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Abstract

Harmony plays a crucial role in classical music: supporting the melody. There are, however, so

many different ways to harmonize one melody that one person may not even consider them all. I

developed a program in Python 2.7 which would intake a melody of notes, for example in the

form of "C, D, E, C", and return all possible harmonizations to that melody (excluding some

more complicated harmonic cases that are not yet implemented into the program). The first draft

of the program that was made was clearly optimizable, leading to two versions of the programs

being made: the "unoptimized" and "optimized" programs. Comparing runtimes and memory

consumption of these programs showed that while the optimized program was always predicted

to be faster than the unoptimized one, for larger and larger melody inputs, the unoptimized

program actually used less memory than the optimized one.
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Introduction

Without harmony, a melody can seem bare and unsupported, at least in the tradition of classical

music. Harmony serves the purpose to further enrich a melody, making it seem more complex

and therefore more interesting to listen to. In fact, there are many different possible classical

harmonizations that can fit one unique melody, so many that the average musician would not

feasibly contemplate all possibilities. In order to assist with this problem, my goal was to develop

an algorithm to assist the writing of a musical composition in the classical style. The idea was

that a user could input a melody and my algorithm would output all possible classical style

figured bass progressions that would harmonize that melody.

It is difficult to explain what "classical" styled composition really is because it is disputed

what "classical" means. It can be said that music in the classical style is the process of ordering

musical notes and sounds into a piece of music following rules that were written by European

composers that lived around the 1800s. One book of rules is the Gradus ad Parnassum by Johann

Joseph Fux (Fux, 2000). This work is one of the written baselines for classical composition rules,

and it helped guide composers to come up with conventions for figured bass chord progressions.

Figured bass means labeling chords with roman numerals, such as a “I” chord, or “III” chord,

Figure 1. A 4-Part Harmony. (Image from Benward & Saker, 2003)
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which represent three or, in some cases, more notes played at the same time in order to create

complex music (see Figure 1).

A classical piece of music is mostly based on rising and falling waves of pitches, tension

and release of that tension. This is called the melody. The pitches exist in different scales, for

example, a C major scale contains the pitches: C, D, E, F, G, A, and B, ordered like in the

alphabet. This alphabetical relationship makes "D" a higher pitch than "C", and "E" a higher

pitch than "D" (if the notes stay within one octave, which in my program, they will). Going from

any note to a note above it in a piece of music creates a feeling of rising tension, and going from

a note to a note below it releases that tension. Also, whatever the three or so pitches that the ear

hears first is regarded as the baseline for pitches coming after it. This baseline is what sets the

key of a piece of classical music.

The key of C major refers to the scale that was aforementioned. This key holds within it

relationships of tension (and release of that tension) between notes. A typical melody in a piece

of classical music will use notes in a scale to express different relationships between its pitches to

create a feeling of tension and release to the listener. If I were to create a simple C major melody

it could be: C, D, E, G, D, E, C. There is rising tension between "C" and "D", "D" and "E", "E"

and "G", and release between "G" and "D", and "E" and "C". A classical melody should typically

have a release for every instance of tension, give or take, meaning that my building tension in C,

D, E, G is released by G, D and my D, E is released by E, C. Knowing this tension and release is

useful for understanding how chords come into the music.

Chords in classical music allow the melody to be supported; they make the melody sound

more complex and "rich" to the listener because of how chords reinforce harmonic overtones in
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the melody. In my program there are 12 chords that are used. For example, in C major (which is

not the same for another key, like A major), one can use these chords:

1. I chord = [C,E,G] consisting of the notes C, E, and G.

2. I6 chord = [E,G,C] (also) consisting of the notes C, E, and G. (I and I6 are related by their "I")

3. I64 chord = [G,C,E] ...

4. II = [D,F,A]

5. II6 = [F,A,D]

6. III = [E,G,B]

7. IV = [F,A,C]

8. V = [G,B,D]

9. V7 = [G,B,D,F]

10. VI = [A,C,E]

11. VII = [B,D,F]

12. VII7 = [B,D,F,A]

(Levinson, 2021)

(Note that I refer to all chords in one key to be in uppercase format even though Figure 1 uses the

convention of using lower case for certain chords. Also, some more complex chords, such as V9s

and "borrowed" chords did not make it into this program due to time constraints.)

These chords are essentially groups of notes that when played at the same time have a purpose to

propel the music into tension or release. It is important to note that these chords' numeral orders

are just like the order of a scale; a I chord is below a II chord, and a II chord is below a V chord,
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etc… The numbers that come after the roman numerals indicate the order in which the elements

of the chords are played in relation with each other, changing how the chord will sound, which

plays an important role in harmonic progressions. A I chord going to a V chord and then back to

a I chord is one of the most basic tension and release chord progressions. This is true partly

because the first element in the I chord is a C, and the first element in a V chord is G; there is

tension going from C to G. Then from V to I is a release between G and C. The second and third,

and sometimes fourth or fifth elements in a chord are played at the same time as the first element

because they conventionally enrich the music when played that way. To tie chords with melodies,

essentially any chord can be played at the same time as any melody note as long as the chord

contains the melody note in its elements.

Classical chord progressions consist of conventional rules; if there is a melody to be

harmonized, one cannot simply assign any chord to any melody note and have the music work. In

the following rules, note that any time I list a chord without any numbers in its name, I mean that

any chord that starts with the roman numeral can be used even if it is followed by numbers (but I

will mark exceptions). For example, IV can mean IV, or IV6, or IV64 unless specified otherwise.

The following rules are (for a major key, like C major):

1. The last chord of any piece of classical music must be a I chord (with no inversion).

2. If the piece does not start on a I chord (with no inversion, no numbers preceding it), a I chord

must be used within the first third of the harmonization.

3. A V7 chord can only happen in the last 1/3 of the piece.

4. A II chord can only be used after a I and a IV has been used in the piece already.
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5. Any chord can proceed itself but it should be that this proceeding chord is a different inversion

than the first one. But also, if a chord can be repeated twice in a row, and the following ⅓ of the

melody's length of notes can be harmonized by that same chord, then one can assign all of those

notes with the same chord inversion (which is called a drone). Which inversions of chords to use

are at the discretion of the user.

6. If a I chord (but not I64) has been played, then, if there is a next note, a IV, V, I6, I64, or II can

be assigned to it (however II should only be used after a I and a IV have been used in the piece

already).

7. If a I64 has been played then, if there is a next note, a V can be used on it.

8. If a IV has been played, then a I chord, or I64, or II, or V can be used on the next note.

9. If II was used, then a V, or VII65 can be used on the next note.

10. If a III was used, then a VI can be used on the next note.

11. If a V was used, then a I, or IV, or VI can be used on the next note.

12. If a V7 was used, then a I can be used on the next note.

13. If a VI was used, then IV, or II, or V can be used on the next note.

14. If a VII or VII65 or VII7 was used, then a I can be used on the next note.

(Fux, 2000) (Levinson, 2021).

Figure 1 is an example of a four-part harmony (that conforms to the above rules). The

melody consists of the topmost notes (F, G, A, Bb, A, G, F, F, E, F) while the three notes directly

below each melody note represent the chord harmonizing that melody note. The "FM" that is

written in the figure corresponds to the key of F Major. The chord progression rules apply to this

harmony: a I chord is used for the first melody note, F, and a I chord in F Major (= [F,A,C])
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contains the first melody note, F. The second chord, V in F Major (= [C,E,G]), contains the

second melody note, G. One can also see that rule #6 allows the I chord to be followed by the V.

The third melody note, A, is harmonized by a I chord because A exists within a I chord (in F

major) and also because rule #11 states that a I chord can be used after a V chord was used. The

fourth melody note, Bb exists within a IV chord (in F major) and rule #6 allows a IV to come

after a I. The fifth melody note, A exists within a I chord (in F major) and by rule #8, a I can

come after a IV. The sixth melody note, G exists within a V chord (in F major) and by rule #6, a

V can come after a I. The seventh melody note, F exists within a vi chord (in F major), which I

notate as VI in my program, and by rule #11, a VI can come after a V. The eighth melody note, F

exists within a IV chord (in F major) and by rule #13, a IV can come after a VI. The ninth

melody note, E exists within a V chord (in F major), and by rule #8 a V can come after a IV.

Finally, the last melody note, F exists within a I chord (in F major) and by rule #1, the I chord

ends the harmonization.

The melody that I made earlier, C, D, E, G, D, E, C, can be harmonized with a few

different progressions. To show a couple: I, V, I, I, V, V, I, meaning the first C is harmonized by

the first 'I' chord, the first D is harmonized by the first V chord, etc…, or I, V, I, I6, IV, V, I could

also work as a progression for this melody. Also note that I, V, I, I6, IV, V, I could mean I, V, I6,

I, IV, V7, I, because the inversions of the chords can be chosen by the user to their discretion, but

with two exceptions: a I chord cannot always be replaced by a I64 chord (as is specified in rule

#6), and the last chord of the harmony can only be a I chord (with no inversion) by rule #1. These

harmonies can work because each melody note exists in each chord corresponding to it, and they

also follow the rules of how chords can be used, for example in the first progression, every time a
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V chord is seen, it is preceded by either a 'I' chord, due to rule #6, or a V chord, due to rule #5. If

the progression were to be I, II, I, I, V, V, I, while every melody note exists within its

corresponding chord, this progression is invalid because the II chord appears without a IV chord

anywhere behind it in the progression, violating rule #4.

It seems that most classical style melodies will have no trouble conforming to these chord

progression rules, but if there somehow is a case that the input melody is not classical, like a

Noise Rock melody, and possibly no harmony can be given to it, then my program will not

output any harmonization. For example, I do not see how the melody: [C, B, F, F] in C major can

be harmonized, mainly because it violates rule #1: that the harmony must end with a 'I' chord.

"F" does not exist within a 'I' chord in C major. My program will output every harmonic chord

progression (based on my set of "classical" harmony chords and rules) that could be used for a

classical style melody.

Other research has focused on finding harmonizations in music, for instance in the paper

"Bach in a box: The evolution of four-part baroque harmony using the genetic algorithm" (Mc

Intyre, 1994). The researchers input a user-given melody and developed an algorithm to create a

4-part Baroque style harmony based on rules of counterpoint. Their genetic algorithm would

generate a value that represented how fit, or good, the harmony was for the melody. The value

was increased for following counterpoint rules such as contrary motion, where, say, one harmony

note would lead to the next harmony note in one direction while another note in the music would

lead to its next note in the opposite direction (see Figure 2, Rule 16). However some number of

fitness points were taken away if the program encountered parallel motion (see Figure 2, Rule

14). Parallel motion sometimes sounds odd in Baroque style music. Their genetic algorithm
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worked by mutation. "Mutation is modified to randomly change a note value…" meaning that the

algorithm would run over and over again, slightly changing which notes were in the harmony

each time and testing whether the fitness was higher than before (Mc Intyre, 1994). Then the

harmonies of highest fitness were shown to the user. Another paper, "Automatic Generation of

Four-part Harmony" also assigned a fitness method while constructing harmonies but did so

through the use of Markov MDPs (finite state machines) (Yi et al., 2007). The authors argue that

"The choice of a chord is similar to the choice of an action in MDP planning. If we use utilities

to decide the goodness of the harmony, then we will want to pick a set of chords which can

maximize the utilities"  ​​(Yi et al., 2007). The Markov MDPs will act on given data about the

"appropriate ranges" that, in four-part harmony, the soprano, alto, tenor, or bass notes could be.

This involved work with finite state spaces. Because of the different "appropriate ranges", the

authors had to deal with different octaves of notes, because the note C can exist in many numbers

Figure 2. Examples of parallel, stepwise, and contrary motion (Hiller et al., 1959).
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of audible Hz values: 16.35hz, 32.70hz, 65.41hz, 130.81hz, 261.63hz, 523.25hz, etc... The paper

distinguished between different octaves by writing "C," "C" "c" "c′ " in order of lower to higher

octaves. The program needed to distinguish this because it was dealing with counterpoint rules

(as did the "Bach in a box" researchers) ​​(Yi et al., 2007). They also specified that they would

only use melodic notes at each beat and only consider adding chords at each beat, and keep their

melody inputs as only in C major. The MDPs would then rely on dynamic Bayesian networks

(DBNs) to have a probability of which notes would be restricted to be used in the harmony, as to

control the output ​​(Yi et al., 2007).

My program, like "Bach in a Box" is using a user defined melody as input except that I

am using Classical style harmony based on rules of figured bass chord progressions. And while

Baroque and Classical harmony are not unimaginably different from each other, a difference

between their work and my project idea is that they used a genetic algorithm to show the user

configurations of harmony notes (which would end up forming chords) that they could use for

their melody through many iterations of trial and error; while my chords are already figured out:

I, I6, II, V, etc…. meaning that while my harmonies do not specify positions of notes in the

harmonies, as the "Bach in a Box" researchers did, they show what notes can be used in the

harmony.

Natural language processing proved a different method of approaching computer

harmonization. "Corpus-Guided Sentence Generation of Natural Images" is a paper where the

writers,Yang, Yezhou, et al., discussed a program that would create specific sentences that would

describe images fed to the program, (which, for my program, was just like creating

harmonizations to inputted melodies) (Yang, Yezhou, et al., 2011). They theorized working with
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(Objects are represented by the set N) (Actions are represented by the set V)

(Scenes are the set S) (Preps are the set P)

Figure 3. Sets for Objects, Actions, Scenes, and Prepositions.

"trained detection algorithms" to extract sets of words based on the objects that could be

identified within the image.

"Key to our approach is the use of a large generic corpus such as the English Gigaword

[Graff, 2003] as the semantic grounding to predict and correct the initial and often noisy

visual detections of an image to produce a reasonable sentence that succinctly describes

the image" (Yang, Yezhou, et al., 2011)

This means that they used the English Gigaword dataset (which can range to 400gb of data) to

more clearly detect what kind of images they were dealing with.
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Given an image of a bull in a field, an image of a man on his bike, a woman smiling

among plants, etc… the program outputs this table. Their program only stores up to 20 words per

set. In my program, I can say that each melody note has its own set of chords that can harmonize

it. The sentence generation program has sets: Objects (nouns), Actions (verbs), Scenes (well,

scenes), and Preps (prepositions). Elements from the sets in Figure 3 will then be used to

construct sentences, annotations (which can be seen in Figure 4), using the rules of English

grammar. "...each annotation is usually short – around 10 words long" (Yang, Yezhou, et al.

2011). Their algorithm more specifically works by creating object classes, for example a chair

object may have synonyms such as chaise, daybed, rocker, armchair, wheelchair, etc…, and then

they

"...can now compute from the Gigaword corpus [Graff, 2003] the probability that a verb

exists given the detected nouns, Pr(v|n1,n2) [where v is a verb and n1, n2 are nouns]. We

do this by computing the log-likelihood ratio [Dunning, 1993] , λnvn, of trigrams (⟨n1⟩ , v,

⟨n2⟩), computed from each sentence in the English Gigaword corpus [Graff, 2003]" (Yang,

Yezhou, et al., 2011).

This means that they use the Gigaword data to create links between verbs and nouns, and

eventually to objects, like the object chair and the subject woman (Yang, Yezhou, et al., 2011).
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The outputs of the above "Corpus-Guided Sentence Generation…" paper reminded me of

my program idea because where they gather sets for words to describe an image, I too gather

Figure 4. Images side by side with their annotations.

chords to describe a melody. Yi et al.'s paper also prompted me to decide on a notational system

for my notes. I decided that I will not be using just "C" "C#/Db" "D" "D#/Eb" "E" "F" "F#/Gb"

"G" "G#/Ab" "A" "A#/Bb" "B", but rather, "0" "1" "2" "3" "4" "5" "6" "7" "8" "9" "10" "11" to

make a uniform account for sharp and flat notes, not just the basic notes in C major. Sharp and

flat notes are necessary if I am to harmonize different keys, which is something that I want to

implement into this program in the future. For example, while a C major scale (as I mentioned

before) contains "C" "D" "E" "F" "G" "A" "B", A major has "A" "B" "C#" "D" "E" "F#" "G#".

So, C major in my notation would be "0" "2" "4" "5" "7" "9" "11", and A major would be "9"

"11" "1" "2" "4" "6" "8". But like the researchers for the "Automatic Generation…", I also

started my program in a simple fashion and confined myself to the key of C major (Yi et al.,

2007).
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Methods

There were a few program choices that could have been used to implement my algorithm, for

instance the SWI Prolog language because of its strict definition-based system that could have

beautifully represented chords. However, I used the Python 2.7 language because of a couple

reasons: 1.) Its simplicity for implementing more complex rules of harmony, such as allowing a

harmony not to start with a 'I' chord as long as a 'I' chord is within the first third of the length of

the harmony (which is rule #2), and 2.) the complete control one has over each stage of their

program for debugging, for example if the output of chords was somehow wrong, I knew I would

be able to more precisely address the problem; in Prolog one needs to define all of the rules and

facts but after that it is much more difficult to control the flow of the program once those facts are

stated. Also, even though Prolog may also have executed the program faster, Python was fast

enough when I started the process.

My first idea on how to find all possible harmonizations was a brute-force approach: to

sift through all permutations of chords of an array the same length as the user-given melody.

However, this turned out to be too complex; if the user gave, for example, my melody that I made

earlier in this paper [C,D,E,G,D,E,C], then the program would test if [I, I, I, I, I, I, I] or [II, I, I, I,

I, I, I] or [III, I, I, I, I, I, I] etc… would work with my chord progression rules. When in theory

this could permutate into all valid classical harmonic progressions, the complexity, the amount of

operations that the computer would execute, would be the number of chords, N, raised to the

power of the length of the melody, L, which can be a large number, , for a long melody and𝑁𝐿

require the computer to store that many arrays of chords. The amount of memory that an array of
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chords takes can be calculated with a formula from the Algorithms 4th ed textbook by R.

Sedgwick and Kevin Wayne (Sedgewick, R., Wayne, K., 2011). They write

"An array of primitive-type values typically requires 24 bytes of header information (16

bytes of object overhead, 4 bytes for the length, and 4 bytes of padding) plus the memory

needed to store the values. For example, an array of N int [integer] values uses 24 + 4N

bytes (rounded up to be a multiple of 8)..."

The program stores strings, however, which are not primitive-type values. They also write "A

String of length N typically uses 40 bytes (for the String object) plus 24 + 2N bytes (for the array

that contains the characters) for a total of 64 + 2N bytes…" (rounded to be a multiple of 8). So

my equation for an array of strings will be 64 + XN ~N bytes where X is the amount of memory

that a chord (string) takes, and N is the number of chords in an array (Sedgewick, R., Wayne, K.,

2011). Using the above melody, which has a length of 7 notes, and the amount of chords that I

am using, 12, python would be managing different arrays of chords (each127 = 35, 831, 808 

permutation). These would add up to bytes of memory. Because35, 831, 808 ·  (64 +  𝑋(7))

X is the value of the string, it is the average number of characters used to define each chord; for

example "I64" has three characters. The total number of characters used in all strings combined,

28, divided by the number of chords, 12: so 28 / 12 is roughly 2.3333 characters per chord. And

since the size of a string is 64 + 2N bytes where N is the number of characters, the average

amount of memory that a chord takes is bytes. So the64 +  2(2. 3333) 𝑏𝑦𝑡𝑒𝑠 =  68. 6666

total amount of memory needed for all of these permutations would be

gigabytes of memory, which35, 831, 808 ·  (64 +  (68. 6666)(7)) 𝑏𝑦𝑡𝑒𝑠 =  19. 5164

seems like too much for such a short melody, given that my program with its constraints would
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only output a few classical style harmonies for a short melody of 7 notes, and each of those

harmonies take only a few hundred bytes at most, much less gigabytes.

Harmonizations can, in fact, be found more efficiently if the program applies the

harmonization rules, getting rid of some options for chords to be used for certain melody notes,

before finding all possible harmonic permutation, instead of first finding all permutations of the

chords and applying the harmonization rules to all of them afterwards. Actually, the most chords

that can apply to a melody note is 6 for the note A; the note A exists in a II chord, II6 chord, IV,

VI, VII, and VII7 chord. So at this point, in a bad case (because the worst case is difficult to

theorize due to the harmonization rules), the program would only deal with amount of86

harmonies, which is still a fairly large number when imagining possible harmonies, but is much

less than . To do this, the program uses a loop to run through every chord progression rule for127

each individual element of the array, each individual melody note separated by a comma, and

save all of the possible harmony progressions into other arrays which it will show to the user of

the program, once it has finished. An example output would be:

[C,    D,    E,    G,    D,    E,    C]  ← Input Melody.

[I,     V,     I,    I6,    V,     I,     I,]   ← Harmony 1.

[I,     V,     I,    I64,  V,     I,     I]    ← Harmony 2.

[I,     V,     I,    V,     V,     I,     I]    ← Harmony 3.

[I,     V,     I,     I,     V,     I,     I]    ← …

[I,     V,    VI,   V,    V,     I,     I]

Finding all possible chord progressions would have the program take a melody note,

match it with all chords that it can be harmonized by, and then do the same with the next melody
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note. Then I will take these chords and combine them together in a way that follows the chord

progression rules. Using a shorter melody, for simplicity's sake, C, E, C in this program might

look like:

1. The user input melody should be in C major.

2. Take the first note of the melody: C

3. Is C an element of a 'I' chord ( [C,E,G] )?

4. Yes, it is, so save the I chord to a new array.

5. Is it an element of a II chord?

6. No.

7. Is it an element of a III chord?

8. …

(And go on to try for every chord)

9. Take the next note: E. Because it is the second to last note, it can only match with chords that

can go to a 'I' chord, because the last note must be harmonized by a 'I' chord.

10. Is e an element of a I chord?

11. Yes, so add I to its own new array. It so happens that E can only have a 'I' chord

assigned to it if it is the penultimate note because E does not exist in any other chords

(such as IV, V, V7, VII, and VII7) that lead to the 'I' chord of the final melody note.

14. Take the last note: C. By rule 1, it must be harmonized by a 'I' chord.

The above will leave us with a list per melody note which will contain all chords that the

melody note it corresponds to can match with:

Chords that can harmonize C: ['I', 'I6', 'I64', 'IV', 'VI']
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Chords that can harmonize E: ['I'] (Only this chord because it is the penultimate)

Chords that can harmonize C: ['I'] (Only this chord because it's the last note)

A piece of the code for this looks like:

—————————————————————————————
for note in range(len(mel)):

#Checks if it can be harmonized by a I.
if (mel[note] in I): #mel is the user input melody list

#harMemList is a listing that will hold all of the chords
harMemList[note].append('I')

if (melody[note] in IV):
harMemList[note].append('IV')

#etc… for all chords.
—————————————————————————————
A code snippet that creates arrays of chords that contain a certain melody note.

The program then pairs up chords from these arrays together following the harmonization rules.

Each pair of chords corresponds to the relationship between adjacent melody notes, because most

of the  simple harmonization rules deal with adjacent relationships of chords. Using the simple

melody shown before:

Melody Notes: C E C

Usable Chords ['I', 'I6', 'I64','IV',
'VI']

['I'] ['I']

Pairs of Chords:

Each pair is created by a
rule.

Rule 5: ['I', 'I'],
Rule 8: ['IV', 'I']

Rule 5: ['I','I']

Figure 5. The Pairing Process.
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A piece of the code for this looks like:
—————————————————————————————
#"count" and "i" iterate through harMemList revealing its chords.
if harMemList[count-1][i] == 'I': # If the chord in a melody note's list is a 'I'...

# Searching for chords though the next melody note's list:
for k in range(len(harMemList[count])):

# If the chord in the next melody note's list is a 'IV'...
if harMemList[count][k] == 'IV':

# then put I and IV together in a pair:
harmony[count-1].append([])
pairs=pairs+1
harmony[count-1][pairs].append('I')
harmony[count-1][pairs].append('IV')

elif harMemList[count-1][i] == 'IV': # If the first chord is not a 'I', test if it's a IV…

etc… for all the chord possibilities.
—————————————————————————————

The above code snippet is basically saying that a IV can come after a 'I'.

Combining the pairs is the next step. The program combines them by checking if the last

element of one pair matched the first element of another, if so then it creates a new list that would

hold the combined pairs (omitting the first element of the second pair because it is essentially a

duplicate). For example, combining [I,IV] and [IV,I] would result in a new list, [I,IV,I] (notice

Pairs of Chords:
Chords that are
highlighted will be
combined because they
share the same symbol.

['I', 'I'],
['IV', 'I']

['I','I']

Combined pairs: ['I', 'I', 'I']
['IV', 'I', 'I']

Figure 6. Combining the Pairs.
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that there is only one “IV”). If it were to append [I,V] to the previous example’s product, [I,IV,I],

then it would extend the previous list to be [I,IV,I,V]. It can be visualized as such in Figure 6,

continuing with the previous melody, C, E, C. These resulting combined pairs actually turn out to

be the final harmonies: for melody C, E, C, the final harmonies are ['I', 'I', 'I'] and ['IV', 'I', 'I']

(with one chord ordered in a row for each note in a row). If, for example, there were four melody

notes, these combined pairs, of length three, may combine once more with pairs for the fourth

melody note, to get a length of four and become the final harmony(ies). Some of the code for this

is below:

—————————————————————————————

for count in range(len(harmony)): # harmony is an array that holds all of the pairs of chords.

# We will be looking backwards into the harmony array to match previous pairs to future pairs.
__# So skip the first case for count to align with the position in the harmony array

if count > 0:
for i in range(len(harmony[count-1])):

for k in range(len(harmony[count])):
…

if harmony[count-1][i][len(harmony[count-1][i])-1] == harmony[count][k][0]:

# Replace the previous pair with the combination of two pairs:
_______________#harmony[count-1][i] and harmony[count][k][1:]. "[1:]" is used for skipping
_______________#over the duplicate chord.

replace.append(harmony[count-1][i] + harmony[count][k][1:])

harmony[count] = replace
…
—————————————————————————————
The above code combines the pairs of chords together into one array which will become a harmony if it terminates.

After the above method, there is still a step to further process the harmonies: to delete

harmonizations that have been made by the simple pairing system that do not pass the more

complex rules based on seeing melody notes in advance, like rule 2. For example, given the
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arbitrary harmony [II,IV,V,I], a third (floored) of the length of the melody to produce this

harmony is 4//3 = 1. Because there is no 'I' at position 1, rule 2 has been violated. To get rid of

these incorrect harmonies, the program marks them by appending “&” symbols (an arbitrary

choice of symbol) to the end of them. The final output of the program will not pass lists that

contain “&” symbols, so the user will only see valid harmonies. So this harmony would look like

[II,IV,V,I,&] (and it means that it is not valid).

At this stage, a problem occurred: the program on an input of around 10 melody notes

was sometimes taking ~ 10 seconds to output only 5 harmonies. Due to my approach of building

the harmonies, I was dealing with pairs of chords and those pairs began to take up large amounts

of memory for user inputs of around 10 notes. Half of the information per pair was not even used

in the algorithm: it is checking if one pair ends on the same chord that another pair starts on and

then throwing away one of those matching chords just to add the other chord in that pair to the

first pair: for example [I,IV] and [IV,I] would result in the new list, [I,IV,I], and the other "IV" is

never used. This could be an option for optimization.

Melodies can often be 20 notes long, and I would like to support at least that many. But

when running my program on an input of 20 notes, it ended up needing to use about 20 gigabytes

of memory (which was saved to storage) over one hour, which turned out to be quite large for 20

melody notes (because later I was able to harmonize over 20 melody notes using less than 20

gbs). I terminated the program due to time constraints. I reasoned that because my program

required 20 gbs of space over time and my old laptop only has 8 gbs to work with, my computer

was probably taking a lot of time getting rid of memory that wasn't being used so that it could

have more memory to work with; if cleared many times in one program, it takes a noticeable
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For melody C, D, E, C:

Notes: C D E C

Pairs: ['I', 'II'],
['I', 'V'],
['I6', 'II'],
['I6', 'V'],
['I64', 'V'],
['IV', 'II'],
['IV', 'V'],
['VI', 'II'],
['VI', 'V']

['V', 'I'],
['V7', 'I'],
['VII', 'I'],
['VII7', 'I']

['I', 'I']

Figure 7. Failed Harmony Example.

amount of time in (about 1 second) to clear filled up memory, and it was the case that a bunch of

the pairs still existed in memory even though the harmonies had already used them up and moved

on to later melody notes to analyze.

Going back to the reason for the search for optimality, one way to cut the time to output 5

harmonies for a 10 note melody would be to change the method of combining all of the pairs

together. What I realized was happening was that the combination algorithm was processing not

only valid and working harmonies, but what I will call "failed harmonies" as well: combinations

of chords that cannot be continued because they are restricted by the rules. The combination

method looks at every single harmonization, even if it is a failed one, and then determines

whether to show it to the user. Note that I only want to show the user valid, full harmonizations,

not failed ones. A failed harmonization can be seen in Figure 7. The turquoise highlighted pairs
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in the first column, if combined with the highlighter pair in the second column would turn out to

be failed harmonies because they violate rule 2 which states that if the harmony does not start on

a I chord (with no inversion), a I chord must happen within the first third of the harmony

(floored), which essentially means that there must be a I chord as the 1st chord of the harmony

(because length of melody = 4 notes, and 4 // 3 = 1). So, if the turquoise pairs develop into a

harmony, it will clearly not start with a 'I' chord, and they cannot change their first chords, 'I64',

'IV', and 'VI' to a 'I'; they will sit in memory and be developed throughout the whole

harmonization process but will be invalid harmonies in the end. So, to free up some memory and

help speed up the program, the failed harmonies should be removed from memory as soon as

they are detected, so as to not waste time considering them for the combination process. This

optimization could be more easily implemented using another approach to harmonizing a

melody.

Although the pairing approach to my program seemed to me at first like a more

understandable or "beautiful" approach to harmonizing, I decided to instead use just one array

per harmonization and attach new chords onto it based on the order of melody notes. This would

make it easier to clear any failed harmonies as the program ran because they would just be sitting

together in one convenient place. This approach can be seen in Figure 8. Figure 8 shows the

chord progression with the final harmony (to melody C, D, E, C) as ['I', 'V', 'I', 'I'], and instead of

relying on pairs of chords in memory to be paired themselves (or combined) into harmonies, the

harmonies build onto themselves. This could save some running time (in terms of the pairing

method) because the chords are being combined together as they are being built instead of after

the fact; so instead of having the method to create the pairs (Figure 5) and then another method
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Melody Notes: C D E C

Straight to Harmony
Building:

['I', 'V']

(Notice that all
chords except for
['I', 'V'] have
been
preemptively
removed due to
rule 2!)

['I', 'V', 'I'],

(Given note E, by
rule 11 it can only
add on a 'I' chord
to the previous
pair because it
only exists within
a 'I' chord out of
rule 11s options)

['I', 'V', 'I', 'I']

(Given note C, it is
the last note (and
exists within a 'I'
chord) so it adds
on a 'I' to finish the
harmony)

Figure 8. Harmonizing by using less memory.

to combine the pairs (Figure 6), there is a method that combines both ideas (Figure 8); it adds

chords, based on the rules, to a growing harmony array instead of having to deal with merging

chords (which takes more memory) together, if the chords match each other. The newer method

also incorporates manual clearing of memory using the python garbage collector, gc() method.

Using the new harmonization method, the program was able to stably harmonize from 2 up to

around 30 notes (as opposed to only 2 up to 20 with the old pair method) in less than 2 hours,

and without running out of memory.

Below is a table filled with runtimes of the unoptimized program along with the

optimized program given an average case melody (ranging from 2 to 18 notes), based on the tune

Frère Jacques, C, D, E, C, C, D, E, C, etc…, and a bad case melody, a melody filled with C's, C,

C, C, C, …, because the note C has of the highest amounts of available chords it can be
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harmonized by as well as the highest number of rules that apply to the chords it can harmonize.

(n values for 3, 5, 6, 7, and 9 were left out because they all basically had the same runtimes as for

n values of 2, 4 and 8).

Number of
Melody Notes

Unoptimized
Program
Average Input
Case Time
(sec)

Unoptimized, Bad
Case Input Time
(sec)

Optimized
Program,
Average Input (s)

Optimized, Bad
Case (s)

n = 2 0.018 0.018 0.020 0.018

n = 4 0.017 0.018 0.021
Surprisingly, for
small inputs, the
unoptimized
harmony seems to
perform a bit
quicker than the
optimized!

0.022

n = 8 0.024 0.036 0.024 0.028

n = 10 0.036 0.252 0.027 0.057

n = 11 0.090 0.806 0.036 0.110

n = 12 0.209 2.748 0.052 0.278

n = 13 0.301 9.382 0.063 0.648

n = 14 0.971 31.917 0.104 1.518

n = 15 2.082 106.465 0.217 4.098
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n = 16 5.764 405.241 0.506 10.093

n = 17 9.072 1403.843
But it actually
took more like
4080 seconds for
my computer to
give an output.
This might be due
to clearing
memory…

0.572 25.115

n = 18 27.406 Did not terminate.
Killed 9 Error.
Ran out of
memory.

1.119 62.968
Where the
unoptimized bad
case failed
completely, this
optimized case
takes only a
minute!

Figure 9. Log / Log Comparison of Runtimes Between the Un-optimized and Optimized Programs.
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A graph for the above runtimes can be seen in Figure 9, where one can clearly see in the graph

how the bad case for the unoptimized program, the red line, rises above the rest of the cases,

however, for Numbers of Notes less than 6, the unoptimize program is actually faster than the

optimized program. However, after Number of Notes more than 6, The unoptimized program's

lines rise faster than those of the optimized program. The proximity of the average case for the

unoptimized program to the bad case of the optimized program shows how much faster the

optimized program is (compared to the unoptimized one). The optimized program's runtimes

continue on into the 30s of melody notes, but this runtime data table shows that the optimized

program (for  ~ n > 6) is faster than the unoptimized one.
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Results:

There are methods with which one can approximate the amount of memory space that a program

will need to run without actually running the program. These methods come from the Algorithms

textbook (Sedgewick, R., Wayne, K., 2011). They are useful to my program because, as can be

seen in the timing results of n = 17 and n = 18 for the unoptimized program's bad case, my

computer was sometimes taking extra time to clear its memory multiple times during a run of my

program, which does not have so much to do with the efficiency of my program, but rather the

memory constraints of my computer. Finding this memory data will help prove how much better

the optimized algorithm is compared to the unoptimized one regardless of computer hardware.

The programs primarily use lots of strings and arrays, strings which represent the chords,

and arrays that hold combinations and progressions of chords together. But also, the program

tends to store my array of chords per note (each set) inside of another array (which just holds all

of these sets together). They write that "When array entries are objects, a similar accounting

leads to a total of [for an M-by-N array] 8NM + 32M + 24 ~ 8NM bytes for the array of arrays

filled with references to objects, plus the memory for the objects themselves" (Sedgewick, R.,

Wayne, K., 2011).

To calculate how much memory my programs will need in order to execute. Both the

unoptimized and optimized programs first keep track of all possible chords that can harmonize

each note. This is done by keeping an array of chords for each note. Each chord is a string, and

all of these arrays of chords are grouped using one large array. So in total we have an array of

arrays filled with strings. Using what is shown in Figure 10, the memory used for an array of

arrays of objects (strings), it will take 24 + 8M + M(24 + (size of strings)N) bytes where M is the
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length of the melody and N is the amount of chords per note  (Sedgewick, R., Wayne, K., 2011).

We are left with a total of 24 + 8M + M(24 + (68.6666)N) ~ 69NM bytes. But more memory is

actually being used: the memory that comes from appending elements to all of the arrays,

because each append to an array creates a whole new array: the contents of the old array plus the

appended element. The array that holds each set of chords was also appended on to, with each

chord set, so we must add on this memory to the total that the chord set process takes. This can

be calculated as

𝑖 = 1

𝑀−1

∑  (24 +  8𝑖 +  𝑖(24 +  (68. 6666)𝑁))

which can be simplified to

𝑖 = 1

𝑀−1

∑ (24) + 8
𝑖 = 1

𝑀−1

∑ (𝑖) + (24 +  68. 6666𝑁)
𝑖 = 1

𝑀−1

∑ (𝑖)     

(𝑀 − 1)(24) + 8(𝑀 − 1)(𝑀) + (24 +  68. 6666𝑁)(𝑀 − 1)(𝑀)     

24𝑀 − 24 + 8𝑀2 − 8𝑀 + (24 +  68. 6666𝑁)𝑀2 − 𝑀      

Whis is, in final

(68. 6666𝑁)𝑀2 + 38𝑀2 + 15𝑀 − 24      ~69𝑁𝑀2

The sums go to M-1 (because the memory of the final array of the sets, at M, has already been

found in the above paragraph). The sum is similar to that of the final array of sets, except that

instead of having the final state, M, i increments for every time a new set is appended, for each

new melody note.
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Figure 10 (above) (Sedgwick & Wayne, 203). From the Algorithms textbook, a figure depicting their explanation of
how much memory a two dimensional M by N array filled with double values (of 8N bytes each) will take.

In total, the amount of memory the sets will take is the size of the final chord sets, 24 +

8M + M(24 + (68.6666)N) bytes, added to the leftover arrays in memory, for a total of
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bytes =(68. 6666𝑁)𝑀2 + 38𝑀2 + 15𝑀 − 24

bytes[8𝑀 +  𝑀(24 +  (68. 6666)𝑁)] + [(68. 6666𝑁)𝑀2 + 38𝑀2 + 15𝑀 ] ~69𝑁𝑀2

The above equation can be labeled as Equation 1.

Equation 1 finds the total amount of memory taken by the chord sets, where M is the size of the

melody input and N is the amount of chords per note. Given the worst case for the amount of

chords per note, N = 6 (with notes D or F), an example of a 14 note melody will take

(8(14) +  (14)(24 +  68. 6666(6))) + ((68. 6666(6))(14)2 + 38(14)2 + 15(14)  )

bytes, which is

bytes6215. 9944 + 88409. 9216

for a total of

bytes = kilobytes used in the building of the chord sets which is94625. 916 94. 6259

unchanged in both unoptimized and optimized programs.

The Unoptimized Program:

The next part of this (unoptimized) program is the creation of the pairs. All of these pairs

eventually end up in one master array that holds an array of pairs for each two melody notes: An

array of arrays filled with arrays of length 2 (a pair) of chords. We know, from before, that an

array of arrays of objects (pairs) takes 24 + 8M + M(24 + (Y)N) ~8NM bytes where M is the

length of the melody minus 1 (due to pairs being for every two notes), N is the number of pairs

per array, and X is the amount of memory a pair takes. To find Y is to see how much memory an

array of two chords, an array of size 2 with two strings inside, takes. This equation was used
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previously in the methods section and, to reiterate, is 64 + XN ~N bytes where X is the amount of

memory that a chord (string) takes (on average), and N is the number of chords in the array. Now

given that pairs are arrays of size 2 with two strings inside, each will take 64 + (2.3333)(2) bytes

= 64 + (4.6666)  bytes = 68.6666 bytes. But every pair of chords is appended together, meaning

that there is an extra array of length 1 just with the first chord of the pair, sitting in memory. This

array (of length 1) will take 64 + (2.3333)(1) bytes = 66.3333 bytes of memory. So in total, a pair

(plus its extra array to create it) takes A + (68.6666) bytes where A is the memory of the final

pair. This means that the total for one pair, our Y, is (68.6666) + 66.3333 bytes = 134.9999 bytes

= Y. Putting Y into our equation for the building of the pairs, we have 24 + 8M + M(24 +

(134.9999)N) bytes.

The next step is to find N, the number of pairs for each two melody notes that are next to

each other. For any melody length, if the melody is valid, which it should be, then on an average

melody input, C,D,E,C,C, there are a total of 36 pairs over all 5 notes. But because there is only a

pair for every two notes, we divide 36 by 4, which would mean an average of 9 pairs per two

melody notes. 9 pairs = bytes = 1214.9991 bytes = N. Putting this as into our9 ·  134. 9999

equation for building the pairs, 24 + 8M + M(24 + (134.9999)(1214.9991)) bytes = 24 + 8M +

M(164048.757) bytes = 24 + 164056.757M bytes.

However, there still remains the extra memory used due to all of the appending to the

two-dimensional array that holds all of the pairs. This can be written similarly to before:

bytes
𝑖 = 1

𝑀−1

∑  (24 +  164056. 757𝑖 )

bytes(
𝑖 = 1

𝑀−1

∑  24 + 164056. 757
𝑖 = 1

𝑀−1

∑ 𝑖  )
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[ bytes(𝑀 − 1)(24) + 164056. 757(𝑀 − 1)(𝑀)  ]   

[ bytes24𝑀 − 24 + 164056. 757𝑀2 − 164056. 757𝑀  ]   

[ bytes164056. 757𝑀2 − 164032. 757𝑀  −  24 ]   

So, Equation 2, for the total amount of memory used for the creation of pairs is:

[24 + 164056.757M] + [ ]  ~ bytes164056. 757𝑀2 − 164032. 757𝑀  −  24 164057𝑀2

The final part of the unoptimized program is the combining of pairs into complete

harmonies which are held by a master array (of the length of the melody) of arrays that are the

same length as the melody, and filled with chords. This part of the program, however, is very

difficult to compute by hand because it involves arrays that increase (and stay the same length) by

factors of the harmonization rules, for example, for the input of an average melody, F, G, E, C,

the combination algorithm produces something like:

1. [[['II', 'V'], ['II6', 'V'], ['IV', 'I'], ['IV', 'I64'], ['IV', 'V'], ['V7', 'I'], ['V7', 'V7'], ['VII', 'I'], ['VII7', 'I']],
2. [['II', 'V', 'I'], ['II6', 'V', 'I'], ['IV', 'I', 'I'], ['IV', 'V', 'I'], ['V7', 'I', 'I'], ['V7', 'V7', 'I'], ['VII', 'I', 'I'], ['VII7', 'I', 'I'],
3. ['II', 'V', 'I', 'I'], ['II6', 'V', 'I', 'I'], ['IV', 'I', 'I', 'I'], ['IV', 'V', 'I', 'I'], ['V7', 'I', 'I', 'I'], ['V7', 'V7', 'I', 'I'], ['VII', 'I', 'I', 'I'],
['VII7', 'I', 'I', 'I']],
4. [['II', 'V', 'I', 'I','&'], ['II6', 'V', 'I', 'I','&'], ['IV', 'I', 'I', 'I'], ['IV', 'V', 'I', 'I','&'], ['V7', 'I', 'I', 'I'], ['V7', 'V7', 'I', 'I'.'&'],
['VII', 'I', 'I', 'I'], ['VII7', 'I', 'I', 'I']]]

in four stages: 1. being just the pairs, 2. the combinations of the pairs from part 1. with other

pairs, 3. is a further combination of the arrays from part 2. with other pairs, and finally 4. holds

all of the final harmonizations, marking failed ones with a '&' symbol so they will not be shown

to the user. Having these 33 arrays, 9 of length 2,  8 of length 3, 12 of length 4, and 4 of length 5

for this average 4 note melody looks like there is no linear pattern. Also, to know that another
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average melody of 4 notes: C,D,E,C, produces 9 arrays of size 2, 5 of size 3, 5 of size 4, and 4 of

size 5 gives not much correlation to the previous melody, making calculating by hand the total

memory produced too difficult. Therefore comparing both algorithms, unoptimized and

optimized, by final output could be a way to see which is more efficient.

Figure 11. Log / log scale of Unoptimized Bad Case and. Unoptimized Avrg. Case. Note that values at n = 2 were
too small, so are essentially equal to 0.

It can be seen in Figure 11 that of the bad case or average case functions (the "Bad Case"

and "Average Case" lines), neither are linear, so regression on a semi-log graph will have to be

employed in the Analysis section, in order to find an equation for the program's output. The

equation found could also predict memory consumption for inputs of over 100 notes, something

not able to be run on my computer as of now.
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The Optimized Program:

The optimized program does share Equation 1's

bytes[8𝑀 +  𝑀(24 +  (68. 6666)𝑁)] + [(68. 6666𝑁)𝑀2 + 38𝑀2 + 15𝑀] ~69𝑁𝑀2 

of memory needed to keep all the initial sets of chords that can be used per melody note as the

unoptimized program does. So we know that one will need at least that much memory space in

order to run the optimized program. But where both programs differ, optimized and unoptimized,

is in the building of the harmonies. However, similarly to with the unoptimized program,

calculating the amount of memory that it uses in building the harmonies will depend on nonlinear

factors that are the harmonizing rules, which is not an easy task. So following the idea of

comparing final output results with the unoptimized program.
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Analysis

Using the data from both optimized and unoptimized programs, we will be able to approximately

predict how much time and memory both programs will take for larger melody inputs, say 100

notes, which is larger than I could compute within a reasonable time with my hardware; this

analysis will also show more clearly the relationship in efficiency between both programs.

Starting with the runtimes of the bad case for the unoptimized program, Figure 9, one can see

that the unoptimized bad case's line (the topmost, red one) has some sort of power or exponential

trend. In order to create an equation for these points, as to predict the outcome of a 100 note

input, we can plot its same points onto a semi-log (base 10) graph and find its trendline:

Figure 12. A semi-log graph of the seconds to the number of notes (up to 16) for the unoptimized bad case's runtime.
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It can be seen that the semi-log graph in Figure 12 shows a much more linear relationship to the

number of notes input, than the log-log graph in Figure 9,  and so it allows for a linear trendline

to fit the data more closely. However, the first two points, at 2 and 4, do not align with the rest of

the points, and because we are only interested in output values for inputs of larger than 16 notes,

we can remove these first two points from the graph and fit a trendline to the rest of the points, as

can be seen in Figure 13.

Figure 13. Trendline of y = 0.5118x - 5.6573.

The equation of the trendline is y = 0.5118x - 5.6573, however, this trendline's equation must be

converted using the Exponential formula for semi-log graphs, seeing the trendline in the form y =

mx + b, T(N) = ki^N where i = 10^m, k = 10^b, and N is the number of notes. So we will have a

final formula of T(N) = seconds. For example, for an input of 17 notes, the10− 5.6573(100.5118)
𝑁
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unoptimized algorithm's bad case would take 1104.8416 seconds = 18 minutes and 24 seconds to

finish. An input of 100 notes would take this program  3.332E+45 seconds to finish, which is an

extremely large amount of time, centuries… so there would be not much point in waiting for a

result given that input, given that the computer will have fully eroded by then.

Figure 14. A semi-log graph of the log(seconds) to the number of notes (up to 18) for the unoptimized average case's
runtime.

The unoptimized program's average input case can be seen in Figure 14. Although the points in

Figure 14 are not as aligned as they could be, their trend was no worse than in a log-log scale.

This time, the first three points at 2, 4, and 8 seem to disrupt the trend for numbers of notes past

10, so these first three points will be removed, as can be seen in Figure 15.
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Figure 15. Trendline of y = 0.3543x - 4.9855.

Converting the trendline from Figure 15 into an Exponential form, we get T(N) =

seconds, where N is the number of notes input into the program. So given10− 4.9855(100.3543)
𝑁

100 notes, the unoptimized program will take 2.783E+30 seconds to finish, which is a large

amount of time but is still much faster than the unoptimized program's bad case runtime of

3.332E+45 seconds.

Concerning the optimized program's runtimes, using the same method employed above

for the unoptimized program, the runtime equation for the optimized program's bad case turned

out to be T(N) = seconds, and for an input of 100 notes would take10−5.1785(100.3862)
𝑁

2.764E+33 seconds, which is a large amount of time, but is actually not too far off from the

runtime of the unoptimized program's average case. But the difference between the unoptimized
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and optimized bad cases is that of E+12, which shows that the optimized program is faster than

the unoptimized one for their bad cases. The T(N) for the optimized program's average case is

T(N) = seconds, which for 100 notes is 1.567E+17 seconds, which is still a10−3.785(100.2098)
𝑁

long time, but is less than the time for the unoptimized average case, further sealing the

superiority in runtime of the optimized program.

Predicting how much memory the programs will create can be done in much the same

way as calculating the runtime. The unoptimized program's bad case final memory output up to

17 notes can be seen in Figure 16.

Figure 16. Final output memory of unoptimized bad case.

Given our calculations of the amount of memory used in the creation of all of the chord sets,

Equation 1, for an 100 note melody, given the worst case for the amount of chords per note, N =

6 (with notes D or F), it can be said that it would take at least
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[8(100) +  (100)(24 +  (68. 6666)(6))]

bytes+ [(68. 6666(6))(100)2 + 38(100)2 + 15(100) ]

=  [ 44399.96 ] + [ 4501496 ] bytes

= 4545895.96 bytes = 4.5459mb of memory on the computer.

The predicted memory output for 100 notes, by Figure 16, would be, for function T(N) =

megabytes, is 5.801E+35 mb which is 5.801E+29 Terabytes, which is a lot10−4.9865(100.4075)
𝑁

of space.

The amount of memory for the unoptimized average case will at least require the same

4.5459mb of memory for the chord sets, and the trendline for the expected memory output can be

seen in Figure 17.

Figure 17. Unoptimized Average Case.
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The equation for the amount of memory predicted to be output by the unoptimized average case

is T(N) = megabytes. For 100 notes it yields 2.058E+27 mb, which is also10−4.9966(100.3231)
𝑁

many Terabytes of memory. This shows just how many possibilities there are to harmonize 100

notes of melody even restricted to classical harmony in just C major.

With 100 notes, the equation for the optimized bad case memory is T(N) =

mb = 1.395E+38 mb, which is surprisingly more than the unoptimized10−5.5853 (100.4373)
100

bad case of 5.801E+35 mb. This is certainly unexpected considering that given a table of their

memory outputs, all entries of the optimized program are lower than those of the unoptimized

program:

# Notes Unoptimized Bad Case (mb) Optimized Bad Case (mb)

4 0.000381 0.0001

8 0.02 0.009

10 0.132 0.075

11 0.335 0.191

12 0.848 0.57

13 2.1 1.4

14 5.3 3.6

15 13.1 9.8

16 32.3 24.2

17 79.5 59.8

18 crashed 154.7

Figure 18.
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The fact that in the long run the optimized program is predicted to use more memory may be due

to a too small amount of data gathered about the programs (although the unoptimized program

physically would not make it past 17 notes). There could possibly be a discrepancy in the

definitions of the harmonization rules in both programs, although they seemed to produce the

same outputs of final harmonies. This would require a thorough revision of both program's code

to see if they indeed matched. The expected memory output for the optimized average case is

T(N) = mb, which for 100 notes would be 1.728E+28 mb, which is also10−5.4924(100.3373)
𝑁

more than the unoptimized's average case output of 2.058E+27 mb. This could be true for the

same reasons the unoptimized beat the optimized bad case memory. So it is that for lower inputs,

the "optimized" program performs better than the "unoptimized" one, but for larger values the

inverse is true.
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Conclusion

The harmonizing program has the ability to intake a C-major melody defined by the user, and

output all figured bass progressions–limited to C major and simple harmonization rules–in the

"classical" style. The program underwent phases of optimization to lower its overall memory

usage, although it turns out that for an 100 note input, even though being faster, the "optimized

program" would use more memory than the "unoptimized" program. Ways to further optimize

the program would be the method of proper resizing of arrays. Conventionally, arrays should not

have one item (like a chord) at a time be appended to them but instead should be doubled in size

whenever they run out of space for new items; every time that my program appended a new

chord onto an array, or a new array of chords onto an array, the program would create entirely

new arrays, one length longer than the old array, to hold this data, and the previously used arrays

(which would now be one length shorter than the current array) would sit in memory and never

be used. But if my program used the conventional resizing of arrays, when doubled in size, they

would have empty space that could be filled by new chords or arrays. It is true that doubling the

arrays would also create entirely new arrays and so the old ones would get forgotten in memory,

however the rate at which the arrays would double in size would be much less than that of an

array that is being appended onto one element at a time, and this would be because at a certain

point, doubling a large array will create one twice as large, with half of it empty space so it

would take as long to fill as the array before it did. All in all, this would lower the amount of

memory used by the program.

Seeing the results of the analysis section, one can see how the optimized and unoptimized

programs differed in efficiency. However, it would be interesting to know not just how much
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output the programs make, but the total amount of memory they create in their combination

steps. This could be done if there was a method employed to measure how many pairs of chords

are made in the combination algorithm of the unoptimized program. This method could be

directly counting how many pairs are made by adding some code to the combination algorithm.

Knowing the total amount of memory used, provided the length of the user's melody, is useful to

know in regards to deciding what kind of machine the user would need to most efficiently run the

code on.

Another future addition to the program, one that could make it better represent the range

of classical music that exists in the world, could be adding key changes, the ability to input a

melody in, say, A Major, or B Harmonic Minor instead of only C major. This would be quite a

simple addition to the code: adding a variable into each chord definition (I chord = [C, E, G]). As

of now, the program reads "'I' chord = [C, E, G]" as "I = [0, 5, 7]" where the numbers represent

the notes: C = 0, E = 5, and G = 7, and it so happens that all of the chords hold a relationship to

their key, meaning that if the key is G major, a 'I' chord is [G, B, D], which is [5, 11, 2] for the

computer, where G = 5, B = 11, and D = 2. So if we say that the default key of the program is C

major, then we could say 'I' chord = [(0 + X)%12, (5 + X)%12, (7 + X)%12] where X = 0 for "C"

in "C major" and we perform %12 because of the one octave our notes are restricted to. Then [(0

+ (0))%12, (5 + (0))%12, (7 + (0))%12] = [0, 5, 7], which is in fact a 'I' chord in C major. Now,

given G major, we use the same method, but X = 5 because of the " G " in "G major". This would

yield 'I' chord = [(0 + (5))%12, (5 + (5))%12, (7 + (5))%12] = [5, 11, 2], which is a 'I' chord in G

major. On a different note, given, say, the key of B Harmonic Minor, some of the harmonization

rules would have to change; the current rules only support major keys, like C or A major. So
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given the key change to B Harmonic Minor, the program would need its own new version of the

harmony combination algorithm but for harmonic minor keys.

Another step further with the program would be to incorporate modulation, a technique

where the key of the harmony could change in the middle of a melody. This would add even

more options to harmonize a melody, which unfortunately could lower the amount of melody

input supported in the program, but if added, could make the harmonies more interesting. It could

be done by analyzing the outputted final harmonizations of the current program and then apply

new rules concerning modulation, which determine whether the harmonizations can incorporate

a key change. The harmonizations that could incorporate one would then be duplicated, and the

duplicates would be passed through the appropriate combination algorithm for the key it was

changed to (as explained in the above paragraph), so that the chords applied are in the new,

modulated key.

The addition of some more complex harmonization rules involving V9 Major and Minor

chords are also a part of classical music that was not included in this program. If these chords are

used in the harmony, they have a rule which requires that a 'I' chord be used within the next two

melody notes, meaning that the program would have to look ahead two melody notes in order to

detect if a 'I' chord can even harmonize them. If this 'I' chord could be used, then the V9 chord

would be added onto the harmony array but only be able to have chords that lead to a 'I' be added

onto its array for the next note. If the next note added would be a 'I', then all is resolved, however

if it would not be a 'I', then another condition would apply that the next chord must be a 'I' chord

if it is to be added onto that harmony array.
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I do believe that this project could also be done more beautifully in SWI Prolog given its

rule-like nature. The difficult part about that, for me, would be how to very tightly constrain

chord options. One would need to create many prolog rules that could finely manipulate a

growing list of chords.

This python project has highlighted some ties between music and computer science. The

language of music, although it may seem emotional and spontaneous, is surprisingly ordered and

rule-bound. For example, by asserting when the piece is in C major, or that a V chord is [G, B,

D] in C major and only in C major. The output of my program can also show some mathematical

patterns regarding musical harmonies. Given the input C, C, C, C, C, C, C, C, some of the output

looks like

I   I6   IV    I   I6   IV    I      I

I   I6   IV    I   I6   IV   IV    I

I   I6   IV    I   I6   I6    IV    I

I   I6   IV    I   IV    I    IV    I

I   I6   IV    I   IV    I     I      I

I   I6   IV    I   IV   IV    I     I

…

…

It is true that this output is ordered by an algorithm so it can inherently seem to have a pattern,

but it is also true that any of these chord progressions can be applied to the input melody and

work in the classical style.
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I believed, when I started this project, that I would end up with a program that could

intake a melody of any length and in any key and produce all possible classical harmonies,

maybe even including modulation. But due to the deeply complex nature of music that I did not

account for, as of now I only have a program that can harmonize only C major melodies,

excluding some harder harmonization rules. In order to further this program efficiently, I would

need to come up with a more realistic view of how much time and effort each part of the program

will need in order to be built. If I want to incorporate more difficult harmony rules that require

looking at melody notes far in advance of the current state of the melody, such as with the V9

chords, I may need to change my combination algorithm in such a way that it is not based on

checking for adjacent relationships of chords. This change could allow for all sorts of

possibilities, ones also regarding the rhythm of the melody to be a factor in how it should be

harmonized. All of these advancements could more efficiently generate figured bass to melodies

using a computer, which was the goal of this project.

I started this project with the idea to keep track of all possible harmonies for one user

given melody. Looking into some computer science literature on the subject helped generate

information to help me decide what methods I would implement into my program, such as

having strict harmony rules and a clear notation style. I created methods in Python that produced

valid harmonies, and two different algorithms emerged, the unoptimized and optimized.

Analyzing these algorithms was an interesting experience because although the optimized

program was created to use less memory than the unoptimized program, and it was always

predicted to be faster than the unoptimized one, it turned out that for longer and longer melodies,

the unoptimized program used less memory than the optimized program.
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