊕k

i=1 Z2 acts on the space of (Sn)k, where

( ~h1, ~h2, . . . , ~hk)
ε =

(
(−1)ε1

−→
h1, (−1)ε2

−→
h2, . . . , (−1)εk

−→
hk
)
, (1.2.2)

for ε ∈ ⊕ki=1Z2 and ( ~h1, ~h2, . . . , ~hk) ∈ (Sn)k. (Again, since we are not considering permutation

action over the collection of hyperplane, this is a simplification of the action S±k over {Rg}g∈Zk
2
,

provided in [1].) Observe that the action ⊕ki=1Z2 on (Sn)k induces the action ⊕ki=1Z2 on the

regions {Rg}g∈Zk
2
, where (Rg)ε = Rg+ε. (There is g+ε is the addition over

⊕k
i=1 Z2.) Intuitively,

action ε = (ε1, . . . , εk) ∈
⊕k

i=1 Z2 is reflection of regions along the nth hyperplane, where εn = 1.

1.3 Fourier Analysis for Finite Abelian Groups

In this section, we are going to develop the basic Fourier analysis for finite Abelian groups. We

are going to following the We shall fix G be a finite abelian group. The following proposition

([7, Theorem 0.1]) is classification of all finite Abelian groups:

Proposition 1.3.1. Every finite Abelian group G is isomorphic to the group ZN1 × · · · × ZNk

for some positive integers N1, . . . , Nk.

We shall define L2(G) := {f | f : G → C} be the collection of complex-valued function. (In

fact L2(G) is a Hilbert space, we are going use the fact that L2(G) is inner product space, but

we are not going to use the completeness.)

Proposition 1.3.2. The set L2(G) is a vector space over C, under function addition and scalar

multiplication over C. Furthermore, we have L2(G) is |G| dimensional vector space.
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Proof. Fix f, h ∈ L2(G) and α ∈ C. Then, we shall define f + h : G → C by (f + h)(g) =

f(g) + h(g). We shall define α · f : G → C as (α · f)(g) = α(f(g)). Notice that C is Field,

hence, we have L2(G) is Associative and Commutative. The constant function z : G→ C where

z(g) = 0 is the additive identity. The negation of f could be defined as −f : G → C where

(−f)(g) = −(f(g)).

To show that L2(G) is a |G| dimensional vector space. We shall prove by constructing a explicit

basis of L2(G). Let g ∈ G. Let ϕg : G→ C be a function such that

ϕg(h) =

{
0, if h 6= g;

1, if h = g.

Claim that ϕg and ϕh are linear independent for any g 6= h. Because if ϕg = Cϕh, for some

C ∈ C. We have 1ϕg(g) = Cϕh(g) = 0. This is a contradiction. Thus, we have ϕg and ϕh are

linear independent over C. To show that {ϕg}g∈G span the vector space L2(G). Let f ∈ L2(G).

We shall observe that

f(x) =
∑
g∈G

f(g) · ϕg(x).

Thus, we have {ϕg}g∈G span L2(G). Therefore, we have L2(G) is |G|−dimensional vector space.

Thus, we have L2(G) is a vector space over C. We could defined the usual inner product over

the space L2(G). (The space L2(G) is in fact a Hilbert space [7]). Let 〈·, ·〉 : L2(G)×L2(G)→ C,

such that for f, h ∈ L2(G)

〈f, h〉 :=
1

|G|
∑
g∈G

f(g)h(g). (1.3.1)

Here, we shall verify 1.3.1 is a valid inner product.

Proposition 1.3.3. Let G be a finite abelian group. The inner product (1.3.1) is well define

over L2(G).

Proof. We shall check all properties of inner product. Let f, h, t ∈ L2(G). Let α ∈ C be a

constant. Conjugate symmetry, notice that conjugate over a sum is equal to sum of conjugations,
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then

〈f, h〉 =
1

|G|
∑
g∈G

f(g)h(g) =
1

|G|
∑
g∈G

h(g)f(g) = 〈h, f〉.

Linearity in the first argument,

〈αf, h〉 =
1

|G|
∑
g∈G

αf(g)h(g) =
α

|G|
∑
g∈G

f(g)h(g) = α〈f, h〉.

〈f + h, t〉 =
1

|G|
∑
g∈G

(f(g) + h(g))t(g) =
1

|G|
∑
g∈G

f(g)t(g) +
1

|G|
∑
g∈G

h(g)t(g) = 〈f, t〉+ 〈h, t〉.

Positive-definiteness, We shall observe that (a + ib)(a − ib) = a2 + b2 ≥ 0. Thus, we have

f(g)f(g) ≥ 0 for all g ∈ G. Then, we have

〈f, f〉 =
1

|G|
∑
g∈G

f(g)f(g) ≥ 0;

In particular, if f(g) = 0 for all g ∈ G, we have sum of 0’s, where 〈f, f〉 if and only if f = 0.

Since the inner product is well defined, in particular using the positive-definiteness of the inner

product, we could defined a norm on L2(G), where ‖f‖ =
√
〈f, f〉. (This ia called the L2-norm.)

In the Fourier analysis on groups, characters will play a important role. (This is similar to the

standard Fourier analysis over L2(R), by using trigonometric functions.)

Definition 1.3.4. A character of G is a group homomorphism χ : G→ C×, where C× is the

unit circle in C, i.e. we have C× := {eiθ | θ ∈ R}.

We shall denote Ĝ be the set of characters of G. Let χ ∈ Ĝ. Notice that χ is group homomor-

phism, i.e. we have for all g1, g2 ∈ G, we have χ(g1g2) = χ(g1)χ(g2). Notice that χ : G → C×,

where C× ⊆ C. Hence, we have χ ∈ L2(G), and Ĝ ⊆ L2(G). The following Proposition 1.3.5 is

equivalent to [7, Theorem 1.1].

Proposition 1.3.5. The set Ĝ is a group with the binary operation ∗ : Ĝ × Ĝ → Ĝ, where

(χ1 ∗ χ2)(a) = χ1(a)χ2(a) for all χ1, χ2 ∈ G and a ∈ G.
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Proof. Fix χ1, χ2 ∈ Ĝ. We shall check Closure, Associativity, Identity element, and Inverse

element. For closure, shall check if χ1χ2 is group homomorphism. Let g1, g2 ∈ G. Then, we have

(χ1χ2)(g1g2) = χ1(g1g2)χ2(g1g2) = χ1(g1)χ1(g2)χ2(g1)χ2(g1)

= χ1(g1)χ2(g1)χ1(g2)χ2(g1)

= (χ1χ2)(g1)(χ1χ2)(g2).

Hence, we have χ1χ2 ∈ Ĝ. For Associativity, this is inherent by the fact that C× is Associative.

For identity element, we shall first observe that χe : G → C×, where χe(g) = 1 for all g ∈ G,

is a homomorphism. (Because, we have χe(g1g2) = 1 = χe(g1)χe(g2).) Claim that χe is identity

element. Because we know that 1 is identity element of the group C×, we have

(χeχ1)(g) = χe(g)χ1(g) = χ1(g) = χ1(g)χe(g) = (χ1χe)(g).

For Inverse, we shall consider χ−1(g) = (χ(g))−1, ((χ(g))−1 is well defined, because χ(g) ∈ C×,

where is has the form eiθ). Notice that

χ−1(g1g2) = (χ(g1g2))
−1 = (χ(g1)χ(g2))

−1 = χ(g1)
−1χ(g2)

−1 = χ−1(g1)χ
−1(g2).

Hence, we have χ−1 ∈ Ĝ. Furthermore, we have χχ−1(g) = χe(g) = χ−1χ(g), for all g ∈ G.

Our next goal will be to prove that the characters form an orthonormal basis for the space

L2(G). First, we shall prove a simple Lemma ([7, Lemma 1.2]).

Lemma 1.3.6. Let G be a finite Abelian group, and χ be a non-principal character of G (i.e.

χ is not χe the identity of the group Ĝ.) Then, we have
∑

g∈G χ(g) = 0.

Proof. We shall proof by contradiction, suppose that
∑

g∈G χ(g) 6= 0. Let g′ ∈ G be arbitrary.

Then, we have

χ(g′)
∑
g∈G

χ(g) =
∑
g∈G

χ(g′ + g) =
∑
g∈G

χ(g).

(Because g′ +G = G.) Hence, we have χ(g′) = 1. Since g′ ∈ G Is arbitrary, we have χ = χe, i.e.

it is the principal character. This is a contradiction.
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Using Lemma 1.3.6, we are able to show that orthogonality properties for the characters. (Also

see [7, Lemma 1.3].)

Lemma 1.3.7. The characters Ĝ of a finite Abelian group G are orthonormal functions in

L2(G).

Proof. Let χ ∈ Ĝ. First, we shall observe that χ(g) ∈ C×, where |χ(g)| = 1. We have

‖χ‖2 =
1

|G|
∑
g∈G

χ(g)χ(g) =
1

|G|
∑
g∈G
|χ(g)| = |G|

|G|
= 1.

Thus, we have χ are unit vectors in L2(G). To show that the vectors of Ĝ are orthogonal. Let

χ1, χ2 ∈ Ĝ. First, we shall observe that χ−11 = χ1. Since χ2 6= χ1. Then, we have χ1χ2 6= χe. We

have

〈χ1, χ2〉 =
1

|G|
∑
g∈G

χ1(g)χ2(g) =
1

|G|
∑
g∈G

χ(g) = 0.

(The last equality is Lemma 1.3.6). Thus, we have χ is orthonormal functions in L2(G).

In order to show that Ĝ forms a basis of L2(G). First, we shall offer a classify of the group Ĝ.

By Proposition 1.3.1, we know that G =
⊕k

i=1 ZN1 . (Proposition 1.3.8 and Lemma 1.3.9 stated

as a fact in [7]. However, we are going to verify them in this paper.) Here, we shall start with

simple example, where G is the trivial product, i.e. when G = ZN for some N ∈ Z+. Let z ∈ ZN .

Let χz ∈ L2(ZN ) such that

χz(g) = ezg·2πi/N . (1.3.2)

(We shall always use + denote the binary operation of ZN . Here zg refers to the multiplicative

operation over ZN . )

Proposition 1.3.8. Given G = ZN . For all z ∈ ZN , the L2(ZN ) function χz define in (1.3.2)

is character, i.e. we have χz ∈ ẐN . (i.e. we have χz is a character of ZN .) Furthermore, we

have ẐN = {χz | z ∈ ZN}, and ẐN ' ZN .

Proof. Let z1, z2 ∈ ZN . We shall observe that

χz(z1 + z2) = ez(z1+z2)2πi/N = ezz1·2πi/Nezz2·2πi/N = χz(z1)χz(z2).
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Furthermore, we have χz(0) = e0 = 1. Thus, we have χz is a homomorphism. By Proposi-

tion 1.3.2, we know that L2(ZN ) is a |ZN |−dimensional vector space. Notice that {χz | z ∈ ZN}

has exactly |ZN | orthonormal function (vectors), hence these are all the group homomorphisms.

Thus, we have ẐN = {χz | z ∈ G}. To show that ZN ' ẐN . Let z1, z2 ∈ ZN . Then, we have

χz1(g)χz2(g) = ez1g·2πi/Nez2g·2πi/N = e(z1+z1)g·2πi/N = χz1+z2(g).

Observe that the binary operation over ẐN is equivalent to addition of the subscript over ZN .

Hence, we have ẐN ' ZN .

Now, we shall generalize the proof above to all finite abelian group G = ZN1 × · · · ×ZNk
. Let

z = (z1, . . . , zk) ∈ G, we shall define χz ∈ L2(G), where for g = (g1, g2, . . . , gk) ∈ G.

χz(g) =

k∏
i=1

ezigi·2πi/Ni . (1.3.3)

First, we shall observe that the given function in (1.3.3) is a generalization of the function

described in (1.3.2), i.e. when G = ZN the two definition agrees with each other.

Lemma 1.3.9. Let G = ZN1 × · · · × ZNk
be a finite Abelian group. For all z ∈ g, the L2(G)

function χg define in (1.3.3) is character, i.e. we have χg ∈ Ĝ. (i.e. we have χg is a character

of G.) Furthermore, we have Ĝ = {χg | g ∈ G}, and G ' Ĝ.

Proof. Fix g = (g1, . . . , gk) ∈ G. First, we shall verify χg is a group homomorphism. Let a, b ∈ G.

We shall write a = (a1, . . . , ak) and b = (b1, . . . , bk). We have

χg(a+ b) =

k∏
i=1

egi(ai+bi)·2πi/Ni =

k∏
i=1

egiai·2πi/Ni

k∏
i=1

egibi·2πi/Ni = χg(a)χg(b).

Furthermore, we have χg(0) =
∏k
i=1 e

0 = 1, which is the identity in C×. Thus, we have χg

is a homomorphism. By Proposition 1.3.2, we have L2(G) is a |G|-dimensional vector space.

Notice that {χg | g ∈ G} has exactly |G| orthonormal functions, hence these are all the group

homomorphisms. Therefore, we have Ĝ = {χg | g ∈ G}. To show that G ' Ĝ. Let a, b, g ∈ G.

We have

χa(g)χb(g) =
k∏
i=1

eaigi·2πi/Ni

k∏
i=1

ebigi·2πi/Ni =
k∏
i=1

e(ai+bi)gi·2πi/Ni = χa+b(g)
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Observe that the binary operation over Ĝ is equivalent to addition of the subscript over G.

Hence, we have Ĝ ' G.

The Lemma 1.3.9 offers a classification of Ĝ. Furthermore, we could use Lemma 1.3.9 and

Lem 1.3.7 to show that Ĝ forms a orthonormal basis of L2(G). (Corollary 1.3.10 is equivalent

[7, Theorem 1.4 ].)

Corollary 1.3.10. Let G be a finite abelian group. The collection of character Ĝ is orthonormal

basis of L2(G).

Proof. By Lemma 1.3.7, we have Ĝ is a set of orthonormal vectors, hence linear independent.

By Lemma 1.3.9 show that |Ĝ| = |G|. Notice that L2(G) |G|-dimensional vector space. Then,

we have Ĝ span L2(G). Therefore, we have Ĝ is a orthonormal basis.

Since Ĝ is a orthonormal basis of L2(G), in particular, because Ĝ is a basis for the vector

space L2(G), then the set of function Ĝ span L2(G). Notice that |Ĝ| <∞, i.e. we have L2(G) is

finite dimensional vector space. Moreover, given set of basis Ĝ of L2(G), the function f ∈ L2(G)

could be written as a unique linear combination over Ĝ. We shall call

f =
∑
g∈G

cgχg (1.3.4)

the Fourier transform of the function f . We call cg the Fourier coefficient. In the following

Proposition, we are going to compute the explicit formula for the Fourier coefficient (given some

f ∈ L2(G)).

Proposition 1.3.11. Let f ∈ L2(G). The Fourier Transform of f is unique. Furthermore, the

Fourier coefficient cg = 〈f, χg〉.

Proof. We shall observe that

〈f, χg〉 =

〈∑
h∈G

chχh, χg

〉
=
∑
h∈G

ch〈χh, χg〉 = cg.

(The first equality just substitution; the second equality, we used Proposition 1.3.3 Linearity in

the first argument; The third equality, we used the fact that characters are orthonormal, which

is Lemma 1.3.7.) Thus we have Fourier transformation for f is unique, and cg = 〈f, χg〉.
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Remark. Since we know that cg are unique, for the given function f ∈ L2(G). We could view

the Fourier transform as a function ξ : L2(G)→ L2(Ĝ), such that ξ(f) = f̂ where f̂(g) = 〈f, χg〉.

1.4 Special Case for Finite Fourier Analysis

In the previous section, we developed the theorem of Fourier Analysis of L2(G) over C. In this

section, we are going to study of the special case:

1. We shall fix our finite Abelian group G = Zk2.

2. Furthermore, we are going to consider L2
R(Zk2) := {f | Zk2 → R}, i.e. the real vector space.

Instead of the Complex vectors space L2(Zk2).

We are going to show that the set of characters Ẑk2 still forms a basis over L2
R(Zk2). However,

since we move from C to R, we shall first verify if the Ẑk2 is well-defined.

(Well-defined?) To show Ẑk2 is well-defined over R. First, we shall recall the definition of Ẑk2

over C: the set of group homomorphism χ : Zk2 → C. Let g = (g1, . . . , gk) ∈ Zk2, by Lemma 1.3.9,

we have

χg(a) =
k∏
i=1

eaigiπi =
k∏
i=1

(−1)aigi ∈ R ⊆ C. (1.4.1)

Hence, we have the character of Zk2 could be embedded within R. (This is the special property

for Z2, because we are using the roots of unity in C×, the second roots of unity are {−1, 1}, i.e.

they are in fact real value.) Since Zk2 has representation over R, we could restrict the L2(Z2)

over R.

By Corollary 1.3.10, we shown that Ẑk2 is orthonormal basis of L2(G). We shall observe that

L2
R(Zk2) ⊆ L2(Zk2). Thus, for all function f ∈ L2

R(Zk2) has a Fourier transform, with respect to

Ẑk2. Furthermore, since we are considering the f ∈ L2R(Zk2), we have

cg = 〈f, χg〉 =
1

|Zk2|
∑
h∈Zk

2

f(h)χg(h) =
1

|Zk2|
∑
h∈Zk

2

f(h)χg(h) ∈ R,
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(Here we are using the fact that χg : g → R, where χg(h) ∈ R implies that χg(h) = χg(h).) Thus,

for all function f ∈ L2
R(Zk2), the Fourier transform of f is real, i.e. all the Fourier coefficient of

f are real valued. We shall state the following remark, to summarize all statement above:

Remark 1.4.1. Let L2
R(Zk2) := {f | f : Zk2 → R}. Let f, g ∈ L2

R(Zk2). Then, we have L2
R(Zk2)

satisfies the following properties:

1. L2
R(Zk2) is a vector space over R.

2. The inner produce 〈f, g〉 in (1.3.1) is well-defined. Furthermore 〈f, g〉 ∈ R.

3. We have Ẑk2 = {χg | χg : Zk2 → {±1}}, i.e. we have Ẑk2 is a set of real valued function (1.4.1).

4. Ẑk2 is orthonormal basis for the vector space L2
R(Zk2).

5. The Fourier transform f =
∑

g∈G cgχg over Ẑk2 is well-defined.

6. The Fourier coefficient cg for f ∈ L2
R(Zk2) is real, i.e. we have cg ∈ R for all g ∈ Zk2.

In particular, Remark 1.4.1.5 and Remark 1.4.1.6, are two important properties in this project.

This section offer the foundation for us the explore the mass equipartition problem.

1.5 Equivariant map, Target Space and Test Map

In this section, we are going to fix Rn, for some n ∈ N. In section 1.2, we discuss about the topo-

logical set up of the space of hyperplane. Given a collection of hyperplanesH = {H1, H2, . . . ,Hk},

we shall recall the definition of disjoint region {Rg}g∈Zk
2

defined in Equation (1.2.1), we label

the disjoint region by element g ∈ Zk2. Now, we shall introduce masses: a positive, finite Borel

measure, that is absolutely continuous with respect to the Lebesgue measure. (This is general

set up, mentioned in [1, 1.1 Historcial Summary].) We shall fix µ on Rn be a mass. We are

interested in µ(Rg), for all g ∈ Zk2. Notice that µ(Rg) ∈ R, and each region uniquely defined by

its subscript g ∈ Zk2. We shall define the following function, with respect to µ on R:
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Definition 1.5.1. Let µ be an absolute continuous measure. Let H = {H1, H2, . . . ,Hk} be

hyperplanes in Rn. Suppose that R is indexed by Zk2. The test map is a function fµ : Zk2 → R

with respect to µ and H, such that fµ(g) = µ(Rh). We call fµ The test map for µ.

(Remark. Definition 1.5.1 is a simplification of [3, Equation (1.1)].) Notice that, if H equipar-

tition µ, the measure restricted to each open region should be exactly µ(Rn)/2k. Since we know

that the function fµ depends on H, for each fix µ, we could view this problem as mapping H

to the corresponding µ-test map. Recalling that H = {H1, . . . ,Hk} could be represented by

points on (Sn)k, and, µ-test map is a function in L2(Zk2). Thus, we could also view function

F ∗µ : (Sn)k → L2(Zk2). In this case, an equipartition will correspond to a constant function in

f∗µ ∈ F ∗µ((Sn)k) ⊆ L2(Zk2), where f∗µ(g) = µ(Rn)/2k. (This is a different interpretation, however,

this is a different approach of the hyperplane equipartition problem. So, we shall stick with the

test map.) In general, there exists region Rg such that µ(Rg) 6= µ(Rn)/2k, for some g ∈ Zk2.

By Remark 1.4.1, the test map has fµ : Zk2 → R has a Fourier decomposition over the set of

characters of Zk2

fµ(x) =
∑
g∈Zk

2

cgχg(x), (1.5.1)

where the χg ∈ Ẑk2, and cg ∈ R are the Fourier coefficients. There are some properties and

advantage, when we study the Fourier decomposition of the function fµ.

Definition 1.5.2. Let f : X → Y . Let G be a group, such that G act on X and Y . We say the

function f is G−equivariant if

f(g · x) = g · f(x),

for all g ∈ G and x ∈ X.

Test map returns the measure within sectors, which also allow us to capture how does the group

ε ∈
⊕k

i=1 Z2 acts the 2k-regions. Such map has a Fourier decomposition with respected to the

action ε ∈
⊕k

i=1 Z2. Recalling that Zk2 acts on the {Rg}g∈Zk
2
, such that (Rg)ε = Rg+ε, for ε ∈ Zk2.

Since we defined fµ(g) = µ(Rg), we expect ε ∈ Zk2 actions on fµ(g) by (fµ(g))ε = µ(Rg+ε), for

all g ∈ Zk2.
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If fµ is a constant map, i.e in this case, we have the corresponding hyperplanes equipartition

the given measure µ, we shall observe that Z2 acts trivially on the Then we have This implies

that fµ is fixed under Zk2 action. (When fµ is a constant map, the corresponding collection of

hyperplanes H equipartition the given measure.)

Lemma 1.5.3. Let fµ be the test map of µ, with respect to H. Let fµ =
∑

g∈Zk
2

The Fourier

coefficient c(0,0,...,0) for f is µ(Rd)/2k.

Proof. Let 0 = (0, 0, . . . , 0). We have

c0 = 〈f, χ0〉 =
1

|Zk2|
∑
g∈Zk

2

f(g)χ0(g) =
1

|Zk2|
∑
h∈Zk

2

µ(Rh) =
1

|Zk2|
µ(Rd) =

1

2k
.

Therefore, we have c0 = 1/2k.

This is the special property for χ0, because it is the identity map. (We have χ0(g) = 1 for all

g ∈ Zk2.) In general, for g ∈ Zk2 and g 6= 0, there exists some h ∈ Zk2, such that χg(h) = −1. In

this case, if cg 6= 0 for some g 6= 0, there exists h ∈ Zk2 action on the disjoint regions, such that

fµ is not fixed under the h action. Hence, it is not equipartition. (i.e. we could view equipartition

as function the is fix under Zk2 action.) We shall compute some simple example.

Example 1.5.4. Let square S centered at (0, 0) with side length 2. Let µ be area measure

on S and 0 otherwise. Let H = {H1, H2} be collection of hyperplane, such that H1 and H2 is

represented by points in S3

s1 =

(
1√
5
,

2√
5
, 0

)
; s2 =

(
− 1√

10
,

√
2√
5
,

1√
2

)
,

respectively. In this example, we shall compute:

1. Compute fµ, and compute the corresponding Fourier expansion.

2. Let h = (0, 1) ∈ Z2
2. We shall consider the how h is acting on all regions.

Proof. 1. First of all, since we are in R2. There hyperplanes are in fact, lines. For H1, its

corresponding unit normal vector is N1 = (1, 2)/
√

5, and the distance from the origin
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is 0. We could write H1 with y = −x/2. Similarly, the unit normal vector for H2 is

N2 = (−1, 2)/
√

5. (We know that
√

2s2 = (−1/
√

5, 2/
√

5, 1), where H2 = ~N2
⊥

+ ~N2) We

have H2 could be represented by the equation (x, y) · ~N2 = 1, where y = (x+
√

5)/2. The

picture below show a picture of the measure, and the given hyperplane H1 and H2.

The + and − in the picture represents H0 and H1 respectively. There are four regions.

Hence, the four regions are indexed by Z2
2, which are (0, 0), (1, 0), (0, 1) and (1, 1). (In the

picture the + corresponds to a 0 and − corresponds to 1.) Now we shall compute measure

of the each disjoint section, and this corresponds to the values for fµ : Z2 → R, where

fµ(0, 0) =
7− 3

√
5

2
; fµ(1, 0) =

−3 + 3
√

5

2
; fµ(0, 1) = 0; fµ(1, 1) = 2.

We shall now compute the Fourier transform of the function fµ. We compute the Fourier

series be using the definition of character over Z2
2, the formula is introduced in (1.4.1),
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where

c(0,0) =
µ(R2)

4
= 1;

c(1,0) =
1

4

(
7− 3

√
5

2
− −3 + 3

√
5

2
+ 0− 1

)
=

3− 3
√

5

4
;

c(0,1) =
1

4

(
7− 3

√
5

2
+
−3 + 3

√
5

2
− 0− 1

)
= 0;

c(1,1) =
1

4

(
7− 3

√
5

2
− −3 + 3

√
5

2
− 0 + 1

)
=

7− 3
√

5

4
.

Thus, we have the Fourier transform of fµ is

fµ = 1 +
3− 3

√
5

4
χ(1,0) +

7− 3
√

5

4
χ(1,1).

(We could just plug in different values, to check the Fourier transform is actually agree

with the original function.)

2. We shall now consider the action h = (0, 1) ∈ Z2
2 on {Rg}g∈Z2

2
. Observe that the action

h is reflection along H2. Notice that this action is not fixed under χ(0,1) and χ(1,1), i.e.

the action h will negate the Fourier Coefficient of c(0,1) and c(1,1). (In this case, we have

c(0,1) = 0. Hence, only we shall replace c(1,1) by −c(1,1).) Hence, we have

(fµ)h = 1 +
3− 3

√
5

4
χ(1,0) −

7− 3
√

5

4
χ(1,1).

From this example above we shall observe that fµ is a linear combination of equivariant map,

(in general) with respect to Zk2 action.

Proposition 1.5.5. Let fµ be test map. Let F : Zk2 → R map of Fourier coefficient, such that

F(g) = cg, for all g ∈ Zk2. Let ε, h ∈ Zk2. Then, we have

F(h · ε) = χε(h) · F(ε).

Hence, we have F is Zk2-equivariant.
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Proof.

F(h · ε) =
1

2k

∑
g∈Zk

2

fµ(hg)χε(g) =
χε(h)

2k

∑
g∈Zk

2

fµ(hg)χε(gh) = χε(h) · F(ε).

Proposition 1.5.5 shows that if fµ is fix under the action h ∈ Z2. Then, for all ε ∈ Zk2, we

have χε(h) = −1 implies that cε = 0. Now, we shall view the equipartition problem as Fourier

coefficient annihilation problem.

1.6 Polynomial Condition for Coefficient Annihilation

As we see in Example 1.5.4, we have shall observe that H2 is if fact equipartition the given mass

µ, and we shall observe that c(0,1) = 0 vanishes. The following Lemma is a generalization of case

in Example 1.5.4, when there are a sub-collection of hyperplane equipartition the given mass.

(This section is a simplification of [1, Secition 6.1], together with Finite Fourier transform in

[3].)

Lemma 1.6.1. Let fµ be a test map with respect to µ on Rn and H. Let E ⊆ H be a sub-

collection of hyperplanes. Suppose that E = (Hi1 , . . . ,His) equipartition the given measure µ. Let

g ∈ Zk2 be a action, such that the g-action fix H\E. Then, we have the Fourier coefficient cg = 0.

Proof. Without loss of generality, we shall assume that E = {H1, . . . ,Hs} is the first s hyper-

planes among the collection H. We shall fix g∗1, . . . , g
∗
s ∈ Z2. First, we shall observe that

∑
hs+1,...,hk∈Z2

fµ(h∗1, . . . , h
∗
s, hs+1, . . . , hk) =

µ(Rn)

2s
,

for some h∗1, . . . , h
∗
s ∈ Z2. (This sum on the left hand side of the equation could be view as measure

of the region (h∗1, . . . , h
∗
s), by ignoring all H\E. Since we ignore H\E, by assumption we have E

equipartition the measure µ, this implies that each region has exactly µ(Rn)/2s measure, which

is the right hand side of the equality.) Now, let g = (g∗1, g
∗
2, . . . , g

∗
s , 0, 0, . . . , 0) ∈ Zk2. We shall

denote g∗ = (g∗1, g
∗
2, . . . , g

∗
s) ∈ Zs2 and h∗ = (h∗1, . . . , h

∗
s) and h′ = (hs+1, . . . , hk). Let we shall



1.6. POLYNOMIAL CONDITION FOR COEFFICIENT ANNIHILATION 19

consider the the Fourier coefficient for cg, we have

cg = 〈f, χg〉 =
1

2k

∑
h∈Zk

2

f(h)χg(h) =
1

2k

∑
h∗∈Zs

2

∑
h′∈Zk−s

2

fµ
(
(h∗, h′)

)
χg
(
(h∗, h′)

)
=

1

2k

∑
~h∗∈Z∗2

µ(Rn)

2s
χg∗(h

∗)

=0.

(sum over the characters is 0, when g∗ 6= 0. But, we know that g∗ is an non-trivial action over

E, hence it is not 0.)

In Lemma 1.6.1, we show that what are the Fourier coefficient we have to annihilate in order

to have have E ⊆ H equipartition the given measure µ. In general, we don’t we could consider

the multiple masses, i.e. a collection of M = {µ1, . . . , µm}. Then, we could define a collection

of test map fµi : Zk2 → R that measures disjoint regions {Rg}h∈Zk
2

corresponds to µi. Then,

we could talk about if the given set of hyperplane equipartition the collection of measures, or

sub-collection of hyperplanes of H equipartition the some sub-collection of M.

Now, we shall introduce techniques of equivariant topology. For H = {H1, . . . ,Hk} in Rn, we

shall consider polynomial ring Z2[x1, . . . , xk]/(x
n+1
1 , xn+1

2 , . . . , xn+1
k ). For g ∈ Zk2, we shall assign

g to the polynomial g ·(x1, x2, . . . , xk). (The · here the usual dot product.) for simplicity, we shall

define a function

P : Zk2 → Z2[x1, . . . , xk]/(x
n+1
1 , xn+1

2 , . . . , xn+1
k ), such that P(g) = g · (x1, . . . , xk)

The following the Main theorem, for the polynomial condition (We are not going to proof the

following Theorem. This main Theorem is the Zk2 case for real-valued measures of [3, Theorem

3.1].)

Theorem 1.6.2. Let M = {µ1, . . . , µm} be a collection of measures. For each i ≤ m and µi,

let gi,1, . . . , gi,ti ∈ Zk2, and let

hi(x1, . . . , xk) =

ti∏
s=1

P(gi,s).
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If
∏m
i=1 h

i(x1, . . . , xk) 6= 0, there exists a collection of hyperplane H = {H1, . . . ,Hk} such that

the Fourier coefficient for fµi indexed by gi,1, . . . , gi,ti vanishes.

Put together Theorem 1.6.2 and Lemma 1.6.1 this allowed us the compute the exact polyno-

mial condition for hyperplane equipartition problem.

Corollary 1.6.3. Let H = {H1, . . . ,Hk} be a collection of hyperplane. Suppose that H equipar-

tition measure µ, the polynomial condition is
∏
g∈Zk

2\{0}
P(g).

Checking if the explicit computation for polynomial condition vanish could be hard, especial

when we in higher dimension. However, in lower dimension, for instance R3, we could do some

explicit computation of the polynomial condition for hyperplane equipartition problem. We shall

look at an example, using the Corollary 1.6.3. We are going to compute the explicit polynomial

condition in the following example, and test whether the given polynomial condition vanishes.

Example 1.6.4. Let H = {H1, H2} be a collection of hyperplanes. Let µ be a measure on R2.

Compute the polynomial condition if H equipartition the given measure µ.

Proof. Let µ be the test map. By Lemma 1.6.1, we have the Fourier coefficient c(0,1), c(1,0) and

c(1,1) vanishes. This is equivalent to the polynomial condition

P = x1x2(x1 + x2) = x21x2 + x1x
2
2.

Observe that P does not vanishes in Z2[x1, x2]/(x
3
1, x

3
2). Hence, it is possible to equipartition the

given measure in R2 by two hyperplane.

Example 1.6.4 is the one of the simplest example among all equipartition problem. The fol-

lowing example we are going to look at equipartition in R3, and the result shows the case that

the polynomial condition vanishes.

Example 1.6.5. Let H = {H1, H2, H3} be a collection of hyperplane. Compute the polynomial

condition if H equipartition a given measure µ, in dimension 3.

Proof. Let fµ be the test map. By Lemma 1.6.1, we have the Fourier coefficient c(1,0,0), c(0,1,0),

c(1,1,0), c(0,0,1), c(1,0,1), c(0,1,1), and c(1,1,1) of fµ should vanish. In this case, each vanishing coef-
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ficient will give us a polynomial in Z2[x1, x2, x3]/(x
4
1, x

4
2, x

4
3). We have

P =
∏

g∈Z3
2\{0}

P(g) = x1x2x3(x1 + x2)(x2 + x3)(x1 + x3)(x1 + x2 + x3)

We have shall check if P vanish under Z2[x1, x2, x3]/(x
4
1, x

4
2, x

4
3). We shall expand the product

into sums. Then, we have

P =x1x2x3(x1 + x2)(x2 + x3)(x1 + x3)(x1 + x2 + x3)

=(x1 + x2 + x3)(x1x
2
2x

3
3 + x1x

3
2x

2
3 + x31x2x

2
3 + x31x

2
2x3 + x21x2x

3
3 + x21x

3
2x3)

=x21x
2
2x

3
3 + x21x

3
2x

2
3 + x41x2x

2
3 + x41x

2
2x3 + x31x2x

3
3 + x31x

3
2x3

+ x1x
3
2x

3
3 + x1x

4
2x

2
3 + x31x

2
2x

2
3 + x31x

3
2x3 + x21x

2
2x

3
3 + x21x

4
2x3

+ x1x
2
2x

4
3 + x1x

3
2x

3
3 + x31x2x

3
3 + x31x

2
2x

2
3 + x21x2x

4
3 + x21x

3
2x

2
3

=2x31x
3
2x3 + 4x31x

2
2x

2
3 + 4x21x

3
2x

2
3 + 2x31x2x

3
3 + 4x21x

2
2x

3
3 + 2x1x

3
2x

3
3

=0.

Thus, we in this case, the polynomial vanishes. Hence, we cannot tell if there exists H equipar-

tition the given measure µ.

1.7 Some Explicit Formula for Polynomial Condition

Given H = {H1, . . . ,Hk}. Notice that Theorem 1.6.2 always offer us product of sum. It is a hard

to tell the given product of sum vanishes in the given polynomial ring. Hence, we would love the

convert the product of summations into summation of product xp11 x
p2
2 · · ·x

pk
k .

Most of the polynomial condition are hard to compute. (First of all, the conditions could be

random, which is not interesting.) In general, we shall consider a set of symmetric condition. For

example, the full equipartition prosperity are symmetric. (Because that is the maximum among

of condition we can put on a measure.) The full equipartition is equivalent of annihilation of all
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non-zero Fourier coefficient. Thus, its corresponding polynomial condition is

∏
g∈Zk

2\{0}

P(g) =

x1 x2 · · · xk
x21 x22 · · · x2k
...

...
. . .

...

x2
k−1

1 x2
k−1

2 · · · x2
k−1

k

=
∑
σ∈Sk

x2
k−1

σ(1) x
2k−2

σ(2) · · ·x
2
σ(k−1)xσ(k). (1.7.1)

In equation (1.7.1), we rewrite the product into summation over Sk. Here Sk denote the sym-

metric group of k-elements. Similarly, there is an other symmetric condition: any two of the

hyperplanes in H equipartition the measure. This is represented by polynomial:

∏
1≤g1+···+gk≤2

P(g1, g2, . . . , gk) =

x1 x2 · · · xk
x21 x22 · · · x2k
...

...
. . .

...
xk1 xk2 · · · xkk

=
∑
σ∈Sk

xkσ(1)x
k−1
σ(2) · · ·x

2
σ(k−1)xσ(k). (1.7.2)

(Both Equation 1.7.1 and Equation 1.7.2 used Vandermonde determinate, more detail could

be find in [11].) In general, the conditions are unpredicted so that, we cannot easily compute

the sum. (The two cases above are special cases, so that the expansion of the produce is in fact

a sum over symmetric group.)
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Cascading Makeev with ~̀ ∈ {0, 2}k

Given a symmetric condition, mentioned in section 1.7, it is likely that Sn acts on the subscript of

the terms of the polynomial condition, i.e. we could write the polynomial condition as a sum over

symmetric group. However, if the polynomial condition is too symmetric, since for all n ∈ Z+,

we have |Sn| = 2k for some k ∈ Z, it is possible that all terms of the polynomial condition have

even coefficient, hence vanishes. Thus, the condition we consider should be skewed symmetric. In

this Chapter, we are going to study hyperplane equipartition with Cascading Makeev condition.

In section 2.1, we are going to talk about what is Cascading Makeev condition. In section 2.2, we

are going to talk about parity of multinomial coefficient. Even though, this is also a well-know

result, we are going to provide classification of all even multinomial coefficient. Section 2.3 is the

main result of this project. We are going to look at some special case of the Cascading Makeev

condition, namely when ~̀ ∈ {0, 2}k. This is first non-trivial cases, of the Cascading Makeev

condition. We are going to study the minimal dimension for such hyperplane equipartition is

possible. Furthermore, we are going to make condition as tight as possible, so that there is no

more room for more Cascading Makeev condition.
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2.1 Introduction

In the paper By V. V. Makeev [2], there following hyperplane equipartition problem is being

studied:

Question 3: (Makeev.) Let µ be finite absolute continuous measure (with respect to Lebesgue

measure). Is there a collection of hyperplane H = {H1, . . . ,Hk}, such that any two of them

equipartition µ.

The question above is being studied extensively by Makeev. Also, a generalization of the

Makeev problem is proposed and studied by Pavle V.M. Blagojević & Roman Karasev, (the

condition proposed by Makeev, together with odd continuous map form from Sn−1 to Sn−1. See

[4]). In this project, we are going to look at an other generalization of Makeev condition: the

Cascading Makeev Condition.

Cascade: Let H = {H1, . . . ,Hk} be a collection of hyperplane. A Cascade over H is a sequence

of nest sub-collection of hyperplanes,

H = H1 ⊇ H2 ⊇ · · · ⊇ Hk,

where Hi = {Hi, Hi+1 . . . , Hk}.

(Remake. The size of Hi decreases when i increases. In some sense, this is looks like a “Cas-

cade”.) The Cascading Makeev Condition is applying some kind of Makeev condition to each

layer Hi. Furthermore, we are going to relax the constrain of one mass. (We are going to look

as collection of masses.) Also, instead to any two of H, we are going generalized to any ` of H.

(This is one of the generalization of the Makeev condition.)

Definition 2.1.1. Let k ∈ Z+. Let H = {H1, . . . ,Hk} be a collection of hyperplane. Let

{H1, . . . ,Hk} be a cascade ofH. Let ~m = (m1,m2, . . . ,mk) be a vector of collections of measures.

Let ~̀= (`1, `2, . . . , `k) such that 1 ≤ `i ≤ k − i+ 1 for all i ∈ {1, 2, . . . , k}. Then, the cascading

Makeev condition is a triple (H, ~̀, ~m), such that any `i of Hi equipartition each of mi measures.



2.2. PARITY OF MULTINOMIAL COEFFICIENT 25

2.2 Parity of Multinomial Coefficient

Since we are considering polynomial ring over Z2. Consider the polynomial (x1 +x2 + · · ·+xk)
n,

when we expand such polynomial, we would love to answer what are the terms that are non-

vanishing over Z2[x1, . . . , xk], i.e. the coefficient is odd. Notice that we could use multinomial

theorem to expanding the polynomial (x1 + x2 + · · ·+ xk)
n, where

(x1 + x2 + · · ·+ xk)
n =

∑
r1+r2+···+rk=n

(
n

r1, r2, . . . , rm = k

)
xr11 x

r2
2 · · ·x

rk
k .

In particular, when the multinomial coefficient is divisible by 2, the given term vanishes in

Z2[x1, . . . , xk].

In this section, we are going to develop the theory of parity of multinomial coefficient. This

could be view as a generational of Lucas’s Theorem, (i.e. the divisibility of binomial coefficient

by prime number.) On the other hand, divisibility condition of multinomial coefficient is being

studied by Shigeki Akiyama [5]. However, since we are only considering module 2, we shall proof

the parity condition ourself.

Definition 2.2.1. Let r ∈ N. Define function ν : N→ N where ν(r) =
∑∞

n=1br/2nc.

Here is more intuitively definition, or equivalent definition of the function ν.

Proposition 2.2.2. Let r ∈ N. Then we have ν(r) = max
k∈N
{2k | r!}.

Proof. Observe that br/2nc is the value {1, 2, . . . , r} that is divisible by 2n, for every n ∈ N.

Hence, we counted every number that is divisible by 2, 22, 23, . . . exactly once, which is exactly

the number of 2 we could divide out from r!, i.e. it is max
k∈N
{2k | r!}.

When we consider choose or multi-choose, we will have r!/k, for some k ∈ N and k | r. The

reason we care about if r!/k is non-vanishing in Z2, i.e. we have r!/k is odd. In this case, we

must have ν(r) | k. In this case, we shall study what are the multinomial coefficients
(

r
r1,r2,...,rn

)
,

where ν(r) |
∏n
i=1 ri!.

Lemma 2.2.3. Let r ∈ N, and r1, r2, . . . , rn ∈ N such that
∑n

i=1 ri = r. Then 2 -
(

r
r1,r2,...,rn

)
if

and only if
∑n

i=1 ν(ri) = ν(r).
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Proof. (⇒) Suppose that 2 -
(

r
r1,...,rn

)
, i.e. we have r!/

∏n
i=1 ri! is odd. Proof by contradiction,

Suppose that
∑n

i=1 ν(ri) < ν(r). Notice that 2
∑n

i=1 ν(ri) | 2ν(r), such that 2ν(r)/(2
∑n

i=1 ν(ri)) ≥ 2.

Then, we have
(

r
r1,...,rn

)
is even, which is a contradiction. On the other hand, suppose that∑n

i=1 ν(ri) > ν(r). Then, we have 2
∑n

i=1 ν(ri) - 2ν(r). But, we know that 2
∑n

i=1 ν(ri) |
∏n
i=1 ri!.

This is a contradiction. Thus, we have
∑n

i=1 ν(ri) = ν(r).

(⇐) Suppose that
∑n

i=1 ν(ri) = ν(r). By proposition 2.2.2, we have maxk∈N{2k | r!} =∑n
i=1 maxk∈N{2k | ri!}. By the fundamental theorem of arithmetic, we have r! = 2kC and∏n
i=1 ri! = 2kC ′, for some k ∈ N and C,C ′ ∈ Z+

odd. Then, we have

C

C ′
=

2kC

2kC ′
=

(
r

r1, . . . , rn

)
∈ N.

Notice that C,C ′ are odd, hence, we have C/C ′ is also odd. Therefore, we have 2 -
(

r
r1,...,rn

)
.

Lemma 2.2.3 give the necessary condition when a multinomial coefficient being odd. This

could be use to classify all the multinomial coefficient that are odd. Thus, we shall study when∑n
i=1 ν(ri) = ν(r).

Lemma 2.2.4. Let r ∈ N. Suppose r1, . . . , rn ∈ N such that
∑n

i=1 ri = r, then
∑n

i=1 ν(ri) ≤ ν(r),

with equality if and only if
∑n

i=1bri/2jc = br/2jc for all j ∈ N.

Proof. By definition of ν, we have

n∑
i=1

ν(ri) =

n∑
i=1

∞∑
j=1

⌊
ri
2j

⌋
=

∞∑
j=1

n∑
i=1

⌊
ri
2j

⌋
≤
∞∑
j=1

⌊∑n
i=1 ri
2j

⌋
=

∞∑
j=1

⌊
r

2j

⌋
= ν(r).

The inequality become equality, precisely when
∑n

i=1bri/2jc = br/2jc for all j ∈ N.

Since we are considering polynomial over Z2. Binary expansion are important for determinate

odd multinomial coefficient. We shall view binary expansion of r ∈ N as a sequence in ~b =

(b0, b1, b2, . . .) ∈ {0, 1}ω ⊆ Nω, such that r =
∑∞

i=0 2ibi. For all r ∈ N, the binary expansion of

r is unique. Even though binary expansion is a sequence ~b ∈ {0, 1}ω, we shall still view binary

expansion as vector over Nω, and define the addition where for ~a = (ai)i∈N and ~b = (bi)i∈N, we

have ~a+~b = (ai + bi)i∈N. However, the binary map from N to Nω is not surjective anymore.



2.2. PARITY OF MULTINOMIAL COEFFICIENT 27

Definition 2.2.5. Let r ∈ N. We shall define ϕ : N → Nω such that ϕ(r) is the binary

expansion of r, for all r ∈ N. We shall define ψ : Nω → N such that for all ~b = (bi)i∈N, we have

ψ(~b) =
∑∞

i=1 2ibi.

Notice that ϕ is injective and Im(ϕ) =
⋃
n∈N
{0, 1}n. Also, we have ψ |Im(ϕ) is bijective.

Definition 2.2.6. Let (ai)i∈N, (bi)i∈N ∈ Nω. We say that (ai)i∈N, (bi)i∈N if and only if ai < bi

for all i ∈ N.

Theorem 2.2.7. Let r ∈ Z+
even. Let r1, . . . , rn ∈ N, such that

∑n
i=1 ri = r. Then 2 -

(
r

r1,...,rn

)
if

and only if
∑n

i=1 ϕ(ri) = ϕ(r).

Proof. (⇒) Suppose that 2 -
(

r
r1,...,rn

)
. By Lemma 2.2.3, we have

∑n
i=1 ν(ri) = ν(r). Let∑n

i=1 ϕ(ri) = (ai)i∈N ∈ Nω and ϕ(r) = (bi)i∈N ∈ Nω. Suppose that
∑n

i=1 ϕ(ri) 6= ϕ(r). No-

tice that ψ(
∑n

i=1 ν(ri)) = r, but (ai)i∈N is not the binary expansion sequence. Then, there we

have
∑∞

i=1 ai <
∑∞

i=1 bi. Then, we have

n∑
i=1

ν(ri) =
n∑
i=1

ai(2
i − 1) =

∞∑
i=1

ai2
i −

∞∑
i=1

ai <
∞∑
i=1

bi2
i −

∞∑
i=1

bi = ν(r).

This contradiction, because
∑n

i=1 ν(ri) = ν(r).

(⇐) Suppose that
∑n

i=1 ϕ(ri) = ϕ(r). Let
∑n

i=1 ϕ(ri) = (ai)i∈N ∈ Nω and ϕ(r) = (bi)i∈N ∈ Nω.

Then we have the equality
∑∞

i=1 ai <
∑∞

i=1 bi. Hence, we have

n∑
i=1

ν(ri) =
n∑
i=1

ai(2
i − 1) =

∞∑
i=1

ai2
i −

∞∑
i=1

ai =
∞∑
i=1

bi2
i −

∞∑
i=1

bi = v(r).

By Lemma 2.2.3, we have 2 -
(

r
r1,...,rn

)
.

Here are some examples. Consider the r = 263. Notice that we could write 242 = 128 + 64 +

32+16+2, which corresponds to the binary sequence~b = (0, 1, 0, 0, 1, 1, 1, 1, 0, . . .). Now we could
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choose r1, . . . , rn whose binary sequence sum up to, for example the following set of sequence

~r1 = (0, 1, 0, 0, 0, 0, 0, 0, 0, . . .) → r1 = 2.

~r2 = (0, 0, 0, 0, 1, 0, 1, 0, 0, . . .) → r2 = 16 + 64 = 80.

~r3 = (0, 0, 0, 0, 0, 1, 0, 0, 0, . . .) → r3 = 32.

~r4 = (0, 0, 0, 0, 0, 0, 0, 1, 0, . . .) → r4 = 128.

Then, we have
(

263
2,80,32,128

)
= 1633471477036128693318742491665881534559454973434868995429

2025952790918104236217325568597502619767727715, which is odd.

Corollary 2.2.8. Let k ∈ N. Then
(

2k

r1,...,rn

)
is odd if and only if

(
2k

r1,...,rn

)
=
(
2k

2k

)
= 1.

Proof. Notice that 2k corresponds to the binary sequence ~b = (0, 0, , . . . , 0, 1, 0, . . .), i.e. there is

a 1 on the kth position and 0 otherwise. Then, the only sequence that is less than equal to ~b is

either ~b or ~0, in N{ω}. Hence, we have
(

2k

r1,...,rn

)
if and only if

(
2k

r1,...,rn

)
=
(
2k

2k

)
= 1.

Intuitively, when we consider the polynomial (x1 + . . . + xn)2
k

in Z2[x1, x2, . . . , xn], it is

equivalent to consider x2
k

1 + · · ·+ x2
k

n .

2.3 Cascading Makeev with Greedy Algorithm

In this section, we shall study hyperplane equipartition with cascading Makeev, given that ~̀=

(2, 2, . . . , 2, 0, . . . , 0). We will study and compute the minimal dimension such that the polynomial

condition does not vanishes. Given H = {H1, . . . ,H2} a set of hyperplane, any two of among

H equipartition a mass could be represented by the polynomial (
∏n
i=1 xi)(

∏
1≤i<j≤n(xi + xj)).

Recalling the Vandermonde determinate (Equation 1.7.2).

∏
1≤g1+···+gk≤2

P(g1, g2, . . . , gk) =

x1 x2 · · · xk
x21 x22 · · · x2k
...

...
. . .

...
xk1 xk2 · · · xkk

=
∑
σ∈Sk

xkσ(1)x
k−1
σ(2) · · ·x

2
σ(k−1)xσ(k).

It is early to handle the polynomial when we consider the sum of as a sum. We shall use

Proposition Notice that Sn acts on the index. We know that |Sn| = n!, such that 2 | |Sn|. We
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shall first study the simplest case, when there are k hyperplanes H = {H1, . . . ,Hk} with vector

~m = (r, 0, 0, . . . , 0).

Theorem 2.3.1. Let ~m = (r, 0, 0, . . . , 0) ∈ Nk be a vector of measures, for some r ∈ N. Let

r = 2r1 + 2r2 + 2r3 + · · ·+ 2rn be the binary expansion, such that ri > ri+1. Then the polynomial

representation for (H, ~̀, ~m) does not vanishes in k2r1 + 2r2 + · · ·+ 2rn dimension.

Proof. Consider the polynomial representation for ~m = (r, 0, . . . , 0)( ∑
σ∈Sk

xσ(1) · · ·xkσ(k)
)r

=
n∏
i=1

( ∑
σ∈Sk

x2
ti

σ(1) · · ·x
k2ti
σ(k)

)
(2.3.1)

Notice that r1 > r2 > · · · > rn. Based on the binary expansion, we have 2r1 > 2r2 + · · · + 2rn .

We have

A = (xk2
r1

1 x
(k−1)2r1
2 · · ·x2r1k )

n∏
i=2

(x2
ri

1 x2·2
ri

2 · · ·xk2rik ) =
k∏
i=1

x
(k−i+1)2r1+i(2r2+···+2rn )
i ,

which is non-vanishing in dimension k2r1 + 2r2 + · · · + 2rn . Notice that such polynomial could

be obtained in
(

r
2r1 ,2r2+2r3+···+2rn

)
+C different ways to obtain this polynomial, where C ≥ 0 is

some sum of multinomial coefficient.

We shall show that
(

r
2r1 ,2r2+2r3+···+2rn

)
+ C is odd. Claim that C is sum of even multino-

mial coefficient, i.e. the multinomial coefficient
(

r
2r1 ,2r2+2r3+···+2rn

)
is the unique odd coefficient.

Let
(

r
s1,...,sm

)
be such multinomial coefficient. By the Theorem 2.2.7, we know that multino-

mial coefficient is odd if and only if
∑m

i=1 ϕ(si) = ϕ(r). It is equivalent to consider what are

σ1, . . . , σm ∈ Sk such that
m∏
i=1

(
xσi(1)x

2
σi(2)
· · ·xkσi(k)

)2ri
= A.

Claim that σ1(t) = k − t + 1 and σj(t) = t for all j ∈ {2, . . . ,m}. Proof by finite induction

on t. Base case t = k, consider xk2
r1

σ1(k)
. We have x

k2r1+(2r2+···+2rn )
1 is only term that has power

higher then k2r1 . Hence we have σ1(k) = 1, and σ2(1) = σ3(1) = · · · = σm(1) = 1. Hence,

the base case holds. Induction step, suppose that σ1(t) = k − t + 1 and σj(t) = t, for all

1 6= N ≤ t ≤ k. We shall show that N − 1 holds. If N − 1 = 1, we are done. Suppose that

N − 1 6= 1. Then, consider x
(N−1)2r1
σ1(N−1) . Notice that x

(N−1)2r1+(k−N+2)(2r2+···+2rn )
k−N+2 is the only
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remain terms that has power higher then (N − 1)2r1 . Hence, we have σ1(N − 1) = k − N + 2

and σ2(N − 1) = · · · = σm(N − 1) = N − 1. But this is exactly corresponds to the multinomial

coefficient
(

r
2r1 ,2r2+···+2rn

)
. Hence, we have C is even, and

(
r

2r1 ,2r2+···+2rn

)
is the unique odd

multinomial coefficient. Therefore, we have the polynomial representation does not vanishes.

Notice that the polynomial condition of ~m = (r, 0, . . . , 0) is
∏k
i=1 x

(k−i+1)2r1+i(2r2+···+2rn )
i ,

which is not tight in dimension k2r1 + 2r2 + · · · + 2rn . Notice that the power on the term is∏k
i=1 x

(k−i+1)2r1+i(2r2+···+2rn )
i arithmetic sequence, decreases by 2r1 − (2r2 + 2r3 + · · ·+ 2rn). Let

S(n) denote as the nth triangular number. Then, we have room for S(k−1) ·(k2r1 +2r2 + · · ·+

2rn) conditions. Naturally, we shall consider adding more masses to the vector ~m = (r, 0, 0, . . . , 0).

Corollary 2.3.2. Let H = {H1, . . . ,Hk}, for some k ∈ N. Let r ∈ N, with the binary expansion

r =
∑n

i=1 2ri. Then 2r1 +
∑n

i=2 2ri is the minimal dimension, such that polynomial condition of

~m = (r, 0, . . . , 0) does not vanishes.

Proof. By Theorem 2.2.7, for each i ∈ {1, . . . , n} we shall choose 2ri copies of a term from the

sum
∑

σ∈Sk
xσ(1) · · ·x

k
σ(k). We shall write

( ∑
σ∈Sk

xσ(1) · · ·x
k
σ(k)

)r
=

n∏
i=1

( ∑
σ∈Sk

x2
ri

σ(1) · · ·x
k2ri
σ(k)

)
.

Without loss of generality, we shall fix xk2
r1

1 , then, the minimal power can only be

xk2
r1+2r2+···+2rn

1 , when we multiply out.

Now, we shall consider adding more mass to the vector ~m = (r, 0, . . . , 0). By Corollary 2.3.2,

we cannot increases r. However, we could increases the second coordinate, and consider the

~m = (r, s, 0, . . . , 0), with H = {H1, H2, . . . ,Hk} hyperplanes, in dimension k2r1 + 2r2 + · · ·+ 2rn ,

where r = 2r1 + 2r2 + · · ·+ 2rn .

Theorem 2.3.3. Let k ≥ 2. Let r ∈ N, with binary expansion r =
∑n

i=1 2ri. Let H =

{H1, . . . ,Hk} be a collection of hyperplane. Let s = 2r1 − (2r2 + · · · + 2rn + 1). Then ~m =

(r, s, 0, . . . , 0) does not vanishes in dimension k2r1 + 2r2 + · · ·+ 2rn.
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Proof. Let d = k2r1 + 2r2 + · · · + 2rn . Notice that the corresponding polynomial condition for

~m = (r, s, 0, . . . , 0) is represented by( ∑
σ∈Sk

xσ(1) · · ·x
k
σ(k)

)r
︸ ︷︷ ︸

A

( ∑
γ∈Sk−1

xγ(1) · · ·x
k−1
γ(k−1)

)s
︸ ︷︷ ︸

B

Consider expanding A, every term consist highest power d after the expansion. Thus, if a term

done not consists xdk in A, then there exists some xdi , for some i ∈ {1, . . . , k}. When we multiply

out any terms in B, it must consists xai , for some a ≥ 1. Then, we have xd+ai has degree greater

than d, hence vanishes. Therefore, every non-vanishing term must consists xdk, hence we could

factor out xdk, where( ∑
σ∈Sk

xσ(1) · · ·x
k
σ(k)

)r
︸ ︷︷ ︸

A

( ∑
γ∈Sk−1

xγ(1) · · ·x
k−1
γ(k−1)

)s
︸ ︷︷ ︸

B

=
n∏
i=1

( ∑
σ∈Sk

xσ(1) · · ·x
k
σ(k)

)2ri ( ∑
γ∈Sk−1

xγ(1) · · ·x
k−1
γ(k−1)

)s
︸ ︷︷ ︸

B

=xdk

( ∑
σ∈Sk

xσ(1) · · ·x
k−1
σ(k−1)

)2r1 n∏
i=2

( ∑
σ∈Sk

x2σ(1) · · ·x
k
σ(k−1)

)2ri

︸ ︷︷ ︸
C

( ∑
γ∈Sk−1

xγ(1) · · ·x
k−1
γ(k−1)

)s
︸ ︷︷ ︸

B

.

=xdk

n∏
i=2

(x1 · · ·xk−1)2
ri

︸ ︷︷ ︸
factor of C

( ∑
γ∈Sk−1

xγ(1) · · ·x
k−1
γ(k−1)

)s+r
︸ ︷︷ ︸

D

.

Notice that ϕ(s + r) = (1, 1, 1, . . . , 1, 0, 0, . . .), where there are exactly r1 + 1 many leading 1.

Then, we shall rename binary decomposition of s+r as 2r1 +2r1−1 + · · ·+20. By Theorem 2.2.7,

we shall consider the term when expanding D:

(x1x2 · · ·xk−1k−1)
2r1

r1∏
i=2

(xk−11 xk−22 · · ·x1k−1)2
r1−i

.

Similar to Theorem 2.3.1, this term can be shown that it does not vanishes. (By finite induction.)

Altogether, we have the term(
xdk

n∏
i=2

(x1 · · ·xk−1)2
ri

)
(x1x2 · · ·xk−1k−1)

2r1
r1∏
i=2

(xk−11 xk−22 · · ·x1k−1)2
r1−i

.
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Notice that 2r1−(2r1−1+2r1−2+· · ·+21+1) = 1. Observe that the power is arithmetic sequence:

(2r2 + · · ·+ 2rn) + k2r1 =d;

(2r2 + · · ·+ 2rn) + (k − 1)2r1 +

r1∑
i=1

2r1−i =d− 1;

(2r2 + · · ·+ 2rn) + (k − 2)2r1 + 2

r1∑
i=1

2r1−i =d− 2;

...

(2t2 + · · ·+ 2tn) + 2r1 + k

r1∑
i=1

2r1−i =d− k + 1.

(The underlined section is a constant.) Therefore, this term is has odd coefficient and has highest

degree d. Hence, it does not vanishes.

We can conclude few special cases, by using the Theorem 2.3.3. These special cases are simpler,

could be proved by using different method. However, these Corollary are also implied by the

previous theorem, through few observations.

Corollary 2.3.4. Let ~m = (2t, 2t, 0, . . . , 0) ∈ Nk be a vector of measures, for some t ∈ N. The

polynomial representation for (H, ~̀, ~m) vanishes in k2t-dimension, unless ~m = (2t, 2t) ∈ N2.

Further more, the result it tight when k = 2.

Proof. Let ~m = (r, s, 0, 0, . . . , 0). Let r = 2r1 + · · · + 2rn . Suppose that we are in d = k2r1 +

(2r2 + · · · + 2rn) dimension. By Theorem 2.3.3, we have s ≤ 2r1 − (2r2 + 2r3 + · · · + 2rn + 1).

Notice that

r = 2r1 + 2r2 + · · ·+ 2rn︸ ︷︷ ︸
A

> 2r1 − (2r2 + 2r3 + · · ·+ 2rn︸ ︷︷ ︸
A

+1) = s.

Then, we have ~m = (2t, 2t, 0, 0, . . . , 0) vanishes. However, when we consider the case when k = 2,

we could simply compute the corresponding polynomial condition

(x1x
2
2 + x2x

2
1)

2t(x2)
2t = (x2

t

1 x
2·2t
2 + x2·2

t

1 x2
t

2 )x2
t

2 ≡ x2·2
t

1 x2·2
t

2 in Z2[x1, x2]/(x
2···2t
1 , x2···2

t

2 ).

Therefore, we k = 2 is a special case.

Corollary 2.3.5. Let k > 2. Let t, r ∈ N. Let ~m = (2t, s, 0, . . . , 0) ∈ Nk be a vector of measures.

The polynomial representation for (H, ~̀, ~m) non-vanishes in k2t-dimension, if s ≤ 2t − 1.
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Proof. Let ~m = (r, s, 0, 0, . . . , 0). Let r = 2r1 + · · · + 2rn . Suppose that we are in d = k2r1 +

(2r2 + · · · + 2rn) dimension. By Theorem 2.3.3, we have s ≤ 2r1 − (2r2 + 2r3 + · · · + 2rn + 1).

Notice that

r = 2r1 + 2r2 + · · ·+ 2rn︸ ︷︷ ︸
A

> 2r1 − (2r2 + 2r3 + · · ·+ 2rn︸ ︷︷ ︸
A

+1) = s.

Now, we shall observe that the term A ≥ 0. Hence, we have

2r1 − 1 ≥ 2r1 − 1−A = s,

with equality, when A = 0.

Example 2.3.6. Any vector ~m = (2, 1, 0, 0, . . . , 0), will not vanish in 2k−dimension.

Proof. Consider polynomial condition for ~m = (2, 1, 0, 0, . . . , 0) is given by( ∑
σ∈Sk

x2σ(1)x
4
σ(2)x

6
σ(3) · · ·x

2k
σ(k)

)( ∑
τ∈Sk

xτ(2)x
2
τ(3)x

3
τ(4) · · ·x

k−1
τ(k)

)
.

After expending the polynomial, there is a unique term obtained by (x2k1 x
2k−2
2 · · ·x2k)(x2x23 · · ·x

k−1
k )

can be unique obtained and does not vanish in Z2[x1, . . . , xk]/(x
2k+1
1 , . . . , x2k+1

k ).

We shall continuous the process, i.e. add more mass to the vector ~m = (r, s, 0, . . . , 0) greedily

under the same dimension d = k2r1 +2r2 + · · ·+2rn , mentioned in Theorem 2.3.1. Unfortunately,

the polynomial gets complicated. Even through the statement are not very complicated, prov-

ing it might require some different observation. The following theorem uses a relatively simple

argument by combinatoric methods.

Lemma 2.3.7. Let ~m = (r, s, 0, 0, . . . , 0) be a vector of mass in Nk. Consider expanding the

corresponding polynomial condition P ∈ Z2[x1, . . . , xk]/(x
d
1, . . . , x

d
k). If A be a non-vanishing

term after the expansion, then A = xd1x
a2
2 · · ·x

ak
k , where ai 6= aj for all i, j ∈ {2, . . . , k}.

Proof. Proof by contradiction, Suppose that ai = aj for some i, j ∈ {2, . . . , k}. Since we know

that A is a term of the product( ∏
σ∈Sk

xσ(1)x
2
σ(2) · · ·x

k
σ(k)

)r( ∏
σ∈Sk−1

xσ(2)x
2
σ(3) · · ·x

k−1
σ(k)

)s
.
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Since we ai = aj , we could interchange the index xi and xj while choose the terms from the

product. Hence, in additional there is |S2| acting on the index. Hence, we have |S2| = 2 divides

the coefficient, i.e. there are even ways to chooses this particular term. Hence, we have A vanishes

in Z2.

The Lemma 2.3.7 shows that any non-vanishing term cannot have repeated power, (for ex-

ample the term x51x
4
2x

4
3x

2
4 will definitely has even coefficient.)

Theorem 2.3.8. Let k ≥ 5. Let r = 2r1 + · · ·+ 2rn, s = 2r1 − (2r2 + · · ·+ 2rn + 1), and t ∈ N.

Let ~m = (r, s, t, 0, . . . , 0) be a vector of mass in Nk. Consider dimension d = k2r1 +2r2 +· · ·+2rn.

Suppose that the polynomial condition for ~m = (r, s, t, 0, . . . , 0) does not vanishes, then t = 0.

Proof. First, we shall recall the result from Theorem 2.3.3, such that any non-vanishing term of

given polynomial representation satisfies the following condition:

1) Non-vanishing term the power for x1 must be d, otherwise vanishes.

2) The total degree is d+(d−1)+(d−2)+· · ·+(d−k+1). There are totally 1+2+· · ·+k−1 =

S(k − 1) degree remain.

Suppose that t ≥ 1. We shall consider the minimal case when t = 1, where we are adding S(k−2)

many conditions. Hence, there are S(k − 1) − S(k − 2) = k − 1 degree left. We shall proof by

contradiction. Suppose that there exists a non-vanishing term of A the polynomial condition

~m = (r, s, 1, 0, . . . , 0). Since t = 1 does not relates to the the first hyperplane H1. Then x1 of the

term A has degree d. Without loss of generality, suppose that x2 of A has the highest degree d,

as well. This implies that x3, x4, . . . , xk has total degree (k− 2)d− (k− 2) = (k− 2)(d− 1). We

shall recall that k ≥ 5, and d = k2r1 +2r2 + · · ·+2rn ≥ k. By Lemma 2.3.7, we have x3, x4, . . . , xk

must have distinct power, i.e. the maximum degree we could have is d, d−1, d−2, . . . , d−(k−2).

There are S(k − 2) degree left, but S(k − 2) > k − 1, for all k ≥ 5. Therefore, the term A must

vanishes, by Lemma 2.3.7. This is a contradiction.
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Theorem 2.3.8 tells us that if the vector ~m = (r, s, 0, 0, . . . , 0) is long enough, i.e. the number of

hyperplanes is large. Then, the given value r = 2r1 + · · ·+2rn and s = 2r1−(2r2 + · · ·+ 2rn + 1),

is “temporarily” tight in the given dimension d = k2r1 + 2r2 + · · · + 2rn , (i.e. If any 2 of H

equipartition r masses, and any 2 of H2 equipartition s masses, we cannot impose any Makeev

condition on H3). However, the final polynomial condition is

∑
σ∈Sk

xdσ(1)x
d−1
σ(2) · · ·x

d−k+1
σ(k) = xd−k1 xd−k2 · · ·xd−k3

∑
σ∈Sk

xkσ(1)x
k−1
σ(2) · · ·xσ(k) (2.3.2)

Observe that the underline section is exactly polynomial condition for the traditional Makeev

problem, i.e. any two of H equipartition the given mass. Moreover, we have total S(k − 1)

degrees of freedom. This implies that we could add more conditions. It is natural to ask, given

~m = {1, 0, 0, . . . , 0}, where could impose an other Makeev condition? How many masses could

any 2 of Ht equipartition?

Proposition 2.3.9. Let ~m = (1, 0, . . . , 0, 1, 0, . . . , 0) with length k. The corresponding polyno-

mial is non-vanishing when the second 1 has position greater than dk/2e.

Proof. Consider polynomial condition for ~m = (1, 0, . . . , 0, 1, 0, . . . , 0) is given by( ∑
σ∈Sk

xσ(1)x
2
σ(2)x

3
σ(3) · · ·x

k
σ(k)

)( ∑
τ∈Sk−m

xτ(m)x
2
τ(m+1)x

3
τ(m+2) · · ·x

k−m
τ(k)

)
.

Consider the polynomial obtained by (xk1x
k−1
2 · · ·xk)(xk−mm xk−m−1m+1 , . . . , xk) is unique and does

not vanish.

Conjecture 2.3.10. Let ~m = (1, 0, . . . , 0, 1, 0, . . . , 0) with length k. The corresponding polyno-

mial condition vanishes, when the second 1 has position less than dk/2e.
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3

Cascading Makeev with ~̀ ∈ {0, 1, 2, 3}k

In this chapter, we are going to study when ~̀ ∈ {0, 1, 2, 3}k, for k = |H| is the number of

hyperplanes. Having 3 in the vector ` means “any three subsets of collection of hyperplane

equipartition the given set of masses in ~m.”

3.1 Computation Example for ~̀ = (3, 0, 0, 0)

We shall consider the collection of hyperplane H = {H1, H2, H3, H4}. We shall consider the case

when ~̀ = (3, 0, 0, 0) and ~m = (1, 0, 0, 0), i.e. any three subset of H equipartition the mass. We

shall compute polynomial condition explicitly.

First, we shall relax the condition of dimension, by assuming that d ∈ N is arbitrarily large.

Since we are considering Z2[x1, x2, x3, x4]/{xd1, xd2, xd3, xd4}, because d is large enough, then any

terms of the polynomial wouldn’t vanish due to the degree. Hence it is equivalent to consider

the polynomial under the ring Z2[x1, x2, x3, x4]. Notice that the polynomial representation is

x1x2x3x4
∏

1≤i<j≤4
(xi + xj)︸ ︷︷ ︸

A

∏
1≤i<j<k≤4

(xi + xj + xk)︸ ︷︷ ︸
B

.

We shall observe that the product A is the Vandermonde determinate, where we could write as

A =
∑
σ∈S4

xσ(1)x
2
σ(2)x

3
σ(3)x

4
σ(4). (3.1.1)
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Now we shall expand B, where we have

B =(x21 + x22 + 2x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4)(x1 + x3 + x4)(x2 + x3 + x4)

=(x31 + x1x
2
2 + x21x3 + x21x4 + x1x2x3 + x1x2x4 + x1x3x4

+ x21x3 + x22x3 + x1x
2
3 + x1x3x4 + x2x

2
3 + x2x3x4 + x23x4

+ x21x4 + x22x4 + x1x3x4 + x1x
2
4 + x2x3x4 + x2x

2
4 + x3x

2
4)(x2 + x3 + x4)

=(x31 + x1x
2
2 + 2x21x3 + x22x3 + x1x

2
3 + x2x

2
3 + 2x21x4 + x22x4 + x23x4 + x1x

2
4 + x2x

2
4 + x3x

2
4

+ x1x2x3 + x1x2x4 + 3x1x3x4 + 2x2x3x4)(x2 + x3 + x4)

=(x31x2 + x1x
3
2 + x32x3 + x32x4 + x31x2 + x1x

3
3 + x2x

3
3 + x33x4 + x31x4 + x1x

3
4 + x2x

3
4 + x3x

3
4

+ 2x22x
2
3 + 2x22x

2
4 + 2x23x

2
4

+ 2x1x2x
2
3 + 2x2x

2
3x4 + 2x1x2x

2
4 + 2x2x3x

2
4 + 2x1x

2
2x3 + 2x1x

2
2x4 + 2x22x3x4 + 2x1x3x

2
4 + 2x1x

2
3x4

+ 3x1x2x3x4)

Thus, we have

B = x31x2 + x1x
3
2 + x32x3 + x32x4 + x31x2 + x1x

3
3

+ x2x
3
3 + x33x4 + x31x4 + x1x

3
4 + x2x

3
4 + x3x

3
4 (3.1.2)

We shall observe that the double-underlined sum has exactly 12 terms, and they are distinct.

There are 12 different ways to choose two distinct elements from {1, 2, 3, 4}. Unfortunately, this

is not action over S4, i.e. it is not a sum over S4. (Because we know that |S4| = 24, but the

underlined summation does not have 24 terms.) Here are we shall introduces the terminology of

group stabilizer and group orbit [9, Chapter 4].

Definition 3.1.1. Let G be a group, such that G acts on a set X. The orbit of the element

x ∈ X is the set of elements in X, denote as OrbG(x), such that

OrbG(x) := {xg | g ∈ G}. (3.1.3)

Furthermore, if xg = y for some y ∈ X, then, we say y is in the orbit of x under G.
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Definition 3.1.2. Let G be a group, such that G acts on a set X. The stabilizer subgroup of,

with respect to x ∈ X, denote as StabG(x), such that

StabG(x) = {g ∈ G | xg = x}. (3.1.4)

Furthermore, if xg = x, we say x is fixed point of g, or, the element g fixes x.

Proposition 3.1.3. (Orbit Stabilizer Lemma.) Let G be a group which acts on a finite set X.

Let x ∈ X. Then, we have

|Orb(x)| = |G|
|Stab(x)|

.

Proof. Notice that Stab(x) ≤ G. Now we shall consider the distinct right coset of Stab(x), denote

as C. Let f : C → Orb(x), such that f(c) = xc. Claim that f is bijection. Notice that for all

g ∈ G, we could write g = sc for some s ∈ Stab(x) and c ∈ C. Then, we have xg = xsc = xc.

Hence, each distinct right coset represents an element in Orb(x). Thus, we have f is bijective.

Notice that |Orb(x)| = |C| = |G|/|Stab(x)|.

In this section, we are going to talk about S4. For simplicity, we shall omit the subscript, and

use Orb(x) and Stab(x) instead. Now, we shall use the idea of orbit and stabilizer to generalize

represent the sum above. Recalling that we use summation in (3.1.1). Notice that this is a sum-

mation over σ ∈ S4. This mean that we are considering the group S4. Notice that we are summing

over product, such that S4 is acting on the subscript. Observe that subscript could be viewed as

permutation of {1, 2, 3, 4}, we shall denote P({1, 2, 3, 4}). We shall will element in P({1, 2, 3, 4})

as a order 4−tuple. (For example, the element (1, 2, 3, 4) ∈ P({1, 2, 3, 4}).) So we have S4 action

over P({1, 2, 3, 4}), such that for σ ∈ S4 we have (a, b, c, d)σ = (σ(a), σ(b), σ(c), σ(d)).

Claim 3.1.4. The action S4 on the set {(a, b, c, d) | a 6= b 6= c 6= d; and a, b, c, d ∈ {1, 2, 3, 4}}

is transitive.

Proof. For (A,B,C,D) and (A′, B′, C ′, D′) ∈ {(a, b, c, d) | a 6= b 6= c 6= d; and a, b, c, d ∈

{1, 2, 3, 4}} we shall consider following map, given by the picture below.
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In particular, for this sum above in (3.1.1), we the sum could be written as (1, 2, 3, 4)S4 . Hence,

we have

∑
σ∈S4

xσ(1)x
2
σ(2)x

3
σ(3)x

4
σ(4) =

∑
(a,b,c,d)∈(1,2,3,4)S4

xax
2
bx

3
cx

4
d (3.1.5)

We shall observe that Orb(1, 2, 3, 4) is has order 24. Hence, there are exactly 24 term in the right

hand side of the equation.

Now, we shall take a look at the polynomial:

x31x2 + x1x
3
2 + x32x3 + x32x4 + x31x2 + x1x

3
3 + x2x

3
3 + x33x4 + x31x4 + x1x

3
4 + x2x

3
4 + x3x

3
4.

The set of subscript is {(a, b) | a 6= b and a, b ∈ {1, 2, 3, 4}}. We know that there are exactly 12

distinct subscripts. Notice that S4 act on the set of subscript, such that for subscript (a, b) and

σ ∈ S4, we have (a, b)σ = (σ(a), σ(b)).

Claim 3.1.5. The group S4 acts on {(a, b) | a 6= b and a, b ∈ {1, 2, 3, 4}} transitively.

Proof. We shall denote S = {(a, b) | a 6= b and a, b ∈ {1, 2, 3, 4}}. Since we know that |S4| = 24,

and |S| = 12. We shall view S as restrictions of

S ′ = {(a, b, c, d) | a 6= b 6= c 6= d, and a, b, c, d ∈ {1, 2, 3, 4}}
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(The S ′ is the labeling of square) into the first two coordinate. Then, in term for S ′ we shall

consider (A,B,C,D)→ (A′, B′, C ′, D′) and (A,B,C,D)→ (A′, B′, D′, C ′).

Hence, we have the action is transitive. Also, there are exactly two element in S4 that map

(A,B) 7→ (A′, B′). (An other interpretation is by using the orbit stabilizer Lemma 3.1.3, there

are exactly two element in S4 fix (A,B). Then, we have |Orb(A,B)| = |S4|/|Stab(A,B)| = 12,

which is exactly the size of S.)

Hence, we have could write the sum B as

B =
∑

(a,b)∈(1,2)S4

x3axb

Now, we could compute the product AB. Where we could write

AB =

( ∑
σ∈S4

xax
2
bx

3
cx

4
d

)(
x1x2x3x4 +

∑
(a,b)∈Orb(1,2)

x3axb

)
= 3

∑
σ∈S4

x2σ(1)x
3
σ(2)x

4
σ(3)x

5
σ(4) +

∑
σ∈S4

xσ(1)x
2
σ(2)x

5
σ(3)x

6
σ(4) +

∑
σ∈S4

xσ(1)x
3
σ(2)x

4
σ(3)x

6
σ(4)+

+
∑
σ∈S4

xσ(1)x
2
σ(2)x

4
σ(3)x

7
σ(4). (3.1.6)

(Remark, we since we are summing over (a, b) ∈ Orb(1, 2), we shall split into different cases,

when we expanding the product. Again, if some of the power for xσ(1), xσ(2), xσ(3), xσ(4) are equal,

when we sum over S4 it vanishes. Hence, we are only considering the product that give distinct

power, which are the for terms above.) So far, we only consider the case when the coefficient is

odd. Now, we shall consider the dimension constrain. In particular, we shall observe that AB
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does not vanish when d = 5. We could still ask the question if we can throw in anther layer of

cascade condition. We have

AB =
∑
σ∈S4

x2σ(1)x
3
σ(2)x

4
σ(3)x

5
σ(4) ∈

Z2[x1, x2, x3, x4]

(x61, x
6
2, x

6
3, x

6
4)

.



Appendix A
Computer Programming

Sometime it is hard to see the pattern without examples. Also, it is good to check solutions by

some examples. However, it is computationally intensive to expand all the terms by hand. On

the other hand, it is way faster to let a computer to do the job.

A.1 Coding in Mathematica for Polynomial Condition

The following piece of code is a function HyperMain where given {xi, xi+1, . . . , xj} and m ∈ Z+

find the product
∏
i≤t1≤···≤tm≤j(xt1 + · · ·+ xtm).

HyperMain[min_, max_, m_] :=
Module[

{vanish = 1, index = {}, indexM = {}, a = {}, b = {}, polys = {}},
For[i = min, i <= max, i++, AppendTo[polys, Subscript[x, i]]];
For[i = 1, i <= max - min + 1, i++, AppendTo[index, i]];
For[i = min, i <= max, i++, AppendTo[a, 0]];
index = Subsets[index, {m}];
For[i = 1, i <= Length[index], i++,

b = a;
For[j = 1, j <= m, j++, Part[b, Part[Part[index, i], j]] = 1];
AppendTo[indexM, b];

];
For[i = 1, i <= Length[indexM], i++,
vanish = vanish*indexM[[i]].polys];
vanish

];
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Example A.1.1.

HyperMain[1, 4, 3] = (x1 + x2 + x3)(x1 + x2 + x4) + (x1 + x3 + x+ 4)(x2 + x3 + x4);

HyperMain[1, 4, 2] = (x1 + x2) (x1 + x3) (x2 + x3) (x1 + x4) (x2 + x4) (x3 + x4) ;

The following piece of code is a function Equipartition where given H = {Hi, H2, . . . ,Hk}

with m outputs the polynomial condition for for any m subset of H equipartition a measure.

(This function uses HyperMain.)

Equipartition[min_, max_, m_] :=
Module[

{vanish = 1, count = m},
While[count != 0, vanish = vanish*HyperMain[min, max, count]; count--];
vanish

]

Example A.1.2.

Equipartition[1, 4, 2] = x1x2x3x4 (x1 + x2) (x1 + x3) (x2 + x3) (x1 + x4) (x2 + x4) (x3 + x4)

The following piece of code is a function FullOrthogonality where given H = {H1, . . . ,Hk} a

collection of hyperplanes, returns the Full orthogonality condition in the polynomial ring.

FullOrthogonality[min_, max_] :=
Module[{Mods = {}},

For[i = min, i <= max, i++, AppendTo[Mods, Subscript[x, i]]];
Equipartition[min, max, 2]/Apply[Times, Mods]

]

Example A.1.3.

FullOrthogonality[1, 4] = (x1 + x2) (x1 + x3) (x2 + x3) (x1 + x4) (x2 + x4) (x3 + x4)

The following piece of code is a function Modding, given the number of hyperplanes k and the

dimension d return polynomial we should mod out, i.e. the set of polynomial {2, xd1, xd2, . . . , xdk}.

Modding[k_, d_] :=
Module[

{Mods = {2}},
For[i = 1, i <= k, i++, AppendTo[Mods, Subscript[x, i]^(d + 1)]];
Mods

]
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Example A.1.4.

Modding[8, 7] =
{

2, x81, x
8
2, x

8
3, x

8
4, x

8
5, x

8
6, x

8
7, x

8
8

}
.

Here are few built in function we are going to use for computation. The function Polyno-

mialMod is a built in function, that takes a polynomial and a set of modules, outputs the

remained.

A.2 Coding with Cascading Makvee

Combining all the code above, this allowed us to compute the polynomial condition with Cas-

cading Makvee condition. There are few sample computations.

Example 3.2.1. Let ~m = (2, 1, 0, 1) and ~̀ = {2, 2, 0, 2}. Then, we have the corresponding

polynomial condition is

Equipartition[1, 4, 2]2Equipartition[2, 4, 2]Equipartition[4, 4, 2]

=x21x
3
2x

3
3x

4
4 (x1 + x2)

2 (x1 + x3)
2 (x2 + x3)

3 (x1 + x4)
2 (x2 + x4)

3 (x3 + x4)
3

Suppose that we are in R8, then we are in the polynomial ring Z2[x1, x2, x3, x4]/{x91, x92, x93, x94}.

Then,

PolynomialMod[Equipartition[1, 4, 2]2 ∗ Equipartition[2, 4, 2]Equipartition[4, 4, 2],Modding[4, 8]]

=x32x
8
3x

8
4x

8
1 + x52x

6
3x

8
4x

8
1 + x62x

5
3x

8
4x

8
1 + x82x

3
3x

8
4x

8
1 + x52x

7
3x

7
4x

8
1+

x72x
5
3x

7
4x

8
1 + x62x

7
3x

6
4x

8
1 + x72x

6
3x

6
4x

8
1 + x72x

8
3x

4
4x

8
1 + x82x

7
3x

4
4x

8
1

Hence, when d = 8 the polynomial representation does not vanish. On the other hand, Suppose

that we are in R7. Then, we are in the polynomial ring Z2[x1, x2, x3, x4]/{x81, x82, x83, x84}, where

PolynomialMod[Equipartition[1, 4, 2]2 ∗ Equipartition[2, 4, 2]Equipartition[4, 4, 2],Modding[4, 8]] = 0,

Therefore, we can conclude that the minimal dimension with this particular set up is d = 8.
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