
Bard College Bard College

Bard Digital Commons Bard Digital Commons

Senior Projects Spring 2022 Bard Undergraduate Senior Projects

Spring 2022

Harmony in Memory: A Program to Help Harmonize a Classical Harmony in Memory: A Program to Help Harmonize a Classical

Melody Melody

Alexander E. Levinson
Bard College, al8050@bard.edu

Follow this and additional works at: https://digitalcommons.bard.edu/senproj_s2022

 Part of the Music Commons

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Recommended Citation Recommended Citation
Levinson, Alexander E., "Harmony in Memory: A Program to Help Harmonize a Classical Melody" (2022).
Senior Projects Spring 2022. 241.
https://digitalcommons.bard.edu/senproj_s2022/241

This Open Access is brought to you for free and open
access by the Bard Undergraduate Senior Projects at
Bard Digital Commons. It has been accepted for inclusion
in Senior Projects Spring 2022 by an authorized
administrator of Bard Digital Commons. For more
information, please contact digitalcommons@bard.edu.

http://www.bard.edu/

10

(Objects are represented by the set N) (Actions are represented by the set V)

(Scenes are the set S) (Preps are the set P)

Figure 3. Sets for Objects, Actions, Scenes, and Prepositions.

"trained detection algorithms" to extract sets of words based on the objects that could be

identified within the image.

"Key to our approach is the use of a large generic corpus such as the English Gigaword

[Graff, 2003] as the semantic grounding to predict and correct the initial and often noisy

visual detections of an image to produce a reasonable sentence that succinctly describes

the image" (Yang, Yezhou, et al., 2011)

This means that they used the English Gigaword dataset (which can range to 400gb of data) to

more clearly detect what kind of images they were dealing with.

11

Given an image of a bull in a field, an image of a man on his bike, a woman smiling

among plants, etc… the program outputs this table. Their program only stores up to 20 words per

set. In my program, I can say that each melody note has its own set of chords that can harmonize

it. The sentence generation program has sets: Objects (nouns), Actions (verbs), Scenes (well,

scenes), and Preps (prepositions). Elements from the sets in Figure 3 will then be used to

construct sentences, annotations (which can be seen in Figure 4), using the rules of English

grammar. "...each annotation is usually short – around 10 words long" (Yang, Yezhou, et al.

2011). Their algorithm more specifically works by creating object classes, for example a chair

object may have synonyms such as chaise, daybed, rocker, armchair, wheelchair, etc…, and then

they

"...can now compute from the Gigaword corpus [Graff, 2003] the probability that a verb

exists given the detected nouns, Pr(v|n1,n2) [where v is a verb and n1, n2 are nouns]. We

do this by computing the log-likelihood ratio [Dunning, 1993] , λnvn, of trigrams (⟨n1⟩ , v,

⟨n2⟩), computed from each sentence in the English Gigaword corpus [Graff, 2003]" (Yang,

Yezhou, et al., 2011).

This means that they use the Gigaword data to create links between verbs and nouns, and

eventually to objects, like the object chair and the subject woman (Yang, Yezhou, et al., 2011).

12

The outputs of the above "Corpus-Guided Sentence Generation…" paper reminded me of

my program idea because where they gather sets for words to describe an image, I too gather

Figure 4. Images side by side with their annotations.

chords to describe a melody. Yi et al.'s paper also prompted me to decide on a notational system

for my notes. I decided that I will not be using just "C" "C#/Db" "D" "D#/Eb" "E" "F" "F#/Gb"

"G" "G#/Ab" "A" "A#/Bb" "B", but rather, "0" "1" "2" "3" "4" "5" "6" "7" "8" "9" "10" "11" to

make a uniform account for sharp and flat notes, not just the basic notes in C major. Sharp and

flat notes are necessary if I am to harmonize different keys, which is something that I want to

implement into this program in the future. For example, while a C major scale (as I mentioned

before) contains "C" "D" "E" "F" "G" "A" "B", A major has "A" "B" "C#" "D" "E" "F#" "G#".

So, C major in my notation would be "0" "2" "4" "5" "7" "9" "11", and A major would be "9"

"11" "1" "2" "4" "6" "8". But like the researchers for the "Automatic Generation…", I also

started my program in a simple fashion and confined myself to the key of C major (Yi et al.,

2007).

13

Methods

There were a few program choices that could have been used to implement my algorithm, for

instance the SWI Prolog language because of its strict definition-based system that could have

beautifully represented chords. However, I used the Python 2.7 language because of a couple

reasons: 1.) Its simplicity for implementing more complex rules of harmony, such as allowing a

harmony not to start with a 'I' chord as long as a 'I' chord is within the first third of the length of

the harmony (which is rule #2), and 2.) the complete control one has over each stage of their

program for debugging, for example if the output of chords was somehow wrong, I knew I would

be able to more precisely address the problem; in Prolog one needs to define all of the rules and

facts but after that it is much more difficult to control the flow of the program once those facts are

stated. Also, even though Prolog may also have executed the program faster, Python was fast

enough when I started the process.

My first idea on how to find all possible harmonizations was a brute-force approach: to

sift through all permutations of chords of an array the same length as the user-given melody.

However, this turned out to be too complex; if the user gave, for example, my melody that I made

earlier in this paper [C,D,E,G,D,E,C], then the program would test if [I, I, I, I, I, I, I] or [II, I, I, I,

I, I, I] or [III, I, I, I, I, I, I] etc… would work with my chord progression rules. When in theory

this could permutate into all valid classical harmonic progressions, the complexity, the amount of

operations that the computer would execute, would be the number of chords, N, raised to the

power of the length of the melody, L, which can be a large number, , for a long melody and𝑁𝐿

require the computer to store that many arrays of chords. The amount of memory that an array of

14

chords takes can be calculated with a formula from the Algorithms 4th ed textbook by R.

Sedgwick and Kevin Wayne (Sedgewick, R., Wayne, K., 2011). They write

"An array of primitive-type values typically requires 24 bytes of header information (16

bytes of object overhead, 4 bytes for the length, and 4 bytes of padding) plus the memory

needed to store the values. For example, an array of N int [integer] values uses 24 + 4N

bytes (rounded up to be a multiple of 8)..."

The program stores strings, however, which are not primitive-type values. They also write "A

String of length N typically uses 40 bytes (for the String object) plus 24 + 2N bytes (for the array

that contains the characters) for a total of 64 + 2N bytes…" (rounded to be a multiple of 8). So

my equation for an array of strings will be 64 + XN ~N bytes where X is the amount of memory

that a chord (string) takes, and N is the number of chords in an array (Sedgewick, R., Wayne, K.,

2011). Using the above melody, which has a length of 7 notes, and the amount of chords that I

am using, 12, python would be managing different arrays of chords (each127 = 35, 831, 808

permutation). These would add up to bytes of memory. Because35, 831, 808 · (64 + 𝑋(7))

X is the value of the string, it is the average number of characters used to define each chord; for

example "I64" has three characters. The total number of characters used in all strings combined,

28, divided by the number of chords, 12: so 28 / 12 is roughly 2.3333 characters per chord. And

since the size of a string is 64 + 2N bytes where N is the number of characters, the average

amount of memory that a chord takes is bytes. So the64 + 2(2. 3333) 𝑏𝑦𝑡𝑒𝑠 = 68. 6666

total amount of memory needed for all of these permutations would be

gigabytes of memory, which35, 831, 808 · (64 + (68. 6666)(7)) 𝑏𝑦𝑡𝑒𝑠 = 19. 5164

seems like too much for such a short melody, given that my program with its constraints would

15

only output a few classical style harmonies for a short melody of 7 notes, and each of those

harmonies take only a few hundred bytes at most, much less gigabytes.

Harmonizations can, in fact, be found more efficiently if the program applies the

harmonization rules, getting rid of some options for chords to be used for certain melody notes,

before finding all possible harmonic permutation, instead of first finding all permutations of the

chords and applying the harmonization rules to all of them afterwards. Actually, the most chords

that can apply to a melody note is 6 for the note A; the note A exists in a II chord, II6 chord, IV,

VI, VII, and VII7 chord. So at this point, in a bad case (because the worst case is difficult to

theorize due to the harmonization rules), the program would only deal with amount of86

harmonies, which is still a fairly large number when imagining possible harmonies, but is much

less than . To do this, the program uses a loop to run through every chord progression rule for127

each individual element of the array, each individual melody note separated by a comma, and

save all of the possible harmony progressions into other arrays which it will show to the user of

the program, once it has finished. An example output would be:

[C, D, E, G, D, E, C] ← Input Melody.

[I, V, I, I6, V, I, I,] ← Harmony 1.

[I, V, I, I64, V, I, I] ← Harmony 2.

[I, V, I, V, V, I, I] ← Harmony 3.

[I, V, I, I, V, I, I] ← …

[I, V, VI, V, V, I, I]

Finding all possible chord progressions would have the program take a melody note,

match it with all chords that it can be harmonized by, and then do the same with the next melody

16

note. Then I will take these chords and combine them together in a way that follows the chord

progression rules. Using a shorter melody, for simplicity's sake, C, E, C in this program might

look like:

1. The user input melody should be in C major.

2. Take the first note of the melody: C

3. Is C an element of a 'I' chord ([C,E,G])?

4. Yes, it is, so save the I chord to a new array.

5. Is it an element of a II chord?

6. No.

7. Is it an element of a III chord?

8. …

(And go on to try for every chord)

9. Take the next note: E. Because it is the second to last note, it can only match with chords that

can go to a 'I' chord, because the last note must be harmonized by a 'I' chord.

10. Is e an element of a I chord?

11. Yes, so add I to its own new array. It so happens that E can only have a 'I' chord

assigned to it if it is the penultimate note because E does not exist in any other chords

(such as IV, V, V7, VII, and VII7) that lead to the 'I' chord of the final melody note.

14. Take the last note: C. By rule 1, it must be harmonized by a 'I' chord.

The above will leave us with a list per melody note which will contain all chords that the

melody note it corresponds to can match with:

Chords that can harmonize C: ['I', 'I6', 'I64', 'IV', 'VI']

17

Chords that can harmonize E: ['I'] (Only this chord because it is the penultimate)

Chords that can harmonize C: ['I'] (Only this chord because it's the last note)

A piece of the code for this looks like:

—————————————————————————————
for note in range(len(mel)):

#Checks if it can be harmonized by a I.
if (mel[note] in I): #mel is the user input melody list

#harMemList is a listing that will hold all of the chords
harMemList[note].append('I')

if (melody[note] in IV):
harMemList[note].append('IV')

#etc… for all chords.
—————————————————————————————
A code snippet that creates arrays of chords that contain a certain melody note.

The program then pairs up chords from these arrays together following the harmonization rules.

Each pair of chords corresponds to the relationship between adjacent melody notes, because most

of the simple harmonization rules deal with adjacent relationships of chords. Using the simple

melody shown before:

Melody Notes: C E C

Usable Chords ['I', 'I6', 'I64','IV',
'VI']

['I'] ['I']

Pairs of Chords:

Each pair is created by a
rule.

Rule 5: ['I', 'I'],
Rule 8: ['IV', 'I']

Rule 5: ['I','I']

Figure 5. The Pairing Process.

18

A piece of the code for this looks like:
—————————————————————————————
#"count" and "i" iterate through harMemList revealing its chords.
if harMemList[count-1][i] == 'I': # If the chord in a melody note's list is a 'I'...

Searching for chords though the next melody note's list:
for k in range(len(harMemList[count])):

If the chord in the next melody note's list is a 'IV'...
if harMemList[count][k] == 'IV':

then put I and IV together in a pair:
harmony[count-1].append([])
pairs=pairs+1
harmony[count-1][pairs].append('I')
harmony[count-1][pairs].append('IV')

elif harMemList[count-1][i] == 'IV': # If the first chord is not a 'I', test if it's a IV…

etc… for all the chord possibilities.
—————————————————————————————

The above code snippet is basically saying that a IV can come after a 'I'.

Combining the pairs is the next step. The program combines them by checking if the last

element of one pair matched the first element of another, if so then it creates a new list that would

hold the combined pairs (omitting the first element of the second pair because it is essentially a

duplicate). For example, combining [I,IV] and [IV,I] would result in a new list, [I,IV,I] (notice

Pairs of Chords:
Chords that are
highlighted will be
combined because they
share the same symbol.

['I', 'I'],
['IV', 'I']

['I','I']

Combined pairs: ['I', 'I', 'I']
['IV', 'I', 'I']

Figure 6. Combining the Pairs.

19

that there is only one “IV”). If it were to append [I,V] to the previous example’s product, [I,IV,I],

then it would extend the previous list to be [I,IV,I,V]. It can be visualized as such in Figure 6,

continuing with the previous melody, C, E, C. These resulting combined pairs actually turn out to

be the final harmonies: for melody C, E, C, the final harmonies are ['I', 'I', 'I'] and ['IV', 'I', 'I']

(with one chord ordered in a row for each note in a row). If, for example, there were four melody

notes, these combined pairs, of length three, may combine once more with pairs for the fourth

melody note, to get a length of four and become the final harmony(ies). Some of the code for this

is below:

—————————————————————————————

for count in range(len(harmony)): # harmony is an array that holds all of the pairs of chords.

We will be looking backwards into the harmony array to match previous pairs to future pairs.
__# So skip the first case for count to align with the position in the harmony array

if count > 0:
for i in range(len(harmony[count-1])):

for k in range(len(harmony[count])):
…

if harmony[count-1][i][len(harmony[count-1][i])-1] == harmony[count][k][0]:

Replace the previous pair with the combination of two pairs:
_______________#harmony[count-1][i] and harmony[count][k][1:]. "[1:]" is used for skipping
_______________#over the duplicate chord.

replace.append(harmony[count-1][i] + harmony[count][k][1:])

harmony[count] = replace
…
—————————————————————————————
The above code combines the pairs of chords together into one array which will become a harmony if it terminates.

After the above method, there is still a step to further process the harmonies: to delete

harmonizations that have been made by the simple pairing system that do not pass the more

complex rules based on seeing melody notes in advance, like rule 2. For example, given the

20

arbitrary harmony [II,IV,V,I], a third (floored) of the length of the melody to produce this

harmony is 4//3 = 1. Because there is no 'I' at position 1, rule 2 has been violated. To get rid of

these incorrect harmonies, the program marks them by appending “&” symbols (an arbitrary

choice of symbol) to the end of them. The final output of the program will not pass lists that

contain “&” symbols, so the user will only see valid harmonies. So this harmony would look like

[II,IV,V,I,&] (and it means that it is not valid).

At this stage, a problem occurred: the program on an input of around 10 melody notes

was sometimes taking ~ 10 seconds to output only 5 harmonies. Due to my approach of building

the harmonies, I was dealing with pairs of chords and those pairs began to take up large amounts

of memory for user inputs of around 10 notes. Half of the information per pair was not even used

in the algorithm: it is checking if one pair ends on the same chord that another pair starts on and

then throwing away one of those matching chords just to add the other chord in that pair to the

first pair: for example [I,IV] and [IV,I] would result in the new list, [I,IV,I], and the other "IV" is

never used. This could be an option for optimization.

Melodies can often be 20 notes long, and I would like to support at least that many. But

when running my program on an input of 20 notes, it ended up needing to use about 20 gigabytes

of memory (which was saved to storage) over one hour, which turned out to be quite large for 20

melody notes (because later I was able to harmonize over 20 melody notes using less than 20

gbs). I terminated the program due to time constraints. I reasoned that because my program

required 20 gbs of space over time and my old laptop only has 8 gbs to work with, my computer

was probably taking a lot of time getting rid of memory that wasn't being used so that it could

have more memory to work with; if cleared many times in one program, it takes a noticeable

21

For melody C, D, E, C:

Notes: C D E C

Pairs: ['I', 'II'],
['I', 'V'],
['I6', 'II'],
['I6', 'V'],
['I64', 'V'],
['IV', 'II'],
['IV', 'V'],
['VI', 'II'],
['VI', 'V']

['V', 'I'],
['V7', 'I'],
['VII', 'I'],
['VII7', 'I']

['I', 'I']

Figure 7. Failed Harmony Example.

amount of time in (about 1 second) to clear filled up memory, and it was the case that a bunch of

the pairs still existed in memory even though the harmonies had already used them up and moved

on to later melody notes to analyze.

Going back to the reason for the search for optimality, one way to cut the time to output 5

harmonies for a 10 note melody would be to change the method of combining all of the pairs

together. What I realized was happening was that the combination algorithm was processing not

only valid and working harmonies, but what I will call "failed harmonies" as well: combinations

of chords that cannot be continued because they are restricted by the rules. The combination

method looks at every single harmonization, even if it is a failed one, and then determines

whether to show it to the user. Note that I only want to show the user valid, full harmonizations,

not failed ones. A failed harmonization can be seen in Figure 7. The turquoise highlighted pairs

22

in the first column, if combined with the highlighter pair in the second column would turn out to

be failed harmonies because they violate rule 2 which states that if the harmony does not start on

a I chord (with no inversion), a I chord must happen within the first third of the harmony

(floored), which essentially means that there must be a I chord as the 1st chord of the harmony

(because length of melody = 4 notes, and 4 // 3 = 1). So, if the turquoise pairs develop into a

harmony, it will clearly not start with a 'I' chord, and they cannot change their first chords, 'I64',

'IV', and 'VI' to a 'I'; they will sit in memory and be developed throughout the whole

harmonization process but will be invalid harmonies in the end. So, to free up some memory and

help speed up the program, the failed harmonies should be removed from memory as soon as

they are detected, so as to not waste time considering them for the combination process. This

optimization could be more easily implemented using another approach to harmonizing a

melody.

Although the pairing approach to my program seemed to me at first like a more

understandable or "beautiful" approach to harmonizing, I decided to instead use just one array

per harmonization and attach new chords onto it based on the order of melody notes. This would

make it easier to clear any failed harmonies as the program ran because they would just be sitting

together in one convenient place. This approach can be seen in Figure 8. Figure 8 shows the

chord progression with the final harmony (to melody C, D, E, C) as ['I', 'V', 'I', 'I'], and instead of

relying on pairs of chords in memory to be paired themselves (or combined) into harmonies, the

harmonies build onto themselves. This could save some running time (in terms of the pairing

method) because the chords are being combined together as they are being built instead of after

the fact; so instead of having the method to create the pairs (Figure 5) and then another method

23

Melody Notes: C D E C

Straight to Harmony
Building:

['I', 'V']

(Notice that all
chords except for
['I', 'V'] have
been
preemptively
removed due to
rule 2!)

['I', 'V', 'I'],

(Given note E, by
rule 11 it can only
add on a 'I' chord
to the previous
pair because it
only exists within
a 'I' chord out of
rule 11s options)

['I', 'V', 'I', 'I']

(Given note C, it is
the last note (and
exists within a 'I'
chord) so it adds
on a 'I' to finish the
harmony)

Figure 8. Harmonizing by using less memory.

to combine the pairs (Figure 6), there is a method that combines both ideas (Figure 8); it adds

chords, based on the rules, to a growing harmony array instead of having to deal with merging

chords (which takes more memory) together, if the chords match each other. The newer method

also incorporates manual clearing of memory using the python garbage collector, gc() method.

Using the new harmonization method, the program was able to stably harmonize from 2 up to

around 30 notes (as opposed to only 2 up to 20 with the old pair method) in less than 2 hours,

and without running out of memory.

Below is a table filled with runtimes of the unoptimized program along with the

optimized program given an average case melody (ranging from 2 to 18 notes), based on the tune

Frère Jacques, C, D, E, C, C, D, E, C, etc…, and a bad case melody, a melody filled with C's, C,

C, C, C, …, because the note C has of the highest amounts of available chords it can be

24

harmonized by as well as the highest number of rules that apply to the chords it can harmonize.

(n values for 3, 5, 6, 7, and 9 were left out because they all basically had the same runtimes as for

n values of 2, 4 and 8).

Number of
Melody Notes

Unoptimized
Program
Average Input
Case Time
(sec)

Unoptimized, Bad
Case Input Time
(sec)

Optimized
Program,
Average Input (s)

Optimized, Bad
Case (s)

n = 2 0.018 0.018 0.020 0.018

n = 4 0.017 0.018 0.021
Surprisingly, for
small inputs, the
unoptimized
harmony seems to
perform a bit
quicker than the
optimized!

0.022

n = 8 0.024 0.036 0.024 0.028

n = 10 0.036 0.252 0.027 0.057

n = 11 0.090 0.806 0.036 0.110

n = 12 0.209 2.748 0.052 0.278

n = 13 0.301 9.382 0.063 0.648

n = 14 0.971 31.917 0.104 1.518

n = 15 2.082 106.465 0.217 4.098

