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Abstract

The card game “SPOT IT!” consists of 55 cards, with 8 symbols appearing on each card. Every
pair of cards has exactly one symbol in common, and the goal of the game is to be the first
person to find this symbol. An alternate way to play the game is to find sets of 3 cards that
have the same symbol in common. We will use combinatorics, probability, and finite projective
geometry to analyze the structure of the game. The game “SPOT IT!” can be viewed as the
projective plane of order 7. However, we can construct a similar game for any prime number
n. The goal of this project is to determine the probability that in a given k-card layout there
will be at least one triple. Our results will determine the ideal number of cards to lay out when
finding triples in “SPOT IT!” games of order n.
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1
Introduction

This project is about the math behind a popular card game called SPOT IT! The first chapter is

an introduction to the card game SPOT IT!, also known as DOBBLE in the UK. It discusses how

the card game was inspired by a word problem Thomas Kirkman created called the Schoolgirl

Problem, with a description of the game and what led to the creation of SPOT IT! The card

games features and significant qualities are stated, as well as an example of what the cards look

like. In addition, we give a brief explanation of Twins, The Tower, The Well, and Hot Potato,

which are different games to play using a SPOT IT! deck. However, we note that the most

interesting game is Triplets. The goal of this game is to collect triples, i.e. 3 cards that have

one symbol in common! We end the chapter with a sneak peak at some of the math behind the

card game.

In the second chapter we define finite projective planes of prime order n by stating the axioms,

for example the Fano plane. When looking at the lines and points that make up the projective

plane order 2, we see similarities between a SPOT IT! deck of order 2 and the Fano plane.

This results in axioms of SPOT IT! where points correspond to symbols and lines correspond

to cards in a SPOT IT! deck. The rest of the chapter focuses on constructing finite projective

planes of prime order n that will later correspond to SPOT IT! Decks of prime order n. We

can algebraically find the points and lines that construct a finite projective plane of order n.
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2 INTRODUCTION

Therefore, for every prime order n, a SPOT IT! deck can be created. In this project we will

mainly focus on n = 2, 3, 5, or 7.

In the third chapter, we will discuss the ways to count and choose cards in a SPOT IT! deck

of prime order n. We give an overview on combinatorics formulas and use these to count triples.

Using definitions of probability and the various SPOT IT! decks of order n we determine the

probability of getting a triple when 3 random cards are chosen from a SPOT IT! deck.

In the final chapter, we focus on trying to find the maximum number of cards that need to be

laid out will guarantee at least one triple. To accomplish this we introduce k-TriCap, which are

k-card layouts with no triples. We think of k-card layouts as k different slots that a card chosen

at random will fill. However, our objective is to never form a triple among the cards as they

are randomly chosen. We introduce counting techniques for how to remove cards from the deck

while avoiding triples. In the previous chapter we developed combinatorics formulas in order to

find all possible ways to choose k cards from a SPOT IT! deck of order n = 2, 3, 5, or 7, such

that no triples exists. This gives us the number of ways of choosing a TriCap of size k. We also

find the probability that a triple is formed when k cards are chosen. This chapter ends with the

final results for the number of k cards that need to be laid out to guarantee a triple for a SPOT

IT! deck of order n and some suggestions for future research on SPOT IT!



2
SPOT IT!

SPOT IT! is a card game that was created by Blue Orange Games. It is designed to be played

with two to eight people. The card game made its first appearance during 1850 in Great Britain.

The game focuses on speed and fun. It was initially inspired by a word problem The Reverend

Thomas Kirkman created, which he named the “Schoolgirl Problem.” He posed the following

in a recreational mathematics journal: “Fifteen young ladies in a school walk out three abreast

for seven days in succession: it is required to arrange them daily, so that no two shall walk

twice abreast”. Here “abreast” means “in a group”, this means that a set of 3 girls are walking

out while each pair of girls in the set only appear as a pair once. In other words, Kirkman

extrapolated this as a question of unrepeated pairs in triplets, asking from a certain number

of elements, how many unique sets of triplets can you have before you start repeating pairs?

Jacques Cottereau later figured out every possible way to solve the schoolgirl problem. Then

he decided to design a “game of insects”. This later became what we know as SPOT IT! after

being found by Denis Blanchot. Cottereau is Blanchot’s sister-in-law’s father. SPOT IT! was

released initially in France in 2009 under publishers Play Factory, then in Germany in 2010 as

“DOBBLE” (a play on word “double”), and eventually released in the U.K. and North America,

as SPOT IT!, in 2011 [6].
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4 CHAPTER 2. SPOT IT!

2.1 What the cards look like

A SPOT IT! deck consists of 55 cards. There are 57 total different symbols and each card has

exactly 8 symbols printed on them. It is guaranteed that if you choose any two random cards

from a SPOT IT! deck, they will always have a symbol in common. That leads us to question

if it is a coincidence that the cards have the same number of symbols on them! Also, if there is

any relationship between the numbers 8, 55, 57.

Figure 2.1.1: Example of a matched pair of Spot It! cards

2.2 How to play

There are 5 different games you can play with a SPOT IT! deck. All games require the players

to find the card that shares a symbol in common the fastest. Skills that are significant while

playing would be visual scanning and visual perception in order to quickly match a symbol on

your chosen card to the target card.

In Figure 2.1.1 you can see two cards from a SPOT IT! deck. Notice that each card displays

8 symbols, and there are only 15 distinct pictures displayed on the two cards. The cards have

exactly one symbol in common, the red balloon.

In the first version of the game, Twins, a player begins by drawing two random cards from

the deck, placing them face up on the table. The goal is to examine the cards the fastest and
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identify the matching symbol on each of the cards. The player who states the symbol first wins

that round of the game. The winning player then draws two more cards for the next round.

The second version of the game, The Tower, consists of each player being dealt a card faced

down. The rest of the cards are faced up in a tower in the center. The players flip their cards

over at the same time and try to spot the symbol in common between their card and the top card

of the tower. The first to identify the symbol is the winner, they take the center middle card

and start their personal pile. The new card gained becomes the new card to spot the symbol in

common between that card and the top card of the tower. The processes repeats until there are

no cards left in the center and the player with the most cards in their tower wins.

In the third version of the game, The Well, one card is placed face-up in the middle. The

rest of the cards are dealt face-down to the players. These cards form their personal draw piles.

Then all players flip their cards face-up. As the player finds the matching symbol between the

first card in their pile and the center card, they are able to place their card on top of the center

card if they are the first to identify the matching symbol. This process repeats until one player

has no cards. The first player to get rid of all of their cards wins.

The fourth version, Hot Potato, consists of each player being dealt a card faced down. The

rest of the cards are set aside. At the same time players flip their card over. If they are the first

to identify a matching symbol, they proceed to add their card to the top of the other players

card. The processes repeats until one player ends up with all the cards. The player with no

cards wins.

2.3 Playing Triplet

The final way t o play SPOT IT!, Triplet, is the most interesting way to play. A player places 9

cards in a 3 by 3 grid. The rest of the cards are face-down in a pile. Then, at the same time, the

players try to identify a matching symbol on three cards, to make a matching set. A matching

set sharing one symbol in common is known as a Triple. The player who identifies the triple

takes the 3 cards and adds them to their personal pile. Then 3 new cards are added to complete
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the original 9 card lay out. When there are fewer than 9 cards left in the deck and no more sets

of matching cards, the game ends and the player with the most cards wins.

The Triplet game in SPOT IT! is different from the standard ways of playing the card game.

The card game is known for always being able to find a pair of cards that will always have a

matching symbol. However, triples may form among 3 cards. The instructions that pertain to

playing this game state that 9 cards need to be placed face up before looking for triples. For

example, consider Figure 2.3.1. A player can choose from 3 different triples among the 9 cards.

Suppose that there are fewer than 9 cards placed down at the beginning of the game, would that

still guarantee a Triple? Another question is how many cards will guarantee a Triple? What is

the relationship between the symbols on the cards and the number of cards that share a symbol

in common? It turns out there is some cool math behind this.
 

Figure 2.3.1: The Triples formed are circled in red, blue, and yellow

2.4 Math behind SPOT IT!

It turns out that SPOT IT! cards are a model for a finite projective plane of order 7. Since

projective planes can be constructed of any prime order n, this means that we can construct
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are other SPOT IT! decks of prime order n. We will construct these algebraically. The smaller

SPOT IT! decks, when n is 2, 3, and 5, will help us analyze the game characteristics.
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3
SPOT IT! and PROJECTIVE PLANES

A finite projective plane of prime order n is a geometric structure that extends the concept of

a plane. It is defined as a system (or set) that consists of points and lines, where each line is a

subset of points that satisfy a set of axioms given below. For example, every two points lie on

exactly one line and every two lines intersect at exactly one point. What is interesting about

finite projective planes is not only their graphical representation, but how they are algebraically

constructed.

3.1 Finite Projective Planes of prime order n

In this section, we take a look at the graphical representation of finite projective planes of prime

order n, as well as their components. First we state the axioms.

Definition 3.1.1. [3] Axioms of Finite Projective Planes of prime order n:

1. There are n+ 1 points on each line.

2. There are n+ 1 lines that contain given a point.

3. There are a total of n2 + n+ 1 distinct lines and points.

4. Any 2 lines intersect in at least 1 point.

5. Any 2 points have at least 1 line in common.

9
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△

3.2 SPOT IT! as a Finite Projective Plane

It turns our that the axioms of finite projective geometry can be applied to a SPOT IT! deck of

prime order n. This identifies fundamental properties of a SPOT IT! deck of prime order n. It

is significant to notice that the points in a finite projective plane represent symbols, while the

lines represent cards in a SPOT IT! deck order n [8].

Figure 3.2.1: The Fano PLane

Example 3.2.1. Consider the smallest possible finite projective plane order n = 2, the Fano

plane, shown in Figure 3.2.1. One each line there are exactly 3 points. The lines:

1. (1, 2, 5)

2. (1, 3, 7)

3. (2, 3, 6)

4. (1, 4, 6)

5. (5, 6, 7)

6. (2, 4, 7)
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7. (3, 4, 5)

There are 22 + 2 + 1 = 7 points on the graph, 7 lines, and 3 points on each line. In addition,

any 2 points lie on exactly one line. As one can see there are no two lines that have two points

in common. Similarly any 2 points have at least 1 line in common, and any two lines intersect

in exaclty one point in common.

We can interpret the Fano plane as a SPOT IT! deck of order n = 2. Each point on the graph

corresponds to a symbol, and each line corresponds to a card. Hence, the Fano Plane can be

interpreted as a deck of SPOT IT! cards, seen in Figure 3.2.2. There are exactly n2 + n+1 = 7

cards in this deck. Notice that each card has exactly n+ 1 = 2+ 1 = 3 symbols on it, and each

symbol shows up on exactly n+ 1 = 2 + 1 = 3 cards.

Figure 3.2.2: SPOT IT! deck when n=2

Another example, shown in Figure 3.3.2, is a SPOT IT! deck order n = 3. Here it can be

seen that are exactly n2 + n+ 1 = 32 + 3 + 1 = 13 cards in the deck, shown in Figure 3.2.3 13

distinct symbols. Each card has exactly n+ 1 = 3 + 1 = 4 distinct symbols on each. There are

n+ 1 = 3 + 1 = 4 cards in the deck in which one particular symbol appears. ♢

Proposition 3.2.2. Properties of SPOT IT! deck of cards of prime order n are as follows:

1. There are n+ 1 symbols on each card

2. Each symbol lies on exactly n+ 1 cards
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Figure 3.2.3: SPOT IT! deck for n=3

3. There are a total of n2 + n+ 1 distinct symbols in total and n2 + n+ 1 cards in a deck

4. Any 2 cards share exactly 1 symbol

5. Any pair of symbol lies on at least one line

Proof. Recall that points on a plane correspond to symbols and lines correspond to cards. By

Axiom 1, we know that there are n + 1 points on each line. Similarly in a SPOT IT! deck of

order n, when n is prime, is that there are a total of n+ 1 symbols on each card.

By Axiom 2 we know there are n+1 lines that lie on a particular point. Thus in a SPOT IT!

would be deck, each symbol appears in exactly n+ 1 cards.

By Axiom 3 we know that in general a finite projective plane will have n2 + n+ 1 points and

n2+n+1 lines. Then there are a total of n2+n+1 distinct symbols and n2+n+1 total cards

in a SPOT IT! deck.

By Axiom 4, any 2 lines intersect at one point. This means that any two distinct cards have

exactly one symbol in common.
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By Axiom 5 any 2 points have at least 1 line in common. Similarly, any pair of symbols lie

on at least 2 cards.

Note that it is a fact if n is a prime power then there exists a finite projective plane of prime

order n. Therefore, it is a fact that a SPOT IT! deck of any prime order n can be constructed

as well.

3.3 Constructing Finite Projective Planes

Homogeneous coordinates or projective coordinates is a system of coordinates used in projective

geometry. In a finite projective plane over Zn for n of prime order, points have 3 coordinates

(a, b, c), where a, b, c are in {0, 1, ..., n − 1}, but (0, 0, 0) is not included. A point represented

by a given set of homogeneous coordinates is unchanged if the coordinates are multiplied by an

element of Zn − {0}. The distinct coordinates are the points that lie on at least one line. Give

the all the distinct points of a finite projective plane of prime order n, we can find the span

of two points to find the unique line which contains these two points. Since points in a finite

projective plane are correspond to distinct symbols in a SPOT IT! deck, we can determine how

many total symbols and distinct cards make up a SPOT IT! deck order n [7].

Definition 3.3.1. [4] Let Vn = Z3
n − {0}, all triples of elements of Zn except (0,0,0), where n

is prime. Let Vn denote the set of equivalence classes of Vn △

Figure 3.3.1: coordinates of the Fano plane
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Definition 3.3.2. We define an equivalence relation on Vn, by (a1, a2, a3) ∼ (b1, b2, b3) if

(b1, b2, b3) = c(a1, a2, a3), for some c ∈ Zn − {0}. △

Example 3.3.3. Consider V2. The points have 3 coordinates (a, b, c), where a, b, c

can be either 0 or 1. The resulting finite projective plane is known as the Fano

Plane, shown in Figure 3.3.1. It has exactly 7 distinct points. Therefore, V2 =

{(0, 0, 1), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0), (1, 1, 1)}. ♢

Figure 3.3.2: 13 distinct points of Projective Plane order 3

Example 3.3.4. Consider V3. The elements of V3 are of the form (a1, a2, a3) where a1, a2,

and a3 are either 0, 1, or 2. Then, for the first coordinate there are 3 possible choices, for the

second coordinate there are 3 choices, and for the third coordinate there are 3 choices. Thus,

3 · 3 · 3 = 27, but (0, 0, 0) must be removed. Hence there are 26 elements in V3:

{(0, 0, 1), (0, 0, 2), (0, 1, 0), (0, 2, 0), (1, 0, 0), (2, 0, 0), (0, 1, 1), (0, 2, 2), (1, 0, 1),

(2, 0, 2), (1, 1, 0), (2, 2, 0), (1, 1, 1), (2, 2, 2), (0, 1, 2), (0, 2, 1), (1, 0, 2), (2, 0, 1),

(1, 2, 0), (2, 1, 0), (1, 1, 2), (2, 2, 1), (1, 2, 1), (2, 1, 2), (2, 1, 1), (1, 2, 2)}.

To make things easier, we will remove the commas in points, so for example (0, 0, 1) = (001).

So, consider the element (001) ∈ V3. We compute c(001) for all c ∈ Z3 − {0}, so c = 1 or
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c = 2. When c = 1, then c(a1, a2, a3) = 1(001) mod 3 = (001). This means that (001) ∼ (001).

When c = 2, c(a1, a2, a3) = 2(001) mod 3 = (002). This means that (001) ∼ (002). Then,

[001] = {(001), (002)}, is the equivalence class of [001]. Therefore, [001] is an element of V3.

Consider another element (002) ∈ V3, which follows similarly. When c = 1, c(a1, a2, a3) =

1(002) = (002). When c = 2, c(a1, a2, a3) = 2(002) ≡ (004)( mod 3) = (001). Thus, [002] =

{(002), (001)}. Note that [001] = [002] since (001) ∼ (002).

In general the following are elements are equivalent in V3:

(001) ∼ (002),

(100) ∼ (200),

(111) ∼ (222),

(011) ∼ (022),

(101) ∼ (202),

(120) ∼ (210),

(012) ∼ (021),

(221) ∼ (112),

(010) ∼ (020),

(110) ∼ (220),

(102) ∼ (201),

(122) ∼ (211),

and (102) ∼ (201).
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This results in the following 13 equivalence classes and their elements:

[001] = {(001), (002)}

[010] = {(010), (020)}

[100] = {(100), (200)}

[011] = {(011), (022)}

[101] = {(101), (202)}

[110] = {(110), (220)}

[111] = {(111), (222)}

[012] = {(012), (021)}

[102] = {(102), (201)}

[120] = {(120), (210)}

[112] = {(112), (221)}

[121] = {(121), (212)}

[211] = {(211), (122)}

Thus, the distinct elements of V3 are the following:

{[1, 0, 0], [1, 0, 1], [1, 0, 2], [1, 1, 0], [1, 1, 1], [1, 1, 2], [1, 2, 0], [1, 2, 1], [1, 2, 2], [0, 1, 0], [0, 1, 1], [0, 1, 2], [0, 0, 1]}.

♢

Example 3.3.5. When n = 5, one can follow a similar approach. The elements are in the form

(a1, a2, a3) where a1, a2, and a3 lie in Z5 = {0, 1, 2, 3, 4}. Then, by definition of the equivalence

relation on V5, c ∈ Z5−{0}, can be 0,1,2,3 or 4 as well. One can multiple each element of V5 by

c and remove “duplicates”, i.e. the elements that are already represented. The 31 equivalence
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Figure 3.3.3: equivalence classes of V5

classes of V5 are shown in Figure 3.3.3, similarly the 31 points on the projective plane order 5

are shown in Figure 3.3.4.

♢

Example 3.3.6. The finite projective plane of order 7 has 57 distinct points as shown in

Figure 3.3.5. The equivalence classes of V7 are shown in Figure 3.3.6.

♢

3.4 Lines in Finite Projective Planes

Definition 3.4.1. [2] Let x1 and x2 be two vectors in a vector space over a field F . The “span”

of the set {x1, x2}, denoted Span{x1, x2}, is the set of all linear combinations of x1 and x2, i.e.

Span{x1, x2} = {k1x1 + k2x2|k1, k2 ∈ F}

△
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Figure 3.3.4: 31 distinct points in finite projective plane order 5

Example 3.4.2. Let [A] and [B] be distinct equivalence classes in V 2, where

V 2 = {[100], [101], [110], [111], [010], [011], [001]}.

Therefore Span{[A], [B]} = {[A], [B], [A] + [B]} mod 2 when n = 2. Then, Span{[A], [B]}

consists of linear combinations of any of the distinct equivalence classes in Z2.

Figure 3.4.1 shows a table of [A], [B], and [A]+[B] in Z2. Note that each element of V2 lies on

exactly 3 lines. We have:

L([100],[110])= {[100], [110], [010]}

L([100], [001])= {[100], [001], [101]}

L([100], [011])= {[100], [011], [111]}

L([011], [110])= {[011], [110], [101]}

L([011], [010])= {[011], [010], [001]}

L([010], [111])= {[010], [111], [101]}

L([110], [111])= {[110], [111], [001]}

are the 7 distinct lines in V 2. ♢
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Figure 3.3.5: distinct points on Projective plane order 7

Example 3.4.3. Suppose there are two points, A = (a1, a2, a3) and B = (b1, b2, b3), where

[A], [B] ∈ V3. Every element in the Span{A,B} has the form cA + dB where c, d ∈ Zn. When

n = 3 there are 9 possible combinations since c, d can each be 0 or 1 or 2. Then, (c, d) =

{(0, 0), (0, 1), (0, 2), (1, 1), (1, 0), (1, 2), (2, 1), (2, 2), (2, 0)}. Hence it follows that c[A] + d[B] con-

sists of:
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Figure 3.3.6: equivalence classes of V7

0[A] + 1[B] = [B]

0[A] + 2[B] = 2[B]

1[A] + 1[B] = [A] + [B]

1[A] + 0[B] = [A]

1[A] + 2[B] = [A] + 2[B]

2[A] + 1[B] = 2[A] + [B]

2[A] + 2[B] = 2[A] + 2[B]

2[A] + 0[B] = 2[A]
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Figure 3.4.1: [A], [B], [A]+[B] in V2

However, we must remove (0, 0, 0) and the duplicates. By definition of equivalence relation

we know we can multiply each of by k ∈ Z3, so by 0, 1, or 2. Then the following is true,

[B] ∼ 2[B]

[A] + [B] ∼ 2[A] + 2[B]

[A] ∼ 2[A]

2(2[A]+[B]) mod 3 = [A]+2[B], so [A]+2[B] ∼ 2[A]+[B]. Thus, over Z3, the Span{[A], [B]}

using the equivalence relation, L([A], [B]) mod 3 = {[A], [B], [A] + [B], [A] + 2[B]}. ♢

Example 3.4.4. Consider V3. There are 13 distinct points (equivalence classes). To find the line

determined by [A] and [B], we must find the Span{[A], [B]}. Now suppose that [A] = [010] and

[B] = [121]. From the previous example we know that, L(A,B) = {[A], [B], [A]+ [B], [A]+2[B]}

in Z3. Then it follows that, [A] = [010],

2[A] = 2 · [010] = [020],

[B] = [121],



22 CHAPTER 3. SPOT IT! AND PROJECTIVE PLANES

2[B] = 2 · [121] = [242] mod 3 = [212],

[A] + [B] = [010] + [121] = [131] mod 3 = [101],

2[A] + 2[B] = (2 · [010]) + (2 · [121]) = ([020] + [242]) mod 3 = [202],

2[A] + [B] = (2 · [010]) + [121] = [141] mod 3 = [111],

[A] + 2[B] = [010] + (2 · [121]) = [252] mod 3 = [222].

Observe that [B] ∼ 2[B],

[A] + [B] ∼ 2[A] + 2[B],

[A] ∼ 2[A], and

[A] + 2[B] ∼ 2[A] + [B].

Therefore, L([010], [121])= {[010],[121],[101],[222]}. ♢

Theorem 3.4.5. In general for order n, all possible linear combinations of A and B can be

represented by,

L = {[A], [B], [A+B], . . . , [A] + [(n− 1)B]}

Proof. Let Span{A,B} = L Consider P = cA+ dB.

Case 1: Suppose that c ̸= 0. Then c−1 ∈ Zn, and c−1(P ) = c−1(cA + dB) = 1A + c−1dB.

Therefore, 1A+ c−1dB ∈ L. So, c−1P ∈ L and c(c−1P ) = P . It follows that P ∼ c−1P . Thus,

[P ] = [c−1P ], so P lies in an equivalence class of L.

Case 2: Suppose c = 0. Then P = (0)A + dB = dB, so dB ∈ L. It follows that dB ∼ B,

so [dB] = [B] representing the same equivalence class. Thus, P lies in an equivalence class of

L.

Example 3.4.6. When n = 3 there are 13 distinct equivalence classes. Therefore there are 13

distinct lines, listed in Figure 3.4.2.

♢

Example 3.4.7. When n = 5 there are 31 distinct equivalence classes. Therefore there are 31

distinct lines listed in Figure 3.4.4. Similarly there are 31 cards in a SPOT IT! deck order 5 as

shown in Figure 3.4.3.
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Figure 3.4.2: Lines of Projective plane order 3

♢

Example 3.4.8. When n = 7 there are 57 distinct equivalence classes. Therefore there are 57

distinct lines listed in Figure 3.4.5. ♢
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Figure 3.4.3: SPOT IT! deck when n = 5

Figure 3.4.4: Lines of Projective plane order 5
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Figure 3.4.5: Lines of Projective plane order 7
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4
TRIPLES in SPOT IT!

Recall that the fifth way of playing SPOT IT! is “Triplets”, finding triples. The game suggests

a placement of 9 cards before starting the game. The definition of a triple in SPOT IT! is just a

set of 3 cards that have one symbol in common. However, one question that arises is how likely

it is for a player to be able to find a triple in a SPOT IT! deck of prime order n. We start by

finding the overall likelihood of a triple in 3 random cards from a SPOT IT! deck. Based of the

axioms of SPOT IT! we know that for every given symbol there are n+ 1 cards in a deck that

contain the same symbol.

Combinatorics is a be useful mathematical technique to determine the number of possible

arrangements in a collection of items where the order of the selection does not matter. When

calculating probability, we divide the number of ways the event can occur by the total number

of possible outcomes. Therefore we can use the SPOT IT! axioms and properties to create a

general formula for the probability that when 3 cards are randomly chosen from a SPOT IT!

deck of prime order n, they are a triple.

4.1 Combinations

The number of cards in a SPOT IT! deck order n will be represented by S(n). This is the

number of objects in our sample space. We are counting the number of sets of 3-element cards.

27
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Therefore,
(
S(n)
3

)
represents all possible combinations of 3 cards that can be chosen from a SPOT

IT! deck of order n .

Definition 4.1.1. [9] The number of subsets of r objects from a total of n objects is given by

n(n− 1)...(n− r + 1). When the order of selection is not relevant, each group of r objects will

be counted r! times, so we get n(n−1)...(n−r+1)
r! . Thus, we define

(
n
r

)
, for r ≥ n, by(

n

r

)
=

n!

(n− r)!r!
=

n(n− 1) · · · (n− r + 1)

r!

to be the number of possible combinations of n objects taken r at a time. △

4.2 Probability

The probability of 3 random cards being a triple when randomly drawn from the deck has

mutually exclusive outcomes. This means either the set of 3 cards are a triple or they are not,

so we can proceed to find the probability of this event occurring. In the previous section we

compute the number of the possible outcomes of choosing 3 random cards to be
(
S(n)
3

)
, where

S(n) is the number of total cards in a SPOT IT! deck of order n. The event we are interested

in is when a set of 3 cards chosen form a triple. From the axioms of SPOT IT!, recall that

n+ 1 total cards share a given symbol and, from these n+ 1 total cards we are choosing 3 that

will ensure our set of 3 cards to be triple. Note that, there are S(n) total cards and S(n) total

distinct symbols in a SPOT IT! deck order n, and S(n) = n2 + n+ 1.

Definition 4.2.1. [9] Probability is a function, IP : S → [0, 1], that assigns to each event A

in the sample space S, a number IP(A), the probability of the event A, defined by IP(A) = EA
|S| ,

where EA is the frequency at which event A occurs. △

Definition 4.2.2. A SPOT IT! triple is a set of 3-cards that have a symbol in common. △

Lemma 4.2.3. The total number of possible triples for a SPOT IT! deck order n is S(n) ·
(
n+1
3

)
.

Proof. By the second Axiom 3.2.2 for an order n SPOT IT! deck each symbol appears on n+ 1

total cards. To form a triple that share one symbol, we must choose 3 cards from the group
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Figure 4.2.1: Probability that 3 cards are a Triple in an order n SPOT IT!

of cards where that symbol appears on, n + 1. By the third Axiom 3.2.2 there are n2 + n + 1

distinct symbols in total for an order n SPOT IT! deck. Therefore, S(n) ·
(
n+1
3

)
represents the

number of possible triples for any given symbol in a SPOT IT! deck.

Example 4.2.4. In a projective plane of order n = 3, there are 4 points per line. This means

that a SPOT IT! deck of order 3 has n2 + n + 1 = 9 + 3 + 1 = 13 distinct symbols in total

and 13 cards in a deck. Each card has n + 1 = 3 + 1 = 4 symbols displayed on them, and any

particular symbol shows up on exactly 4 cards. Then it follows that the number of triples with

a particular symbol is
(
4
3

)
(since there are only 4 cards that share the same symbol and we are

choosing 3 of them for our desired triple). There are 13 distinct symbols, so 13 ·
(
4
3

)
is the total

number of triples in the deck (52 total triples). It follows that,

IP(3 cards a triple) =
(32 + 3 + 1)

(
3+1
3

)(
32+3+1

3

) =
(13)(4)

286
= 0.181818

This means that a set of 3 cards is a triple about 18 percent of the time.

When n = 5, a SPOT IT! deck has n2 + n+ 1 = 52 + 5 + 1 = 31 distinct symbols and cards.

Each card has n+ 1 = 5 + 1 = 6 symbols displayed on them. Any particular symbol shows up

on exactly 6 cards. Then it follows that the number of triples with a particular symbol is
(
6
3

)
(since there are only 6 cards that share the same symbol and we are choosing 3 of them for our

desired triple). There are 31 distinct symbols, so 31 ·
(
6
3

)
= 31 · 20 = 620 total number of triples.
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Then it follows that,

IP(3 cards a triple) =
(52 + 5 + 1)

(
5+1
3

)(
52+5+1

3

) =
(31)(20)

4495
= .13793

This means that a set of 3 cards is a triple is about 14 percent of the time.

When n = 7, a SPOT IT! deck of order 7 there are n2 + n + 1 = 72 + 7 + 1 = 57 distinct

symbols and cards. Each card has n+1 = 7+1 = 8 symbols displayed on them. Any particular

symbol shows up on exactly 8 cards. Then it follows that the number of triples with a particular

symbol is
(
8
3

)
(since there are only 8 cards that share the same symbol and we are choosing 3

of them for our desired triple). There are 57 distinct symbols, so 57 ·
(
8
3

)
= 57 · 56 = 3192 total

number of triples. Then it follows that,

IP(3 cards a triple) =
(72 + 7 + 1)

(
7+1
3

)(
72+7+1

3

) =
(57)(56)

29260
= .1090909

This means that a set of 3 cards is a triple is about 11 percent.

When n = 11, a SPOT IT! deck of order 11 has n2+n+1 = 112+11+1 = 133 distinct symbols

and cards. Each card has n+1 = 11+1 = 12 symbols displayed on them. Any particular symbol

shows up on exactly 12 cards. Then it follows that the number of triples with a particular symbol

is
(
12
3

)
(since there are only 12 cards that share the same symbol and we are choosing 3 of them

for our desired triple). There are 133 distinct symbols, so 133 ·
(
12
3

)
= 133 · 220 = 29260 total

number of triples. Then it follows that,

IP(3 cards a triple) =
(112 + 11 + 1)

(
11+1
3

)(
112+11+1

3

) =
(133)(220)

383306
= 0.07634

This means that a set of 3 cards is a triple about 8 percent of the time.

Figure 4.2.1 presents a chart where for a given n, the probability of a triple when choosing 3

random cards is given for a SPOT IT! deck order n. ♢

Theorem 4.2.5. In a SPOT IT! deck of order n, the probability that 3 cards will form a SPOT

IT! triple is

(n2 + n+ 1)
(
n+1
3

)(
n2+n+1

3

) .
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Proof. By Lemma 4.2.3, (n2+n+1)
(
n+1
3

)
, is total number of triples for a given symbol for order

n. Then the number of ways there are to choose 3 cards for a triple from the total number of

cards in a deck is represented by
(
n2+n+1

3

)
. The probability of a triple of a particular symbol

is the number of triples divided by the different ways one can choose 3 cards from the deck, so

IP(3 cards are a Triple) =
(n2+n+1)(n+1

3 )

(n
2+n+1

3 )
.
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5
K CARD LAYOUTS

Figure 5.0.1: slots for a k-card layout

When trying to count the numbers of possible triples that can be formed among k SPOT IT!

cards laid out it is easier to count the possible ways that a triple will not be formed among k

SPOT IT! cards laid out. This is because we know that it takes 3 cards that share 1 symbol in

common to complete a triple.

From the axioms of an order n SPOT IT! deck we know that in general n+ 1 cards will have

a fixed symbol in common. This is true for each symbol, S(n) in total. In a k-card layout we

consider the placement of the cards as slots, as shown in Figure 5.0.1. As each card is chosen to

fill each slot notice that as the cards are chosen there are cards removed from the deck before

proceeding to fill the next slot. After a card is chosen, from the leftover cards all cards that

share a symbol with 2 cards already in a given slot need to be removed to avoid a triple to be

33
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formed if that card were to be chosen. Overall, the goal is to be able to find all the possible

ways that the cards could be chosen where no triples form amongst the k cards chosen.

After finding the number of possible ways of not choosing a triple when k cards are chosen

from a SPOT IT! deck order n we can find the probability of not getting a triple in a k card

layout.

Recall that the game Triplets suggests that 9 cards are placed when playing. In section 5.2

we will answer the question of whether 9 cards have to be laid out to guarantee a triple, as well

as what is the probability of choosing a triple in a k card layout.

5.1 TriCaps

Definition 5.1.1. Let S(n) denote the total number of cards in a SPOT IT! deck of order n,

where S(n) = n2 + n+ 1.

1. A TriCap in S(n) is a collection of cards where no three cards have a symbol in common.

2. A k-TriCap is a TriCap with k elements.

3. A k-subset is a subset with k elements.

△

Example 5.1.2. Consider a SPOT IT! deck order 2. Then, there are S(n) = 7 cards total.

Suppose we are trying to find all the possible 1-TriCaps. In a 1 card layout there is only one

slot to fill with a random chosen card from the deck. Therefore, there are 7 possible cards to

choose from to fill the slot. Thus, there are 7 possible TriCaps for a SPOT IT! deck of order

2. ♢

Example 5.1.3. Consider a SPOT IT! deck order 3. Then, there are S(n) = 13 cards total.

Suppose we are trying to find all the possible 1-TriCaps. In a 1 card layout there is only one

slot to fill with a random chosen card from the deck. Therefore, there are 13 possible cards to

choose from to fill the slot. Thus, there are 13 possible 1-TriCaps for a SPOT IT! deck of order

3. ♢
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Example 5.1.4. Consider a SPOT IT! deck order 5. Then, there are S(n) = 31 cards total.

Suppose we are trying to find all the possible 1-TriCaps. In a 1 card layout there is only one

slot to fill with a random chosen card from the deck. Therefore, there are 31 possible cards to

choose from to fill the slot. Thus, there are 31 possible 1-TriCaps for a SPOT IT! deck of order

5. ♢

Example 5.1.5. Consider a SPOT IT! deck order 7. Then, there are S(n) = 57 cards total.

Suppose we are trying to find all the possible 1-TriCaps. In a 1 card layout there is only one

slot to fill with a random chosen card from the deck. Therefore, there are 57 possible cards to

choose from to fill the slot. Thus, there are 57 possible 1-TriCaps for a SPOT IT! deck of order

7. ♢

Definition 5.1.6. Let Tk(n) denote a k-TriCaps in a SPOT IT! deck of order n △

Theorem 5.1.7. The number of 1-TriCaps in a SPOT IT! deck of order n is given by

T1(n) =
S(n)

1!
.

Example 5.1.8. Consider a SPOT IT! deck order 2. Then, there are S(n) = 7 cards total.

Suppose we are trying to find all the possible 2-TriCaps. Then, there are 2 slots. When choosing

the first card, there are 7 cards to choose from. Since there is already a card chosen for slot 1,

there is one less card to choose from, so S(n)− 1 cards left. Then for slot 2 there are 6 cards to

choose from. Since the order in which the cards were chosen does not affect our final outcome

we divide by k! for every slot to be filled, so 2!. Then, 7·6
2! = 21. Therefore there are 21 possible

2-TriCaps for a SPOT IT! deck of order 2. ♢

Example 5.1.9. Consider a SPOT IT! deck order 5. Then, there are S(n) = 31 cards total.

Suppose we are trying to find all the possible 2-TriCaps. Then, there are 2 slots. When choosing

the first card, there are 31 cards to choose from. Since there is already a card chosen for slot 1,

there is one less card to choose from, so S(n)−1 cards left. Then for slot 2 there are 30 cards to

choose from. Since the order in which the cards were chosen does not affect our final outcome
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we divide by k! for every slot to be filled, so 2!. Then, 31·30
2! = 465. Therefore there are 465

possible 2-TriCaps for a SPOT IT! deck of order 5. ♢

Theorem 5.1.10. The number of 2-TriCaps in a SPOT IT! deck of order n is given by

T2(n) =
S(n) · S(n)− 1

2!
.

Example 5.1.11. Consider a SPOT IT! deck order 2. Recall that S(n) = 7 cards in the deck.

Suppose we are trying to find all the possible 3-TriCaps. Then, there are 3 slots when k = 3.

There are 7 cards to choose from in order to fill the first slot. Suppose the first card is chosen

at random. Then when choosing the second card there are S(n)− 1 = 7− 1 = 6 cards to choose

from for slot k2. An example of the cards for the first two slots is given in Figure 5.1.1.

Figure 5.1.1: chosen cards for slots k1 and k2

Figure 5.1.2: Card removed before slot k3 is filled

When choosing the third card notice that cards in slot k1 and k2 have the symbol ”star” in

common. This means that from the leftover cards shown in Figure 5.1.2, there is 1 card that

needs to be removed before choosing a card to fill slot k3. Then the card with the symbols star,

green glassses, and smiley face gets removed and the third card can now be chosen at random.

Since the order at which the cards were chosen in did not matter we divide by k! = 3!. Note that
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the axioms of SPOT IT! state that there will be n+ 1 cards that share one symbol in common.

Therefore, after choosing the first two slots we knew there will be n + 1 total cards removed

before choosing the third card to avoid forming a triple. For slot k3 the number of cards to

choose from is S(n) − (n + 1). Therefore, S(n) − (n + 1) = 7 − (2 + 1) = 7 − 3 = 4 cards left

to choose from for slot k3. Thus, T3(2) = 7·6·4
3! = 28, so there are 28 possible 3-TriCaps for a

SPOT IT! deck order 2. ♢

Theorem 5.1.12. The number of 3-TriCaps in a SPOT IT! deck of order n is given by

T3(n) =
S(n) · S(n)− 1 · S(n)− (n+ 1)

3!
.

Example 5.1.13. Consider the Figure 3.2.2 SPOT IT! deck of order 2. Recall there are 7 total

cards in the entire deck and 4 distinct symbols appear on each individual card.

Figure 5.1.3: 4 card layout

Now, the goal is to find the number of TriCaps in a 4 card layout, shown in Figure 5.1.3.

For the first card there are S(2) = 7 total cards to choose from. Supposed the first card in

Figure 5.1.4 is the first pick for the first slot.

 

Figure 5.1.4: Slot 1 for card 1

For the second open slot, considering 1 card has been already chosen, there is one fewer card

to choose from. Then there are S(2)−1 = 6 cards to choose from for the second slot. A random

card is chosen for slot 2.
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Figure 5.1.5: Slot 2 for card 2

From the axioms for SPOT IT! we know there are n + 1 cards that all share one symbol in

common. From Figure 5.1.5 the green sunglasses appear twice already on card 1 and card 2.

Therefore, any cards with green sunglasses have to be removed, as well as the already 2 chosen

cards for slot 1 and 2. Notice how for slot 3 the n+1 cards that all share one symbol in common

had to be removed to avoid a triple. Then there are S(2)−3 = S(2)−(n+1) = S(2)−(2+1) = 4

cards to choose from.

Figure 5.1.6: Slot 3 for card 3

When choosing the last card recall what the card chosen for slot 3 was. The third card shares

a symbol with card 2, a blue star. Then the last card where a blue star appears on must

be removed. Additionally, it shares a red division sign with card 1. Any cards sharing this

symbol must also be removed, including the original cards filling previous slots. This is shown

in Figure 5.1.6. Then, out of S(n) cards to choose from we are removing the 3 groups of cards

that shared a particular symbol in common. In this case, the 2 cards with division signs, 2 cards

with sunglasses, and 2 cards with blue stars on them. Therefore, there are S(n)− 3n choices for

the last slot. The last card chosen is the only card one can choose to make a TriCap, shown in

Figure 5.1.7.

Since the order in which the cards are picked for the particular slot does not matter, we know

that if we multiply the possible choices for each slot it would be an overcount, as shown in
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Figure 5.1.7: Slot 4 for card 4

Figure 5.1.8. Each combination can appear in 4! possible orders, which correspond to the same

combination. Therefore we have to divide by 4! to find the number of combinations.

Figure 5.1.8: Slot 4 for card 4

Thus, T4(2) =
7∗6∗4∗1

4! , so there are 7 possible 4-TriCaps . ♢

Theorem 5.1.14. When k = 4, the number of k-card layouts having no triples can be expressed

as the following:

T4(n) =
(S(n))(S(n)− 1)(S(n)− (n+ 1))(S(n)− 3n)

4!

Proof. Let S(n) = n2 + n + 1, the total number of cards in a deck when n is prime. Let S(n)

be the total number of cards in a SPOT IT! deck of order n.

The first card is chosen at random. Therefore there are S(n) cards to choose from. When

choosing the second card there is one fewer card in the deck to choose from. Hence there are

S(n)−1 cards to choose from. When choosing the third card, the goal is to eliminate all the cards

that share a symbol with the original two cards already chosen. Hence there are S(n)− (n+ 1)
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cards to choose from. This way any card that would complete a triple with the first two cards

is eliminated.

When choosing the last card for a 4 card layout, to eliminate all the possible cards with

matching symbols considering the first 3 cards already chosen. Let A,B,C represent the first 3

cards chosen for the first 3 slots. Then we know that cards A and B share a symbol x. Cards B

and C share a symbol y. Cards A and C share a symbol z. For symbols x, y, z there are n+ 1

cards of each. Therefore 3(n+1) total cards display any of these symbols mentioned. However,

this is an over-count because it includes the 3 cards previously chosen. So there are 3(n+1)− 3

cards to be removed and 3(n + 1) − 3 = 3n + 3 − 3 = 3n. Thus, there are S(n) − 3n cards to

choose from when choosing the fourth card.

Example 5.1.15. Suppose that n = 3. Then there are S(3) = 13 cards in a SPOT IT! deck.

When choosing the first card for the first slot in the k card layout there are 13 cards to choose

from. Therefore there are 13 possible 1-TriCaps to choose the first card.

Now we are going to count the number of 2-Tricaps. There are 13 ways to choose the first

card. When choosing the second card there are 12 ways to choose a card for the second slot.

Since order does not matter, we must divide by 2!. Therefore, 13·12
2! = 78. Thus, there are 78

possible 2-TriCaps.

When counting the number of 3-TriCaps. There are 13 ways to choose the first card. There

are 12 ways to choose the second card. However, when choosing the third card notice that the

first and second card share a symbol, a, there are n+ 1 = 3 + 1 = 4 cards that contain symbol

a. Therefore, we must removed 4 cards from the 13 card deck, leaving us with 9 cards that may

be chosen for the third slot. Since there are 3 slots and order does not matter, we must divide

by 3!. Thus, 13·12·9
3! = 234, so there are 234 possible 3-TriCaps.

When counting the number of 4-TriCaps, there are 13 ways to choose the first card. There

are 12 ways to choose the second card. There are 9 possible ways to choose the third card.

When choosing the fourth card, recall that the first and second card share a symbol, a, there

are n + 1 = 3 + 1 = 4 cards that contain symbol a. However, the first and third card share a
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symbol, b. While the second and third card share a symbol, c. Since 3 cards are already chosen

and 2 cards of each symbol, a, b, c, are left 9 cards from the original deck of cards have to be

removed, leaving us with 4 possible ways to choose the fourth card. Since there are 4 slots and

order does not matter, we must divide by 4!. Therefore 13·12·9·4
4! = 234, so there are 234 possible

4-TriCaps.

When counting the number of 5-TriCaps, there are 13 ways to choose the first card. There are

12 ways to choose the second card. There are 9 possible ways to choose the third card. There

are 4 ways of choosing the fourth card. When choosing the fifth card, recall that the first and

second card share a symbol, a. The first and third card share a symbol, b. The second and

third card share a symbol, c. The third and fourth card share a symbol, d. The first and fourth

card share a symbol, e. The second and fourth card share a symbol, f . There are 2 cards of

each symbol left, so 2 · 6 = 12 that have to be removed, in addition to the first 4 cards already

chosen, so 16 cards need to be removed from the original deck of cards. However, when n = 3

there are only 13 cards, yet 16 cards have to be removed when choosing the fifth card.

Thus, there are no possible 5-TriCaps when n = 3. ♢

Example 5.1.16. Consider a SPOT IT! deck for n = 5, as shown in Figure 3.4.3. It follows

that there are 52 + 5 + 1 = 31 cards in the deck with 5 + 1 = 6 symbols on each card. Suppose

the symbols on the cards are just the numbers 1 through 30. There are a 6 slots for each card

in a 6 card layout.

For the first slot there are a total of 31 cards to choose from. Choose the first card at random.

For the second slot there are 30 cards to choose from, given that the first card was already

chosen.

Suppose that the first 2 cards that were chosen for slot 1 and 2 are those in Figure 5.1.9.

Notice that the only symbol they share is 27.

For the third slot all of the cards that share a 27 symbol must be removed from the deck to

avoid a triple being formed.
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Figure 5.1.9: First two cards chosen

Figure 5.1.10: cards removed

This means that a total of 6 cards have been removed from the original deck of cards before

choosing the third card, shown in Figure 5.1.10. The two original cards in slot 1 and 2, plus the

4 new cards that share a symbol with the first two cards. Following that for slot 3, S(n)−(n+1)

cards are left to choose from for the third slot.

Figure 5.1.11: Cards in slots 1, 2, and 3

Suppose that the first 3 slots of randomly chosen cards is represented in Figure 5.1.11. Notice

that now between these 3 cards there are two symbols, 2 and 8, that have to be removed from
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the deck before choosing a card for slot 4. Recall that the cards that also share the symbol 12

were removed previously.

Figure 5.1.12: Cards removed after choosing card 3

Then the cards in Figure 5.1.12 are all the cards that share a symbol 2, 8, or 27. Therefore,

12 cards have been removed in addition to the 3 cards that are already chosen. A total of

15 cards have been removed. For the fourth slot S(n) − 3n cards are left to choose from,

since 3n = 3(5) = 15 cards have been removed before choosing the fourth card. Therefore,

S(n)− 3n = 31− 15 = 16 cards left to choose from to fill the 4th slot.

Let the fourth card be the one as shown in Figure 5.1.13. Notice that now after filling the

fourth slot there are 6 symbols that need to be removed from the deck before choosing a fifth

card.

In Figure 5.1.14 one can see that 21 cards have to to be removed that would complete a triple.

Therefore there have been 25 cards removed considering the first 4 cards already chosen. In
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Figure 5.1.13: Cards in slots 1 through 4

Figure 5.1.14: Cards removed after card 4 chosen

Figure 5.1.17 are the total cards that need to be removed to prevent a triple from forming with

any of the previous cards already chosen. Therefore, there are only 3 cards to choose from when

filling the 5th slot.

Suppose that the last card is chosen for the fifth slot. Then as shown Figure 5.1.15 the symbols

that need to be removed after the fifth card are 1, 2, 8, 9, 12, 19, 27, and 30. However, there are

not enough cards in the deck to remove cards to fill a 6th slot. Therefore, there are no possible

6-TriCaps when n = 5. Consider Figure 5.1.16 which shows the possible ways to choose a card

for each slot in a k-card layout. Since there are 5 slots and order does not matter, we must

divide by 5!. Thus, 31·30·25·16·3
5! = 9300, so there are 9300 possible 5-Tricap when n = 5.
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Figure 5.1.15: Cards in slots 1 through 5

Figure 5.1.16: 5-card layout when n = 5

♢

Theorem 5.1.17. The number of possible k-card layouts with no triples for a SPOT IT! deck of

prime order n, where S(n) is the total number of symbols and cards in the deck, can be expressed

as the following:

Tk(n) =
S(n)·(S(n)−1)·(S(n)−2−(22)(n−1))·(S(n)−3−(32)(n−1))·...·(S(n)−(k−1)−(k−1

2 )(n−1))

k!

Proof. Given a finite projective plane of order n, where n is prime, there are S(n) = n2 + n+ 1

distinct points and lines. Since points correspond to symbols in a SPOT IT! deck and lines

correspond to cards, then S(n) = n2 + n + 1 is the number of total cards in a SPOT IT!

deck of order n. Recall that a triple is defined as 3 cards that share one particular symbol in

common. Suppose we have a k-card layout (meaning k cards are placed down at a time), then

we have exactly k slots to fill with SPOT IT! cards that will not contain a triple. Recall that



46 CHAPTER 5. K CARD LAYOUTS

Figure 5.1.17: Cards removed after card 5 chosen

there are k slots in a k-card layout as shown in Figure 5.0.1. For the first slot, we can freely

choose any card from the total S(n) cards in a SPOT IT deck. Therefore there are S(n) cards

to choose from. For the second slot, since the first card has been picked and there are not

enough cards to form a triple, there are S(n) − 1 cards to choose from considering that first

card has already been chosen. For the third slot, since 2 cards have already been chosen they

are removed from the total amount of cards in the deck. Then we get
(
2
2

)
since there are 2 cards

and you are choosing 2 to find out how many symbols occur as pairs among any 2 cards that are

already chosen. We multiply by the number of leftover cards of that particular symbol which

is (n− 1) since 2 instances of the symbol have already shown up on the 2 chosen cards. Then,

S(n)− 2− (
(
2
2

)
(n− 1)) is the number of cards left to choose from when slots 1 and 2 are already

chosen.

Now assume we have chosen k − 1 cards. The cards we are looking to remove are those

that would complete a triple with any pair of previously chosen cards. First, the number of

previous cards already chosen have to be taken into account, so we remove the k − 1 cards

that have already been chosen from S(n) cards. Then, to prevent a triple we must find all the

pairs already created among the already chosen cards and kick out the cards left that have the

matching symbol from these pairs. There are
(
k−1
2

)
total pairs, so each of the

(
k−1
2

)
matching

symbols must be avoided. We also know by axioms of SPOT IT! that there are n+1 cards with
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a particular symbol in common. Since our goal is to avoid triples we remove 2 cards, hence,

n+1−2 = n−1, leftover cards with each symbol that we are trying to avoid. The total number

of additional cards that need to be kicked out would be
(
k−1
2

)
(n− 1), the total number of pairs

that share a matching symbol times the number of leftover cards with that particular symbol.

Adding this to the (k− 1) cards chosen, these are (S(n)− (k− 1)−
(
k−1
2

)
(n− 1)) ways to choose

the kth card without forming a triple.

Example 5.1.18. Consider n = 2, S(n) = 7. Then by Theorem 5.1.17,

T1(2) =
7

1!
= 7

T2(2) =
7 · 6
2!

= 21

T3(2) =
7 · 6 · 4

3!
= 28

T4(2) =
7 · 6 · 4 · 1

4!
= 7

T5(2) =
7 · 6 · 4 · 1 · −3

5!
= −4.2

For a SPOT IT! deck order 2, T4(2) = 7. Notice that T5(2) = −4.2, so Tk(2) = 0 for all k ≥ 5.

This means that for a SPOT IT! deck order 3 that there aren’t enough cards in the original deck

when trying to remove all cards that would form a triple. When k < 4 we can choose cards so

that a triple will not form, but when k = 5, there will always be a triple.

♢

Example 5.1.19. Consider n = 3, S(n) = 13. Then by Theorem 5.1.17,

T1(3) =
13

1!
= 13

T2(3) =
13 · 12
2!

= 78

T3(3) =
13 · 12 · 9

3!
= 234

T4(3) =
13 · 12 · 9 · 4

4!
= 234

T5(3) =
13 · 12 · 9 · 4 · −3

5!
= −140.4
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For a SPOT IT! deck order 3, T4(3) = 234. Notice that T5(3) = −140.4, so Tk(3) = 0 for all

k ≥ 5. This means that for a SPOT IT! deck order 3 that there aren’t enough cards in the

original deck when trying to remove all cards that would form a triple. When k < 4 we can

choose cards so that a triple will not form, in fact there are 234 possible ways to choose 4 cards

that do not form a triple. But, when k = 5, there will always be a triple. ♢

Example 5.1.20. Consider n = 5, S(n) = 31. Then by Theorem 5.1.17,

T1(5) =
31

1!
= 31

T2(5) =
31 · 30
2!

= 465

T3(5) =
31 · 30 · 25

3!
= 3875

T4(5) =
31 · 30 · 25 · 16

4!
= 15500

T5(5) =
31 · 30 · 25 · 16 · 3

5!
= 9300

T6(5) =
31 · 30 · 25 · 16 · 3 · −14

6!
= −21700

For a SPOT IT! deck order 5, T5(5) = 9300. Notice that T6(5) = −21700, so Tk(5) = 0 for

all k ≥ 6. This means that for a SPOT IT! deck order 5 that there aren’t enough cards in the

original deck when trying to remove all cards that would form a triple. When k < 5 we can

choose cards so that a triple will not form, but when k = 6, there will always be a triple.

♢
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Example 5.1.21. Consider n = 7, S(n) = 57. Then by Theorem 5.1.17,

T1(5) =
57

1!
= 57

T2(5) =
57 · 56
2!

= 1596

T3(5) =
57 · 56 · 49

3!
= 26068

T4(5) =
57 · 56 · 49 · 36

4!
= 234612

T5(5) =
57 · 56 · 49 · 36 · 17

5!
= 797680.8

T6(5) =
57 · 56 · 49 · 36 · 17 · −8

6!
= −1063574.4

For a SPOT IT! deck order 7, T5(7) = 97680.8. Notice that T6(7) = −1063574.4, so Tk(7) = 0

for all k ≥ 6. This means that for a SPOT IT! deck order 7 that there aren’t enough cards in

the original deck when trying to remove all cards that would form a triple. When k < 5 we can

choose cards so that a triple will not form, but when k = 6, there will always be a triple. ♢

5.2 Probability of a TriCap

In the previous section, we have found the number of k-Tricaps in a SPOT IT! deck. We know

that Tk(n) is the number of ways to choose k-cards that do not have a triple. Note that when

there are negative number of Tk(n), then Tk(n) = 0 since there are no possible k-TriCaps in a

SPOT IT! deck. Recall that in order to find all possible ways to choose r objects from a sample

space of size n is
(
n
r

)
. Thus, the number of ways to choose k cards from a SPOT IT! deck of

order n is
(S(n)

k

)
.

Lemma 5.2.1. The probability of a k-TriCap in a SPOT IT! deck of order n is given by,

IP(k-TriCap) = Tk(n)

(S(n)
k )

.
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Example 5.2.2. Consider the SPOT IT! deck of order 2. Then, S(n) = 7. The number of ways

of picking k cards from S(n) are as follows:(
S(2)

1

)
=

(
7

1

)
= 7(

S(2)

2

)
=

(
7

2

)
= 21(

S(2)

3

)
=

(
7

3

)
= 35(

S(2)

4

)
=

(
7

4

)
= 35(

S(2)

5

)
=

(
7

5

)
= 21

From Theorem 5.1.17, the numbers Tk(n) are:

T1(2) =
7

1!
= 7

T2(2) =
7 · 6
2!

= 21

T3(2) =
7 · 6 · 4

3!
= 28

T4(2) =
7 · 6 · 4 · 1

4!
= 7

T5(2) =
7 · 6 · 4 · 1 · −3

5!
= 0

Then, the probability of a not getting a Triple for each k card layout is the following,

IP(
T1(2)(

7
1

) ) =
7

7
= 1

IP(
T2(2)(

7
2

) ) =
21

21
= 1

IP(
T3(2)(

7
3

) ) =
28

35
= .8

IP(
T4(2)(

7
4

) ) =
7

35
= .2

IP(
T5(2)(

7
5

) ) =
0

21
= 0
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Table 5.2.1: Probability Table for S(2)

k
(S(2)

k

)
Tk(2) IP(TriCap) = Tk(2)

(S(2)
k )

IP(Triple)=1-IP(TriCap)

1 7 7 1 0

2 21 21 1 0

3 35 28 0.8 0.2

4 35 7 0.2 0.8

5 21 0 0 1

Let IP(A) be the probability of a TriCap in a k-card layout. It follows that 1 − IP(A) is the

probability of getting a triple in a k-card layout.

Then, these are the probabilities of getting a triple for a SPOT IT! deck order 2 when k card

layout are as following,

When k=1, 1− (T1(2)

(71)
) = 1− 1 = 0

When k=2, 1− (T2(2)

(72)
) = 1− 1 = 0

When k=3, 1− (T3(2)

(73)
) = 1− 0.8 = 0.2

When k=4, 1− (T4(2)

(74)
) = 1− 0.2 = 0.8

When k=5, 1− (T5(2)

(75)
) = 1− (−0.2) = 1.2

Table 5.2.1 shows the probabilities of a triple occurring in a k card layout. Recall that when

k = 5 there are not enough cards in a SPOT IT! deck order, when removing cards that will form

triples. This means k > 4, meaning more than 4 cards are laid out when playing, there is a 100

percent chance of getting a triple when choosing cards at random. ♢

Definition 5.2.3. [9] Let Ak be the event in which a k-TriCap exists when k cards are randomly

chosen from a SPOT IT! deck order n and IP(Ak) be the probability of event Ak occurring. Then,

1− IP(Ak) = IP(Bk),

where Bk is the event in which a Triple exists when k cards are randomly chosen from a SPOT

IT! deck order n and IP(Bk) is the probability of event Bk occurring.

△

The probability Table 5.2.2 shows how many possible ways there are to choose k cards when

n = 3. The third column shows how many possible k-TriCaps there are for a SPOT IT! deck
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Table 5.2.2: Probability Table for S(3)

k
(S(3)

k

)
Tk(3) IP(TriCap) = Tk(3)

(S(3)
k )

IP(Triple)=1-IP(TriCap)

1 13 13 1 0

2 78 78 1 0

3 286 234 0.8181818182 0.1818181818

4 715 234 0.3272727273 0.6727272727

5 1287 0 0 1

Table 5.2.3: Probability Table for S(5)

k =
(S(5)

k

)
Tk(5) IP(TriCap) = Tk(5)

(S(5)
k )

IP(Triple)=1-IP(TriCap)

1 31 31 1 0

2 465 465 1 0

3 4495 3875 0.8620689655 0.1379310345

4 31465 15500 0.4926108374 0.5073891626

5 169911 9300 0.05473453749 0.9452654625

6 736281 0 0 1

order 3, followed by the probability of a k-Tricap when choosing k cards at random from the

deck in the 4th column. The last column expresses the probability of there being a triple when

k cards are laid out. The table shows that when 4 cards are laid out from a SPOT IT! deck of

order 3, there is a 67.3% chance of a Triple. However, notice that the probability of T5(3) is

0%, meaning that there are no possible ways of choosing a 5-TriCap. Hence, the probability of

a triple of a triple in a 5 card layout is 100%. Then it follows that when playing with a SPOT

IT! deck of order 3 only 5 cards need to be laid out to guarantee a triple. Thus, the best way

to play Triplets with a SPOT IT! deck order 3, with 13 cards is to lay out 5 cards, to guarantee

at least 1 triple to choose from.

The probability Table 5.2.3 shows how many possible ways there are to choose k cards when

n = 5. The third column shows how many possible k-TriCaps there are for a SPOT IT! deck

order 5, followed by the probability of a k-TriCap when choosing k cards at random from the

deck in the 4th column. The last column expresses the probability of there being a triple when

k cards are laid out. The table shows that when 5 cards are laid out from a SPOT IT! deck

order 5, there is a 94.5% chance of a Triple. However, notice that the probability of T6(5) is 0%,

meaning that there are no ways of choosing a 6-TriCap. Hence, the probability of a triple of a
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Table 5.2.4: Probability Table for S(7)

k =
(S(7)

k

)
Tk(7) IP(TriCap) = Tk(7)

(S(7)
k )

IP(Triple)=1-IP(TriCap)

1 57 57 1 0

2 1596 1596 1 0

3 29260 26068 0.8909090909 0.1090909091

4 395010 234612 0.5939393939 0.4060606061

5 4187106 797680.8 0.1905088622 0.8094911378

6 36288252 -1063574.4 -0.02930905572 1.029309056

triple in a 6 card layout is 100%. Then it follows that when playing with a SPOT IT! deck order

5, only 6 cards need to be laid out to guarantee a triple to appear amongst the cards. Thus, the

best way to play Triplets with a SPOT IT! deck order 5, with 31 cards is to lay out 6 cards, to

guarantee at least 1 triple to choose from.

The probability Table 5.2.4 shows how many possible ways there are to choose k cards when

n = 7. The third column shows how many possible k-TriCaps there are for a SPOT IT! deck

order 7, followed by the probability of a k-Tricap when choosing k cards at random from the

deck in the fourth column. The last column expresses the probability of there being a triple

when k cards are laid out. The table shows that when 5 cards are laid out from a SPOT IT!

deck order 7, there is a 80.9% chance of a Triple. However, notice that the probability of T6(7)

is 0%, meaning that there are no possible ways of choosing a 6-TriCap. Hence, the probability

of a triple of a triple in a 6 card layout is 100%. Then it follows that when playing with a SPOT

IT! deck of order 7, only 6 cards need to be laid out to guarantee a triple to appear amongst

the cards. Thus, the best way to play Triplets with a SPOT IT! deck of order 7, with 57 cards

is to lay out 6 cards, to guarantee at least 1 triple to choose from.

Recall that the SPOT IT! instructions stated that 9 cards should be placed at the beginning

of a Triplet game. However, one can place fewer than 9 cards and still guarantee a triple. For

a SPOT IT! deck of order 2 and 3, only 5 cards need to be placed to guarantee a triple. For

a SPOT IT! deck order 5 and 7, only 6 cards need to be placed to guarantee a triple. Recall

Figure 2.3.1 among a 9 card layout there were about 3 triples to choose from. A 5 or 6 cards
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layout, depending which SPOT IT! deck order n you are playing with, will be more challenging

for players to find a triple amongst a smaller number of cards laid out.

5.3 Future Work

From the final results we are now sure of how many cards need to be placed down in a k card

layout to guarantee a triple for any SPOT IT! deck of prime order n. When placing 6 cards

for a SPOT IT! deck order 7 there will always be at least one triple to choose. Notice again

Figure 2.3.1. When 9 cards are placed there are at least 2 independent triples (notice that

some triples actually rely on the same card to be a triple but there are 2 triples that stand

independently from each other in the 9 card lay out). The following questions could be studied

in a future research project expanding current research on the math behind SPOT IT!:

1. How can we find the number of cards that will guarantee more than just one triple.

2. What is the relationship between two triples that share one card in common to complete

their individual sets?

3. Considering every symbol shows up on n+1 cards could it be possible to play or manipulate

the game looking for other sets of cards that share the same symbol?

4. Can we produce various examples of SPOT IT! decks which do not correspond to finite

projective planes? Does the symmetry of the deck of cards still hold after all?



Appendix A
Constructing Finite Projective Planes

A.1 Python Code

Listing A.1: Constructing Points and Lines in Zn

def E c l a s s e s l i s t (p ) :
Ec l a s s e s =[ ]
for x in range (0 ,p ) :

for y in range (0 ,p ) :
T=(1 ,x , y )
Ec l a s s e s . append (T)

for y in range (0 ,p ) :
T=(0 ,1 ,y )
Ec l a s s e s . append (T)

T=(0 ,0 ,1)
Ec l a s s e s . append (T)
return Ec l a s s e s

def isRep (x ) :
i f x [ 0 ] == 1 :

return True
i f x [ 0 ] != 0 :

return False
i f x [ 1 ] == 1 :

return True
i f x [ 1 ] != 0 :

return False
i f x [ 2 ] == 1 :

return True
return False

x = (1 , 0 , 2 )
print ( isRep (x ) )

def r e p r e s e n t a t i v e (x , p ) :
for i in range (1 , p ) :

maybe rep = mults tup le (x , i , p )
i f isRep (maybe rep ) :

55
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return maybe rep

def addtuples (A,B, p ) :
return ( (A[ 0 ] + B[ 0 ] ) %p , (A[ 1 ] + B[ 1 ] ) %p , (A[ 2 ] + B[ 2 ] ) %p)

def multstup le (B, i , p ) :
return (B[ 0 ] ∗ i %p , B[ 1 ] ∗ i %p , B[ 2 ] ∗ i %p)

def ELine (A,B, p ) :
l i n e = frozenset ( r e p r e s e n t a t i v e ( addtuples (A, mults tup le (B, i , p ) , p ) , p ) for i in range (p ) ) |
frozenset ({B})
return l i n e

p = 5
Ec l a s s e s = E c l a s s e s l i s t (p)
for T in Ec l a s s e s :

print (T)
print ( len ( Ec l a s s e s ) )

l i n e s e t = set ( )
for A in Ec l a s s e s :

for B in Ec l a s s e s :
i f A == B:

continue
l i n e s e t . add ( ELine (A,B, p ) )

print ( l i n e s e t )
for x in l i n e s e t :

print ( l i s t ( x ) )
print ( len ( l i n e s e t ) )
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