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Abstract

We will be looking into emotion detection and manipulation within a body of text based
off of Robert Plutchik’s basic emotions. This project encompasses building probabilistic and
lexical models, full-stack web development, and dataset creation and application. We will build
our models off of Latent Dirichlet Allocation—a grouping model common in natural language
processing (nlp) and lexicons compiled through crowdsourcing. User testing is undergone as a
means of measuring the effectiveness of our models. We discuss the application of concepts and
technologies including MongoDB, REST APIs, containerization, IaaS, and web frontends.
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1
Introduction

This project is twofold, encompassing natural language processing (nlp) and full stack web

development. Regarding nlp, we are in the realm of emotion analysis as we seek to algorithmically

discern emotion within text. We largely take our conceptions of emotion from Robert Plutchik.

Plutchik’s Wheel [26]

Figure 1.0.1. Emotion is a complex chain of loosely connected events that begins with stimulus and
includes feelings, psychological changes, impulses to action and specific, goal-directed behavior. [42]

Plutchik’s wheel of emotions 1.0.1 relates to color theory, such that an emotion can be seen as

a mixture of emotions (i.e. “anticipation” lays between “joy” and “anger”). The core pillars of

emotion are joy, trust, fear, surprise, sadness, disgust, anger, and anticipation. Due to lexical

limitations, our models will only be based off of anger, sadness, joy, and fear. Emotion detection
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within text is a rather difficult problem, although it has grown in popularity recently. The

dichotomy between difficulty and popularity results in what Seyeditabari et al. articulate as

insufficient datasets [43]. They mention several available datasets, as well as different methods in

use, including the affect dataset from Mohammad and Turney [41] that we use; the methods

noted fall into the supervised and unsupervised categories. The supervised methods include

data collection through Twitter scraping and large surveys, as well as their use within support

vector machines (SVM), naive Bayes classifiers, and k-nearest neighbor (KNN) clustering. The

unsupervised methods include Probabilistic Latent Semantic Analysis (PSLA), simple lexical

approaches, and point-wise mutual information (PMI) [43]. We will make two unsupervised

models for emotion detection based on our subset of emotions from Plutchik’s wheel; the first

model will take a lexical approach, where we take the average token scores for each affect based

on Mohammad and Turney’s word-affect and affect-intensity lexicons; the second will be based

on Latent Dirichlet Allocation (LDA), a generalization of PSLA by Blei et al. [40]. In addition to

our two emotion-detection models, we look into word replacement models based on a thesaurus

[3] and our scoring models. One such model performs arbitrary replacement based on synonyms

of tokens; the other seeks to maximize score in one of our affect categories.

A large focus was placed on full-stack web development: dataset creation/consumption, database

management, server configuration, creating REST APIs, and creating a web frontend. We leverage

several technologies for this, including Python with Flask [39], Golang and the mongo-go-driver

[21], HTML/CSS/Javascript via VueJS [36], and Docker [9].
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Figure 1.0.2. architecture diagram

Figure 1.0.2 serves to describe our application. Once a user requests our site, our reverse-proxy

forwards this request to our frontend server. Then, when the user accesses the thesaurus page,

they see results from calling our CRUD-wrapper API that accesses our database. When they use

the models on the site they are making requests to the model API—which then makes requests

to the CRUD API. For scalability, ease of deployment, and security benefits, the frontend, model

API, CRUD API, and database are all in containers. All of this sits on a virtual machine from

DigitalOcean [8], with the code available on Github [11].

This paper will discuss the design and implementation of emotion detection and manipulation

based on our subset of Plutchik’s basic emotions and user-tested sentiment. In chapters two and

three respectively, we discuss server configuration and database construction. Next, in chapter

four, we discuss the implementation and usage of our CRUD-wrapper API. Finally, in chapters
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five and six, we define our models and present a frontend that allows for user interaction. Results

and next steps are discussed in the context of our experiment in chapters seven and eight.



2
Hosting

The first step in implementing the defined architecture is discussing our options for hosting our

services; this will necessitate some sort of server. While we could do everything locally to save

some of the configuration headache, this limits the accessibility of our application to those that

can access our repository and recreate our project. In the pursuit of functionality, accessibility,

and thoroughness, we will need a server to put this on.

2.1 Server Options

After ruling out Make as our distribution strategy, we still have several options for this project in

terms of hosting. These options come as a slew of acronyms: IaaS, PaaS, and I suppose some

bare-metal solution could work. The last option would consist of a computer running 24/7 in my

dorm room, along with some router configurations that might have the college’s IT department

knocking at my door, thus leaving the others as the real contenders. There’s a certain balance

between PaaS (Platform as a Service) and IaaS (Infrastructure as a Service), each with some

pros and some cons. IaaS can provide an experience similar to working on your own computer; it

is as close to the bare-metal (often called “on-premises”) solution as possible, where we would

pay for a virtual machine (VM) and networking. With IaaS we are leveraging server farms, and

are more-or-less renting a server. PaaS is more nuanced, as it plays a role between IaaS and SaaS
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(Software as a Service, like Google Apps, Dropbox, etc.), and tends to abstract desirable aspects

of IaaS such as security, metrics, DNS, and so on.

We ultimately went with IaaS via DigitalOcean [8], a popular cloud services platform among

names like AWS, GPC, and Azure. This gives us the development advantage of having all our

services in the same place—allowing us to more easily build and tear down our project—as

opposed to the spread out nature of PaaS. There are exceptions to this heuristic, such as

Kubernetes, Openshift, and other CaaS (Containers as a Service) platforms, that would allow

us to keep centralized services, but pricing is one of the biggest sellers for our use of IaaS. We

lose some of the ease of scalability, but that is not an aspect that we are terribly concerned with

while developing the core of the project. As we went with IaaS, we will get our hands dirty with

SSL, proxies, and other niceties that PaaS would shield us from.

It should go without saying that it’s wise to stray from doing all things as the root user. By

default, we can only ssh into root, and in order to get around this, we will have to add a user.

We’ll still need administrative access, so we’ll be sure to add our new user to the sudo group.

Then to finish our user setup, we must patch up our ssh configuration: we want to ssh as the

created user and disable ssh for root.

ssh root@ <IP_ADDRESS >

adduser <USERNAME >

usermod -aG sudo <USERNAME >

rsync --archive --chown=<USERNAME >:<USERNAME > ~/.ssh /home/<

USERNAME >

vim /etc/ssh/sshd_config # (set "PermitRootLogin" to "no")

Figure 2.1.1. Adding a new user, and removing ssh access for root

As a convenience, we will add an ssh config on our personal machine. This saves the hassle of

keeping track of IP addresses and users and keys, then we can enter through the name of the

entry ssh <entry-name>.
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2.2 Containerization

Containers are an industry-molding alternative to virtual machines for running OS agnostic

programs. We are using Docker to deploy each of our services; Docker is a wildly popular open

source project for creating, distributing, and running containers.

Figure 2.2.1. Dockerization vs Containerization [30]

On each side of figure 2.2.1, we have a layer of apps on top of their dependencies, all of which run

on top of some infrastructure. The apps and “bins/libs” are our binaries/executables/processes

along with their source-code/libraries that we are used to writing and running in our day-to-day

as programmers. The infrastructure is just that: the silicon and bare metal that we are running

on top of. That wraps up the local development experience, which has drawbacks when it comes

to distribution/deployment.

The “it worked on my computer” dilemma is what virtualization and containerization are

here to address. Platform-independent programs result from the abstraction of these processes

and dependencies from the contents of their user space. Virtual machines tackle this by building

entire guest operating systems on top of a hypervisor (also known as a virtual machine monitor),

which serves to channel access to hardware and thus allow for multiple operating systems to run

on one host operating system.
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However, operating systems are quite large, and there is a lot of waste with virtualization. With

the industry going towards cloud computing, we needed smaller, faster solutions. Containerization

seeks to leverage the host operating system, and rather than keep several guest-os instances, we

have a single container runtime environment. This is a similar solution to that which the JVM

provided in the 1990’s: the program is to run on a layer that is abstracted from the OS. This

then begs the question of whether the JVM is necessary within the context of containerization: if

we can specify the “machine” that our program is run on in a replicable fashion, what purpose

does the JVM serve? This gets at a core problem of containerization, in that we want to have

our containers as small as possible. This way we save on resources, and—in the case of serverless

architecture—speed.

This may not seem all that important, as we are only talking on the order of megabytes. But

in the days where serverless architecture/microservices are growing in popularity, there is an

ever-increasing need for quick cold-start times (starting an idle container, should none be active

and available). Serverless computing being a platform in which cloud providers provision your

resources, and the customer is charged for active time rather than paying for a more traditional

fixed-rate server. This is attractive as it isn’t wasteful and is incredibly scalable, but there’s

always a chance that your containers are down when a request is made; in the event that we have

a cold start, the containers must be reinitialized to fulfill the request. Additionally, containers

must share their host’s kernel, which means that they cannot be as secure as virtual machines,

which is something that we have to take into consideration.

2.2.1 Defining Containers

With containerization, the name of the game is modularity; we generally aspire to have per-process

containers. Given this per-process goal, we will need to have a container for each independent

service of our application, thus my one web app comprised of a frontend, a database, a CRUD-

wrapping API, a model API, and a server/reverse-proxy has five containers: one for each aspect.

With inter-container dependencies, we see a similar struggle arise with the management of

individual containers. Docker-compose is a tool that allows for the definitions/instructions for
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multiple containers, allowing us to deploy our application with a single command. This is specified

in a yaml file and maps nicely to standard docker cli arguments. We note things like Dockerfile

location, port forwarding, networks, inter-container dependencies, volumes, environment variables

and so on. These are necessary as a means of communicating between the host and the container,

between the containers themselves, and for the preservation of data once a container is killed.

Golang compiles to binaries per OS, which is excellent news for us! If we can compile to binaries,

we don’t need to keep all the installation business around, so we simply copy over the source

code, install the packages, and compile as a build stage. Then we can copy over the executable

to a smaller base image, expose our port, and run! It’s a process similar to a writing standard

shell script, and we are generally concerned with the resulting size. This was an example of a

multistage Dockerfile, where we separate the compilation stage from the runner stage; this is

quite common as a measure of reducing image size.

The Python Dockerfile took was initially very straightforward, but additional modules led

to a rewrite. In the beginning, it was more or less copying our files, running pip install -r

requirements.txt, exposing a port, and running. Adding gensim as a dependency required

certain libraries not present in our Alpine base image (Alpine being a remarkably small linux

distribution). We ultimately switched to a different base image to avoid some of the guesswork

involved in tracking down the missing dependencies, although if we were to place a bigger priority

on container performance, there are strategies for reducing the size of Python containers. Among

these are compiling with Cython and pip install-ing your code base [23].

The Dockerfile for the frontend is refreshingly simple. We copy over the source code, install all

the dependencies, and build our app. Then we follow our example from the Golang container

and run the webserver from a smaller nginx image. We install the Vue CLI tools separately from

the other node dependencies. This is because docker caches intermediate image tags per layer

(each line in the Dockerfile), which we may run from; there is thus a balance between giving

more steps for debugging and writing compact steps to save space.
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The MongoDB and Nginx containers are as easy as can be. We change nothing from the base

images! We just interface with them through container properties, specifying ports, environment

variables, etc.

Within our docker-compose file, we naturally define a service for each previously mentioned

aspect. The common pieces are that each service is given the location of the Dockerfile or image,

all are set to restart unless-stopped (as we will only be deploying a single instance of this), each

is given a tty in case anything goes wrong, each service is given a port mapping, and everything

is added to a network. Outside of this, we link the Golang container to the database, and we are

good to go! From here we can build our cluster, run it, and tear it down at will, all by running

docker-compose build | up | down.

Since this deployment is in essence a personal project, we won’t be concerned with auto-scaling

and load-balancing. Should the need arise, everything is fully containerized, and it is just a

matter of migrating to a container orchestration platform like Kubernetes.



3
Database Creation

We are using MongoDB [22] as our database. This is a NOSQL, document-based database

that uses BSON (binary JSON). The databases are organized into collections of documents,

where collections are analagous to tables, and documents are self-describing entries. We have

five collections: affectintensity, color, senselevel, vad, and words. The first four are from

lexicons sourced from Mohammad and Turney [41], and the words collection was scraped from

an online thesaurus [3].

3.1 Thesaurus

As we are building models to analyze/alter the tone of a body of text while attempting to preserve

semantics, we suppose that swapping a word for a synonym may alter the tone of its enclosing

sentence. Consequently, we would like to aggregate some relative relationship between some set

of tones and groups of synonymous words. Upon creating such a dataset, we may interchange a

word with a synonym according to a difference in tone: the sentence ”That person is cool.” may

carry a different tone that ”That person is unemotional.”
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3.1.1 API Choice

There are a few reasons to construct or reconstruct our own thesaurus. First and foremost,

this allows us to add and remove entries at will, rather than relying on existence within a

third-party dataset; this becomes more important with word processing where we would like

to store word-stems with the words themselves. There is an issue with cost as well: APIs are

rarely free past some established number of calls in a given time interval or may be free only

for a period of time. This software will function with minimal cost—ideally the only cost is in

hosting. Finally, this is a project in the realm of software engineering; while it is often better to

rely on existing services—standing on the shoulders of those who came before you—it is also

important to know how to create your own services.

3.1.2 Implementation

We created the thesaurus by web scraping, which is a large aspect of data-collection and thus is

often a necessity in the sphere of machine learning. Of course, it is possible to compile a thesaurus

using other means—surely one could buy a physical thesaurus and type up all the entries or even

automate such tasks with OCR—, but we are interested in constructing a thesaurus as painlessly

as possible—it is only one aspect of our project after all.

Choosing a site

Web scraping often comes with a give and take. There are several existing online thesaurus

services, and after careful review we landed on John Watson’s Big Huge Thesaurus [3]. We began

with trying thesaurus.com [33], but they have protections against traditional scraping. There are

many of such protections including lazy-loading content, providing fake data, gating with services

like Captcha, even automatically altering the page’s HTML. It seemed as if thesaurus.com had

been randomizing their CSS classes and either lazy-loading content or providing fake data. While

we could likely get around this with an automated browser like Selenium [31], as the CSS classes

are only a deterrent if scraping over a large time interval and the content would almost certainly

https://www.thesaurus.com
https://www.thesaurus.com


3.1. THESAURUS 13

exist within an automated browser session, we should respect that this site has practices in place

to prevent scraping.

There may be protections against web scraping in place that we ought to honor, or there are

often poorly laid out websites that would be a pain to use despite being open source, or the

site may simply not provide all the information we would like. The latter is best exemplified by

moby [19] which we may come back to if we decide that we care not about parts of speech. John

Watson’s Big Huge Thesaurus [3], on the other hand, seems to have all that we want: synonyms

by part of speech, a clean interface, and permission for use given credit is provided. [13]

Scraping the site

Web scraping for purposes such as gathering content from a page is a basic process: get the raw

HTML of the page and retrieve what you want. Due to the ubiquity of HTTP requests and string

processing, we can use just about anything we want for building our scraper. We will be using

Python for its simplicity in our project, although language is largely irrelevant for this process.

We are using the requests module to get the HTML for each page and bs4 for our HTML

parsing. I am running Ubuntu on my computer, and thus have access to the words file present

across Unix operating systems; this is a raw text file with a collection of words separated by line.

This will be the basis of our thesaurus. We will first reduce this file by removing all entries with

apostrophes with a small script whose essence is:

if word.find("’") == -1:

outfile.write(word)

We do this as to eliminate repetition in our database to expedite searching as all nouns present

in words have a possessive form—note that this does come with the loss of conjunctions. Now

that we have the words we will use to construct our thesaurus, we may do exactly that. Each

page takes the form of the same base url followed by the word: this makes for easy access. We go

through word-by-word in our reduced file, make a GET request for that word, and then aggregate

all the word’s synonyms and antonyms by part of speech. There’s one trick to this process: the

antonyms are not in a concrete section, but rather one of several possible subsections under each
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part of speech. To circumvent this issue, we have to do some checks to make sure that any present

antonym section belongs to the part of speech we are considering and not a later-occurring part

of speech. We allow the addition of antonyms to the synonym list and remove them prior to

returning; this allows for us to have less rigorous checks in adding synonyms.

Upon tweaking our scraper to suit our needs, we must output our results. As I only have so

much RAM, and Python can be rather resource hungry, we segment our data by first letter. We

will restructure our data into one object, but we will do this after collecting all of our data. We

may naively write each dictionary to its corresponding JSON file and correct the result. This

allows us to keep less in memory, which may otherwise present itself as a problem. This also

allows us to segment our program as a failsafe; if we are to lose connection, crash, hit a request

limit, or otherwise fail to run the script to completion, we may easily start again from where we

have left off rather than the very beginning.

3.2 Lexicons

We are primarily concerned with the National Research Council Canada (NRC) Emotion Lexicon

and Affect-Intensity Lexicon. There are two forms of the Emotion lexicon: the “word-sense”

lexicon is the original annotated at the word-sense level and the “word” lexicon is a baked version

which condenses all word-senses for a word. Each sense-level entry for a word has a list of words

describing the sense in which it is used, and this is paired with a list of affects associated with

the word’s use in that sense. A word-level entry has a list of all associations across all senses

of a word, as well as all senses of the word. The word ”cool,” for instance, has one sense-level

entry for the senses ”quiet, chill, blunt” that bear positive association and another for the senses

”cold, pinching, biting” that was not strongly associated with any of the categories. Then, ”cool”

would have a word-level entry with the senses ”biting, blunt, chill, cold, pinching, quiet” with

the association list only having ”positive.” As per the information loss inherent to the word-level

entries, we will only use the “word-sense” and not the “word” lexicon. There is only one version

of the Affect-Intensity lexicon.
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3.2.1 Methodology

Saif M. Mohammad and Peter D. Tourney compiled this lexicon with crowdsourcing through

Amazon’s Mechanical Turk (an online crowdsourcing platform); they chose crowdsourcing as it is

quick and inexpensive (costing them $2100 for the Turkers). As a deterrent of bad responses, they

included a filtering question in each survey that asked for the best synonym for the given word,

allowing them to identify either lack of word knowledge or probabilistically filtering random

responders. They selected joy, sadness, anger, fear, trust, disgust, surprise, and anticipation as per

Robert Plutchik’s wheel of basic emotions, as well as drawing from the present emotion lexicons

WordNet Affect Lexicon, General Inquirer, and Affective Norms for English Words and both the

Maquarie Thesaurus and Google’s N-Gram corpus. They generated questions with the Macquarie

Thesaurus with the aforementioned filtering-question followed by questions asking for alignment

with the various emotions. They also included polarity (positive vs negative valence) in the

lexicon, giving us 10 categories to work with. They constructed the Affect-Intensity, Word-Colour,

and VAD lexicons in a similar fashion.

We wanted to preserve their data, but bring it into our database, and thus we must convert

from their representation to one that fits our needs. This transfer was relatively painless, as their

lexicon was given in TSV. We borrowed a decent amount of JSON utilities and structure from

our thesaurus-scraper, writing to files by first letter as we go; all that changes is the shift from

making HTTP requests and parsing HTML to loading a local file and parsing TSV. From here,

each entry can then be easily POST-ed to our API and is accessible anywhere.

3.2.2 Potential Downfalls

As per the construction of these lexicons, there are some legitimate cons. The most jarring is

in the sense of everything being a unigram. With a limited understanding of language, one

notices that a word’s meaning depends on surrounding words. As these lexicons are manufactured

without context, we lose this crucial aspect of how words relate to and affect one another. We

will not do anything about this at the dataset level; there is, however, potential to account for
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this in the model. Google has an NGrams API which holds data regarding the probability of a

sequence of words being used within the collection of Google books in a specified time period.

This may allow for us to have a certain level of control where we may take into consideration

whether a sequence of words is likely to occur. We are, however, adopting an assumption for this

project that unigrams are interchangeable with synonyms.

In the long term, as this is not an elegant solution, we may consider altering our dataset. For

this we would likely go through with scraping Twitter; this would provide us with a large amount

of data that we can apply certain criteria to. We can decide on rules for when a tweet is classified

as belonging to a given emotion category: perhaps based off of hashtags, keywords, or emojis.

This then would allow us to command control over our dataset, where we can take any data we

see fit—most notably, n-grams.



4
Backend

Here we will be detailing the creation of our CRUD-wrapping API in Golang. An application

programming interface (API) provides a client with some way of interacting with software. Here, we

are creating an API to talk to our database over the internet. This is rather broad, but in the realm

of web development there are standard HTTP (HyperText Transfer Protocol) methods—GET,

HEAD, POST, PUT, PATCH, DELETE, CONNECT, OPTIONS, and TRACE—with various

usages and characteristics that frame our actions. Perhaps the most common usage of HTTP is

in REST APIs (REpresentational State Transfer) which is a stateless architecture based on a

request-response interface. REST maps nicely onto basic CRUD (CREATE, READ, UPDATE,

DELETE) operations common to databases. Note that REST defines an abstract framework for

web services whereas CRUD defines a distinct set of operations largely in the realm of databases.

With the foundations of this pairing, we can use these within our application.

We would like to have a RESTful APIs for our application to be able to securely wrap these

CRUD functions for our database to be accessed by our frontend and our models as well as

having a bidirectional data flow between our frontend and our model. We abstract our database

connection to a RESTful API as any frontend code is universally accessible; we introduce this

data-layer as a means of keeping our backend private.
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4.1 Anatomy of an HTTP request

As we have our database and our API in place, it is worth talking about the flow of a request.

Our user will only directly interact with our frontend, which is in essence a series of forms or

input/output cycles; we shall take the thesaurus page as an example. We keep around state for

the word being looked up and for various aspects of the results (the response object and whether

the response was empty for each of the lexicons).

To get this response, we send a GET request to API with the word as the URI/path parameter

via JavaScript’s fetch [10]. This then resolves to our API where we are listening with the mux

router [24] which matches the URI to our /thesaurus/api/v1/words/{word} route. We send a

reference to our database client singleton as well as our request and empty response to our route

handler. Here, we parse the requested word and unmarshal this request into our entry struct

representing our database schema; should this fail, we write a bad request response and return.

There are a few more checks along these lines that we perform before sending an ok response

with entry from our database: we make sure that the word is not an empty string, and we make

sure that the word is actually present in our database. The former is less necessary, as it would

be caught by the latter, but it stems from patterns used in unsafe [29] endpoints and thus serves

to provide consistency between responses.

Checking that the requested word is in our database is where the actual retrieval occurs. We

access our database and collection through our passed client reference, and attempt to find an

entry with a matching word field. We may safely use FindOne as we enforced idempotency [15]

in our POST for each collection. If the word does not exist in the database, we get an error and

respond with a bad request signifying its absence. Otherwise, we carry through with our plan

and unmarshal the resulting document into our entry struct and respond with a success message

paired with the marshaled data of our entry.

Once we have written our response we send it back as application/json to our frontend and

interpret the result. Should we receive an erroneous response, we set a flag for the word not
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existing. Should we receive a successful response we send the data on to our components for

response rendering.

There are other fine grained details involving Transmission Control Protocol (TCP), Transport

Layer Security (TLS) / Secure Sockets Layer (SSL), and router middleware that we deal with to

a certain extent. TCP underlies HTTP in the establishment of sockets, keeping track of packet

loss, and so on. Our SSL certificates are generated by LetsEncrypt [16] and we use Nginx [25] to

upgrade insecure connections, serve our frontend, and to reverse proxy our containers.

4.2 Lexicon API Creation

There are several parts that go into our API as we touched on in the last section that warrant

discussion. As this is, in essence, a CRUD wrapper, we work largely with the mongo go driver

[20]. We have to access our database from its URI; this contains some sensitive information, as it

takes the form mongodb://<USERNAME>:<PASSWORD>@<HOST>:<PORT>. In order to avoid having

these public and accessible via our version control, we use environment variables; we store all of

these in a .env file—which is never version controlled—and we load them with the os module.

We have a high level config singleton in config.go where we have a struct with these four fields

that is populated with os.Getenv in the beginning of our main. We then pass a reference to this

config interface into our app module where we connect to the database and save the database

client into a high level struct.

In order to access this server from our frontend, we must configure the mux router [24] attached

to our app struct. Due to the standard same origin policy [4], we would run into problems with

our frontend or our model making calls to our API—even though they share a domain. As per

the policy, there must be matching protocol, port, and host; as we distinguish our deployments

by subdomain, the hosts do not match. To circumvent this, we use Cross Origin Resource

Sharing or CORS [5]. We wrap our router in middleware that allows GET and POST methods with

X-Requested-With, Content-Type, and Authorization headers from all origins, thus allowing

us to access our API from our other components. Then there’s a mapping of route string to
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function, where we must specify the HTTP method, the route—with optional parameters—and

a function reference that takes along our database client, and an ResponseWriter and Request

from the net/http module. As all requests and responses go through these datatypes, this

lends itself to utilities that abstract common behavior. Some of this is in the form of router-

level middleware, but there’s more at the individual route level. As we have to write the same

endpoints for each collection, we would like to save as much repetition as we can by writing

utility functions—this stands to cut down development time, ease developer experience, improve

readability, and to have more consistency across the project.

These utility functions come primarily in two forms: helpers for our HTTP requests and

responses and helpers for our database client. In terms of the HTTP helpers, we want to abstract

unpacking our requests and writing our responses. For handling our requests, we have functions

to unmarshal our incoming JSON, we have authentication checking by validating request headers.

For writing our responses, we have some basic writers that return standardized responses like

the authentication or the empty field checks, then there is a generic response function that takes

the status code, some interface that is marshaled to populate the response data, and an optional

message. This optional message then helps differentiate between generic error responses and

generic success responses, where for an error we can simply wrap the function in another function

that provides an error message, again furthering the level of consistency in our API.

Our database client helpers are a bit more involved, as we have to manage our database

connections rather than writing responses. Each process bears similarities to one another. They

all define a context, check for results existing or not existing in the database, undergo some

database operation, and return an error or a result. The update and delete are remarkably similar

functions. Both take in an entry and a filter, the entry corresponding to the active component, and

the filter being some interface to query against; they check to ensure that a corresponding entry

exists in the database, and then update replaces the existing entry—without upserting—and

delete removes one entry that matches the filter. Create is a similar function, although we must

check that the word does not exist and then insert a new document. Finding one is similar again,
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where we ensure that an entry exists, and we return the first match. The significantly different

function is the batch read that returns a reduced model of the collection where all entries are

accessed at a passed key; this then involves looping over the context and appending each existing

value to a list before returning.

These CRUD helpers allow for streamlined, consistent endpoints. All sets of authentication-

gated endpoints are relatively homogenous, as are the non-authentication-gated endpoints. Each

has a wrapper around the aforementioned utility functions, making use of individual structs,

collections, and acceptance criteria. For the gated endpoints, the read endpoint that aggregates

all words in each collection is just a matter of checking credentials before calling the utility

function. On the other hand, the create, update, and delete all unmarshal the request body

into a struct corresponding to the associated schema; each checks for empty fields in the request

body—which is unique to each set of endpoints; each checks for valid admin credentials; and

then each filters to the corresponding utility function. The most unique example is that of the

senselevel endpoints, where we create a wordlevel field in its create method; this entails

creating a union of unique entries across all passed word associations.

Remark 4.2.1 (Architectural Change). The creation of the wordlevel field warranted a change

in architecture of the API as a whole. Each filter was previously a copy of the struct for each

collection, which worked with mongo-go-driver’s Find, yet there were issues with the introduction

of a single interface field—as opposed to a slice of interfaces. This then prompted the creation of

a simple filter struct that only has a field for the word in question.

The non-gated endpoints are all simple GET calls. These all read the word from the path

parameter, unmarshal into the corresponding struct as usual, check that the word is not empty,

and retrieve the first match in the collection. The biggest distinction here is the mode of access:

this is completely accessible, and comes in the form of a GET. Thus, to differentiate between

requests we have this path parameter—as a GET may not have a request body, which is not

present in any of the gated endpoints.
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4.2.1 Unmarshaling JSON into Nested Structs in Golang

At this point, we have a functional API that wraps CRUD operations for our database, and we

have a series of JSON documents to pass through the API. Mongo uses binary JSON (BSON), so

we are to pass the entries of our documents, unmarshal them into structs, process them, marshal

our response object and send it back.

At a high level, we will have a Python script that loops over all the entries in our local JSON

file; the encoding/decoding is handled by such an abstracted language, so we can ignore that for

the time being, just take note that we will be loading the JSON into a dictionary and dumping

that into a string. From this string, we’ll make a POST request to some endpoint in our backend,

let’s say, for example, it’s create-sense-level. This is an HTTP call, so we’ll hit some URI

with headers and a body. It only makes sense that we have Content-Type: application/json,

but since we are hitting an admin-only endpoint, we must include some sort of authorization

headers, in this case adminUsername and adminPassword. As an example body, we’ll use this:

{

"word": "testword",

"senselist": [

{

"sense": [ "lorem", "ipsum" ],

"associations": [ "dolor", "sit" ]

},

{

"sense": [ "consectetur" ],

"associations": [ "adipiscing", "elit" ]

}

]

}

Figure 4.2.1. Example body sent to the CRUD-wrapper API

And we’d like to get roughly the same thing back, perhaps with a message, maybe like this:
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{

"message": "Success!",

"data": {

"_id": "000000000000000000000000",

"word": "testword",

"senselist": [

{

"associations": [ "dolor", "sit" ],

"sense": [ "lorem", "ipsum" ]

},

{

"associations": [ "adipiscing", "elit" ],

"sense": [ "consectetur" ]

}

]

}

}

Figure 4.2.2. Example response sent from the CRUD-wrapper API

But there are some steps along the way. CreateSenseLevel is defined as CreateSenseLevel(client

*mongo.Client, response http.ResponseWriter, request *http.Request); we have our

request and our response to worry about right now, our db-client will some soon. We first

must define structs for our schema, we will have a nested struct: the outer with word, id, and

senselist, the inner with associations and sense.

type SenseLevelEntry struct {

ID primitive.ObjectID ‘json:"_id ,omitempty" bson:"_id ,omitempty"‘

Word string ‘json:"word ,omitempty" bson:"word ,omitempty"‘

SenseList [] SenseLevelData ‘json:"senselist ,omitempty" bson:"senselist ,omitempty"‘

}

type SenseLevelData struct {

Associations [] string ‘json:" associations ,omitempty" bson:" associations ,omitempty"‘

Sense [] string ‘json:"sense ,omitempty" bson:"sense ,omitempty"‘

}

Figure 4.2.3. Example structs defining our sense-level schema

Note the json:‘‘ ’’ bson:‘‘ ’’ with each field: this defines how we want to marshal our

structs; we will associate the JSON “word” field with the Go Word string, and we will take the

JSON “senselist” field to be the Go SenseLevelData slice (considering how this inner-struct is

marshaled).
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Remark 4.2.2 (Marshaling). Marshaling is the process of converting data to a byte-stream.

Unmarshaling is the reverse, taking a byte-stream to its original object (through serialization).

Within the endpoint, we make an empty struct and pass it to a decoder alongside our request

body; this will handle our unmarshaling. We catch any bad unmarshaling (invalid fields, etc.)

and throw an error, and otherwise check to make sure everything else is ok. We check to make

sure no fields in the request body were empty, if they are, we throw another error. Then, we

check our admin credentials by checking our header against valid admin data, and if we don’t

have the clearance, we throw another error. Then, we give back a response, assuming we haven’t

encountered any errors. We marshal our interface, wrap it in the rest of our desired response,

check for any errors, and if none are present we write necessary headers and return our response.

4.3 Writing Go Modules

An early issue we ran into in this project was the disorganization of our backend. Being my first

project in Go, nothing started off (and likely little currently is) pretty; I didn’t have the slightest

idea of how to structure a maintainable project, and what I know of the language came from

building our API. I couldn’t figure out how to import files from anywhere but the same directory,

so in came mess: tons of files that should be abstracted floating around in one folder. Outside of

itself being unpleasant to work with, it encourages a poor system of state management where we

pass around globals rather than keeping abstracted components.

GOMODULES was introduced in Go 1.11 as a form of dependency management, and a way

to circumvent some of the issues of GOPATH. GOPATH has been an issue stemming from the

opinionated nature of Golang: all packages should be centralized and reside within GOPATH.

As of Go 1.11, the go command enables the use of modules when the current directory
or any parent directory has a go.mod, provided the directory is outside $GOPATH/src.
(Inside $GOPATH/src, for compatibility, the go command still runs in the old GOPATH
mode, even if a go.mod is found.) [35]

Thus, with the introduction of module mode, we are able to develop Go outside of our GOPATH.

We get a bundle of versioned dependencies (respecting semantic import versioning), which allows
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for modular code. There’s a similar notion of reproducibility with Go modules as there is with

containerization: the go.mod specifies the module root—everything is self contained.
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5
Models

Here we define our various models, either for text manipulation or emotion scoring. Our control

model is an arbitrary replacement model, where a word is replaced by any synonym. We have a

model for scoring text input on the basis of our emotion categories. We have an experimental

model for targeted replacement, and we have another scoring model that uses a Latent Dirichlet

Allocation (LDA) model, leaving an LDA-based replacement model for future work.

All of the models are written in Python, which necessitates another web server as a means

of interaction. For this, we are using Flask [39], which is a pretty minimal web framework for

Python. It handles routing rather in a friendly way with a route singleton that registers endpoints

with decorators. The Flask instance itself is a WSGI (Web Server Gateway Interface) server,

which is not for production due to it’s poor scalability as noted in their documentation. However,

given the limited scale of this application, we should be able to get by with a development server

here.

While lightweight and easy to use, Flask’s built-in server is not suitable for
production as it doesn’t scale well. Some of the options available for properly
running Flask in production are documented here. — Flask documentation [39]
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5.1 Model Application Structure

We have a rather similar structure for our model API as we do for our CRUD-wrapper API in

Golang. Everything is contained to one module and is served from the main script. We have a

config submodule to initialize our singletons and other data to be used across the application;

this includes loading our .env file contents, initializing the Flask instance, initializing the route

instance, applying middleware (just wildcard CORS), loading our LDA model, and initializing

some word processing utilities. Then, we have a submodule for our models and one for our

endpoints. The core of the work lies within the models module, where we go through the actual

text processing. The endpoints module simply serves to receive requests, interface with the

corresponding logic within models and send responses.

5.1.1 Control Model (Arbitrary Replacement)

Our control model is one of arbitrary replacement. This makes use of our thesaurus collection

where we replace a word in the input with one of it’s synonyms. There’s one key method to

control this replacement that belongs to a Control class, which extends a base class of Model.

The base Model class contains some important attributes and methods for the Control and

Score models. We pass the base url for the CRUD-wrapper API, a list of stop words and

whether or not to ignore them, and provide some utilities for processing the input. There is

a method to determine if a word is in a collection which takes into account the stop words

and returns the response from requesting the word from the collection. This goes hand-in-hand

with a requestWord method that takes a collection string and a word in order to ease the

interfacing with the other API. Outside of request utilities, there are methods to strip and replace

punctuation, which allows for a wider array of valid input once split on whitespace.

For arbitrary replacement, we copy the input string before stripping the punctuation. We loop

over all the words in the input string and collect the output string along with a list of words

that were encountered but not present in the database, the number of words that were replaced,

and the stop words that were skipped. For each word, we assume it is unchanged by default,
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then strip the punctuation on the token, and with a passed probability, attempt to replace the

word. For a replacement attempt, we call the entryExists method of the base class to return

whether or not the word exists, as well as the response; should the word exist in the thesaurus

collection, we select a random synonym from the response for the output and then replace the

original punctuation. This punctuation replacement is a little cute: we pass the original word with

punctuation and the replacement word, and we replace the original word stripped of punctuation

with the new word. Should the word not exist or belong to the list of stop words, then the word

remains unchanged and is added to either the list of words not present or the stop words skipped,

and the word is added to the output. This ultimately gives output similar to the original input

on the basis of synonym bag membership.

The purpose of this model is to give a baseline for how natural a sentence can sound after

being passed through the model, as well as giving insight on underlying emotional scores. With

the control model, we can more appropriately look into the output of something like our targeted

replacement model, in that we can determine if scores are innate to the bag of synonyms, or if

targeted replacement has a tangible effect.

Every model has some corresponding endpoints that parse parameters from the request, call

the appropriate function, and return the response. Each set of endpoints has a basic GET endpoint

to return some healthcheck response. This is convenient for some quick debugging to make sure

that the routes are registered at a glance. Then, there is some POST handler to interface with the

actual model. For the control model, we accept parameters for the probability of replacement as

well as a switch for whether or not to ignore stop words. We throw an empty input message if

there was no text passed, and otherwise return the replacement result.

5.1.2 Base Scoring Model

The base scoring model also extends the base Model class, and gives way to our targeted

replacement model. We score on a subset of emotions—sadness, joy, fear, and anger—as the

affect-intensity lexicon is limited to these emotions. Alternatively, the sense-level lexicon has the
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following emotion list: anticipation, anger, positive, surprise, disgust, joy, trust, fear, sadness,

negative. For our purposes, we went with the intersection of the two emotion-category sets.

As any score is ultimately arbitrary, the important aspect in scoring is consistency. For our

scoring, we construct a list of eligible words by filtering in a similar way to the processing in the

control model: we split on white space, remove stop words, and remove punctuation. Then we

loop over the eligible words, and average the score across each affect dimension. For an individual

score, we must consider a word within both the affect intensity collection and the sense level

collection. We construct a dictionary with keys for the response by collection if it exists, and

then determine the score based off of this dictionary. The score will be a dictionary, mapping

affect to score (0, 1). For each affect within the affect associations from the sense level collection,

we increase the corresponding score by 0.5. Similarly, we add half the score from each affect

dimension from the affect intensity collection to the corresponding score. This gives a minimum

score of zero if the word is not present in either collection (or if it is only present in the affect

intensity collection with a score of zero) and a maximum score of one if the word is present in

both collections with a score of one in the affect intensity collection.

This also has a basic GET handler as a healthcheck. The POST handler interacts with the scoring

model almost identically to the way the control model endpoint does, but here we only accept a

parameter for a switch on the consideration of stop words.

5.1.3 Targeted Replacement Model

This model utilizes both the scoring model and the thesaurus collection to search for a nearby

maximization of the score in one of the affect categories. In order to maximize an affect score, we

iterate over the input text in the usual way and score all synonyms of each word and replace the

original with the synonym that achieves maximum score in the given affect.

One can imagine that this is a dreadfully slow process given the number of requests that we

have to make. The most synonyms of any word in our thesaurus collection is for “cardinal” which

has 406 synonyms (mostly numbers as per the cardinal numbers), the least is, naturally, zero

synonyms. Thus the maximum number of requests we would ever have to make would be assuming
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every word is “cardinal,” in which we would make 406 ·2 ·n+n requests: one request for the affect

intensity one for sense level associations for each of the 406 synonyms for each occurence, and

one request to get this list of synonyms. This translates to a long time twiddling one’s thumbs

while waiting for their output. Luckily, most input will not be an onslaught of “cardinal,” and

the average number of synonyms for a word is roughly 7.66 with the total synonyms
number of entries = 553539

72285 .

The median number of synonyms is 14, and the mode is 2. This translates to a more manageable

request time, although it still isn’t too glamorous. Luckily we can eliminate any cycles if we were

to choose to branch to the synonyms of a word’s synonyms (and so on) by keeping track of the

requests we have made for each word; although, in the interests of remaining close to the original

word and saving computation time, we limit requests to immediate synonyms.

This also has a basic GET handler as a healthcheck. The POST handler here takes a switch for

the consideration of stop words as well as a route parameter for the affect to be targeted.

5.1.4 LDA Overview

Latent Dirichlet Allocation is a generative, probabilistic, unsupervised learning model popular

in natural language processing (nlp). It is a generalization of “probabilistic latent semantic

analysis,” and was created by David Blei, Andrew Ng, and Michael Jordon, and published as

Latent Dirichlet Allocation in January 2003. For our purposes, we can see the ideas behind LDA

in an application to text classification with documents, topics, and words. A real document may

discuss multiple topics, where related topics are likely to use similar words; this translates to the

model where documents are assigned a topic mixture, where each topic is a distribution over the

given corpus.

An LDA model naively assumes that documents are unordered lists (bags) of words, and that

documents are unordered within a corpus, that is that word position nor document position affects

output. This comes with limitations where we lose semantics, although we can still represent

n-grams if necessary.

We shall adopt the language of the original paper regarding the terms “word,” “document,”

and “corpus.” A word is an item from a dictionary/vocabulary of words indexed by the location



32 5. MODELS

of the word within the vocabulary; this allows for a word to be represented as a one-hot vector

(a vector with all zero entries with the exception of one entry that has value 1). For example, the

dictionary D = {cat,dog, elephant}, we would encode ’cat’ as [1, 0, 0]. A document is a sequence

of words indexed by position, and a corpus is a bag of documents. As LDA is a probabilistic

model, we view topics as hidden random variables. The following variables are relevant to LDA:

• α: topic distribution by document, such that αij describes the probability of topic j

occurring within document i. A higher α corresponds to documents being comprised of

more topics, as alpha approaches 0, we see this mixed membership model (document belongs

to many topics) approach a mixture model (document belongs to one topic)

• β: word distribution by topic, such that βij describes the probability of word j belonging

to topic i. A higher β corresponds to topics being comprised of more words

• θ: topic distribution for a given document, such that each θi > 0 and
∑k

i=0 θi = 1

• z: topic for a given word within a given document

• w: word within a given document

Figure 5.1.1. Plate diagram for LDA [1]

Within the classic plate diagram for LDA (figure 5.1.1), we have M documents, N topics, and

an unlabelled vocabulary V . We take the topic distribution θ, a K-dimensional random variable
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as drawn from a Dirichlet distribution, α. On the other end, β is a K×V matrix for a vocabulary

of size V that defines the word-topic probabilities. Arrows between nodes represent dependency,

and w is the sole darkened node as it is the only observed variable, all others are latent.

With probabilistic latent semantic indexing, an occurrence of a word is modeled as a sample

from a topic mixture, leading to a probability distribution on a set of topics. Ng, Blei, and Jordan

sought to extend this to account for document-level probabilities. Documents are mixtures with

latent topics that are defined by a distribution of words.

With LDA, we are able to fix some number of topics, K, of which to determine; we can do this

via collapsed Gibbs sampling. We begin with a random assignment of words in each document to

topics Z0...K from a Dirichlet distribution as some initial document-topic representation and as

some defined word-distribution for each topic.

From here, we fall into a training loop. We consider each document d, and each word w

within each document, we must compute p(t|d) as well as p(w|t) for each topic t. Then we will

reassign w to a topic, t, with probability p(t|d) · p(w|t), or the probability that t has generated

w. Note that the reassignment step assumes all word-topic distributions to be correct except for

that of w. Once we reach convergence, or exhaust a defined number of epochs, we hope to see

reasonable word-topic and document-topic distributions, which we can use to infer topic mixtures

of documents.

Determining the probability of a topic given a word is an application of Bayes theorem:

p(t|w) =
p(w|t) · p(t)

p(w)

where we know the probability of a word (as informed by our corpus), the probability of a topic

being chosen, and the probability of a word given a topic (as informed by the model state).

Bear in mind, this has been glossed over as we did not focus on the implementation, for further

reading, one should read Darling [7], or Blei et al. [40] [34].
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5.1.5 Latent Dirichlet Allocation Scoring Model

Building the model

For the LDA scoring model, we are to construct an LDA model and then determine some score

from the output. We are using gensim for our implementation, and thus are almost exclusively

concerned with determining the corpus to feed it. For this, we have grouped all entries in both

the affect-intensity and senselevel lexicons by affect and gave all words by affect as our four seed

documents.

corpus = {anger, fear, joy, sadness} anger = {word | word has affect score for angry}

This grouping was relatively painless, for affect intensity, we looked for non-zero scores in a given

affect as criteria for membership, and we looked for affect existence within the senselevel lexicon;

from here, we just combine them.

It is worth noting that this is an unusual means of gathering a corpus. Typically, a corpus

is some large collection of documents, which would lend itself to repeated words with various

frequencies throughout the documents. Our usage, on the other hand, holds that a word has a

maximum document frequency of one. This then has implications on the model that uses things

like term frequency inverse document frequency (tf-idf) [40] as a means of determining topic

likelihood. With such strong limitations on intra-document frequency, uniqueness becomes more

important. As a nicety for our model, we stem all tokens within our corpus. This maps words

onto their root (i.e. {stem, stems, stemmed} → stem), and it allows for removing inconsistencies

in the scoring of similar words. With stemming, all words sharing a root are given the same score,

which is the average score of entries mapping to the stem. We also remove stop words from the

tokens if present.

From here, building our model is as simple as passing our corpus and vocabulary along with

some K for number of topics and some number of epochs to gensim’s LdaModel and save the

model to disk. Note, we must save the model once and load it for all future use for the sake of

consistency.
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Using the model

In order to use the model, we ought to give our input the same treatment that our corpus was

given. We will case-transform, filter by stop words, and stem the input strings. From here we

loop over the inferred topic distribution in order of decreasing probability, and gather a few

scores. For each topic with probability greater than a passed threshold, we gather: the topic

probability, topic index, the n topic keywords, and a few different means of scoring. We give four

scores for each topic (and the net scores weighted by respective topic probabilities): the input

score is the sum of the product of input token scores and their probability within the topic; the

topic score is the sum of the product of vocabulary token scores and their probability within

the topic; and there are two forms of keyword scores, one of which takes the topic keywords

product with the normalized probability of the keywords, and the other takes the topic keywords

product with the whole topic’s probabilities.

LDA Model Endpoints

This also has a basic GET handler as a healthcheck. The POST handler here takes a float for

the topic probability-threshold and an integer for the number of keywords to gather. There is

an additional GET with a route parameter for topic number, should one want to observe the

word probabilities for a given topic; this is not accessed by the frontend, but is accessible from

sproj.model.colehollant.com/lda/topic/topic-number . One of the interesting pieces that arose

from the translation from CLI to web server here was that numpy’s float32 wasn’t serializable;

but as this is used within gensim’s model that we use, we have to provide a means of serialization

which converts to float64 [14]. This eases the process of tracking down instances of float32,

and lets the json module handle this for us instead.

5.1.6 LDA Model On Seeds

It’s worth considering the inferencing of the seed documents to see how they are scored. As

each seed document was intended to represent a given affect-category, we would hope to see

high scores in the corresponding category when fed the document. For this, we will look at the

https://sproj.model.colehollant.com/lda/topic/1
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different net scores determined by feeding in each document with a 1% probability threshold,

gathering the top 100 keywords (scores will be rounded to 5 places).

Anger

Category Anger Fear Joy Sadness

Input Score 0.94886 0.76935 0.03475 0.67535

Topic Score 0.59074 0.59339 0.03516 0.53103

Keywords by Keywords 0.66098 0.65198 0.01993 0.58062

Keywords by Topic 0.25617 0.24547 0.00825 0.20950

Fear

Category Anger Fear Joy Sadness

Input Score 0.65673 0.87143 0.01797 0.76317

Topic Score 0.51107 0.59343 0.04255 0.60067

Keywords by Keywords 0.58840 0.64486 0.03415 0.64810

Keywords by Topic 0.20910 0.22217 0.01214 0.21510

Joy

Category Anger Fear Joy Sadness

Input Score 0.04641 0.06371 0.97432 0.07960

Topic Score 0.05247 0.07051 0.51985 0.06841

Keywords by Keywords 0.05356 0.07832 0.61078 0.08025

Keywords by Topic 0.01923 0.02722 0.20237 0.02747

Sadness

Category Anger Fear Joy Sadness

Input Score 0.62026 0.80163 0.01106 0.99642

Topic Score 0.47046 0.60619 0.03291 0.66378

Keywords by Keywords 0.55249 0.64956 0.02865 0.70967

Keywords by Topic 0.18193 0.20938 0.00980 0.22397

This makes intuitive sense. The input scores for each affect category are championed by their

affect. The other scores are affected by the topic definition and keywords without direct scoring

of the input, leading to greater fluctuation, although they tend to follow the trends of the input

scores. We may notice the tendency of “anger,” “fear,” and “sadness” sharing similar scores that

seem to oppose that of “joy.” This can be inferred to be a similarity between those emotions, but
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additional data may give further insight. We’ll consider the mean Valence Arousal Dominance

(VAD) scores for each document.

VAD By Category

Category Valence Arousal Dominance

Anger 0.25627 0.66386 0.46530

Fear 0.28537 0.65718 0.47638

Joy 0.7726 0.51821 0.59808

Sadness 0.23668 0.58389 0.38429

Here we can see a tangible difference in valence scores between the group of “anger,” “fear,”

and “sadness” having rather low mean valence scores, whereas “joy” has a rather high mean

valence score. All the arousal and dominance scores across the affect categories have far less

extreme values. We can use this as a means of understanding the uneven groupings of our affect

categories as a latent bias regarding valence. This correlation also held for the most prevalent color

associations across each document with “anger” and “fear” having “black, red, gray;” “sadness”

having “black, grey, red;” and “joy” having “white, yellow, pink” as the top three most prevalent

color associations.
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6
Frontend

6.1 Why make a frontend?

There’s a certain challenge to making your work accessible. Building and deploying a web

application necessitates a different skill set than that required by the implementation of algorithms.

There are layers added and layers complexified in shifting from a command line based program

to a UI. A common practice of reading/writing from local files translates to managing some sort

of data store, be it a proper database or some sort of browser storage like cookies, local storage,

IndexedDB, or whatnot. We made a portal to accompany our APIs in order to have our work

accessible to whoever may wish to use it regardless of their background in programming.

6.1.1 Overview of our frontend

Our webapp is a Single Page Application (SPA) built using VueJS [36]. Vue is one of big players in

terms of frontend frameworks along with Facebook’s ReactJS [28] and Google’s Angular [2], and

is renowned for it’s simplicity, scalability, and speed. We used the Vue CLI tool for development

and building, although there is alternatively a library for the view layer via jsdeliver [44]. As

such, we have largely kept to the structure of the scaffolding, keeping top level directories for

assets, components, composables, and views. Composables were added later with the adoption of

Vue’s new composition API—in RFC (request for comments) at the time of use—which gives a
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fundamentally different way to interact with the Vue instance, giving a hook-oriented/function-

based approach as opposed to the previous options API (an approach based off of certain

properties in an object). Outside of Vue, we have several dependencies for the odd piece here and

there, the largest part of the workflow would be tailwindcss [32]: a utility-based CSS framework.

Tailwind ultimately gives a wide array of low-level utility classes that make for more concise CSS,

and more flexible in-template stylings.

Our project is a SPA, although it has many views. Traditional websites may have several files

that are served per URL, the rise of web applications led to a need for routers that mount and

unmount components based on window.location. The Vue-Router takes an array of objects that

specify path and may specify other aspects, including the component to mount, name, redirect

location, and props. We strictly specified path, name, and component for our routes, and we left

the router in hash mode to save on some server config for associated with history mode; we have

routes for the home page, the thesaurus, the models, writing, documentation, and presentations.

As per the likeness in characteristics, we will use “routes” and “pages” interchangably.

The home page simply serves as a hub to link to all pages as well as the repository on GitHub,

as the main navbar does not span all routes. The thesaurus page gives an input box to query

the thesaurus and senselevel collections, and displays synonyms and antonyms by part of speech

as well as sense associations by word-sense including synonyms shared between the sense words

and the queried word. The model page offers interaction with each of our models; the model is

selected through a dropdown menu, and the associated controls are displayed (a textbox, various

inputs such as sliders and toggles for targeting the endpoint’s parameters, and a submit button);

each model has a unique results section. The writing section is very simply an online version of

this paper rendered to HTML and injected. The documentation page is a custom renderer for

our Postman collection [27]. Postman is the HTTP client we used for development to organize

requests and inject variables for things like staging; it also allows for exporting your collection as

JSON, which we are using to inform our documentation page. The presentation route holds our

HTML presentation rendering which allows for ease of access and navigation.
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6.1.2 Configuration

There’s not too much configuration to be done here as per the fairly minimal frontend and the

niceties that Node has to offer. There are a few config files to edit to get tailwind integrated and

to add our customizations to it, and there is some tinkering with webpack [38] to add a loader

to import .txt files as strings. We set NODE ENV within our start scripts to be able to target

different URI’s for our APIs.

6.2 Creating our Component Library

Various frameworks take different approaches to organizing the HTML, CSS, and Javascript that

make up each component. Some frameworks, like Angular, tend to keep separate files for each

piece of the component, whereas frameworks like Vue opt for single file components (SFC). This

is simply an organizational difference, and each approach has pros and cons. We need various

components to build our frontend, from basic UI components like text inputs and sliders to page

components that are associated with each route. As per the options API, each component may

take a set of props, which specifies data to be passed to them from the parent; this follows Vue’s

one-way data flow principle—should data have to be passed to a parent, we do so by emitting

events and attaching a listener to the parent.

6.2.1 Different Kinds of Components

There are multiple ways to write components within Vue. There are different ways to target the

template; one of which is to write all of the markup in HTML with directives and bindings like

v-if, v-for, v-bind, v-on, and other way is through the render function. The render function

is what is used underneath the hood; Vue compiles the markup templates to a render function

that creates a VNode (virtual node), as Vue is based on the virtual DOM. The render function

taking some parameter to specify tag or component options, an object that translates to element

attributes, and a list of children. There is also a distinction between functional and full-featured

components; functional components do not manage their own state, watch state, nor have lifecycle
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hooks, and thus do not need the same reactivity that full-featured components require. Below is

an example of the same UI represented as a render function and as a template for the sake of

comparison:

Ultimately the render function provides greater flexibility with all of Javascript at your disposal

rather than relying on the tools provided by Vue through directives. Writing raw render functions

is a process somewhere between writing JSX (which render functions support as an alternative

through a Babel plugin), and writing Javascript without a framework to manipulate the DOM.

6.2.2 Our Components

We have all basic UI components within a directory with the following components: InfoHover,

Loading, ProgressBar Slider, TextInput, Toggle, WordList. InfoHover provides an info icon

with a child conditionally rendered on hover or on click via a slot; we have a prop for size

that controls the width and height of the icon-button, as size can only take certain values,

we add a validator to ensure that valid values are used. Loading is a simple loading spinner

that is displayed while a request is being processed, we do this with partial border coloring

and infinite-duration CSS animations—this is a component that makes a clear case to be a

functional component, as it doesn’t even need it’s own Javascript to function. ProgressBar gives

a rectangle colored proportionally to the value prop and with a color mapped to by the color

prop; color also has a validator attached. Slider wraps the default type=‘‘range’’ input,

taking care of data binding, styling, and providing a slot for a label; there are props for min, max,

step, and value. TextInput is similar to Slider in that it wraps the default type=‘‘range

| X’’ input, handles data binding and styling, and has props for value and error which is a

string that affects style and adds a message to the DOM. Toggle is a wrapper for the default

type=‘‘checkbox’’ input that overhauls the styling in order to target the feel of a switch rather

than a checkbox; this only takes a prop for value. WordList eases the process of rendering each

word from an array, simply looping over the items in it’s value prop and displaying them in

order. These are all basic UI building blocks that are used throughout the application, and largely

serve to bind date or display pieces of information passed to them.
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render(h, {props , listeners }) {

const hasResults = (obj) => {

for(let key of Object.keys(obj)){

if(obj[key]. length > 0) return true;

}

return false

}

let entry = props.entry;

return h("div", { staticClass: "my -12" }, [

h("div", {

staticClass: "thesaurus --results -box",

}, [

Object.keys(entry).map(key => {

return hasResults(entry[key]) ? h("div", {}, [

h("h2", {

staticClass: "thesaurus --category",

domProps: { "innerHTML": key },

}),

h("div", {

staticClass: "thesaurus --pos__wrapper"

}, Object.keys(entry[key]).map(pos => {

if(entry[key][pos]. length > 0) {

return h("div", { staticClass: "mx -4 md:mx -8"}, [

h("h3", { staticClass: "thesaurus --pos" }, pos),

h("ul", { "class": "thesaurus --entry__wrapper" },

entry[key][pos].map(word => {

return h("li", {

attrs: { tabindex: 0 },

staticClass: "thesaurus --entry",

domProps: { "innerHTML": word },

on: {

keydown: (e) => {

if(e.key === ’Enter ’ || e.key === ’ ’) {

const emit_event = listeners.event_from_child;

emit_event(word);

}

},

click: () => {

const emit_event = listeners.event_from_child;

emit_event(word);

}

}

})

})

)

])

}

}))

]) : null

})

]

)

])

}

Figure 6.2.1. Component markup through render function
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<template functional >

<div class="thesaurus --results -box">

<div

v-for="(key , i) in Object.keys(props.entry)"

:key="[key , i].join(’-’)"

>

<div v-if="Object.entries(props.entry[key]).map(([k, v]) => v.length > 0).reduce ((a,

c) => (a || c))">

<h2 class="thesaurus --category">

{{ key }}

</h2>

<div class="thesaurus --pos__wrapper">

<div

v-for="(pos , j) in Object.keys(props.entry[key])"

:key="[pos , props.entry.key , j].join(’-’)"

>

<div

v-if="props.entry[key][pos]. length > 0"

class="mx -4 md:mx -8"

>

<h3 class="thesaurus --pos">

{{ pos }}

</h3>

<ul class="thesaurus --entry__wrapper">

<li

class="thesaurus --entry"

v-for="(word , k) in props.entry[key][pos]"

:key="[pos , props.entry.key , word , k].join(’-’)"

v-on:keydown.enter="() => listeners.event_from_child(word)"

v-on:keydown.space="() => listeners.event_from_child(word)"

v-on:click="() => listeners.event_from_child(word)"

tabindex="0"

>

{{word}}

</li>

</ul>

</div>

</div>

</div>

</div>

</div>

</div>

</template >

Figure 6.2.2. Component markup through template
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There are a few other components across the application that don’t quite fit within the basic

UI group nor the documentation group. These include ScoreBars, GroupScores, NetScores,

Navbar, SenseLevelResult, ThesaurusResult, and ThesaurusEntry. ScoreBars displays a

group of labelled ProgressBars or a label signifying that each value was zero; there are props for

name, size, and value. GroupScores renders a series of ScoreBars for the output of each topic

in the LDA model, and only takes a value prop. NetScores operates similarly to GroupScores,

but ignores trying to render some properties that do not exist. Navbar only displays a group of

router-links. SenseLevelResult handles the senselevel rendering; it must make a request to

our API for the current word and parse the response, finding common synonyms, and organizing

by sense. ThesaurusResult takes the response from the thesaurus endpoint and renders the

result by synonym/antonym and part of speech; this was a place we wrote our own render

function. ThesaurusEntry is a layout component that gives a text input for the current word

and renders the SenseLevelResult and ThesaurusResult components upon submission.

6.2.3 Creating Our Documentation Renderer

A large part of using components is to break down monolithic markup into readable and

maintainable chunks under the assumption that fifty small files with a narrow focus are easier

to grasp than a handful of huge files responsible for a wide range of behavior. The other is to

cut down on the copy-pasting of similar markup that will be used multiple times. Both usages

appear within our documentation renderer.

We have a layout component, DocRenderer, that receives an object representing the JSON

from the documentation and sends appropriate data to its children based off of the current

selected folder. DocRenderer provides a navigation bar with a link to /home, buttons for each

folder of requests, and buttons for each request within the selected folder. We make use of

gsap’s [12] ScrollToPlugin to scroll to the correct page offset once a user selects a request. We

pass the selected folder to our Folder component, which displays a header with a name and

description, and mounts a series of DocRequest components for each request within the folder;

this uses markdown-it [18] as a markdown rendering engine for the description. DocRequest is
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a component responsible for rendering a single request’s information; it displays name, HTTP

method, url, description, request headers, request body, and response, the latter three being

abstracted to components. Headers renders a table of accepted headers for the current request;

Body and Response render the request body and response as preformatted JSON—prettified by

re-parsing and stringifying—with the additional status code section for the Response to render.

Put together with example responses and targeted requests through Postman, we arrive at an

intuitive documentation portal for our API in place of a 3.3M JSON document.

6.3 Consuming the composition API

The Vue Composition API provides a means to the level of abstraction achievable through

components. This serves not necessarily to replace the options API, but to compliment it, and to

give greater access to the underlying APIs of Vue. It’s usage within this project is limited to

that of useModel, as it has only come out over the course of this project. While it is limited in

its use across our frontend, useModel manages to be used by each of our four model components.

useModel serves as a testament to the use-case of the composition API as we are able to abstract

almost all logic from the model components. Rather than binding reactive data via entries within

the data property, we are given ref and reactive which can be used largely interchangeably

although ref is more-so for Javascript primitives and reactive is for objects (that is ref calls

reactive when given an object and reactive cannot accept primitives), and values are exposed

to the template by returning from the setup function.

As such, each model component has various reactive state corresponding to the inputs—a ref

for the text input, the probability of changing a word, whether to ignore stopwords, etc—and

state returned by the model targeted within useModel. Each model hook exported by useModel

calls the useModel function, passing the appropriate endpoint; this is a higher order function

wrapping responseState—a reactive object with properties relevant to rendering an HTTP

response—and a function called postData that wraps window.fetch to deal with the repeated

logic across requests for injecting endpoints and binding data to responseState. This allows for
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a large reduction in repeated logic across the four model components, in that each component

only needs to call postData with the request body.

6.4 Making things pretty

Much of the frontend is complex purely for the reason of aesthetics. Out of the box, without

any CSS, we get a functional, responsive website; it will be black text left justified on a white

background, and it will look as though the text content of a website was copied and pasted

into a Word document. This is to say, it will work, although it may be significantly harder

and less enjoyable to use. User interfaces and user experience (UI/UX) play a large role in web

development with UX informing how a site should work and UI informing how it should work.

We have already seen a decent amount of this with our base UI components, that of-

ten served to override the default HTML inputs. Among the simpler examples would be

our TextInput component; here we specify that the text should align left and that the ele-

ment should take the full width of the parent on the wrapper element, and we pass styles

to the input element. We apply the classes [w-full px-2 font-normal rounded border-2

border-primary-50 text-primary-10 appearance-none] which are generated by tailwind

and translates to:

{

width: 100%;

padding -left: 0.5rem;

padding -right: 0.5rem;

font -weight: 400;

border -radius: 0.25 rem;

border: 2px solid var(--primary -50);

color: var(--primary -10);

appearance: none;

}

Figure 6.4.1. CSS properties and values targeted by tailwind’s w-full px-2 font-normal rounded

border-2 border-primary-50 text-primary-10 appearance-none



48 6. FRONTEND

We also add some variants to the input element. We add focus styles, placeholder styles,

and dark mode variants. The associated error message element features orange text, a heavier

font-weight, a smaller text size, and a different text alignment to set it off from the styles of the

input and to signify that something has gone wrong.

Often, the main pieces of markup are the layout containers and the content elements. The

layout container is responsible for the positioning of its children in a general sense: we may have

a display: flex; flex-direction: row container that uses justify-content: between;

align-items: baseline which places its children evenly across its full extent of the x-axis and

are set on the y-axis such that their baselines are even; a layout container with display: grid;

grid-gap: 1rem would display its children in a single column with 1rem of space between each

item. Content elements tend to set properties like the typography, margin, etc that only affect

the element itself.

CSS is a large, tricky, beautiful language. Despite the power behind it, there’s little to discuss

without getting far into specifics regarding my design choices. Rather than get into why some

places have 18pt font and others have 14pt and other similar decisions, I will point to w3 schools

[6] to learn more on CSS, and leave a line of Javascript that you can put in your browser’s

developer console to disable the CSS stylesheets for the page you are on (only until you reload):

for (const s of document.styleSheets) s.disabled = true

6.5 Making things accessible

Where beautification may not be the most important aspect to discuss, accessibility absolutely

warrants a nod. Accessibility is something often overlooked in websites, especially among junior

developers; as a junior developer myself, I am not an expert, but there are several easy steps you

can take to improve the accessibility of your site.

In creating something navigable by keyboard, the user will be traversing between elements

largely through arrow keys and the tab key. When an element has focus, there is some sort of

ring around it, for example outline: 5px auto -webkit-focus-ring-color this stands out
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to signify which element has focus. This focus ring is not the prettiest in terms of UI, despite

being functional, and so as to avoid the focus ring rising when things like buttons are clicked (or

other elements that receive focus without dismissing on click), it is unfortunately common to see

many elements with selector:focus outline: none which leaves keyboard users unable to

properly determine what element has focus. In order to achieve a pretty UI while considering

accessibility, we create specific focus styles for relevant focusable elements; this can come in the

form of tailwind’s shadow-outline that applies a solid blue box-shadow around the element (as

box-shadow respects border-radius, but outline does not), an underline (although this is rarely

sufficient), or changes in background/text/border color.

There are several other key aspects to accessibility; one of which is the use of screen readers.

This is something harder to target if you aren’t specifically trying to, as it often has no impact

for those that are seeing, and many people either do not have a screen reader or are not proficient

in using it. That being said, there are several easy pieces that can be addressed to improve

the experience of using your site via screen reader: using semantic HTML where applicable

rather than creating and styling generic elements (divs and spans) gives more insight as to what

the element is; using appropriate headings when applicable helps with navigation; and proper

labels for inputs gives insight into the functionality of controls. The latter piece, with labels, is

something noteworthy as it is still common to see inputs use placeholder text in place of labels;

this may sound reasonable, but screen readers need a label to read as a prompt once there is

focus. There is a practice, which is commendable, of providing text nodes that are only accessible

via screen reader (essentially creating elements that are present but invisible), although providing

a screen reader only label may not even be enough! Chrome’s auto translation has skipped over

translating attributes (including placeholder), which leaves an untranslated label; even beyond

this there are accessibility issues at stake with recall such that a user may lose track of the label

for an input if it is a placeholder that disappears once it receives input; there are issues with

color contrast ratios of placeholder text, and so on.
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On the subject of divs in place of semantic HTML, there is a level of difficulty in replicating

certain default behavior of existing tags. In our earlier example of render functions versus

templates 6.2.2, there was a list item being used as a button for each word. This is acceptable,

although for it to work as a button, there are several pieces we must add for a function to be

called replicating the onclick attribute of the button, we must add a click event listener and a

keydown event listener that calls the function hitting the spacebar or return key; in order to take

focus via tab, we must provide tabindex=‘‘0’’.

Contrast ratios are one of the most common problems for visually impaired users. There is a

formula from the Web Content Accessibility Guidelines (WCAG) [37] that determines contrast

score and ratio, although there are certain aspects of contrast like hue difference that are largely

ignored, as well as CSS properties that contribute to contrast—like shadows. Regardless of its

flaws, it serves as a reasonable heuristic for accessible typography. Some browsers are able to

provide contrast scores from within the developer tools, which helps a developer to determine if

their site is meeting minimum contrast ratios.

In terms of browser support for assisting in targeting accessibility issues, there are certain

developer features browsers may have to audit a webpage’s accessibility features. Chrome does

this via lighthouse [17], which again has politics attached in that it is run by Google who targets

certain things that make it easier to serve ads, etc. Disclaimer aside, it is a powerful, helpful tool

that can automate some (not all) of accessibility checking, checking things including:

- [aria -*] attributes match their roles

- [aria -*] attributes have valid values

- [aria -*] attributes are valid and not misspelled

- Buttons have an accessible name

- The page contains a heading , skip link , or landmark region

- Background and foreground colors have a sufficient contrast

ratio

- Document has a <title > element

- [id] attributes on the page are unique

- <html > element has a [lang] attribute

- <html > element has a valid value for its [lang] attribute

- Form elements have associated labels

- Links have a discernible name
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- Lists contain only <li > elements and script supporting elements

(<script > and - <template >).

- List items (<li >) are contained within <ul > or <ol > parent

elements

- [user -scalable="no"] is not used in the <meta name="viewport">

element and the - [maximum -scale] attribute is not less than 5.

- No element has a [tabindex] value greater than 0

Our frontend is not perfect on every page even by the lighthouse audits—it reports that the

documentation page is missing a title page, and there is insufficient contrast on the request

method badge, leading to a score of 91/100. It is a per-page audit, and gives clear feedback on

what must be done to address the concerns, which is a wonderful nicety in terms of developer

experience, and helps to keep people aware of serious concerns with their websites.
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Experiment

7.1 Experimental Design

Note: All experimentation was conducted with IRB approval.

We conducted a survey to determine a baseline of human scores for passages by affect. This

allows us to assess the performance of our scoring models, such that a model is better than

another if it is closer to human scores. We had to undergo this experiment as there is a lack

of labelled data in this form. There were two versions of the survey; both had the same first

twelve passages, and a different set of the latter twelve passages. The first twelve passages were

gathered by a sentence generator and served as unaltered text. The second set of twelve passages

was gathered by feeding the first twelve through one of our replacement models; one version of

the survey had all passages go through the arbitrary replacement model, and the other had all

passages go through the targeted replacement model. For each passage, we asked the participants

to give a score from one to ten in each of the following categories: how natural the passage

sounded, how angry the passage sounded, how sad the passage sounded, how joyful the passage

sounded, and how fearful the passage sounded.

This was conducted over the internet via Google Forms. As Forms does not support A/B testing,

we embedded the surveys in a webpage using a microframework I built to programmatically

provide one of the two versions with equal probability. We received 30 responses across the two

https://github.com/colehollant/quarantine-js
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surveys, with an even split of 15 responses for each version. This is a rather small sample size to

draw generalizations on humans, but is adequate to gather the labelled data that we desire. There

are core issues present, in that the participants were almost exclusively college-educated and are

mostly white. Ideally, we would have a much larger sample size of at least several hundred that

better represents the United States’ population.

7.1.1 Stats

We conducted an independent sample t test on the control results for each category (scores for

natural, anger, sadness, joy, fear) to gain insight on the difference between the two groups. Each

category has a null hypothesis of the two groups having equal means; each category has the same

12 prompts (given below), and we run the t test on each question of each prompt. We will also

run a series of relative-error tests, assuming that the human scores are the expected scores. This

allows us to determine which scoring algorithm is most appropriate.

Prompts

question

01. When motorists sped in and out of traffic,
all she could think of was those in need of a transplant.

02. He drank life before spitting it out.

03. The toy brought back fond memories of being lost in the rain forest.

04. Italy is my favorite country; in fact, I plan to spend two weeks there next year.

05. The blinking lights of the antenna tower came into focus just as I heard a loud snap.

06. I love bacon, beer, birds, and baboons.

07. She saw the brake lights, but not in time.

08. They say that dogs are man’s best friend,
but this cat was setting out to sabotage that theory.

09. The tart lemonade quenched her thirst, but not her longing.

10. He was surprised that his immense laziness was inspirational to others.

11. They got there early, and they got really good seats.

12. You can’t compare apples and oranges, but what about bananas and plantains?
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7.2 Results

7.2.1 Comparison of groups

In the independent sample t tests to compare the two groups, the “natural” category had one

out of twelve p values below our α = 0.05, thus in all other cases we fail to reject the null

hypothesis—we are unable to conclude that the two groups are significantly different. Similarly,

the “anger” category had one out of twelve, “sadness” had two out of twelve, “joy” had one out

of twelve, and “fear” had two out of twelve p values less than α = 0.05.

Natural Scores

question p value mean difference upper CI lower CI df Cohen’s d effect size

1. 0.48079 0.57143 1.28675 -0.14389 26 0.27037 small

2. 0.94782 0.07143 0.13751 0.00535 26 0.02498 small

3. 0.34479 0.71429 1.67654 -0.24796 26 0.3637 medium

4. 0.72381 0.28571 0.64294 -0.07151 26 0.13502 small

5. 0.49097 -0.5 -1.19866 0.19866 26 -0.26407 small

6. 0.71533 0.28571 0.65443 -0.083 26 0.13936 small

7. 0.50865 -0.42857 -1.09875 0.2416 26 -0.2533 small

8. 0.37381 -0.57143 -1.47636 0.3335 26 -0.34203 small

9. 0.42139 -0.78571 -1.60264 0.03122 26 -0.30877 small

10. 0.70986 0.35714 0.73329 -0.01901 26 0.14217 small

11. 0.03027 1.57143 3.86317 -0.72031 26 0.8662 large

12. 0.30227 0.85714 1.90961 -0.19533 26 0.3978 medium

Anger Scores

question p value mean difference upper CI lower CI df Cohen’s d effect size

1. 0.14972 1.21429 2.69871 -0.27014 26 0.56106 medium

2. 0.07658 -1.57143 -3.41563 0.27277 26 -0.69704 small

3. 0.65964 -0.14286 -0.58836 0.30265 26 -0.16838 small

4. 0.45892 -0.14286 -0.89467 0.60895 26 -0.28416 small

5. 0.13268 -0.64286 -2.19515 0.90944 26 -0.58671 small

6. 0.06944 -0.28571 -2.17944 1.60801 26 -0.71576 small

7. 0.8948 -0.07143 -0.20497 0.06211 26 -0.05047 small

8. 0.45384 -0.64286 -1.40329 0.11757 26 -0.28742 small

9. 0.53799 -0.28571 -0.90982 0.3384 26 -0.23589 small

10. 0.18126 -0.42857 -1.80229 0.94514 26 -0.51922 small

11. 0.14574 -0.71429 -2.214 0.78543 26 -0.56684 small

12. 0.04879 -0.85714 -2.9245 1.21022 26 -0.78139 small
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Sadness Scores

question p value mean difference upper CI lower CI df Cohen’s d effect size

1. 0.45453 -0.5 -1.25926 0.25926 26 -0.28697 small

2. 0.66341 -0.35714 -0.79737 0.08308 26 -0.16639 small

3. 0.05728 -1.78571 -3.77509 0.20366 26 -0.75191 small

4. 0.14936 -0.21429 -1.70007 1.2715 26 -0.56157 small

5. 0.68706 0.21429 0.62166 -0.19309 26 0.15397 small

6. 0.7837 -0.07143 -0.34878 0.20592 26 -0.10483 small

7. 0.92345 0.07143 0.16845 -0.02559 26 0.03667 small

8. 0.06638 -0.71429 -2.63061 1.20204 26 -0.7243 small

9. 0.08258 -1.28571 -3.09128 0.51985 26 -0.68244 small

10. 1.0 0.0 0.0 0.0 26 0.0 small

11. 0.03373 -0.78571 -3.02749 1.45606 26 -0.84731 small

12. 0.03594 -0.57143 -2.78369 1.64084 26 -0.83616 small

Joy Scores

question p value mean difference upper CI lower CI df Cohen’s d effect size

1. 0.15908 -0.64286 -2.09261 0.8069 26 -0.54796 small

2. 0.91834 0.07143 0.17495 -0.0321 26 0.03913 small

3. 0.71771 -0.35714 -0.72263 0.00834 26 -0.13814 small

4. 0.73313 -0.21429 -0.55893 0.13036 26 -0.13026 small

5. 0.81512 0.07143 0.30764 -0.16478 26 0.08928 small

6. 0.86097 -0.14286 -0.31974 0.03403 26 -0.06686 small

7. 0.03103 -0.28571 -2.56607 1.99464 26 -0.86189 small

8. 0.57205 0.5 1.07228 -0.07228 26 0.2163 small

9. 0.06454 1.07143 3.00174 -0.85889 26 0.72959 large

10. 0.42582 -0.71429 -1.52335 0.09478 26 -0.3058 small

11. 0.93493 -0.07143 -0.15386 0.01101 26 -0.03116 small

12. 0.52145 0.64286 1.29277 -0.00705 26 0.24564 small

Fear Scores

question p value mean difference upper CI lower CI df Cohen’s d effect size

1. 0.64988 0.35714 0.81638 -0.1021 26 0.17358 small

2. 0.7244 0.21429 0.57071 -0.14214 26 0.13471 small

3. 0.75466 0.21429 0.53011 -0.10154 26 0.11937 small

4. 0.03103 -0.28571 -2.56607 1.99464 26 -0.86189 small

5. 0.325 -0.85714 -1.86036 0.14608 26 -0.37918 small

6. 0.13199 -0.28571 -1.8409 1.26947 26 -0.58781 small

7. 0.10962 -1.5 -3.15662 0.15662 26 -0.62614 small

8. 0.86424 -0.14286 -0.31553 0.02982 26 -0.06526 small

9. 0.36909 -0.35714 -1.27119 0.5569 26 -0.34548 small

10. 0.61713 -0.21429 -0.72027 0.2917 26 -0.19124 small

11. 0.02071 -0.5 -2.96306 1.96306 26 -0.93095 small

12. 0.21367 -0.28571 -1.56047 0.98904 26 -0.48181 small
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7.2.2 Error Analysis

Then, we chose a subset of scoring metrics (raw score, and LDA net scores for input and topic)

to compare to the real scores determined by our participants. We will use relative error as a

means of analysis. Given the human scores as the expected scores, relative error serves to give a

measure on how a model performs. We will look at relative error averaged by category, and then

subdivided by target and group.

LDA Input Score Error

anger error sadness error joy error fear error mean error std dev

-0.85802 -0.76072 -0.70641 -0.79792 -0.78077 0.055211

LDA Topic Score Error

anger error sadness error joy error fear error mean error std dev

-0.53525 -0.46815 -0.36493 -0.47174 -0.46002 0.061043

Raw Score Error

anger error sadness error joy error fear error mean error std dev

-0.85647 -0.85213 -0.85312 -0.8497 -0.85286 0.002430

We can see that the LDA net scores for topic has the least average error across the board,

followed by the LDA input scores, with the raw score trailing at the end. This suggests that the

LDA topic score may be the most appropriate scoring model that we offer, although it has the

highest variance among error scores. We can further look at our results by group and affect-target.

Note that the “group” is either “neutral” for the unaltered sentences, “control” for sentences

that went through arbitrary replacement, or “experimental” for sentences that went through

targeted replacement; for the “experimental” group, we note the affect-target.

LDA Input Score Error

group target anger err sadness err joy err fear err mean |err| std dev

neutral -0.96974 -0.68386 -0.84701 -0.77157 0.81804 0.12113

control -0.95562 -0.95015 -0.97787 -0.79765 0.92032 0.08266

experimental anger -0.43843 -0.48738 -0.20712 -0.98126 0.52855 0.32562

experimental sadness -0.56263 0.03343 0.67848 -0.69709 0.49291 0.31204

experimental joy -1.0 -1.0 -0.39131 -0.47553 0.71671 0.32892

experimental fear -0.79571 -0.94346 -0.89708 -0.9416 0.89446 0.06924
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Here, we see that the LDA input scoring has rather high error with the unaltered (neutral)

and random-replacement (control) scores (> 80%), and a mix of high and low error among the

the targeted replacement scores. We see high average error within the sentences with a target

of “fear” and “joy” (89% and 72% respectively), with lower mean error for sentences targeting

“anger” and “sadness” (53% and 49% respectively).

LDA Topic Score Error

group target anger err sadness err joy err fear err mean |err| std dev

neutral -0.51351 -0.65078 -0.49961 -0.39885 0.51569 0.10354

control -0.67275 -0.45844 -0.48453 -0.49215 0.52697 0.09826

experimental anger -0.0917 0.13595 0.41926 -0.81972 0.36666 0.33509

experimental sadness -0.67467 -0.35851 0.1114 0.45561 0.40005 0.23349

experimental joy -0.93078 -0.91615 -0.88804 -0.6649 0.84997 0.12465

experimental fear -0.5083 -0.62584 -0.64535 0.08332 0.46571 0.26201

We see that the LDA topic scores are more consistent, largely hovering close to 40− 50%, with

sentences that targeted “joy” having much higher mean error at ≈ 85%.

Raw Score Error

group target anger err sadness err joy err fear err mean |err| std dev

neutral -0.9763 -0.91245 -0.96795 -0.89303 0.93743 0.04098

control -0.9187 -0.96874 -0.98527 -0.83505 0.92694 0.06748

experimental anger -0.51785 -0.48804 -0.3838 -0.91828 0.57699 0.23467

experimental sadness -0.80069 -0.43176 -0.35877 -0.29939 0.47265 0.22529

experimental joy -1.0 -1.0 -1.0 -0.72623 0.93156 0.13689

experimental fear -0.5926 -0.8712 -0.80598 -0.93233 0.80053 0.14791

The raw score model gives scores rather similar to that of the LDA input scores, having high

error (> 80%) for the neutral and control groups as well as the sentences targeting “joy” and

“fear,” with lower levels of error (40− 60%) in the sentences targeting “anger” and “sadness.”
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Discussion

As per the relative error for each scoring model, we conclude that the LDA topic-scoring model

gives the most human-like affect scores. Across all models, we saw a higher error for sentences

targeting “joy” and “fear” as opposed to sentences targeting “anger” and “sadness.” This may

be the result of issues with attempts at changing an underlying tone through word-choice

alone, suggesting that theme dominates word-choice in human conceptions; it may also arise

from limitations of our lexicons. There may be improvements by constructing our LDA model

differently; a comparison between our current model and one based off a large corpus of pre-scored

sentences may give more insight as to the appropriateness of our model—this has not been done

partially due to the cost of gathering large-scale human data.

8.1 Future Work

Given both the state of the world at the end of this academic year and the scope of this

project, there is material left undone. This section serves to address that, both in the sense of

acknowledgment and with ideas for implementation if applicable.

There ought to be some LDA replacement model, perhaps targeting a topic with a score closest

to the desired output; this could be done by preferring synonyms with high impact on the target

topic. Some LDA playground feature could be interesting, such that a user could pass a corpus
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and vocabulary to receive a model; this would entail a greater degree of automation as well as

some database for models, perhaps with some authentication system for saving remotely. Perhaps

our model API should maintain a database connection in order to make less HTTP requests. A

fuller featured frontend with more information in regards to analysis is in order; a user should be

able to see the effect of each word on the output, and to be able to edit input manually with

dropdown menus for word suggestions (based on synonyms). Despite having made a REST API

as our CRUD wrapper, I think something like GQL may be more fitting so that we can have

finer grained control over the requests. The output from the replacement models should have

an option to score the generated text directly as opposed to copy-pasting the output, and on a

similar note, we should have an option to save results for reference (via localStorage). Then,

there should be several other UI niceties: light/dark mode should extend to fully support things

like the documentation and the info popovers, there should be more info popovers across the site,

we should suggest words in the thesaurus page if no results exist (via edit distance), and—for

development—there should be some UI playground for mocking designs (this can be done by

registering components globally, providing a textarea for the template, and compiling/rendering

the results).



Appendix A
Database Schema

A.1 Word Schema

{

"word": "<String >",

"antonyms": {

"noun": ["array", "of", "strings"],

"verb": ["array", "of", "strings"],

"adjective": ["array", "of", "strings"],

"adverb": ["array", "of", "strings"]

},

"synonyms": {

"noun": ["array", "of", "strings"],

"verb": ["array", "of", "strings"],

"adjective": ["array", "of", "strings"],

"adverb": ["array", "of", "strings"]

},

}

A.2 Senselevel Schema

{

"word": "<String >",

"senselist": [

{

"sense": ["words", "defining", "a", "sense"]

},
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{

"sense": ["words", "defining", "another", "sense"]

}

],

"wordlevel": {

sense: ["words", "defining", "another", "sense", "a"]

}

}

A.3 Affect-Intensity Schema

{

"word": "<String >",

"affectlist": [

{

"affectdimension": "fear | anger | sadness | joy",

"score": "<Number >"

}

]

}

A.4 VAD Schema

{

"word": "<String >",

"valence": "<Number >",

"arousal": "<Number >",

"dominance": "<Number >"

}

A.5 Colour Schema

{

"word": "<String >",

"colorlist": [

{

"color": "<String >",

"totalvotes": "<Number >",

"votes": "<Number >",
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"sense": ["words", "defining", "a", "sense"]

}

]

}
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Appendix B
Experiment

The attached documents appear in the following order:

• Consent Script

• Baseline Questions

• Control Questions

• Experimental Questions

• Consent Form

• Debriefing Script

• Procedure

• Flyer



Oral Consent Script

Thank you for participating in this study! This survey will take no longer than 30 minutes, but

you are free to leave at any point during the experiment. You will be asked to read two groups of

12 sentences and provide scores for how natural the passage sounded, as well as how angry,

fearful, joyful, and sad the passage was. Before beginning the survey, please read and complete

the Informed Consent Form. If you have any questions regarding the consent process, any items

on the consent form, or any questions during the experiment, please feel free to ask me.

A copy of the consent form is provided for you to take with you.
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B.1 Oral Consent Script



Instructions:

Please read each sentence and fill in one circle for each score category

1. When motorists sped in and out of traffic, all she could think of was those in need of a

transplant.

How natural did the above passage sound?

1 10

To what extent was the above passage:

angry? 1 10

sad? 1 10

joyful? 1 10

fearful? 1 10

2. He drank life before spitting it out.

How natural did the above passage sound?

1 10

To what extent was the above passage:

angry? 1 10

sad? 1 10

joyful? 1 10

fearful? 1 10

3. The toy brought back fond memories of being lost in the rain forest.

How natural did the above passage sound?

1 10

To what extent was the above passage:

angry? 1 10

sad? 1 10

joyful? 1 10

fearful? 1 10

4. Italy is my favorite country; in fact, I plan to spend two weeks there next year.

How natural did the above passage sound?

1 10

To what extent was the above passage:

angry? 1 10

sad? 1 10

joyful? 1 10

fearful? 1 10
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B.2 Baseline Questions



5. The blinking lights of the antenna tower came into focus just as I heard a loud snap.

How natural did the above passage sound?

1 10

To what extent was the above passage:

angry? 1 10

sad? 1 10

joyful? 1 10

fearful? 1 10

6. I love bacon, beer, birds, and baboons.

How natural did the above passage sound?

1 10

To what extent was the above passage:

angry? 1 10

sad? 1 10

joyful? 1 10

fearful? 1 10

7. She saw the brake lights, but not in time.

How natural did the above passage sound?

1 10

To what extent was the above passage:

angry? 1 10

sad? 1 10

joyful? 1 10

fearful? 1 10

8. They say that dogs are man's best friend, but this cat was setting out to sabotage that theory.

How natural did the above passage sound?

1 10

To what extent was the above passage:

angry? 1 10

sad? 1 10

joyful? 1 10

fearful? 1 10

9. The tart lemonade quenched her thirst, but not her longing.

How natural did the above passage sound?

1 10

To what extent was the above passage:

angry? 1 10

sad? 1 10

joyful? 1 10

fearful? 1 10



10. He was surprised that his immense laziness was inspirational to others.

How natural did the above passage sound?

1 10

To what extent was the above passage:

angry? 1 10

sad? 1 10

joyful? 1 10

fearful? 1 10

11. They got there early, and they got really good seats.

How natural did the above passage sound?

1 10

To what extent was the above passage:

angry? 1 10

sad? 1 10

joyful? 1 10

fearful? 1 10

12. You can't compare apples and oranges, but what about bananas and plantains?

How natural did the above passage sound?

1 10

To what extent was the above passage:

angry? 1 10

sad? 1 10

joyful? 1 10

fearful? 1 10



Instructions:

Please read each sentence and fill in one circle for each score category

1. The flaming fire up of the transmitting aerial rise came into adjust just as I detected a colourful

cracking.

How natural did the above passage sound?

1 10

To what extent was the above passage:

angry? 1 10

sad? 1 10

joyful? 1 10

fearful? 1 10

2. She locution the pasture brake unstressed, but not in instance.

How natural did the above passage sound?

1 10

To what extent was the above passage:

angry? 1 10

sad? 1 10

joyful? 1 10

fearful? 1 10

3. Italy is my preferred administrative district; in concept, I think to exhaust ii work time there

adjacent time period.

How natural did the above passage sound?

1 10

To what extent was the above passage:

angry? 1 10

sad? 1 10

joyful? 1 10

fearful? 1 10

4. I get it on monastic, brew, skirt, and old world monkey.

How natural did the above passage sound?

1 10

To what extent was the above passage:

angry? 1 10

sad? 1 10

joyful? 1 10

fearful? 1 10
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5. They got there primeval, and they got actually redeeming seats.

How natural did the above passage sound?

1 10

To what extent was the above passage:

angry? 1 10

sad? 1 10

joyful? 1 10

fearful? 1 10

6. They express that canid are man's beat out friend, but this vomit was scope out to disobey

that belief.

How natural did the above passage sound?

1 10

To what extent was the above passage:

angry? 1 10

sad? 1 10

joyful? 1 10

fearful? 1 10

7. The move brought backrest adoring memories of being unsaved in the chronological

succession woods.

How natural did the above passage sound?

1 10

To what extent was the above passage:

angry? 1 10

sad? 1 10

joyful? 1 10

fearful? 1 10

8. The bawd ade satisfied her ache, but not her desire.

How natural did the above passage sound?

1 10

To what extent was the above passage:

angry? 1 10

sad? 1 10

joyful? 1 10

fearful? 1 10



9. He drank brio before projection it out.

How natural did the above passage sound?

1 10

To what extent was the above passage:

angry? 1 10

sad? 1 10

joyful? 1 10

fearful? 1 10

10. You can't similitude apple tree and spectral color, but what about herbaceous plant and

banana?

How natural did the above passage sound?

1 10

To what extent was the above passage:

angry? 1 10

sad? 1 10

joyful? 1 10

fearful? 1 10

11. When driver sped in and out of commerce, all she could call up of was those in demand of a

insert.

How natural did the above passage sound?

1 10

To what extent was the above passage:

angry? 1 10

sad? 1 10

joyful? 1 10

fearful? 1 10

12. He was dumbstruck that his vast inertia was sacred to unusual.

How natural did the above passage sound?

1 10

To what extent was the above passage:

angry? 1 10

sad? 1 10

joyful? 1 10

fearful? 1 10



Instructions:

Please read each sentence and fill in one circle for each score category

1. The toy brought lie fond memories of being destroyed in the rain forest.

How natural did the above passage sound?

1 10

To what extent was the above passage:

angry? 1 10

sad? 1 10

joyful? 1 10

fearful? 1 10

2. He drank sentence before expulsion it out.

How natural did the above passage sound?

1 10

To what extent was the above passage:

angry? 1 10

sad? 1 10

joyful? 1 10

fearful? 1 10

3. The tart lemonade quenched her thirst, but not her longing.

How natural did the above passage sound?

1 10

To what extent was the above passage:

angry? 1 10

sad? 1 10

joyful? 1 10

fearful? 1 10

4. You can't compare apples and oranges, but what about bananas and plantains?

How natural did the above passage sound?

1 10

To what extent was the above passage:

angry? 1 10

sad? 1 10

joyful? 1 10

fearful? 1 10
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5. They got there early, and they got really bully seats.

How natural did the above passage sound?

1 10

To what extent was the above passage:

angry? 1 10

sad? 1 10

joyful? 1 10

fearful? 1 10

6. They say that scoundrel are man's shell friend, but this flog was setting out to devastation

that theory.

How natural did the above passage sound?

1 10

To what extent was the above passage:

angry? 1 10

sad? 1 10

joyful? 1 10

fearful? 1 10

7. I hate bacon, beer, birds, and baboons.

How natural did the above passage sound?

1 10

To what extent was the above passage:

angry? 1 10

sad? 1 10

joyful? 1 10

fearful? 1 10

8. She saw the constraint lights, but not in time.

How natural did the above passage sound?

1 10

To what extent was the above passage:

angry? 1 10

sad? 1 10

joyful? 1 10

fearful? 1 10

9. He was surprised that his immense relaxation was inspirational to others.

How natural did the above passage sound?

1 10

To what extent was the above passage:

angry? 1 10

sad? 1 10

joyful? 1 10

fearful? 1 10



10. When motorists sped in and out of traffic, all she could think of was those in need of a

transplant.

How natural did the above passage sound?

1 10

To what extent was the above passage:

angry? 1 10

sad? 1 10

joyful? 1 10

fearful? 1 10

11. Italy is my competition country; in fact, I plan to spend two weeks there next year.

How natural did the above passage sound?

1 10

To what extent was the above passage:

angry? 1 10

sad? 1 10

joyful? 1 10

fearful? 1 10

12. The blinking twinkle of the antenna tower came into clarity just as I heard a roaring snap.

How natural did the above passage sound?

1 10

To what extent was the above passage:

angry? 1 10

sad? 1 10

joyful? 1 10

fearful? 1 10



Project Title: Shifting Tone of a Body of Text

Researcher: Cole Hollant

Faculty Advisors: Stefan Méndez-Diez, Kerri-Ann Norton, Robert McGrail

Consent Form

I am a student at Bard College conducting research for my senior project in Mathematics and

Computer Science. I am looking into automated tone analysis for text with respect to the basic

human emotions of Robert Plutchik's wheel (joy, trust, fear, surprise, sadness, disgust, anger,

anticipation).

In this study, you will be asked to read and complete a questionaire for a number of passages.

You will be asked to give a score from 1-10 on how natural the passage sounded and to give

scores from 1-10 on the strength of association between the passage and each of the following

emotions: anger, fear, joy, and sadness. The study will take place in an empty lab at Bard

College, and will take no longer than 30 minutes.

There is no more risk in this study than that of everyday life. There are no direct benefits for

participation other than gaining experience in experimental process. As compensation for your

time, you can be entered into a lottery for one of three $25 Amazon gift cards.

Participation in this study is voluntary, and if you wish to leave the experiment while it is taking

place or to ignore questions, you may do so at any time. Please inform the researcher if you

choose to withdraw yourself; in the case of withdrawal, your answers will not be collected and

any lottery entry will remain valid. If any questions arise during the experiment, the researcher

will answer them to the best of her ability.

All responses to questionnaires and data associated with this study will remain confidential. All

data and responses will be solely connected to a randomly generated unique participant ID

number. There will be no link, digital or otherwise, connecting your name and email to your

participant ID. Any information published from this experiment will not make it possible to

identify you as a participant, however the researcher may be required to surrender data under

court order.

If you have questions concerning your rights as a participant of this study please contact the

Bard College Institutional Review Board (irb@bard.edu), or contact the researcher

(ch1461@bard.edu) or her advisors (knorton@bard.edu, smendezdiez@bard.edu) for any further

questions.

Participant Agreement:

I understand the purpose of this research. My participation in this test is voluntary. If I wish to

stop the test for any reason, I may do so without having to give an explanation. The researcher

has reviewed benefits and risks of this project with me. I am aware the information will be used
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in a Senior Project that will be publicly accessible online through the DigitalCommons and at the

Stevenson Library of Bard College in Annandale on Hudson, New York. The information gathered

in this study is confidential with respect to my personal identity. I understand that complete

confidentiality cannot be guaranteed, since the researcher may be required to surrender data if

served with a court order. All of my questions have been satisfactorily answered and I have been

provided with the relevant contact information should I have any further inquiries. I have read

the consent form and agree to be a participant in this study. By signing below, I agree to the

participantʼs agreement and further confirm that I am 18 years of age or older.

Participantʼs Printed Name: __________________________________________________________________

Participantʼs Signature: __________________________________________________________________

Researcherʼs Signature: __________________________________________________________________

Date: __________________________________________________________________

Enter your name into a lottery for a $25 amazon giftcard? [ ]



Debriefing Script

Thank you again for participating in this study! We are looking into whether a latent Dirichlet

allocation model or a maximization algorithm can outperform random replacement in readability

and achieve similar tone scores as people. The first of the two sections had all unaltered

sentences and serves to establish a baseline for readability and emotion scores to compare our

models to. In the second section you were given the same sentences, but they had gone

through either our control model or our experimental model—you received our ______ model. The

control model simply replaces each word with a random synonym, and the experimental model

tries to maximize score in one of the emotion categories. We are hoping that The experimental

model achieves similar readability scores to the baseline, as well as reaching higher emotion

scores in the category it seeks to maximize.

If you have any other questions, please let me know!
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Procedure

Before beginning the survey, the participant must complete a consent form. Then they will take

the ground truth survey, and then take either the control survey or the experimental survey.

Ground Truth Survey

The ground truth survey will consist of 12 sentences that were gathered from a random

sentence generator. These 12 sentences will be given to all participants. The participant will be

asked to give a score from 1-10 on how natural the passage sounded and to give scores from 1-

10 on the strength of association between the passage and each of the following categories:

anger, fear, joy, and sadness.

Control Survey

For this section, each sentence from the previous section will be fed through a word

replacement model to randomly replace words with their synonyms. Participants will answer the

same questions for each sentence as in the ground-truth section. The participant will be asked

to give a score from 1-10 on how natural the passage sounded and to give scores from 1-10 on

the strength of association between the passage and each of the following categories: anger,

fear, joy, and sadness.

Experimental Survey

For this section, each sentence from the previous section will be fed through a word

replacement model to target an emotion (either anger, fear, joy, or sadness). Participants will

answer the same questions for each sentence as in the ground-truth section. The participant

will be asked to give a score from 1-10 on how natural the passage sounded and to give scores

from 1-10 on the strength of association between the passage and each of the following

categories: anger, fear, joy, and sadness.
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